
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2000; 00:1–6 Prepared using nmeauth.cls [Version: 2002/09/18 v2.02]

Convergence Speed in Multi-Objective Metaheuristics:
Efficiency Criteria and Empirical Study

J. J. Durillo1,∗, A. J. Nebro1, F. Luna1, C. A. Coello Coello2, E. Alba1

1 Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
2 Department of Computer Science, CINVESTAV-IPN, Mexico

SUMMARY

Solving optimization problems using a reduced number of objective function evaluations is an open
issue in the design of multi-objective optimization metaheuristics. The usual approach to analyze
the behavior of such multi-objective optimization metaheuristics is to choose a benchmark of known
problems, to perform a certain (predetermined) number of function evaluations, and then, apply a set
of performance indicators in order to assess the quality of the solutions obtained. However, this sort of
methodology does not provide any insights of the efficiency of each algorithm. Here, efficiency is defined
as the effort required by a multi-objective metaheuristic to obtain a set of non-dominated solutions
that is satisfactory to the user, according to some pre-defined criterion. Indeed, the type of solutions of
interest to the user may vary depending of the specific characteristics of the problem being solved. In
this paper, the convergence speed of seven state-of-the-art multi-objective metaheuristics is analyzed,
according to three pre-defined efficiency criteria. Our empirical study shows that PAES (based on
an evolution strategy) is the fastest algorithm in terms of reaching a Pareto front that contains
several Pareto optimal solutions. SMPSO (based on a particle swarm optimizer) and GDE3 (based
on differential evolution) require the lowest number of function evaluations to obtain satisfactory
approximations of the true Pareto front. When considering the three efficiency criteria, SMPSO is
found to be the best overall algorithm on the test problems adopted. Copyright c© 2000 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Many of the problems faced in engineering and other disciplines of knowledge are optimization
problems. A large number of them present features such as non-linear formulations, constraints,
and NP-hard complexity, making them difficult to solve.

Typically, there are two different kinds of techniques for solving optimization problems: exact
and approximate. Exact techniques allow us to find the optimal solution of a given problem,
but they become impractical when they have to deal with NP-hard problems because they
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may need a huge amount of time and/or memory to solve them. Meanwhile, the main idea
of metaheuristics is to sacrifice the warranty of finding the optimal solution for the sake of
getting near-optimal solutions in a reasonable amount of time [1, 2].

However, an increasing number of real-world problems need computationally expensive
methods for computing their objective functions, or rely on complex time-consuming software
simulation tools, and, are, consequently very time-consuming. Furthermore, many of these
problems have hard time restrictions, so using metaheuristics requiring a high number of
function evaluations for solving them may become impractical.

There exist different ways of dealing with this issue. One approach is to use parallelism,
which allows not only a reduction of the required computational time, but also a possible
improvement in the quality of the obtained solutions [3]. A second alternative could be to
apply surrogate models [4, 5] (i.e., models which are built to approximate computationally
expensive functions). A third choice is to design metaheuristics requiring a lower number of
function evaluations to converge to the optimal solution.† In this paper we will focus on this
last situation.

Herein, we are interested in problems which involve the optimization of more than one
criterion at the same time, being these criteria in conflict with each other. This type of problems
are known as Multi-objective Optimization Problems (MOPs). When solving MOPs, we are
interested in the best possible trade-offs (or compromises) among the different objectives (i.e.,
solutions in which is not possible to improve one objective without worsening another). This
is the case, because, in the absence of any further information, all the objectives of a MOP
are considered equally important. Thus, the solution to a MOP is not a single solution, but a
set of them, which is called the Pareto optimal set. The vectors corresponding to the solutions
contained in the Pareto optimal set are called non-dominated. The objective function values
corresponding to the solutions contained in the Pareto optimal set are collectively known as
the Pareto front [6].

Two are the main goals when using metaheuristics to solve a MOP: convergence and
diversity. The first goal refers to finding a set of solutions as close as possible to the true
Pareto front, while the second goal implies that the solutions obtained should be as uniformly
distributed along the Pareto front as possible [7]. However, these goals conflict with the needs
that arise when solving complex real-world problems. The main motivation for the work
reported in this paper comes precisely from such needs imposed by computationally demanding
applications. Such needs can be summarized in the following:

• we only have a limited amount of time for solving the problem,
• we wish to obtain at least one or a few Pareto optimal solutions within the allowable

time,
• we want to obtain as many Pareto optimal solutions as possible even if that implies to

sacrifice their diversity, and
• we want to provide the decision maker with a reasonable approximation of the true

Pareto front in a fast manner.

†Throughout this paper, we will use the term convergence to refer to the generation of approximations of the
Pareto optimal set of a problem which are sufficiently accurate according to some pre-defined criterion. Thus,
this notion of convergence is not related to limit behavior or to any warranties of generating the true Pareto
optimal set of a problem.
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A wide variety of metaheuristics have been proposed for solving MOPs [6, 7]. Typically,
their performance has been assessed using well-known benchmarks, and comparing their
results on the basis of different indicators which measure the quality of the obtained sets
of solutions (e.g., the hypervolume [8], the additive epsilon indicator [9], the generational
distance [8], and the spread [7], among others) after performing the same (pre-defined) number
of function evaluations. However, as indicated before, in real-world applications, the decision
maker might not be interested in obtaining a Pareto front with many solutions which are
uniformly distributed, and could be satisfied with obtaining a small set of Pareto optimal
solutions (or a reasonably good approximation of them), as long as their generation consumes
as few function evaluations as possible.

