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Abstract

The multiobjective optimal power flow (MOOPF) problem consists of ad-
justing the generator power and the voltage state of each node within the
feasible range in the process of power transmission and, finally of achieving
the objectives of optimizing the cost, loss and stability, etc. In the MOOPF,
two key decision makers are usually involved, which are the power genera-
tion sector and the transmission sector. Thus, it is more suitable to model an
MOOPF as a biparty multiobjective optimal power flow (BPMOOPF) prob-
lem. However, so far, there is no work on treating and solving the MOOPF
problem from the perspective of biparty multiobjective optimization. In this
paper, we propose the definition of the BPMOOPF problem as well as a
novel evolutionary biparty multiobjective optimization algorithm for solving
the BPMOOPF problem, which we call BPMOOPF-EA. Our experimental
results show that, compared two state-of-the-art algorithms (C-MOEA/D
and A-NSGA-III), our proposed BPMOOPF-EA has a better performance
when solving the BPMOOPF problem.
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Abbreviations

The following summarizes the meanings of abbreviations and acronyms
used throughout the paper.

A-NSGA-III Adaptive-NSGA-III
BPMOOPF Biparty Multiobjective Optimal Power Flow
BPMOP Biparty Multiobjective Optimization Problem
C-MOEA/D Constraint-MOEA/D
DE Differential Evolution
DM Decision Maker
EA Evolutionary Algorithm
ESDE-MC Enhanced Self-adaptive Differential Evolution with Mixed Crossover
HV Hypervolume Indicator
IUDE Improved Unified Differential Evolution
MOEA/D Multiobjective Evolutionary Algorithm based on Decomposition
MOOPF Multiobjective Optimal Power Flow
MOP Multiobjective Optimization Problem
MPHV Multiparty Hypervolume Indicator
MPMOP Multiparty Multiobjective Optimization Problem
OPF Optimal Power Flow
MOOPF Multiobjective Optimal Power Flow
SBX Simulated Binary Crossover
SLFA Shuffle Frog Leaping Algorithm

1. Introduction

Optimal power flow (OPF) is a widely studied problem in the field of
power systems [1]. Under conditions that include the limits of the active
and reactive power of the generator and line flow, the algorithms for OPF
ofen seek to find solutions to minimize objectives such as: generation costs,
transmission losses, and voltage deviation [2]. Thus, an OPF problem usually
involves multiple objectives which should be optimized simultaneously and
this is often regarded as a multiobjective optimization problem (MOP).
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Many evolutionary algorithms (EAs) have been applied to solve multi-
objective optimal power flow (MOOPF) problems [1]. In [3], an improved
version of the Shuffle Frog Leaping Algorithm (SLFA), which combines a
mutation srategy, is proposed to solve MOOPF problems. Pulluri et al.
[4] proposed an Enhanced Self-adaptive Differential Evolution with Mixed
Crossover (ESDE-MC) approach for solving MOOPF problems, which showed
its effectiveness in the IEEE 30-bus, the IEEE 57-bus and the Algerian 59-
bus systems. By combining Pareto ordering and fuzzy computation, Shaheen
et al. [5] improved the Differential Evolution (DE) operator, so that it could
speed up the population’s convergence, and showed its effectiveness in solving
MOOPF problems. Biswas et al. [6] applied a multiobjective evolutionary
algorithm based on decomposition (MOEA/D) to solve MOOPF problems.
Naderi et al. [7] proposed a hybrid self-adaptive heuristic algorithm to ad-
dress the MOOPF problem. Karthik et al. [8] proposed a MOOPF solution
using a new heuristic optimization algorithm. Li et al. [9] formulated the op-
timal power flow with stochastic wind and solar energy as a multi-objective
optimization problem and presented a multi-objective evolutionary algorithm
based on non-dominated sorting with the constraint handling technique to
solve it. Kahraman et al. [10] developed a method using the Pareto archiv-
ing approach based on crowding distance to address the MOOPF problem.
Ganesan et al. [11] provide a concise review on recent implementations of
multiobjective and multilevel optimization on sustainable energy economic
systems.

Existing work designs different algorithms to solve the OPF problem and
achieves remarkable results. To the best of our knowledge, however, these al-
gorithms have been designed from the perspective of a single decision maker
(DM) but fail to take multi-decision maker scenarios. In reality, there are
different decision makers (sectors) which focus on different objectives [12].
Thus, the OPF problem needs to be optimized from various perspectives, in-
cluding power generation and transmission. For the power generation sector,
the power generation cost should be the main concern. Meanwhile, because
stochastic wind and solar power are often added to the power generation
system, the uncertainty of the renewable power could lead to the instability
of the power system, which is often accompanied with serious consequences.
Therefore, voltage stability is an important objective that the power genera-
tion sector should also consider [13]. Additionally, how to reduce the losses in
the transmission process, including active power loss [14] and reactive power
loss [15], are two crucial objectives for the transmission sector.
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Multiparty multiobjective optimization problems (MPMOPs) [12] are
a particular class of multiobjective optimization problems (MOPs) [16] in
which more than one decision maker (DM) is involved. In an MPMOP, each
DM focuses on his/her preferred objectives but does not care about the pref-
erences of the other DMs. Moreover, when solving MPMOPs, not only all the
objectives should be considered, but also the objectives of each DM should
be optimized (in a Pareto sense) as much as possible. For example, there
is a MPMOP with two DMs, each of whom has two maximization objec-
tives. Given two solutions x1 and x2, let’s assume that F1(x1) = (10, 10) and
F1(x2) = (100, 100) are objective values for the first DM on x1 and x2. Sim-
ilarly, F2(x1) = (1, 2) and F2(x2) = (2, 1) are objective values for the second
DM. If we consider optimizing all objectives, we find that (10, 10, 1, 2) for x1

and (100, 100, 2, 1) for x2 are equally good according to Pareto dominance
relationship. But in fact, x2 is significantly better than x1 for the first DM,
and this is where an MPMOP comes into play. When the number of DMs is
two, MPMOPs are often called biparty multiobjective optimization problems
(BPMOPs). Thus, an MOOPF problem is more suitable to be modeled as
a BPMOP. So far, however, there has been little work on solving MOOPF
problems from the perspective of biparty multiobjective optimization.

