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Summary
After more than 25 years of existence, evolutionary multi-objective optimization has become a mature disci-

pline within evolutionary computation, producing an important flow of publications each year. This paper presents a
brief overview of the main topics on which researchers in this area are currently working, as well as some discussion
of the areas which, from the author’s perspective, constitute promising research directions for the next few years.
The topics discussed include algorithmic design, scalability, efficiency, hybridization, parameter control, theory and
incorporation of user’s preferences. The contents of this paper intends to provide a quick overview of the current state
and challenges within evolutionary multi-objective optimization, and is intended to be useful for those interested in
pursuing research in this area.

1. Introduction

Evolutionary algorithms (EAs) are stochastic search tech-
niques inspired on Darwin’s “survival of the fittest” princi-
ple, which apply a set of genetic-inspired operators (e.g.,
crossover and/or mutation) on a set of solutions (the so-
called population) with the only aim of increasing the fit-
ness of such solutions [Goldberg 89]. Their simplicity,
ease of use and effectivity has made EAs very popular in a
wide variety of domains particularly related to classifica-
tion and optimization tasks.
The popularity of EAs has originated a higher level of

specialization, which has given rise to several (more fo-
cused) subdisciplines. One of such subdisciplines is evo-
lutionary multi-objective optimization (EMO), which refers
to the use of EAs for solving problems that have two or
more (often conflicting∗1) objectives (the so-called multi-
objective problems (MOPs)). The conflicting nature of the
objectives of a MOP makes them have not one, but a set
of solutions, which represent the best possible trade-offs
among all the objectives. The population-based nature of
EAs gives them an advantage when solving MOPs, since
the proper use of the population allows us to generate sev-
eral different solutions during a single run of an EA. The

∗1 If the objectives of a multi-objective problem have no conflict
among themselves, then the problem has a single solution which
can be obtained by sequentially optimizing all the objectives. Such
problems are not of interest for the aims of this paper.

stochastic nature of EAs is also an advantage, since they
are less susceptible to the specific features of the MOP
that we aim to solve than traditional mathematical pro-
gramming techniques. This has made EAs an increasingly
popular choice for solving complex MOPs [Coello 07].
David Schaffer introduced the first implementation of

a multi-objective evolutionary algorithm (MOEA) in the
mid-1980s [Schaffer 85]. Since then, an important num-
ber of MOEAs have been proposed, and the field has ex-
perienced a considerable growth [Coello 06, Coello 07].∗2

After more than 25 years of activity, the EMO field has
reached certain maturity, and, as a consequence, its re-
search topics have become more focused. However, at the
same time, this makes look the field a bit intimidating to
newcomers who get swamped by the massive volume of
information available on most of its research topics. In
fact, a quick browsing of the current EMO literature shows
that a lot of “work by analogy” is being published these
days, and novel ideas seem now more scarce. Thus, some
students get the impression that producing original contri-
butions (mainly at the level of a PhD thesis) in this area is
now much harder than 10 or 15 years ago. This is perhaps
true, but it’s part of the typical growing pains of a scientific

∗2 The author maintains the EMO repository, which cur-
rently contains over 7170 bibliographical references,
plus public-domain software, and a small database of
EMO researchers. The EMO repository is located at:
http://delta.cs.cinvestav.mx/˜ccoello/EMOO
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discipline. In spite of this, the goal of this paper is to show
that the EMO field still has several intriguing and exciting
research problems waiting for someone to tackle them. It
is only that today is necessary to dig a little bit deeper into
the literature than 10 or 15 years ago. Thus, the main aim
of this paper is to serve as a quick guideline to these in-
teresting research problems, so that newcomers can easily
identify an area of opportunity and select a problem from
there for a PhD thesis or for establishing a publications
record. It is important to clarify, however, that this paper
is not meant to be an introduction to the EMO field, and
requires some basic knowledge about this area in order to
be understandable. For an introduction to the EMO field,
the reader is referred to [Coello 07, Coello 06].
The rest of the paper is organized as follows. In Sec-

tion Chapter 2, we present the most relevant concepts re-
lated to multi-objective optimization, which are meant to
make this paper self-contained. Then, Section Chapter 3,
we discuss in detail some of the main research trends iden-
tified in the current EMO literature. Section Chapter 4
highlights some additional topics that, from the author’s
perspective, constitute areas of opportunity for future re-
search. Finally, the conclusions of the paper are presented
in Section Chapter 5.