Indeed, a hot research topic nowadays is the design of efficient techniques which require a
small number of function evaluations to find reasonably good approximations of the Pareto
optimal set of MOPs of moderate dimensionality, and several papers that address this issue
have been published in the last few years. In [10], Coello et al. described a micro Genetic
Algorithm (micro-GA), which is a genetic algorithm with a very small population size (only
4 individuals) and a restart process. This algorithm is able to produce an important portion
of the Pareto front with a very low computational cost. A revised version of this algorithm
is described in [11]; this new version of the algorithm is able to automatically decide what
parameter values to adopt at any time during the search (i.e., it is self-adaptive). Santana-
Quintero et al. proposed in [12] a particle swarm optimization algorithm hybridized with rough
sets theory, which is used for solving MOPs requiring only 4,000 fitness function evaluations,
which is a low number compared to today’s standards in the specialized literature. In a related
paper, Hernández-Dı́az et al. [13] proposed a hybrid algorithm between a multi-objective
differential evolution approach and rough sets theory, which only performs 3,000 fitness
function evaluations. In [14], a more efficient multi-objective PSO algorithm is presented;
this algorithm is able to provide accurate Pareto fronts of MOPs computing only 2,000 fitness
function evaluations. Eskandari et al. explored in [15] the use of dynamic population sizing to
design an algorithm called FastPGA, which outperforms NSGA-II, the reference algorithm in
the field, when computing less than 10,000 fitness function evaluations. Knowles [16] proposed
parEGO, which can produce reasonably good approximations to MOPs of low dimensionality
performing only 250 fitness function evaluations. In [17], Sindhya et al. presented a local search
method which borrows some multi-criteria decision making concepts, and included them in the
form a search operator within NSGA-II. The outcome is an approach which presents faster
convergence and produces more accurate solutions than the original NSGA-II.

Our purpose in this work is not to design faster algorithms, but to study the convergence
speed (i.e., the efficiency) of general purpose multi-objective metaheuristics. We carried out
a previous study of this issue in [18], where six multi-objective algorithms were compared. In
that work, we used as our convergence speed criterion the obtention of a Pareto front with
a hypervolume indicator value higher than 98% of the hypervolume of the true Pareto front,
i.e., to yield an approximation set with both good convergence and diversity. To the best of
our knowledge, apart from this paper, very few studies exist in the specialized literature that
analyze and compare the convergence speed of different multi-objective optimization techniques
when converging to the true Pareto front.

Here, we intend to carry out further research in this line. While in single-objective
optimization the convergence speed can be defined as the number of evaluations needed to find
the optimal (or a near-optimal) solution to the target problem, in multi-objective optimization
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this idea is not directly applicable due to the fact that, in this context, we aim to find a set of
solutions, and not only one. In this paper, we define three different efficiency criteria in order
for us to consider that an algorithm has successfully solved a MOP attending to different
needs of the decision maker that arise in real-world scenarios. In particular, we have taken into
account three issues:

• to find a certain (pre-defined) number of Pareto optimal solutions,
• to obtain a Pareto front with a certain (pre-defined) convergence level, determined by a

convergence quality indicator, and
• to obtain a set of solutions considering both convergence and diversity, as in [18].

Our main contribution is to analyze the computational effort, measured as the number of
objective function evaluations required by a set of multi-objective metaheuristics according
to the previously defined criteria. Such studies are practically inexistent in the specialized
literature and are a first step to allow a characterization of multi-objective metaheuristics
which allows us to identify in what types of problems they are expected to perform better.
Such type of study is of great importance, if we consider the theoretical limitations imposed by
the “No Free Lunch” theorems for search [19], but are rarely addressed in today’s literature.

The set adopted for our study is composed of seven state-of-the-art techniques covering a
wide range of different techniques: two Genetic Algorithms (NSGA-II [20], and SPEA2 [21]),
an Evolution Strategy (PAES [22]), a Differential Evolution algorithm (GDE3 [23]), a Particle
Swarm Optimization algorithm (SMPSO [24]), a Scatter Search method (AbYSS [25]), and a
cellular Genetic Algorithm (MOCell [26]). Many benchmark problems exist in the literature,
such as the Zitzler-Deb-Thiele (ZDT) test suite [27], the Deb-Thiele-Laumanns-Zitzler (DTLZ)
problem family [28], the Walking-Fish-Group (WFG) test problems [29], the problems proposed
by Li et al. [30], and those described by Zhang et al. [31]. Given that we are going to carry out
an extensive study, we have selected the two most well-known and used benchmarks, namely
ZDT and DTLZ.

It is worth remarking that our purpose is not to find the best possible configurations for
making these algorithms to converge faster. On the contrary, we intend to analyze their
behavior by using their typical settings. This way, researchers familiar with some of these
techniques can get useful information in order to apply them to solve MOPs in cases in which
is of particular interest to be able to obtain Pareto optimal solutions as quickly as possible.
On the other hand, as no studies exist that analyze in depth the efficiency of multi-objective
metaheuristics according to the three convergence criteria defined here, the results of this
paper can also be used as a reference for future works related to the development of techniques
aimed at improving the efficiency of multi-objective metaheuristics.