In this paper, to model an MOOPF as a BPMOP, two sectors are dis-
cussed: the power generation sector and transmission sector. Each of them
focuses on different objectives, and all the objectives from these two sectors
form the biparty multiobjective optimal power flow (BPMOOPF). To solve
the BPMOOPF, it is not appropriate to directly apply traditional multiobjec-
tive optimization algorithms, because those algorithms ignore the existence of
two or more DMs. State-of-the-art multiparty multibjective optimization al-
gorithms (e.g., OptMPNDS [12], OptMPNDS2 [17] and MOEA/D-MP [18]),
are also not suitable for directly solving BPMOOPF problems. The main
reason is that they lack the ability to deal with a large number of constraints
which is something common in real-world problems such as the BPMOOPF
problem.

Evolutionary algorithms have been widely applied to solve MOPs, and
most of them are based on either Pareto dominance, a quality indicator or
decomposition [16, 19, 20]. These multiobjective evolutionary algorithms
(MOEAs) have shown effectiveness and efficiency in solving complex MOPs
having two and three objectives. However, when dealing with more than
three objectives (the so-called many-objective optimization problems, or MaOPs
[19]) the performance of Pareto dominance based MOEAs quickly degrades
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as the number of objectives increases due to the exponential increase in the
number of nondominated solutions [20]. Regarding indicator-based MOEAs,
their computational cost significantly increases (normally in an exponential
manner, if using the hypervolume indicator) with a higher number of objec-
tives [20]. In contrast, decomposition-based MOEAs (e.g., MOEA/D [21])
keeps a good performance and a reasonable computational cost when in-
creasing the number of objectives. That is the reason for which we selected
MOEA/D as our baseline algorithm for developing our proposed approach
called BPMOOPF-EA.

Due to the complexity of the BPMOOPF problem, BPMOOPF-EA adopts
a different way to generate weight vectors from that provided in the origi-
nal MOEA/D [21], and uses the combination of three DE operators in the
Improved Unified Differential Evolution (IUDE) [22] to reproduce new candi-
dates. In addition, the Superiority of Feasible Solutions (SFS) constraint han-
dling rule [23] is used in BPMOOPF-EA to guide the population towards the
feasible region. BPMOOPF-EA is compared with two state-of-the-art con-
strained multiobjective evolutionary optimization algorithms: Constraint-
MOEA/D (C-MOEA/D) [24] and Adaptive-NSGA-III (A-NSGA-III) [24].
Our experimental results show that our proposed BPMOOPF-EA outper-
forms the other two approaches.

In summary, the contributions of this paper are the following:

• For the first time, the traditional multiobjective optimal power flow
problem is solved from the perspective of biparty multiobjective opti-
mization. In the BPMOOPF problem, there are two sectors: the power
generation sector and the transmission sector. The power generation
sector pays more attention to the overall cost of generating electric-
ity and voltage quality, while the power transmission sector is more
concerned about the line losses of the network.

• A novel biparty multiobjective optimization algorithm based on MOEA/D
(BPMOOPF-EA), is proposed here to solve the BPMOOPF problem.
In our proposed BPMOOPF-EA, in order to deal with both parties
in the BPMOOPF problem, the weight vectors for decomposition are
adjusted accordingly. Meanwhile, the reproduction operators in IUDE
are adopted to efficiently generate new candidate solutions, and the
SFS rule is adopted to handle multiple constraints. Experimental re-
sults show that our proposed BPMOOPF-EA has a better performance
than two state-of-the-art algorithms.
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The remainder of this paper is organized as follows. Section 2 introduces
the previous related work. Section 3 introduces the BPMOOPF problem.
Section 4 describes our proposed BPMOOPF-EA in detail. Section 5 con-
tains our experimental results and their corresponding discussion. Finally,
our conclusions and some possible paths for future research are provided in
Section 6.

2. Related Work

2.1. Multiparty Multiobjective Optimization

Multiparty multiobjective optimization problems (MPMOPs) [12] are a
particular type of multiobjective optimization problems (MOPs) [16] having
multiple decision makers.

A MOP is formally defined as follows1:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.

A few additional definitions are required to introduce the notion of opti-
mality used in multiobjective optimization:

Definition 1. Given two vectors x, y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f(x).

1Without loss of generality, we will assume only minimization problems.
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Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F
is the feasible region) is Pareto-optimal if it is nondominated with respect
to F .

Definition 4. The Pareto Optimal Set P is defined by:

P = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF is defined by:

PF = {f(x) ∈ IRk|x ∈ P}

Therefore, our aim is to obtain the Pareto optimal set from the set F of all
the decision variable vectors that satisfy (2) and (3).

MPMOPs were recently proposed by Liu et al. [12]. An MPMOP usually
involves multiple decision makers (DMs). Each DM represents a party, and
at least one of the DMs focuses on multiple objectives, which conflict with
each other. An MPMOP can be defined as follows [17]:

Minimize E(x) = (F1(x), . . . , FM(x)),

where



F1(x) = (f1,1(x), . . . , f1,m1(x)),
...

Fi(x) = (fi,1(x), . . . , fi,mi(x)),
...