2. Basic Concepts

The focus of this paper is the solution of problems of
the type∗3:

minimize !f(!x) := [f1(!x), f2(!x), . . . , fk(!x)] (1)

subject to:

gi(!x) ≤ 0 i = 1,2, . . . ,m (2)

hi(!x) = 0 i = 1,2, . . . , p (3)

where !x = [x1,x2, . . . ,xn]
T is the vector of decision vari-

ables, fi : IRn → IR, i = 1, ..., k are the objective functions
and gi,hj : IR

n → IR, i = 1, ...,m, j = 1, ..., p are the con-
straint functions of the problem.

Next, we present some definitions that are necessary to
make this paper more understandable.
Definition 1. Given two vectors !u,!v ∈ IRk, we say that
!u ≤ !v if ui ≤ vi for i = 1, ..., k, and that !u < !v if !u ≤ !v

and !u $= !v.

Definition 2. Given two vectors !u,!v ∈ IRk, we say that !u
dominates !v (denoted by !u ≺ !v) iff !u < !v.

∗3 Without loss of generality, we will assume only minimization
problems.

Definition 3. We say that a vector of decision variables
!x∗ ∈ F (F is the feasible region) is Pareto optimum if
there does not exist another !x ∈ F such that !f(!x) ≺ !f( !x∗).

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {!x ∈ F|!xis Pareto optimum}

The vectors !x∗ corresponding to the solutions included
in the Pareto optimal set are called nondominated.

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {!f(!x) ∈ IRn|!x ∈ P∗}

We thus wish to determine the Pareto optimal set from the
set F of all the decision variable vectors that satisfy ((2))
and ((3)).

3. Current Research in the EMO Field

Based on his research experience of more than 18 years
in the EMO field, the author identified the following list of
topics that, in the author’s perspective, are representative
of the current research trends in this area:
(1) Algorithmic design
(2) Scalability
(3) Efficiency
(4) Hybridization
In the following sections, we will provide a short dis-

cussion of each of these topics, providing appropriate ref-
erences where the interested reader may find more details
about them.

3 ·1 Algorithmic Design
Current MOEAs have two main components: (1) a se-

lection mechanism that aims to favor good trade-off so-
lutions (Pareto ranking [Goldberg 89] and nondominated
sorting [Srinivas 94] have been the most common mech-
anisms adopted for this sake) and (2) a density estimator
that aims to distribute solutions along the Pareto front, in
order to avoid that they overlap in only one or a few re-
gions of the Pareto front. The notion of elitism in MOEAs,
which refers to retaining the nondominated solutions found
from one generation to the next one, has been around since
the mid-1990s [Husbands 94], but became popular after
the introduction of the Strength Pareto Evolutionary Al-
gorithm (SPEA) in the late 1990s [Zitzler 99]). Elitism
is important not only for practical reasons (we don’t want
to lose the nondominated solutions that are obtained dur-
ing the search process), but also for theoretical reasons
(elitism is required to guarantee convergence of a MOEA
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[Rudolph 00]. Elitism is normally implemented through
the use of an external archive [Knowles 00], but can be
also enforced using a plus selection (i.e., by selecting the
best individuals from the union of the populations of par-
ents and offspring) [Deb 02]. Interesting enough, the use
of external archives has also triggered some interesting re-
search, since they can be used, for example, to enhance
the convergence properties of MOEAs (see for example
[Laumanns 02, Schutze 10]).
Since the publication of the Nondominated Sorting Ge-