The rest of this paper is organized as follows. The next section provides some background
on multi-objective optimization. In Section 3, we describe and justify the different criteria
that we have taken into account for considering that a problem has been successfully solved.
All the algorithms evaluated and the methodology that we have followed are presented in
Section 4. The analysis of the obtained results is provided in Section 5 while Section 6 is
aimed at deepening into these results. Finally, Section 7 presents a summary and our main
conclusions as well as different possible lines of future research.
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2. MULTI-OBJECTIVE OPTIMIZATION BACKGROUND

In this section, we include some background on multi-objective optimization. We first define
basic concepts, such as Pareto optimality, Pareto dominance, Pareto optimal set, and Pareto
front. In these definitions we are assuming, without loss of generality, the minimization of all
the objectives.

A general multi-objective optimization problem (MOP) can be formally defined as follows:

Definition 1 (MOP)

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . , m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR, i = 1, ..., k are the
objective functions and gi, hj : IRn → IR, i = 1, ..., m, j = 1, ..., p are the constraint functions
of the problem.

Definition 2 (Pareto dominance) Given two vectors ~x, ~y ∈ IRk, we say that ~x ≤ ~y if
xi ≤ yi for i = 1, ..., k, and that ~x dominates ~y (denoted by ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 3 (Non-dominance) We say that a vector of decision variables ~x ∈ X ⊂ IRn

is non-dominated with respect to X , if there does not exist another ~x′ ∈ X such that
~f(~x′) ≺ ~f(~x).

Definition 4 (Pareto Optimality) We say that a vector of decision variables ~x∗ ∈ F ⊂ IRn

(F is the feasible region) is Pareto optimal if it is non-dominated with respect to F .

Definition 5 (Pareto Optimal Set) The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 6 (Pareto Front) The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

3. CONVERGENCE CRITERIA

This section is devoted to presenting and justifying the three criteria that we have used for
analyzing the convergence speed of multi-objective metaheuristics.

Given that the solutions of the test problems used in this work are known beforehand, it is
possible to compute their true Pareto fronts. Although these fronts are continuous, and hence,
consist of an infinite number of points, in the field of multi-objective optimization it is usual to
represent these fronts by a finite number of them, i.e., a finite subset of the true Pareto front.‡

‡This subset will be referred to as the true Pareto front in the remainder of the paper

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



6 J. J. DURILLO ET AL.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation set
Optimal Pareto front

ZDT1

(e) (f)

Figure 1. Examples of Pareto Fronts. From left to right, from top to bottom: Approximate
representation of a convex Pareto front (represented by the small circles) including 1, 5, 10, 20,
50, and 100 solutions belonging to the true Pareto front (represented by a continuous line) of the

problem being solved.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



CONVERGENCE SPEED IN MULTI-OBJECTIVE METAHEURISTICS: EFFICIENCY STUDY 7

When generating solutions with a multi-objective metaheuristic, such solutions are compared
(in terms of Pareto dominance) to the contents of the true Pareto front. If the generated
solutions are non-dominated with respect to the true Pareto front, then they are consider to
be part of such a true Pareto front. As it can be seen, no actual direct matching of solutions
takes place, but only a comparison in terms of Pareto dominance. Thus, in order to assess
convergence, each algorithm is executed until a maximum pre-defined number of function
evaluations have been performed. Then, we determine at which number of evaluations one
or more convergence criteria were met. Clearly, it is necessary to define an upper bound on
the maximum number of function evaluations that will be performed. Thus, we will consider
that an algorithm has not converged if it has reached such an upper bound on its number of
evaluations without complying with any of the convergence criteria previously defined.

As stated in the introduction, the particularities that arise when real world problems are
solved may lead to different types of criteria for assessing the convergence speed of multi-
objective metaheuristics. These criteria vary from obtaining one or a few optimal solutions to
obtaining an accurate approximation, in terms of diversity and/or convergence, of the Pareto
optimal set of the problem. Thus, we have considered three criteria trying to cover all these
different scenarios.

3.1. Criterion 1: To Obtain a Given Number of Optimal Solutions

This is the simplest of the three criteria adopted in this paper. It lies in determining the
evaluations at which an algorithm produces a given number of solutions which are included in
the true front of the problem being solved (i.e., the Pareto optimal solutions of the problem).
Thus, we have implemented this criterion by counting the number of computed solutions which
are non-dominated with respect to the Pareto front. Herein, we have considered to obtain 1,
5, 10, 20, 50, and 100 Pareto optimal solutions. The upper limit of 100 solutions has been
chosen because that it is a size commonly adopted in the specialized literature for the final set
of solutions reported.

It is worth mentioning that in this criterion, the diversity of the solutions contained into
the approximated fronts is not taken into account. Thus, fronts containing a lower number
of optimal solutions could have a better diversity than others one having a higher number of
Pareto optimal solutions.

To clarify this situation, Figure 1 shows examples of approximation sets containing different
numbers of Pareto optimal solutions of a problem having a convex Pareto front. We can observe
that fronts a) and d), having 1 and 20 optimal solutions, respectively, present a poor diversity.
Fronts b), c), e), and f) have a better diversity than fronts a) and d); they have 5, 10, 50, and
100 optimal solutions, respectively. Let us note that front d) contains four times the number of
Pareto optimal solutions included in front b); however, the diversity of front b) is much better
than the diversity of front d).

3.2. Criterion 2: Using the Epsilon Indicator

To determine how close are the solutions obtained by multi-objective metaheuristics to the
true Pareto front of a problem, performance indicators that assess convergence are usually
applied. Thus, our second criteria is based on the use of one of such indicators.