FM(x) = (fM,1(x), . . . , fM,mM (x)),

(4)

where E(x) is a minimization MPMOP, for which the number of DMs is
M . For the ith DM who focuses on Fi(x) (i ∈ {1, . . . ,M}), there are mi

objectives to be optimized simutaneously.
To find the best solutions for an MPMOP, it is required to make that the

solutions reach the Pareto fronts of all parties as much as possible. If one
solution xMP meets the requirements of the best solutions for an MPMOP,
@x ∈ F satisfies the following two conditions simultaneously:

• For all parties, x ≺ xMP , or they do not dominate each other;

• For at least one party, x ≺ xMP .
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2.2. The Optimal Power Flow Problem

In the optimal power flow (OPF) problem we seek to optimize the oper-
ation of the power system under the physical constraints of power law and
engineering constraints [25]. Common optimization objectives include power
generation cost, voltage stability, active power loss, and reactive power loss,
which are listed as follows [26]:

Minimize f1 =
N∑
i=1

(
ai + biPg,i + ciP

2
g,i

)
(5)

Minimize f2 =
N∑
i=1

(1− |Vi|)2 (6)

Minimize f3 =
N∑
i=1

(Pg,i − Pl,i) (7)

Minimize f4 =
N∑
i=1

(Qg,i −Ql,i) (8)

where f1 is the total cost of power generation, in which ai, bi and ci are the
cost factors for the ith bus generator and Pg,i is the output active power of
the ith bus generator. f2 indicates the voltage deviation of each bus, which is
an important measure of voltage stability. Vi is the bus voltage of the ith bus,
andN represents the total number of buses in the power system. f3 and f4 are
the active power loss and reactive power loss, respectively. Pi (= Pg,i − Pl,i)
represents the active injection power on the ith bus, in which Pl,i is the active
power load of the ith bus. Qi (= Qg,i −Ql,i) represents the reactive injection
power on the ith bus, in which Qg,i and Ql,i are the output reactive power of
the ith bus and the reactive power load of the ith bus, respectively.

In addition, the OPF problem has multiple constraints, including inequal-
ity constraints and equality constraints, as shown below:

Pg,i − Pl,i = Vi

N∑
j=1

Vj (Gij cos (δi − δj) +Bij sin (δi − δj)) , i = 1, 2, . . . , N

(9)

Qg,i −Ql,i = Vi

N∑
j=1

Vj (Gij sin (δi − δj)−Bij cos (δi − δj)) , i = 1, 2, . . . , N

(10)
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Vmin ≤ Vk ≤ Vmax, k = 1, 2, . . . , N (11)

δmin ≤ δk ≤ δmax, k = 1, 2, . . . , N (12)

Pmin ≤ Pg,k ≤ Pmax, k = 1, 2, . . . , N (13)

Qmin ≤ Qg,k ≤ Qmax, k = 1, 2, . . . , N (14)

where Y busij (= Gij + 1jBij) is the ijth element of the admittance matrix,
in which Gij and Bij are the transfer conductance and susceptance between
buses i and j; δi and δj are the voltage angles of buses i and j, respectively.
Equations (9) and (10) are the power flow equations in the network, which are
also the equality constraints that the problem must meet. Equations (11)-
(14) are the ranges of each dimension of the decision variables, which are also
the inequality constraints of the OPF problem.

2.3. MOEA/D and its Improvements

The multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [21], which was originally proposed by Zhang and Li, has been
widely studied in recent years. MOEA/D decomposes an MOP into several
subproblems using a set of uniformly distributed vectors, whose size equals
the size of the population. Each of these vectors corresponds to one (or
few) individual in the population. In addition, the concept of “neighbor” is
emphasized in MOEA/D. Neighbors are determined by Euclidean distances
between vectors. For a vector, T vectors (including itself) with the small-
est Euclidean distances are selected as its neighbors. For each individual,
its offspring is generated through the parents selected from its neighbors.
The offspring will be compared with all the neighbors of the corresponding
individual, and the best individuals will enter the next generation. The com-
parison relies on scalar g values, which are calculated by the corresponding
vectors. For minimization MOPs, the smaller the g value, the more likely
the individual will remain in the population.

Multiple decomposition approaches, including the weighted sum approach
[27], the Tchebycheff approach [27] and the penalty-based boundary inter-
section (PBI) approach [21] have been proposed. The Tchebycheff decompo-
sition approach, which is used in our proposed BPMOOPF-EA is illustrated
in equation (15).

Minimize gTe(x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |},

Subject to x ∈ Ω,
(15)
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where λ = (λ1, . . . , λm)T is a generated weight vector, which satisfies that∑m
i=1 λi = 1, and m is the dimensionality of the objective space. The value

of each dimension of the reference point z∗ represents the minimum value of
the objective value of all individuals in this dimension.

A wide variety of improved versions of MOEA/D have been proposed so
far [28]. For example, in [29], Li et al. proposed MOEA/D-DE for MOPs
having complicated PS shapes. The main difference between MOEA/D and
MOEA/D-DE is in the mechanism used to generate offspring, where the
DE operator replaces the simulated binary crossover (SBX) operator from
the original MOEA/D. In [30], Qi et al. applied the adaptive weight ad-
justment strategy on MOEA/D and named it MOEA/D-AWA. After the
population converges to a certain extent, MOEA/D-AWA replaces the sub-
problems which have low sparsity in the population with the subproblems
having high sparsity in the external population to adjust the weight vectors.
In [31], Wang et al. adopted both the SBX operator and the DE operator,
and combined the adaptive strategy to improve the diversity when the pop-
ulation has converged to a certain extent. In [32], Chen et al. embedded
a resource allocation strategy, a multioperator and multiparameter strategy
and a bidirectional local search strategy into MOEA/D (this variant was
called MOEA/D-RML) to solve scalable multi/many-objective problems.

3. Biparty Multiobjective Optimal Power Flow

As mentioned in Section 1, OPF problems with multiple/many objectives
are often solved from the perspective of one decision maker, i.e., one party.
However, an OPF problem usually involves more than one decision maker at
the same time. Thus, an MOOPF problem is often suitable to be modeled
as an MPMOP.

In this paper, we model the MOOPF with the four objectives listed in
Section 2.2 as the biparty multiobjective optimal power flow (BPMOOPF).
The BPMOOPF is defined as follows:

Minimize EOPF = (F1, F2) (16)
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where

F1 = (f1,1, f1,2) (17)

F2 = (f2,1, f2,2) (18)

f1,1 =
N∑
i=1

(
ai + biPg,i + ciP

2
g,i

)
(19)

f1,2 =
N∑
i=1

(1− |Vi|)2 (20)

f2,1 =
N∑
i=1

(Pg,i − Pl,i) (21)

f2,2 =
N∑
i=1

(Qg,i −Ql,i) (22)

The above formulas mean that the BPMOOPF problem involves two de-
cision makers, i.e., the power generation sector and the transmission sector.
Each of them focuses on different objectives. The power generation sector
focuses on f1,1 and f1,2, i.e., the total generation cost and voltage stability.
In contrast, the transmission sector mainly focuses on f2,1 and f2,2, i.e., the
active power loss and the reactive power loss. Additionally, the BPMOOPF
problem also includes multiple constraints, which are those provided in equa-
tions (9)-(14).