netic Algorithm-II (NSGA-II) [Deb 02], traditional Pareto-
based MOEAs did little progress, mainly because of the
elegance and effectiveness of this algorithm, which attracted
a significant amount of attention from partitioners and mo-
tivated numerous improvements during the last few years
(see for example [Lin 12, Ishibuchi 08a]). Pareto-based
selection mechanisms, however, are now being challenged
by the curse of dimensionality (Pareto-based selection does
not scale properly as we increase the number of objectives
[Farina 02]). This has motivated an important amount of
research in which the aim is to provide alternative selec-
tion mechanisms that can scale properly. The most popu-
lar trend in this regard, is to adopt a selection mechanism
based on a performance measure [Zitzler 04]. This is a
bit ironic considering that many of the most commonly
used performance measures are known to have drawbacks
(e.g., many of them are not Pareto-compliant [Zitzler 03]).
This idea was first explored in the Indicator-Based Evo-
lutionary Algorithm (IBEA) [Zitzler 04] is intended to be
adapted to the user’s preferences by formalizing such pref-
erences in terms of continuous generalizations of the dom-
inance relation. This is a very interesting idea, since it
avoids the need to provide an explicit diversity preserva-
tion mechanism. In order to achieve this aim, the opti-
mization goal of IBEA is defined in terms of a binary per-
formance measure (e.g., the additive ε-indicator [Zitzler
03]). In a further paper, the same authors introduced the
Set Preference Algorithm for Multiobjective Optimization
(SPAM) [Zitzler 08], which consists of a hillclimber based
on the same idea of IBEA, but which turns out to be more
general, since it is not restricted to a single binary per-
formance measure (several of such performance measures
can be used in sequence, and any type of set preference
relation is acceptable). Over the years, however, EMO
researchers focused their efforts on studying an intrigu-
ing indicator called hypervolume [Zitzler 98],∗4 which is
the only known unary quality indicator which guarantees

∗4 The Hypervolume (also known as the S metric or the Lebesgue
Measure) of a set of solutions measures the size of the portion of
objective space that is dominated by those solutions collectively.

strict monotonicity regarding the Pareto dominance rela-
tion [Zitzler 03]. In fact, it has been proved that the maxi-
mization of this performance measure is equivalent to find-
ing the Pareto optimal set [Fleischer 03]. The nice theo-
retical properties of the hypervolume indicator make it the
perfect choice for designing an indicator-based MOEA,
and such algorithms started to appear some years ago (see
for example the S Metric Selection Evolutionary Multiob-
jective Optimization Algorithm (SMS-EMOA) [Emmerich
05, Beume 07] and the multi-objective version of CMA-
ES (a well-known single-objective optimizer), which also
adopts a hypervolume-based selection mechanism [Igel 07]).
The use of the hypervolume, however, has some draw-
backs, from which the main one is the high computational
cost involved in the computation of the hypervolume con-
tributions (which is required when adopting the hypervol-
ume for selecting solutions). This has triggered a lot of re-
search that has produced more efficient algorithms for the
exact calculation of the hypervolume [While 12]. More
recently, alternative schemes based on iterative procedures
[Ishibuchi 09] and Monte Carlo sampling [Bader 11] have
been proposed. Such algorithms, however, remain rela-
tively slow when dealing with problems that have more
than 5 objectives even if using approximation schemes.
The idea of designing indicator-based selection is, how-

ever, interesting and worth exploring. Currently, there
is some evidence regarding the possibility of designing
selection mechanisms based on other indicators that are
computationally inexpensive. For example, in [Rodriguez
12], the recently proposed ∆p indicator [Schutze 12] is
incorporated in the selection mechanism of a MOEA with
very promising results, in spite of its theoretical limita-
tions. In fact, the proposed MOEA is shown to produce re-
sults similar to thsoe of the SMS-EMOA, but only at a tiny
fraction of its computational cost (particularly when deal-
ing with problems having more than 4 objectives). Given
the importance of this topic, more research around indicator-
based selection mechanisms is certainly expected to occur
in the next few years (see for example [Brockhoff 12]).
Density estimators are the other component of MOEAs