We have chosen the unary Additive Epsilon (I1
ǫ+) indicator, which is a Pareto-compliant

indicator proposed by Zitzler et al. in [9]. It is defined as follows. Given an approximation set
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of a problem, A, the I1
ǫ+ indicator is a measure of the smallest distance one would need to

translate every point in A so that it dominates the true Pareto front of the problem. More

formally, given ~z1 = (z1
1 , . . . , z1

n) and ~z2 = (z2
1 , . . . , z2

n), where n is the number of objectives:

I1
ǫ+(A) = infǫ∈R

{

∀ ~z2 ∈ PF∗ ∃ ~z1 ∈ A : ~z1 ≺ǫ
~z2

}

(4)

where, ~z1 ≺ǫ
~z2 if and only if ∀1 ≤ i ≤ n : z1

i < ǫ + z2
i . We apply this indicator by using

normalized objective function values.
Since the Epsilon indicator is a measure of closeness between a set of solutions and the true

Pareto front, we need to fix a value for it which allows us to consider that a problem has
converged to the true Pareto front. Figure 2 shows different approximations to the true Pareto
front of a problem having the following values of the indicator: 0.1, 0.05, and 0.01. We can
observe in this figure that the front having an I1

ǫ+ value of 0.01 is close enough to the true
Pareto front, and it could be considered as an accurate approximation in terms of convergence.

The fronts having values of 0.1 and 0.05 are not so satisfactory, but they could be good
enough for a decision maker (particularly, the one having the value 0.05 in the indicator)
if they can be obtained quickly. This experiment has been carried out with all the problems
included here obtaining the same conclusions; thus, we have decided to include the three values
of I1

ǫ+ in our study.
In this criterion, as happened with the previous one, the diversity of solutions is not taken

into account. However, there is an important difference between both criteria: this criterion
implies that all the solutions contained in the approximation are closer than a given I1

ǫ + value
to the Pareto optimal front, while Criterion 1 does not give information about the non-optimal
solutions contained in the approximation.
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Figure 2. Examples of Pareto Fronts with different values of the Additive Epsilon indicator. From left
to right, we show Pareto fronts with indicator values of 0.1, 0.05 and 0.01, respectively

3.3. Criterion 3: Using the Hypervolume Quality Indicator

The main drawback of using the two previous indicators to check the convergence speed of a
multi-objective algorithm is that none of them takes into account the diversity of solutions.
Since the decision maker might be interested in approximations of the Pareto optimal set that
keep a balance between convergence and diversity, we have also used a criterion based on the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



CONVERGENCE SPEED IN MULTI-OBJECTIVE METAHEURISTICS: EFFICIENCY STUDY 9
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Figure 3. The hypervolume enclosed by the non-dominated solutions.

Hypervolume (IHV ) [8] quality indicator, which measures somehow these two properties of a
Pareto front.

The hypervolume is also a Pareto-compliant indicator, and it calculates the volume (in
objective function space) covered by members of a non-dominated set of solutions Q (the
region enclosed within the discontinuous line in Figure 3, Q = {A, B, C}) for problems where
all objectives are to be minimized. Mathematically, for each solution i ∈ Q, a hypercube
vi is constructed with a reference point W and the solution i as the diagonal corners of the
hypercube. The reference point can be found simply by constructing a vector of worst objective
function values. Thereafter, a union of all hypercubes is found and its hypervolume (IHV ) is
calculated:

IHV = volume





|Q|
⋃

i=1

vi



 . (5)

Algorithms with larger IHV values are desirable. Since this indicator is not free from
arbitrary scaling of objectives, we evaluate it by using normalized objective function values.

To ensure that an algorithm has successfully solved a problem, we have considered that it
has to find a set of solutions whose hypervolume value is higher than a pre-defined percentage
of the hypervolume value of the true Pareto front. Since no theoretical basis for obtaining
such percentages exist, we rely on some preliminary experimentation in order to determine
them. Thus, in Figure 4, we show examples of different fronts with different percentages of
IHV . In this figure, we can see that a front with a hypervolume of 98.26% represents, in this
example, a reasonably good approximation to the true Pareto front in terms of convergence and
diversity of solutions. Similar preliminary experiments have been carried out for each of the test
problems considered in this work, and for all of them we found that a value between 98% and
99% of the hypervolume of the true Pareto front resulted in an accurate representation of such
front. Thus, we have adopted these percentages of the hypervolume of the true Pareto front
as our criterion to consider that an algorithm has converged. Clearly, problems with a higher
number of objectives will require further experiments in order to determine the appropriate
percentages of IHV to be adopted.
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Figure 4. Examples of fronts with different hypervolume values. From left to right, we show Pareto
fronts having an IHV value of 0.90, 0.95 and 0.98, respectively.

To illustrate the results that can be obtained by applying these efficiency criteria, we include
in Figure 5 examples of approximation sets of four problems having different shapes (convex,
disconnected, linear, and concave). These fronts correspond, respectively, to the well-known
test problems ZDT1, ZDT3, DTLZ1, and DTLZ3 (see next section for further details). For
each problem, three different solution sets are presented, and the values of the three criteria
are included in the bottom left handside of each picture.

4. EXPERIMENTATION

In this section, we present the seven metaheuristics evaluated. Then, we describe the
parameters settings used in the experiments, as well as the benchmark problems that we
have used, and the methodology that we have followed in the tests.