To solve the BPMOOPF problem, we need to find solutions as close as
possible to the Pareto front of all parties while satisfying the constraints. In
this paper, a novel algorithm based on MOEA/D is proposed to solve this
problem. This algorithm will be described in the next section.

4. Proposed Algorithm

In this section, in order to solve the BPMOOPF problem, a novel algo-
rithm, called BPMOOPF-EA, which is an improved version of MOEA/D, is
proposed.

4.1. Main Framework

Algorithm 1 shows the framework of BPMOOPF-EA, which is explained
as follows.
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(1) First, a population P with size N is randomly initialized.
(2) A set of M

√
N weight vectors is generated for each decision maker.

Here, M is the number of parties.
(3) A set of N new weight vectors W are generated, and T neighbors

of each weight vector are determined according to Euclidean distances. The
details will be provided in Section 4.2.

(4) The objective values and constraint violations of all individuals in
the initial population P are calculated. Because BPMOOPF-EA adopts
Tchebycheff decomposition, it is necessary to calculate the objective values
of all individuals in advance, and take the minimum value of each objective
of all individuals as the reference point.

(5) The external population EP is initialized to ∅, and gen, which is used
to record the number of generations, is initialized to 0.

(6) For each DE operator, it is necessary to initialize its memory sets
MCR and MF , and winning sets SCR and SF , which will be further explained
in Section 4.4.2.

(7) For the main loop, while the termination condition is not met, the
following steps are executed:

• First, we add 1 to gen, and the Remove V ector operator, which is used
to periodically delete poor individuals, is executed. The details of the
Remove V ector operator will be explained in Section 4.3.

• For each individual in the current population P , three offspring are
generated according to three DE operators, and the best individual
ybest is selected according to the SFS constraint rule [23]. The details
of the operators will be provided in Section 4.4.1.

• The reference point is updated.

• Each of the three offspring is compared with its parent according to the
SFS constraint rules, and its winning sets SCR and SF are updated.

• Then ybest is compared with each neighbor of x using the Comparator
operator. The details of the Comparator operator will be depicted in
Section 4.4.4.

• If the size of EP exceeds the threshold, the individuals in EP will
be randomly deleted until the number of individuals in EP meets the
requirement.
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• The memory sets MCR and MF of each DE operator are updated.

4.2. Weight Vector Generation

MOEA/D [21] has been widely used to solve MOPs, but it cannot be di-
rectly applied to solve BPMOPs. In order to solve BPMOPs using MOEA/D,
it is necessary to improve its weight vector generation strategy. Here, a new
weight vector generation strategy is proposed to make the generated sub-
problem more suitable for BPMOPs.

In MOEA/D, a set of weight vectors uniformly distributed in the objective
space will be generated first, and the dimensionality of the vector is the
same as the number of objectives. This set of weight vectors decomposes
the multiobjective problem into several subproblems, and each subproblem
assigns different weights to each objective through the weight vector.

Let’s take the minimization MOP F (x) = (f1(x), . . . , fm(x)) as an exam-
ple, where m represents the number of objectives. According to the vector
generation strategy of the original MOEA/D, and assuming that the popula-
tion size is N , the generated set of vectors {λ1, . . . ,λN} contains the vector
λ1 = (1, 0, . . . , 0)T , that is, only the weighted value of the first objective is 1,
and the weighted values of other objectives are all zero. Thus, the subprob-
lem corresponding to λ1 only focuses on the first objective. In the BPMOP,
it is necessary to consider the requirements of both parties at the same time.
Therefore, if the original vector generation strategy is directly used, many
subproblems of weight vectors could not obtain the optimal solution of the
BPMOP. For example, the above λ1 only considers the first objective of the
first party, but does not consider any objectives of the second party.

Given that, a new weight vector generation strategy is proposed. First, a
set of uniformly distributed weight vectors is generated for each party, and
then the following operations are repeated: take each weight vector from the
weight vector set of each party set in turn, and the vectors obtained each time
are spliced together according to the order of the decision makers to form a
new weight vector, which is used as the vector to decompose the BPMOP.

The following example illustrates the new vector generation strategy.
Let’s assume that EBP = (F1, F2) is a minimization BPMOP with two de-
cision makers, F1 = (f1,1, f1,2) indicates that the first party pays attention
to the two objectives f1,1 and f1,2, and F2 = (f2,1, f2,2) indicates that the
second party pays attention to the two objectives f2,1 and f2,2. To simplify
the description, let’s assume that each party generates only 3 weight vectors,

13



Algorithm 1 BPMOOPF-EA

Input: population size N , BPMOOPF EOPF
Output: Final population P

1: Randomly initialize the population P with size N ;
2: Generate M

√
N evenly distributed weight vectors for each DM, where M

is the number of DMs;
3: Generate a set of N weight vectors W , and determine T neighbors of

each vector;
4: Calculate the objective values and constraint violations of all individuals

in P and generate the reference point;
5: Initialize external population EP = ∅ and variable gen=0;
6: for i = {1, 2, 3} do
7: Initialize MCR,i, MF,i, SCR,i and SF,i;
8: end for
9: while the termination is not satisfied do

10: gen = gen+1;
11: [P , W , EP , N ] = Remove Vector(gen, N , P , W , EP );
12: for each individual x do
13: Generate offspring and select ybest;
14: Update the reference point;
15: for i = {1, 2, 3} do
16: Compare the ith offspring with x using the SFS rule;
17: Update SCR,i and SF,i;
18: end for
19: for each neighbor xT of x do
20: [P , EP ] = Comparator(ybest, xT , λxT , P , EP );
21: end for
22: end for
23: while the size of EP exceeds the threshold do
24: Randomly select an individual of EP and delete;
25: end while
26: for i = {1, 2, 3} do
27: Update memory set MCR,i and MF,i;
28: end for
29: end while
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which are λ1 = (1, 0)T , λ2 = (0.5, 0.5)T and λ3 = (0, 1)T . Then, the vectors
are recombined, and finally a set of non-repeated weight vectors containing
9 vectors is obtained, which are:

• (1, 0, 1, 0)T , (0.5, 0.5, 1, 0)T , (0, 1, 1, 0)T ,

• (1, 0, 0.5, 0.5)T , (0.5, 0.5, 0.5, 0.5)T , (0, 1, 0.5, 0.5)T ,

• (1, 0, 0, 1)T , (0.5, 0.5, 0, 1)T , (0, 1, 0, 1)T .