that also deserves some attention. In the early days of
EMO, most MOEAs adopted naive fitness sharing schemes
in which an individual was penalized for lying on the same
niche of other individuals (a niche is defined either in de-
cision or in objective function space by adopting a certain
niche radius for each individual, whose value is normally
defined by the user) [Goldberg 87, Deb 89]. Over the
years, however, density estimators have also changed, and
a variety of schemes have been proposed in the special-
ized literature, including clustering [Zitzler 99, Kukkonen
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06], adaptive grids [Knowles 00, Knowles 03], crowded-
comparison operators [Deb 02], and entropy [Farhang 02],
among others.
Regarding algorithmic design, there are, however, other

ideas that are worth mentioning. For example, the multi-
objective evolutionary algorithm based on Decomposition
(MOEA/D) [Zhang 07], which is based on the use of scalar-
izing functions is a very interesting and powerful MOEA
that borrows concepts from mathematical programming
(it is based on the Normal Boundary Intersection (NBI)
method [Das 98]). This same idea of transforming a MOP
into several single-objective optimization problems that
can then be efficiently solved with a powerful optimizer
has been explored by other researchers, using the ε-constraint
method, which is another well-known mathematical pro-
gramming technique (see for example [Ranjithan 01, Lau-
manns 06, Landa 06]).
In fact, it is possible to adopt other concepts to design

new selection schemes for aMOEA. Some interesting ideas
are, for example, the maximin method [Balling 01, Solteiro
10, Menchaca 12], game theory [Miyamoto 08, Annamdas
09], and the contact theorem [Osyczka 96], all of which
are worth studying in more depth.

3 ·2 Scalability
The current algorithmic design trends reflect the empha-

sis that has been placed on scalability in the last few years
because of the drawbacks of Pareto-based selection mech-
anisms (an aspect that was disregarded for many years
in the specialized literature) [Wagner 07]. Such Pareto-
based selection mechanisms don’t scale properly, because
the proportion of nondominated solutions in a population
increases rapidly with the number of objectives. Indeed,
in [Farina 02], it is shown that this number goes to infinity
when the number of objectives approaches to infinity. This
implies that in the presence of many objectives the selec-
tion of new solutions is carried out almost at random since
a large number of the solutions are equally good in the
Pareto sense [Knowles 07]. This has made scalability an
important research topic [Sato 07, Purshouse 07, Ishibuchi
08b].
It is possible to identify two main approaches to deal

with the so-called many-objective optimization problems:∗5

1) to adopt relaxed forms of Pareto optimality by propos-
ing an optimality relation that yields a solution ordering
finer than that produced by Pareto optimality (see for ex-
ample [Sulflow 07]) and 2) to reduce the number of ob-

∗5 Although the term many-objective optimization is used in an in-
formal way in the literature, it is normally assumed that it refers to
problems having four or more objectives.

jectives of the original MOP, so that the dimensionality
of the problem can be lowered to a reasonable value that
a standard MOEA can deal with [Saxena 07, Brockhoff
06, Lopez 09a]. Although this last approach could seem a
more attractive choice, it has a number of difficulties (for
example, the dimensionality reduction is not always pos-
sible). This has made relaxed forms of Pareto optimality
more popular in the literature [Lopez 08].
It is also worth mentioning that some researchers con-

sider a third approach to deal with many-objective opti-
mization problems: the incorporation of preference infor-
mation interactively during the search. By incorporating
preferences we can cope with many-objective problems in
two aspects. First, the search can be focused on the deci-
sion maker’s region of interest, thus avoiding the evalua-
tion of a very large number of solutions. Second, the pref-
erence relations usually used in interactive methods help
to deal with a large number of objectives since they are
able to rank incomparable nondominated solutions. Sev-
eral ranking schemes and preference incorporation meth-
ods that fall within this category have been proposed in the
specialized literature (see for example [Murata 09, Lopez
09b, Sato 07]).
It is interesting to notice that less attention has been paid

to both diversity and visualization in many-objective opti-
mization optimization, in spite of the evident importance
of these two topics (see for example [Adra 11, Li 10]).
Additionally, it has been until very recently that scalability
in decision variable space has been studied in a MOEA’s
context (see for example [Durillo 10]).
One final issue that is worth mentioning is that the num-