4.1. Multi-objective Optimization Algorithms

The metaheuristics that we have considered in this study are briefly described in this section.
We have used the implementation of these algorithms provided by jMetal [32], a Java-based
framework for multi-objective optimization using metaheuristics§.

The NSGA-II algorithm was proposed by Deb et al. [20]. It is a genetic algorithm based on
obtaining a new population from the original one by applying the typical genetic operators
(selection, crossover, and mutation); then, the individuals in the two populations are sorted
according to their rank, and the best solutions are chosen to create a new population. In case of
having to select some individuals with the same rank, a density estimator based on measuring
the crowding distance to the surrounding individuals belonging to the same rank is used to
get the most promising solutions.

SPEA2 was proposed by Zitler et al. in [33]. In this algorithm, each individual has a fitness
value that is the sum of its strength raw fitness plus a density estimation value. The algorithm

§jMetal is freely available for download at the following URL: http://jmetal.sourceforge.net.
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Figure 5. Examples of approximation sets and the values of the three criteria.
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applies the selection, crossover, and mutation operators to fill up an archive of individuals; then,
the non-dominated individuals of both the original population and the archive are copied into
a new population. If the number of non-dominated individuals is greater than the population
size, a truncation operator based on calculating the distances to the k-th nearest neighbor
is used. This way, the individuals having the minimum distance to any other individual are
chosen.

PAES is a metaheuristic proposed by Knowles and Corne [22]. The algorithm is based on a
simple (1+1) evolution strategy. To find diverse solutions along the Pareto front, PAES uses
an external archive of non-dominated solutions, which is also used to decide about the new
candidate solutions. An adaptive grid is used as a density estimator in the archive. We have
used a real-coded version of PAES, applying a polynomial mutation operator.

GDE3 [23] is an improved version of the Generalized Differential Evolution (GDE) algorithm
[34]. Its behavior is similar to the NSGA-II procedure, but the usual recombination operator is
replaced with a differential evolution operator. It starts with a population of random solutions,
which becomes the current population. At each generation, an offspring population is created
using the differential evolution operators; then, the current population for the next generation
is updated using the solutions of both, the offspring and the current populations. Before
proceeding to the next generation, the size of the population is reduced using non-dominated
sorting and a pruning technique aimed at preserving diversity, in a similar way as in the
NSGA-II, although the pruning process adopted in GDE3 modifies the crowding distance of
the NSGA-II in order to solve some of its drawbacks when dealing with problems having more
than two objectives.

Speed-constrained Multi-objective PSO (SMPSO) is a particle swarm optimization
algorithm for solving MOPs [24]. Its main features include the use of the concept of crowding
distance adopted by NSGA-II to filter out leader solutions, which are stored in an archive, and
the use of mutation operators to accelerate the convergence of the swarm. In addition, SMPSO
also incorporates a mechanism to limit the velocity of the particles and the use of polynomial
mutation as a turbulence factor.

MOCell [26] is a cellular genetic algorithm (cGA). As many multi-objective metaheuristics,
it includes an external archive to store the non-dominated solutions found so far. This archive is
bounded and uses the crowding distance of NSGA-II to keep diversity along the Pareto Front.
We have used here an asynchronous version of MOCell, called aMOCell4 in [35], in which the
cells are explored sequentially (asynchronously). The selection is based on taking an individual
from the neighborhood of the current solution (called cell in cGAs) and another one chosen
randomly from the archive. After applying the genetic crossover and mutation operators, the
new offspring is compared with the current one, replacing it if better; if both solutions are
non-dominated, the worst individual in the neighborhood is replaced by the current one. In
these two cases, the new individual is inserted into the archive.

AbYSS is an adaptation of the scatter search metaheuristic to the multi-objective
domain [25]. It uses an external archive similar to the one employed by MOCell. The algorithm
incorporates operators of the evolutionary algorithms domain, including polynomial mutation
and simulated binary crossover in the improvement and solution combination methods,
respectively.
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4.2. Parameters Settings

As commented in the introduction, we chose a set of parameters settings that have been used
in previous studies (see the references in Table II), without spending any effort in trying to
find the best possible configurations. All the GAs (NSGA-II, SPEA2, and MOCell) and GDE3
use an internal population of size equal to 100; the size of the archive is also 100 in PAES,
SMPSO, GDE3, MOCell, and AbYSS. SMPSO has been configured with 100 particles. For
AbYSS, the population and the reference set have a size of 20 solutions.

In the GAs we have used SBX (Simulated Binary Crossover) and polynomial-based
mutation (for details on these two operators, see [7]) as operators for crossover and mutation,
respectively. The distribution indexes for both operators are ηc = 20 and ηm = 20, respectively.
The crossover probability is pc = 0.9 and the mutation probability is pm = 1/L, where L is the
number of decision variables. In PAES, we have also used the polynomial mutation operator,
with the same distribution index, and an adaptive grid of size 32×32. AbYSS uses polynomial
mutation in the improvement method and SBX in the solution combination method. GDE3
uses 0.1 and 0.5 as values for parameters CR and F , respectively [23]. SMPSO also applies
polynomial mutation to 15% of the particles. A detailed description of the parameters settings
adopted for each approach is included in Table II.

4.3. Benchmark Problems

We describe here the different sets of problems addressed in this work. These problems are
well-known, and have been used in many comparative studies in this area.