Then, according to the generated vectors, the BPMOP is decomposed in
a proper way.

4.3. Adaptive Weight Vector Removal

In BPMOOPF-EA, the vectors are widely distributed in objective space
and guide the evolution of the population. However, some vectors could
seriously deviate from the feasible region. Obviously, allocating computing
resources to such vectors is a waste of time. Therefore, it is necessary to
delete the above vectors dynamically during the calculation process.

In [33], Zhang et al. introduced a strategy for allocating computer re-
sources to different subproblems, which is based on the decrease rate of the
fitness values. Here, the decrease rate of the fitness value is calculated as
follows.

∆i =
old fitness value− new fitness value

old fitness value
, (23)

where new fitness value represents the current objective value of the indi-
vidual i, and old fitness value represents its objective value before several
generations. Then, the value of πi is updated according to equation (24), and
πi can be used as a reference for the priority of assigning the computational
resources to the ith individual. The larger the value of πi, the higher the
rate at which the individual’s objective value has descended at the previous
generations. This also means that the subproblem is more likely to find an
optimal solution and should be prioritized in allocating computer resources.

πi =

{
1 if ∆i > 0.001(

0.95 + 0.05 ∗ ∆i

0.001

)
πi otherwise

(24)
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We made minor changes to the above formulas, and used them as a
reference for dynamically deleting vectors. The new fitness value and
old fitness value in equation (23) are replaced by new constraint violation
and old constraint violation, respectively, as shown in equation (25). There-
fore, πiCV in equation (26) represents the decrease rate of constraint violations
during several generations. An individual with large ∆CV can be considered
to have a greater chance of evolving into the feasible region and needs to be
preserved. In addition, ∆CV of an individual whose constraint violation is
reduced to 0 should always be set to 1. Obviously, πCV of such an individual
will always be 1. πiCV is used as a reference for the priority that the ith in-
dividual is retained, and the initial value is set to 1. The larger the value of
πiCV , the more likely is that the ith subproblem may find a feasible solution.

∆i
CV =

old constraint violation− new constraint violation

old constraint violation
(25)

πiCV =

{
1 if ∆i

CV > 0.001(
0.95 + 0.05 ∗ ∆i

CV

0.001

)
πiCV otherwise

(26)

Based on the above, the Remove V ector operator is designed to period-
ically remove vectors in BPMOOPF-EA. Algorithm 2 shows the process of
Remove V ector Operator. Both the ∆CV and the πCV values of each indi-
vidual are updated after each time interval Titl, and the calculation method is
shown in equations (25) and (26). Then, after the population has converged
to a certain extent, all individuals are sorted in descending order according to
their πCV values. The latter Ndel individuals in population P and their cor-
responding vectors in the set of weight vectors W will be removed. Removed
individuals are then added to the external population EP . After repeating
this operation several times, if the population size decreases to Nfinal, it will
not be executed again.

4.4. Offspring Generation

4.4.1. Generating Offspring by Combining Multiple DE Operators

The original MOEA/D adopted simulated binary crossover (SBX) and
polynomial-based mutation [21] to generate new candidate solutions. In [29],
Li et al. pointed out some shortcomings of using SBX to solve complex opti-
mization problems, including that it is easy to make the population converge

16



Algorithm 2 Remove Vector
Input: gen, N , P , W , EP
Output: P , W , EP , N

1: if gen is an integer multiple of Titl and N > Nfinal then
2: Update ∆CV and πCV of each individual;
3: if gen > Gremove then
4: Sort all individuals’ πCV values in descending order;
5: Remove the last Ndel individuals in P ;
6: Remove the corresponding vectors in W ;
7: Add the removed Ndel individuals to EP ;
8: N = N -Ndel;
9: Recalculate the nearest neighbors of each remaining vector;

10: end if
11: end if

prematurely at the early stages of the evolutionary process, since SBX tends
to produce a loss of diversity and also tends to generate low-quality solu-
tions. Therefore, Li et al. proposed to adopt the differential evolution (DE)
operator to replace the SBX operator, and achieved good results in solving
problems with complex Pareto solution sets.

In [22], the IUDE algorithm proposed by Trivedi et al. obtained good
results in solving single-objective constrained optimization problems. The
reproduction strategy of IUDE consists in generating three offspring by us-
ing three different DE operators, then selecting the optimal individual by
the SFS constraint rule, and comparing the selected optimal offspring with
the parent by the εC constraint rule [34]. Finally, the best individual is re-
tained in the population. The three DE operators are: DE/rand/1 mutation
strategy with binomial crossover operator, DE/current-to-rand/1 mutation
strategy without any crossover operator and DE/current-to-pbest/1 muta-
tion strategy with binomial crossover operator. The first two DE operators
could better maintain the population diversity and make the search space
wider, while the latter DE operator shows better convergence. At different
stages of the evolutionary process, the three DE operators could better guide
the population to evolve towards the optimal solutions.

Because DE is free of restrictions on problem characteristics [35][36] and
has the excellent properties described above. Our proposed BPMOOPF-EA
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improves the original MOEA/D by referring to the reproduction strategy
of IUDE. The process is shown in Figure 1, where DE1, DE2 and DE3 are
the three DE operators mentioned above, and PM means polynomial-based
mutation.