ber of nondominated solutions may not be the main source
of difficulty in many-objective optimization problems. A
recent study presented in [Schutze 11] uses the descent
cones to measure the probability to improve a solution
through the use of the evolutionary operators of a MOEA.
This study shred light into a very intriguing issue: the
addition of an objective does not make the problem per
se harder. This paper provides both theoretical and em-
pirical evidence regarding the real sources of difficulty
in many-objective optimization, and provides some dis-
cussions regarding the current research being performed
around this topic. One of the main outcomes of this paper
is that the emphasis has been on distinguishing solutions
in a many-objective context, but without ensuring conver-
gence. Finally, the authors also argue that memetic strate-
gies (which incorporate local search engines) may be par-
ticularly useful for dealing with many-objective optimiza-
tion problems (see for example [Lara 10]).
Clearly, all of the previously discussed topics that are
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related to scalability are still worth studying in more depth,
and much more research around them is expected to arise
in the next few years.

3 ·3 Efficiency
Efficiency in MOEAs can be considered from two per-

spectives: (1) in terms of algorithmic complexity and (2)
in terms of the number of (objective function) evaluations
performed by a MOEA. The first choice, which is the typ-
ical computer science notion of efficiency seems to leave
little margin in the case of MOEAs, because the com-
putational efficiency bounds of nondominance checking
have been known for over 35 years [Kung 75]. Looking
at the specialized literature, one would think that this is
normally assumed by researchers, but few detailed studies
of MOEA’s algorithmic complexity and on the algorithms
used to extract nondominated solutions from a set are cur-
rently available in the specialized literature (see for exam-
ple [Yukish 04]). Also, few attempts have been made to
incorporate the best-known algorithms for nondominance
checking into a MOEA (see for example [Jensen 03]).
The second notion of efficiency has been more com-

monly addressed in the EMO literature. In the early days
of the field, some researchers proposed clever approaches
that aimed to reduce the number of individuals that were
compared, so that a faster nondominance checking could
be done. Perhaps the first effort in this direction was the
Niched-Pareto Genetic Algorithm (NPGA) [Horn 94], which
adopts a binary tournament selection based on nondom-
inance. However, instead of comparing every solution
against everybody else, NPGA takes a sample of the pop-
ulation and compares the two individuals selected for the
tournament only with respect to such sample. The authors
of this MOEA empirically showed that a sample of about
10% of the total population size was enough to provide
reasonably good results at a lower computational cost than
the other MOEAs available at that time.
There have also been proposals in which a very small

population size is adopted, based on the concept of the
micro-genetic algorithm [Krishnakumar 89], in which no
more than five individuals are used in the population [Coello
01]. This sort of MOEA requires, however, of clever reini-
tialization schemes in order to avoid getting stuck during
the search [Coello 01]. In spite of its possible drawbacks,
this idea has been revisited by a few researchers in the last
few years [Toscano 03, Tiwari 11].
Nowadays, this topic has attracted a lot of interest, since

MOEAs have been increasingly applied to computation-
ally expensive problems (e.g., in aeronautical engineer-
ing [Arias 11]). One of the main approaches in this re-

gard has been the use of surrogate models, which have
been used for a long time in engineering (see for example
[Voutchkov 06, Knowles 06, Ray 06, Carrese 11]). The
core idea of surrogate models is to build an approximate
model of the problem, which is computationally unexpen-
sive to evaluate. The main problem with surrogate models
is that they evidently have errors with respect to the real
objective function to be optimized (these differences are
periodically checked to adjust the approximation model)
and, sometimes, the error may be significant. Addition-
ally, some of the current surrogates available for MOEAs
can be applied only to problems of low dimensionality
(e.g., parEGO [Knowles 06]).
The use of knowledge extracted during the search to

improve the performance of the recombination and muta-
tion operators is another possible choice (this the approach
adopted in the cultural algorithms [Reynolds 95] which
have been only scarcely explored in a multi-objective op-
timization context [Coello 03, Best 10]).
Knowledge from past fitness evaluations can also be

used to build empirical models that approximate the fit-
ness function that we aim to optimize. Such a model can
be used to predict promising new solutions at a smaller
computational cost than when using the original problems
(see [Knowles 06, Jin 05]).
Another interesting idea is to use fitness inheritance [Smith