The families of problems adopted are the following:

• Zitzler-Deb-Thiele (ZDT) test suite: This benchmark is composed of five bi-
objective problems [27]: ZDT1 (convex), ZDT2 (concave), ZDT3 (concave, disconnected),
ZDT4 (convex, multimodal), and ZDT6 (concave, non-uniformly spaced). These
problems are scalable according to the number of decision variables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite: The problems of this family
are scalable both in the number of variables and in the number of objectives [28].
It is composed of the following seven problems: DTLZ1 (linear, multimodal), DTLZ2
(concave), DTLZ3 (concave, multimodal), DTLZ4 (concave), DTLZ5-6 (degenerate), and
DTLZ7 (disconnected).

In this work we have used the bi-objective formulation of the DTLZ problem family. A
total of 12 MOPs are used to evaluate the seven metaheuristics. The number of variables and
the application domain of each problem can be found in Table I, which summarizes the main
characteristics of the problems considered in this work.

4.4. Methodology

The underlying idea of the experiments is to know at which number of evaluations
the metaheuristics meet the considered convergence criteria. Our approach has been to
perform a maximum of 1,000,000 function evaluations per experiment, and to check the
stopping conditions at every 100 evaluations (that is, each iteration in the population-based
metaheuristics). Therefore, in NSGA-II, SPEA2, and GDE3 we have considered the non-
dominated solutions at each generation; in PAES, AbYSS, and MOCell, we have considered
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the external population and, in SMPSO, we have considered the leaders archive. When an
algorithm is unable to obtain a front fulfilling any of the termination conditions upon reaching
the maximum number of function evaluations, we consider that it has failed in solving the
problem for that criterion.

We have executed 100 independent runs for each algorithm and each problem instance.
Since we are dealing with stochastic algorithms, we need to perform a statistical analysis of
the obtained results to compare them with a certain level of confidence. Next, we describe the
statistical test that we have carried out for assuring this. First, a Kolmogorov-Smirnov test
is performed in order to check whether the values of the results follow a normal (Gaussian)
distribution or not. If so, the Levene test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is done; otherwise we perform a
Welch test. For non-Gaussian distributions, the non-parametric Kruskal-Wallis test is used to
compare the medians of the algorithms.

We always consider in this work a confidence level of 95% (i.e., significance level of 5% or p-
value under 0.05) in the statistical tests, which means that the differences are unlikely to have
occurred by chance with a probability of 95%. Those tests in which the statistical confidence
has been achieved are marked with “+” in the last row in the tables containing the results;
conversely, “−” means that we cannot assure anything about the statistical confidence of the
results (p-value > 0.05). For the sake of homogeneity in the presentation of the results, all the
tables include the median, x̃, and the interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively.

To further analyze the results statistically, in some cases, we have also included a post-
hoc testing phase which allows for a multiple comparison of samples [36]. We have used
the Wilcoxon test for that purpose. This way, we can make pairwise comparisons between
algorithms to know about the significance of the obtained data. To avoid including excessive
information, in these tests we have included only the results of the three best performing
algorithms.

5. ANALYSIS OF THE RESULTS

This section is aimed at presenting the obtained results. The discussion is organized according
to the three convergence criteria previously defined: first, we study the computational effort
that the algorithms require for computing different numbers of Pareto optimal solutions;
then, we analyze the number of evaluations that they require for computing an accurate
approximation to the true Pareto front considering the I1

ǫ + and the IHV quality indicators.

To ease the analysis of the results in all the tables, the cells containing the lowest number
of function evaluations have a grey colored background. There are two grey levels: the darker
grey indicates the best value, while the lighter grey points out the second best value.

5.1. Pareto Optimal Solutions

Tables III and IV include the number of function evaluations that the algorithms have required
for computing 1, 5, 10, 20, 50, and 100 Pareto optimal solutions in the ZDT and DTLZ families,
respectively. Starting with the first table, the grey colored background reveals that PAES and
SMPSO have been the fastest algorithms in computing such a number of solutions in the ZDT
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benchmark. Indeed, if we deepen into the obtained results, both algorithms have been the
fastest or second fastest ones in practically all problems. It is worth pointing out the results
in ZDT4, a multi-frontal problem, which has been specially difficult for GDE3: the differential
evolution algorithm has been unable to solve it in any of the experiments. If we look at which
of the algorithms are able to compute 100 Pareto optimal solutions, only GDE3 and SMPSO
have obtained such a number in less than 1,000,000 evaluations in problems ZDT1 and ZDT2.
Statistical confidence can be ensured in practically all cases, as indicated in the last column.

As to the the number of evaluations needed for computing Pareto optimal solutions for
the DTLZ family (Table IV), the algorithms have behaved in a similar way than in the ZDT
benchmark. PAES and SMPSO have been the fastest algorithms in the comparison. GDE3 has
also shown a good performance: it has been the fastest algorithm in meeting the convergence
criteria in the DTLZ6 problem, and the second fastest in the problem DTLZ1. Within this
set of problems, GDE3 has been unable to obtain any Pareto optimal solution in DTLZ3.
It is also remarkable that none of the algorithms has obtained any Pareto optimal solutions
for the DTLZ4 problem, and all the algorithms but PAES, GDE3, and SMPSO, have failed
when solving problem DTLZ6. As in ZDT, statistical confidence has been found among the
algorithms in practically all cases from the DTLZ benchmark.