Figure 1: Improved offspring generation strategy

When an individual x generates offspring, three DE operators are used to
generate three individuals y1, y2 and y3, and polynomial-based mutation is
applied on each of them. The formula of polynomial-based mutation [29, 37]
is shown below.

ui =

{
vi + σi × (xmaxi − xmini ), r1 ≤ pm

vi, r1 > pm
(27)

with

σi =

{
[2r2 + (1− 2r2)(1− δ1)η+1]

1
η+1 − 1, r2 ≤ 0.5

1− [2(1− r2) + 2(r2 − 0.5)(1− δ2)η+1]
1
η+1 , r2 > 0.5

(28)

and

δ1 =
vi − xmini

xmaxi − xmini

, δ2 =
xmaxi − vi
xmaxi − xmini

(29)

where v = (v1, . . . , vd) is the offspring of the DE operator, vi is the value of
the ith dimension of the offspring. u = (u1, . . . , ud) is the offspring generated
after applying polynomial-based mutation. xmaxi and xmini are the upper
and lower bounds of xi in decision space, respectively. The parameter η is
called the distribution index, and pm is the mutation rate. Both r1 and r2 are
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randomly generated between 0 and 1. In addition, as shown in equations (28)
and (29), the generation of σi refers to [37], which is different from [29]. In
order to prevent the offspring from exceeding the boundary of decision space
after applying polynomial-based mutation, the corresponding repair rules
are set up. When a dimension of an individual exceeds the boundary, the
dimension is repaired to the corresponding boundary value.

After applying polynomial-based mutation, the SFS constraint handling
rule is used to select the optimal individual ybest from among y′1, y′2 and y′3.
Then, the selected optimal individual ybest is compared with respect to its T
nearest neighbors using the SFS constraint rule. The winner will be retained
in the population.

4.4.2. Adaptive Parameters

The DE operator that combines adaptive CR and F parameters was
introduced in [38, 39]. For each individual, first a combination of CRi and
Fi is randomly selected from the memory sets of CR and F , i.e., MCR and
MF . Then, CRi and Fi work as the mean of the Normal distribution and the
Cauchy distribution, where the standard deviation is 0.1, in order to generate
random values for CR′i and F ′i , respectively. CR′i and F ′i will be used in the
DE operator. If the offspring generated by the DE operator with CR′i and F ′i
is superior to the parent, CR′i and F ′i are saved into SCR and SF , respectively.
SCR and SF are the winning set of CR and F values. After all individuals
have been generated and evaluated in one generation, the memory sets of
CR and F (i.e., MCR and MF ) are updated as follows:

MCR,k,G+1 =

{
meanWA(SCR) if SCR 6= ∅
MCR,k,G otherwise

, (30)

MF,k,G+1 =

{
meanWL(SF ) if SF 6= ∅
MF,k,G otherwise

, (31)

meanWA(SCR) =

|SCR|∑
t=1

wt · SCR,t, (32)

meanWL(SF ) =

∑|SF |
t1=1 wt1 · S2

F,t1∑|SF |
t2=1 wt2 · SF,t2

, (33)
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wt =
∆ft∑|SCR|

u=1 ∆fu
, (34)

∆ft = |f(yt)− f(xt)|, (35)

where MCR and MF refer to the memory set of CR and F , respectively. The
parameter k in the above formulas refers to a certain position in the memory
set. During each generation, only the CR and F of the kth position in the
memory set will be updated. ft is the function value or constraint violation
of the individual related to the parameters in the tth position of the winning
set. Specifically, if the offspring yt is better than its parent xt due to the
function value, ft is calculated as the function value. But if the offspring yt

is better than its parent xt due to the constraint violation, ft represents the
constraint violation.

In order to improve the search ability of our algorithm in the whole search
space, we apply the above method [38, 39] to our proposed BPMOOPF-
EA. For multiple DE operators, the strategy of adaptive parameters can be
implemented by setting memory sets for each operator, respectively. It is
worth noting that for the DE operator without any crossover operator, it is
not necessary to set the memory set and the winning set of parameter CR.

4.4.3. Probabilistic Replacement Strategy

MOEA/D-DE [29] improves MOEA/D by maintaining the population’s
diversity during the evolutionary process. In the process of replacing the
offspring, the maximum number of replacements is specified. That is, the re-
placement occurs at most nr (0 < nr < T ) times in the process of comparing
the offspring with its T nearest neighbors of the parent. nr ensures that not
all nor most of the population will be replaced by one excellent offspring in
a round of comparison.

Inspired by this, our proposed algorithm adopts the probability replace-
ment strategy to ensure the population diversity in the evolutionary process.
First, at the beginning of the algorithm, the replacement probability prep is
set. When the selected offspring is better than the parent, the algorithm does
not directly replace the parent with the offspring, but with a probability of
prep.
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4.4.4. Comparator

Comparator is used to compare two individuals and retain the best
one in our proposed BPMOOPF-EA. Algorithm 3 shows the way in which
Comparator works.

In Algorithm 3, given two individuals x and y, the g values of x and y are
calculated by using the vector λx of x. In addition, the constraint violations
of x and y are also calculated. The value of g is used as the fitness value in
the SFS constraint rule for comparison. Under the SFS constraint handling
rule, if y is better than x, and the randomly generated number rand is less
than or equal to the replacement probability prep, x in the population P is
replaced by y and added to the external population EP . Otherwise, y is
added to EP .

It should be noticed that individuals in EP have the probability to gen-
erate offspring during the evolution of the population. Therefore, adding x
or y to EP could better maintain the diversity of the population.