95] in order to reduce the number of objective function
evaluations. Under this scheme, when assigning fitness to
an individual, a certain number of times the evaluation is
done as usual, and the rest of the time, the fitness of an off-
spring is assigned as the average of the fitnesses of its par-
ents. This avoids a fitness function evaluation by exploit-
ing the similarity that an offspring is assumed to have with
its parents. Fitness inheritance has been extended to multi-
objective optimization by some researchers with interest-
ing results [Bui 05, Reyes 05, Pilato 07, Giannakoglou 10]
in spite of the limitations that this sort of approach seems
to have in multi-objective optimization [Ducheyne 08].
Hybrid schemes can also be an interesting choice for

designing efficient MOEAs. In [Hernandez 06], a MOEA
is used to produce a coarse-grained approximation of the
Pareto front, and then a local search scheme based on
rough sets theory is adopted to rebuild the missing por-
tions of the Pareto front. A similar approach is adopted in
[Santana 06], but using scatter search as the local search
engine. These schemes can clearly reduce the number
of objective function evaluations performed [Wanner 08].
Also, the use of special operators that speed up conver-
gence is very promosing (see for example [Adra 07]).
For more information on the incorporation of knowl-
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edge into a MOEA, the interested reader is referred to
[Landa 08].

3 ·4 Hybridization
A very interesting topic that has attracted a lot of interest

in recent years is the hybridization of MOEAs with math-
ematical programming techniques. The main motivation
for this sort of hybridization is to speed up convergence of
a MOEA. In this direction, the main work has focused on
the hybridization of MOEAs (which act as a global search
engine, given their coarse-grain nature) with a gradient-
based method (which acts as a local search engine that
refines the best solutions obtained by the MOEA), giving
rise to the so-called multi-objective memetic algorithms
[Goh 09].
Fliege [Fliege 00] introduced a method called Steepest

Descent Direction which uses a definition of the Multiob-
jective Gradient (MOG). Fliege’s method implies solving
certain quadratic-programming problem involving the Ja-
cobian matrix of the MOP. This method works for convex
Pareto fronts as well as for concave Pareto fronts.
In [Bosman 06, Brown 03, Harada 06], the idea of mov-

ing a solution towards a particular improvement direction
is analyzed. The goal of these works was to find a descent
direction for the multi-objective case, which is equivalent
to the one that we can obtain for the single-objective case,
when using the gradient. As it turns out, this is indeed a
multi-objective problem as well [Bosman 05a], because
we aim for a set of descent directions, instead of only
one. The authors of [Bosman 05a] propose an analytical
way of computing this set of directions, from which one
is randomly selected. This method is called Combined-
objectives Repeated Line Search (CORL) and was further
improved in [Bosman 06]. In both cases, CORL was hy-
bridized with MIDEA [Bosman 05b]. Although the pre-
liminary results obtained with CORL are promising, this
approach has some scalability problems [Harada 06].
An alternative to the previous approach was made by

Harada et al. [Harada 06]. They use the ideas introduced
by Fliege [Fliege 00] to build what they called the Pareto
Descent Method (PDM). These researchers proposed PDM
as an option to deal with special MOPs when the solution
lies on the boundary between the feasible and the infeasi-
ble regions. In these cases, it is necessary to find a differ-
ent descent direction. The authors do not propose a hybrid
based on PDM; this is left as future work by them [Harada
06].
Brown and Smith [Brown 03] introduced the concept of

directional conewhich is conformed by the intersection of
the negative half-spaces (generated by the gradients) over