Thus, according to the obtained results, the three fastest algorithms in reaching Pareto
optimal solutions in the chosen benchmark problems have been PAES, SMPSO, and GDE3.
Table V includes the problems in which statistical differences between these algorithms cannot
be ensured. This table indicates that there are statistical differences between PAES and GDE3
in all the problems; focusing on PAES and SMPSO, statistical differences cannot be assured
in two cases, DTLZ2 and DTLZ5, when they obtain only one Pareto optimal solution. If the
criterion is to obtain a higher number of solutions, these two algorithms present confidence
in practically all problems. As to the comparison between GDE3 and SMPSO, the most
remarkable fact is that, when both algorithms compute 50 Pareto optimal solutions, statistical
confidence cannot be assured in three out of the twelve problems evaluated: ZDT3, DTLZ2,
and DTLZ5.

A conclusion of the carried out experiments is that finding 100 Pareto optimal solutions
seems to be very hard to the algorithms. Only in 2 of the 12 problems, two techniques have
succeeded at this. Furthermore, some interesting facts can be drawn from these tables:

1. In problems ZDT1, ZDT6, and DTLZ7, PAES has generated a Pareto front containing
20 (10 in the case of ZDT2) or more Pareto optimal solutions in fewer evaluations than
those required by the second fastest algorithm to find a single Pareto optimal solution.

2. In the multi-frontal problems ZDT4, DTLZ1, and DTLZ3, SMPSO has required a
lower number of function evaluations to produce a Pareto front with 50 Pareto optimal
solutions than the number of function evaluations required by the rest of the algorithms
to find only one Pareto optimal solution.

3. SMPSO, the particle swarm optimization algorithm, is always in the group of the three
fastest techniques.

5.2. Epsilon Indicator

The number of function evaluations at which the algorithms compute an approximation with
the desired values of I1

ǫ + in the ZDT family are included in Table VI. Attending to the values
shown in this table, the fastest algorithm has been SMPSO, the particle swarm optimizer,
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because it has required the lowest number of function evaluations for meeting the termination
criteria in four out of the five problems composing this benchmark. GDE3 has been the second
fastest algorithm in the ZDT3 problem, and the second fastest in ZDT6; it has also been the
second algorithm requiring the lowest number of evaluations for computing an approximation
to the Pareto front with an I1

ǫ + value of 0.01 in problems ZDT1 and ZDT2. It is also worth
highlighting MOCell and NSGA-II: the former algorithm has been the fastest algorithm if we
consider I1

ǫ + = 0.1 in problem ZDT1, and the second fastest algorithm in several cases in
problems ZDT1, ZDT2, and ZDT4; the latter has been the algorithm requiring the lowest
number of evaluations for computing an approximation front with an I1

ǫ + value of 0.1 and
0.05 in problem ZDT3.

Table VII contains the evaluations required in problems belonging to the DTLZ family. The
fastest technique at meeting these criteria has been SMPSO: it has been the algorithm needing
the lowest number of evaluations in six out of the seven problems adopted in this comparison;
additionally, it had the second lowest number of evaluations in the other problems. After
SMPSO, GDE3, MOCell, and AbYSS have obtained outstanding results in different problems:

• GDE3 has shown to be fast for solving problems DTLZ1 (second best values), DTLZ6
(best values), and DTLZ7 (second fastest algorithm) .

• MOCell has been the second algorithm requiring the lowest number of evaluations in
problems DTLZ2, DTLZ3, and DTLZ5.

• AbYSS has been the second fastest in meeting the convergence criteria in the problem
DTLZ4.

In summary, the three fastest algorithms in meeting this convergence criterion have been
SMPSO, GDE3, and MOCell. Table VIII summarizes the pairwise comparison between
these algorithms, showing those problems in which statistical confidence cannot be ensured.
According to this table, the differences between GDE3 and SMPSO are significant in most
problems; as to MOCell versus the other two algorithms, statistical confidence can also be
assured in most cases for I1

ǫ + values of 0.1 and 0.05. However, with the smallest I1
ǫ + value

(0.01), the number of problems in which confidence cannot be confirmed is higher: ZDT2,
DTLZ4, and DTLZ7 in the comparison against GDE3, and DTLZ2 and DTLZ5 against
SMPSO.

5.3. Hypervolume Indicator

Table IX shows the number of evaluations required by all the algorithms for reaching an
accurate approximation to the true Pareto front making use of the IHV indicator. In this
table, we see that SMPSO requires the lowest number of function evaluations, i.e., it is the
fastest in meeting this convergence criterion. GDE3 has obtained the second best values in most
of the problems but ZDT4; in this problem, MOCell has been the second fastest algorithm.

We include in Table X the number of evaluations at which the algorithms compute a Pareto
front with the desired values of IHV in the DTLZ family. As happened in the ZDT family,
SMPSO has obtained good figures (i.e., lowest or second lowest number of evaluations) in
practically all the problems. GDE3 achieved the best results in four of the seven DTLZ
problems when the stopping condition is 99% the HV of the true Pareto front, while AbYSS
needed the lowest number of evaluations in three problems when the 98% is considered.
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Summarizing the results, the three algorithms requiring the lowest number of evaluations
to compute an approximate front with those values of IHV have been SMPSO, GDE3, and
AbYSS. Table XI shows the results of the pairwise comparison between these algorithms. As
we can see in the table, the differences are statistically significant in practically all cases.