Algorithm 3 Comparator

Input: x, y, λx, P , EP
Output: P , EP

1: Calculate the g value gx of x, and the g value gy of y using λx and the
constraint violations of x and y;

2: if y is better than x according to the SFS rule then
3: if rand ≤ prep then
4: Replace x with y in the population P , and add x to EP ;
5: else
6: Add y to EP
7: end if
8: else
9: Add y to EP ;

10: end if

4.5. Computational Complexity

In this section, the computational complexity of the proposed algorithm
is analyzed. These analyzes are based on the time-consuming operation in
Algorithm 1. Specifically, in line 3 of the algorithm, the T neighbors of
each individual are calculated, and the time complexity of this operation is
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O(n2), where n is the population size. In the loop, the Remove Vector on line
11 is designed to periodically remove vectors that deviate from the feasible
domain, and its time complexity is O(n2). In lines 12 to 22, the comparator
operation is performed on T neighbors of each individual to compare two
individuals and keep the better one, and its time complexity is O(n ∗ T ).
In summary, the time complexity of BPMOOPF-EA is O(MaxGen ∗ n2),
where MaxGen is the maximum evolutionary generations allowed.

5. Experiment

5.1. Benchmark

The benchmark problem in this paper comes from the 46th problem, i.e.,
RWMOP46, which is included in a group of real-world constrained multiob-
jective optimization problems proposed in [26]. RWMOP46 is a multiobjec-
tive optimal power flow problem, and it contains four objectives, which have
been described in Section 2.2. The parameters of RWMOP46 are designed
based on the IEEE 14-bus system, in which generators are set at bus 1, 2, 3,
6 and 8.

Based on RWMOP46, we divided the objectives into two parties and mod-
eled RWMOP46 as a BPMOOPF problem. The details are as shown in Sec-
tion 3. In the source code of BPMOOPF, the number of decision makers M is
set to 2, which means that the BPMOOPF problem includes 2 decision mek-
ers. The first decision maker is the power generation sector, and the power
transmission sector is the second decision maker. As for the objectives in the
source code of BPMOOPF, f1 represents the power generation cost as shown
in equation (5), and f2 represents the voltage deviation as shown in equa-
tion (6). f3 and f4 in the source code of BPMOOPF are the active and the
reactive power loss shown in equations (7) and (8), respectively. The source
code of the BPMOOPF problem and our proposed BPMOOPF-EA can be
obtained from https://github.com/MiLabHITSZ/2022ChangBPMOOPF-EA.

5.2. Performance Assessment

Until now, the most popular performance measurement adopted to eval-
uate multiparty multiobjective optimization algorithms has been the multi-
party IGD proposed in [12]. However, this measurement is not applicable to
algorithms designed to solve the BPMOOPF problem. This is because the
Pareto front of the OPF model [26] is unknown and, therefore, we cannot
obtain a proper reference set for computing the multiparty IGD.
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The hypervolume indicator (HV) [40] is a popular performance measure-
ment for assessing convergence and spread of MOEAs. One of its main
advantages is that it does not require the true Pareto front to be computed.
Therefore, in this paper, a new performance measurement called the multi-
party Hypervolume indicator (MPHV), is proposed for evaluating the effi-
ciency of the algorithms which are used to solve the BPMOOPF problem.

Diffenent from traditional HV, in order to calculate MPHV, the HV re-
sults of multiple objectives for each decision maker are calculated separately
and then, they are accumulated. As a result, MPHV is able to measure the
acceptance of a solution to multi-party decision makers. For a minimization
MOP F (x) = (f1(x), . . . , fm(x)), when calculating the HV, the objective
values are normalized as shown in equation (36).

f̂i(x) =

{
fi(x)−fbesti

fworsti −fbesti
if fworsti 6= f besti

fi(x)− f besti otherwise
, (36)

where fi(x) represents the function value of x on the dimension i, f besti denotes
the optimal value for the objective values of all the individuals on dimension
i and fworsti denotes the worst of the objective values of all the individuals on

dimension i. f̂i(x) denotes the normalized function value of x on dimension
i.

After normalization, the function values range within [0, 1], and the ref-
erence point (1.1, 1.1, ..., 1.1) is selected to calculate the HV [41, 42]. When
using the HV, the larger the result, the better the performance of the algo-
rithm.

5.3. Compared Algorithms

Two state-of-the-art constrained optimization MOEAs (Constraint-MOEA/D
(C-MOEA/D) [24] and Adaptive-NSGA-III (A-NSGA-III) [24]), were se-
lected to compare results with respect to our proposed approach. For obtain-
ing the source code of C-MOEA/D and A-NSGA-III, please refer to PlatEMO
[43].

C-MOEA/D is improved on the basis of MOEA/D, by adding the SFS
constraint handling rule to deal with constrained optimization problems. A-
NSGA-III is improved on the basis of NSGA-III [24] by incorporating the
rule of adaptively adding or deleting reference vectors. In addition, before
each generation, the population will be sorted according to the constraint
violations for constrained multiobjective optimization problems.
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5.4. Parameters Settings

Parameters are set as shown in Table 1. The population size is set to
10000, and the maximum number of fitness evaluations is set to 1.6×107.
For each algorithm, 15 independent experiments are carried out, and non-
repeated random number seeds were set in each experiment. Regarding the
algorithms used in our comparative study (i.e., C-MOEA/D [24] and A-
NSGA-III [24]), the above conditions remained the same.

Table 1: Parameters of BPMOOPF-EA, C-MOEA/D and A-NSGA-III

BPMOOPF-EA C-MOEA/D A-NSGAIII
Population size N 10000 10000 10000

maximum fitness evaluations MFEs 1.6×107 1.6×107 1.6×107

Run times 15 15 15

In addition, other parameters in BPMOOPF-EA are set as shown in
Table 2. Parameter T , which indicates the number of neighbors, is set to
3. The size of EP is the same as the population size. The replacement
probability prep in Comparator is set to 0.5. In Remove V ector, Gremove,
which decides when to start deleting weight vectors, is set to 200. Titl is set
to 50, and Ndel is set to 700. The final output population size, i.e., Nfinal, is
set to 200.

Table 2: Other parameters of BPMOOPF-EA
Parameter Meaning Value

T number of neighbors 3
NEP size of EP 10000
prep replacement probability 0.5

Gremove generation to start deleting 200
Titl time interval 50
Ndel number of removed individuals 700
Nfinal size of final population 200

5.5. Experimental Results

In this section, we first analyze some important parameters of our pro-
posed BPMOOPF-EA. Then, we compare experimental results of BPMOOPF-
EA with two state-of-the-art constrained MOEAs, namely, C-MOEA/D [24]
and A-NSGA-III [24], in dealing with the BPMOOPF problem.
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5.5.1. Population Size N

We performed an experiment to compare the performance of BPMOOPF-
EA with different initial population sizes. To better analyze the influence of
the initial population size, the number of the independent runs was increased
to 30 for each different N . The other settings remain the same as those in
Section 5.4.