all the objective functions. Brown and Smith proposed
that the offspring, in the particular MOEA, must lie inside
the directional cone. However, they do not propose a full
algorithm. Furthermore, it is not clear how the directional
cone could deal with nonconvex Pareto fronts. Finally,
they do not complete the hybridization with any particu-
lar MOEA. A procedure to approximate the gradient of
the objective functions using neighborhood information is
also introduced in [Brown 03]. According to its authors,
that method reduces the computational cost of calculating
the Jacobian Matrix in Fliege’s Method. But, it is easy to
see that this also increases the number of objective func-
tion evaluations required.
The main problem of using an improvement direction is

that it is impossible to know beforehand for how long will
a certain direction be useful, unless a nonlinear problem is
solved (which requires solving another nonlinear single-
objective optimization problem). Evidently, it makes sense
to follow a promising descent direction as long as it re-
mains as a good search direction. However, in problems
with a very irregular geometry in the search space, the
optimum descent direction will be constantly changing.
Thus, this issue remains as an important drawback when
adopting gradient-based information. Another drawback
in Fliege’s methods – on which [Brown 03], [Harada 06]
and [Bosman 05a] are based —is that it has a slow conver-
gence rate [Brown 03], and it is susceptible to get trapped
in local (i.e., false) Pareto fronts.
Shukla [Shukla 07] introduced the use of two stochastic

gradient-based techniques to improve the mutation mecha-
nism of the NSGA-II: Schäffler’s stochastic method [Schaf-
fler 02] and Timmel’s method [Timmel 80]. These are
relatively straightforward approaches that could be easily
improved, but they also illustrate the local nature of the
gradient-based information and its possible limitations. Also,
Schäffler’s method requires a high number of objective
function evaluations, which is an important drawback, if
we consider that the main aim of using gradient-based in-
formation is precisely to reduce the overall computational
cost of a MOEA.
More recent results in this direction, indicate that the hy-

bridization of MOEAs with gradient-based methods can
be done more efficiently and effectively [Lara 10, Lara
10]. This is indeed a very promising research topic. For a
more thorough treatment of this topic the interested reader
is referred to [Lara 12].
The hybridization of MOEAs with direct search meth-

ods (i.e., those that don’t require gradient information) are
still relatively scarce. For example, Hu et al. [Hu 03] com-
bined sequential quadratic programming (SQP) and the
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ε-constraint method with SPEA [Zitzler 99] and NSGA-
II [Deb 02]. This approach transforms a multi-objective
problem into several single-objective optimization prob-
lems, which are solved using SQP. Koduru et al. [Ko-
duru 07] poposed a hybrid based on particle swarm op-
timization [Kennedy 01] and Nelder and Mead’s method
[Nelder 65]. and uses an external archive that contains the
fuzzy nondominated solutions that have been found dur-
ing the search. The Nonlinear Simplex Search Genetic Al-
gorithm (NSS-GA) [Zapotecas 08] hybridizes the NSGA-
II with one of the following mathematical programming
methods (which are used as local search engines): Nelder
and Mead’s method (which is used for multidimensional
optimization) and the golden section (which is used for
unidimensional optimization). Zhong et al. [Zhong 10]
hybridized the nonlinear simplex search and Differential
Evolution (DE) [Storn 97]. The simplex was constructed
selecting random solutions from the current population,
which were then sorted according to Pareto dominance.
At each iteration of the local search, a movement into the
simplex was performed for generating new nondominated
solutions. Koduru et al. [Koduru 08] have also proposed to
adopt Nelder and Mead’s method as a local search engine,
hybridized with a genetic algorithm. Wei and Zhang [Wei
11] proposed to use a simplex model to predict the position
of the optimal positions in the next iteration, when solving
a dynamic multi-objective problem. A crossover operator
based on particle swarm optimization is used in this case
as the global search engine. In more recent work, [Zapote-
cas 12] proposed a more powerful hybrid that combines
MOEA/D [Zhang 07] with Nelder and Mead’s method.
Evidently, more work on the hybridization of MOEAs

with direct search methods is also required. For exam-
ple, the potential of other approaches such as Hooke and
Jeeves’ method (also known as pattern search) [Hooke 61]
and the Complex method [Ravindran 06] (which is in-
tended for problems with constraints) has not been only
scarcely explored in a multi-objective context (see for ex-
ample [Zapotecas 10]).