It should be noted that when the population size is less than 200, the
algorithm does not perform the deletion operation, and the final output pop-
ulation size is equal to the initial population size.

Table 3: Experimental results of BPMOOPF-EA with different N
N 10000(100*100) 900(30*30) 100(10*10)

Feasible times 30 25 5
Ratio 100% 83.3% 16.7%

avgMPHV 0.0207±0.0013 0.0151±0.0077 0.0035±0.0082

The experimental results of BPMOOPF-EA with different values of N
are shown in Table 3, where “Feasible times” is the number of runs when
at least one feasible solution is found and “avgMPHV” means the mean and
standard deviation of MPHV in 30 independent run for each different value
of N . Table 3 shows that, given a sufficiently large population size and a
sufficiently large number of fitness evaluations, our proposed BPMOOPF-
EA can guide the population to feasible solutions in each run. However,
when the population size is small, BPMOOPF-EA cannot always find feasible
solutions. Moreover, according to the avgMPHV values, the diversity of the
solutions also decreases. Therefore, for our proposed BPMOOPF-EA, the
initial population size should not be too small.

5.5.2. Replacement Probability prep
The replacement probability prep is related to the convergence rate of the

population. The greater the replacement probability prep is, the greater the
possibility of having excellent offspring replacing their parents, which could
produce a faster convergence of the population. On the contrary, the smaller
the prep is, the more likely is to maintain diversity in the evolutionary process.

Since the setting of the replacement probability prep has an influence
on the convergence rate of the population, the analysis of the replacement
probability prep is necessary. The results with different prep are as shown in

25



Table 4. For each different prep, the times of independent experiments are
set to 30. Other settings are the same as those in Section 5.4.

Table 4: Experimental results of BPMOOPF-EA with different prep values
prep 0.2 0.4 0.6 0.8 1.0

Feasible times 28 30 30 30 30
Ratio 93.3% 100% 100% 100% 100%

avgMPHV 0.0176±0.0049 0.0202±0.0011 0.0203±0.0010 0.0208±0.0015 0.0208±0.0010

As shown in Table 4, when prep is small, BPMOOPF-EA cannot always
find feasible solutions. But if prep is set to a relatively large value, the ability
of BPMOOPF-EA to search for feasible solutions is improved. In addition, it
can be seen from the change of avgMPHV that the diversity of the obtained
solutions is improved when comparing it with respect to the use of small
prep values. However, after reaching a certain value, the growth trend of
avgMPHV becomes very modest.

5.5.3. Number of Neighbors T

Parameter T is also very important since it affects the convergence rate
of the population. Therefore, we conducted comparative experiments with
different numbers of neighbors T .

Table 5 shows our experimental results for our proposed BPMOOPF-EA
using different values of T , where the number of independent runs for each
different T was set to 30. The other settings were the same as those reported
in Section 5.4.

Table 5: Experimental results of BPMOOPF-EA with different T values
T 3 5 7 9

Feasible times 30 27 30 29
Ratio 100% 90% 100% 96.7%

avgMPHV 0.0207±0.0013 0.0191±0.0069 0.0216±0.0039 0.0220±0.0068

Our experimental results show that the setting of T has a certain impact
on the performance of our proposed BPMOOPF-EA. But in general, the rate
for BPMOOPF-EA to find feasible solutions is above 90%. The change of the
parameter T affects the convergence rate of the population and the diversity
in the evolutionary process, leading to a failure to find feasible solutions in
some runs. Therefore, T needs to be set to an appropriate value.
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5.5.4. Comparison of Results

Table 6 shows the comparison results among the three algorithms pre-
viously indicated. “avgMinCV” refers to the average minimum constraint
violation in the final population of 15 independent runs, and “avgMPHV”
refers to the mean and standard deviation of MPHV in 15 independent runs.
It can be seen that our proposed BPMOOPF-EA is much better than the
other two approaches with respect to which it was compared, under the same
conditions.

Table 6: Comparison of results among the three algorithms selected
BPMOOPF-EA C-MOEA/D A-NSGAIII

avgMinCV 0 1.2479 1.3689
Feasible times 15 0 0

Ratio 100% 0 0
avgMPHV 0.0207±0.0013 0±0 0±0

Execution time 1.31e+05 ± 2.44e+03 9.27e+04 ± 2.31e+03 1.00e+06 ± 4.56e+04

Figure 2 shows that, although the value of MPHV changes slightly, it
fluctuates above and below the average value. It can be seen that the perfor-
mance of BPMOOPF-EA is relatively stable. In addition, the last row shows
the execution time (in seconds) of the three algorithms. It can be seen that
the execution efficiency of BPMOOPF-EA is a bit worse than C-MOEA/D,
but significantly better than A-NSGAIII.

In general, BPMOOPF-EA finds feasible solutions in all rounds of exper-
iments compared to the comparison algorithm in experiments. In addition,
we can optimize the algorithm’s ability to search for feasible solutions and
convergence speed by properly adjusting the values of parameters N , prep
and T . Therefore, it can be said that BPMOOPF-EA has better robustness.

6. Conclusions and Future Work

In this paper, we defined the biparty multiobjective optimal power flow
problem (BPMOOPF). In order to solve the BPMOOPF problem, we pro-
posed a novel algorithm called BPMOOPF-EA, which is an improved version
of MOEA/D. Compared with two state-of-the-art constrained multiobjec-
tive evolutionary algorithms (C-MOEA/D and A-NSGA-III), our proposed
BPMOOPF-EA showed significant advantages when solving the BPMOOPF
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Figure 2: Experimental results of BPMOOPF-EA

problem. As part of our future work, we intend to continue to explore multi-
party multiobjective optimal power flow problems with more decision makers
and more optimization objectives.
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