4. Some Future Challenges

Some of the topics that, from the author’s perspective,
are worth studying during the next few years are the fol-
lowing:
(1) Parameter control: The design of mechanisms that
allow an automated control of the parameters of an
evolutionary algorithm is a topic that has been fre-
quently studied in single-objective optimization (see
for example [Eiben 07, Meyer 07]). However, this

topic has been only scarcely studied in a multi-objective
context (see for example [Toscano 03, Deb 07]). Ev-
idently, this is a very challenging topic, due to the
high nonlinear interaction among the parameters of
an evolutionary algorithm [Dejong 07]. Thus, top-
ics such as online adaptation and self-adaptation are
rarely addressed in EMO (see for example [Zapotecas
11]). In fact, the design of a parameterless MOEA is
rarely discussed in the specialized literature, and the
microgenetic algorithm 2 [Toscano 03] seems to be
the only effort in that direction until now. More re-
cently, some research efforts have focused on specific
topics related to parameter control, such as stopping
criteria of a MOEA [Wagner 11]. However, there
are still few studies on the way in which the parame-
ters of a MOEA affect its performance (see for exam-
ple [Toscano 05]) or on the use of information from
previous runs to improve performance of subsequent
runs (see [Dejong 07]).

(2) Theory: Although there has been a remarkable progress
in this area, there is still relatively little work on the-
oretical aspects of MOEAs. Most theoretical work
has typically focused on proofs of convergence of a
MOEA under certain conditions [Villalobos 06, Schutze
07] and on runtime analysis of MOEAs∗6 [Giel 03,
Laumanns 04, Neumann 04, Friedrich 08]. More re-
cent work focuses, however, on computational com-
plexity analysis [Neumann 12], on convergence rates
of specific MOEAs [Beume 11], on many-objective
optimization [Brockhoff 09, Schutze 11] and on the
hypervolume indicator [Auger 09, Bringmann 12, Auger
12].

(3) Incorporation of user’s preferences: An aspect
that is frequently disregarded in the EMO literature
is the fact that searching for good trade-off solutions
is not the only task required when solving a multi-
objective problem. The user (or decision maker) is
normally interested only in a certain portion of the
Pareto front and, most certainly, will be interested
in only a few nondominated solutions. Thus, it is
required to be able to incorporate the user’s prefer-
ences into the selection mechanism of our MOEA,
such that the search can be conducted in a more effi-
cient way (e.g., biasing the search only to the regions
of interest as defined by the user). Although there is
some important work done in this area (see for exam-
ple [Cvetkovic 02, Branke 08, Koksalan 10]), more

∗6 Runtime analysis addresses the question of how long a certain
algorithm takes to find the optimal solution for a specific problem
or a class of problems.
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research is still required, since the design of good
mechanisms for incorporating user’s preferences into
a MOEA requires studying first the extensive work
done in this regard in the Operations Research litera-
ture [Figueira 05].

Other topics that are also worth exploring but that were
not discussed here due to space limitations, include constraint-
handling techniques for MOEAs [Oyama 07, Harada 07],
advanced data structures for implementing external archives
(the most common way of incorporating elitism in cur-
rent MOEAs) [Fieldsend 03, Hernandez 07, Hernandez
11], parallelization techniques for MOEAs [Talbi 08], and
visualization of Pareto fronts, particularly when dealing
with many-objective problems [Obayashi 03, Hettenhausen
10].

5. Conclusions

This paper has provided a short review of the main top-
ics on which EMO researchers are currently working, as
well as those, which, from the author’s perspective, seem
more promising for doing research within the next few
years. Overall, this paper aims to serve as a quick ref-
erence for those interested in doing research in the EMO
field, since this paper provides a rough but wide view of
the current state of the area. Newcomers may be particu-
larly interested in the last part of the paper in which some
possible research topics (for example, for developing a
PhD thesis) are provided. Hopefully, this paper will mo-
tivate interest from several researchers and students, be-
cause their work is required in order to maintain active the
EMO field for many more years.
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