6. DISCUSSION OF THE RESULTS

In this section, we provide a ranking of the algorithms according to the three criteria previously
described with the idea of analyzing the results globally. The main aim is to identify the
strengths and weaknesses of the algorithms when converging towards the true Pareto front of
a problem. We also evaluate the effect of considering all the solutions generated during the
execution of an algorithm for measuring the convergence speed. Finally, we compare the results
of this study with respect to our own previous work [18].

6.1. Ranking of the Algorithms

The rankings of the algorithms using the three convergence speed criteria are presented in
Tables XII, XIII, and XIV, respectively. These rankings consider first those algorithms which
required the lowest or second lowest number of function evaluations in most cases. In case
of algorithms having the same number of best or second best results, we pay attention to
the number of evaluations performed by them so that we can establish an ordering. We have
included in the last column of each table a global ranking to make clearer the identification of
the most efficient techniques. Table XII shows the ranking taking into account the number of
evaluations that they need for computing a front containing a given number of Pareto optimal
solutions. In this ranking, PAES, SMPSO, and GDE3 are the most outstanding metaheuristics:
PAES achieves three first and two second best positions in the ranking; SMPSO gets two best
and four second best positions; and GDE has a best and five third positions. MOCell and
AbYSS are invariably in the fourth and fifth positions in all cases, respectively. The two
genetic algorithms, NSGA-II and SPEA2, are the worst techniques according to this ranking.
The most remarkable conclusion according to this convergence criterion is that PAES, the
simplest of the compared algorithms, is globally the fastest metaheuristic!

Table XIII includes the ranking of the algorithms considering the speed of the techniques
when computing a Pareto front with the target values of the I1

ǫ + indicator. In this case, the
three fastest algorithms are SMPSO, GDE3, and MOCell. However, it is worth mentioning that
the most efficient technique in the first criterion, PAES, is the worst in this new ranking. This
suggests that PAES is very fast obtaining some Pareto optimal solutions but it has problems
for computing an entire set of solutions closer to the true Pareto front (let us remind that the
I1
ǫ + indicator is the smallest distance to translate all the points in the found approximation

set to dominate the Pareto front of the problem). We also observe that NSGA-II has obtained
a better position than AbYSS in this ranking, being SPEA2 the second to last in the global
ranking.

Table XIV contains the ranking according to the strongest of the three defined criteria,
taking into account both convergence and diversity, which is led again by SMPSO. GDE3 and
AbYSS appear as the second and third fastest algorithms, respectively, being MOCell in the
middle of the table. This ranking confirms the poor results of the genetic algorithms NSGA-II
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and SPEA2 (fifth and sixth), and PAES.

Summarizing this section, according to the considered benchmark, efficiency criteria, and
parameters settings used in our study, we can conclude that SMPSO is the most efficient out
of the seven compared metaheuristics. It is the second best performing algorithm in the first
criteria, and the best one in the other two. PAES is the algorithm to take into account if
we are interested in obtaining some Pareto optimal solutions quickly. It has the advantage of
being the simplest of the compared metaheuristics, requiring to set only one parameter (the
size of the adaptive grid). However, PAES should be the last choice if we require to get an
approximation set with a certain level of quality. GDE3 follows SMPSO in the three criteria,
so it is also a technique to take into consideration. MOCell and AbYSS are modern algorithms
whose performance in the tests led them to be in the middle of the rankings. Finally, NSGA-II
and SPEA2, which are the two most well-known and popular multi-objective algorithms in
current use, should be out of our preferences if efficiency is our major concern.

6.2. Evaluating the Effects of the Pareto Drift Issue

Previous works [37, 38, 39, 40] in the field of multi-objective optimization have reported
that some multi-objective evolutionary algorithms may lose good solutions (including Pareto
optimal ones) previously generated as a consequence of using a finite size population or a
fixed size external archive. Specifically, those algorithms make use of a diversity preserving
mechanism (such as the crowding distances of NSGA-II or the hypercubes of PAES) which
may discard optimal solutions for the sake of non-optimal ones (still non-dominated with
respect to the population or archive), but better in terms of the density estimator adopted.
This is known as the Pareto drift problem [40].

Pareto drift has a direct impact on the first convergence criterion used in this work since
none of the studied algorithms are free from this issue. Nevertheless, as commented in [40],
this problem can be simply solved by using an external unbounded archive where all the non-
dominated solutions generated during the search are stored. Thus, in this section, we analyze
the behavior of NSGA-II, SPEA2, PAES, GDE3, SMPSO, AbYSS, and MOCell with respect to
the first convergence criterion when using an unbounded external archive. It is worth remarking
that the use of such an archive does not modify the behavior of the algorithms.

Tables XV and XVI include the number of required evaluations by the seven algorithms
included in this work to meet the convergence conditions of Criterion 1 using the ZDT, and
DTLZ test suites, respectively.

Deepening in the analysis of the tables, we observe that, when no solutions are lost, the
algorithms converge faster than their original versions and, furthermore, all them are able to
compute up to 100 optimal solutions (the strongest condition in this criterion) in practically
all the problems evaluated. The consequences of avoiding the Pareto drift issues become more
appreciable if we compare their effects over the same problem. For example, taking into account
the NSGA-II algorithm and the ZDT1 problem, we observe that the version without Pareto
drift (Table XV) is able to compute 100 optimal solutions in a lower number of evaluations
than the number required by the original version (Table XV) to generate up to 20 Pareto
optimal solutions.

Comparing those tables with those that include the number of evaluations performed by the
original algorithms (Tables III and IV for the ZDT and DTLZ test suites, respectively), it is
possible to see at a glance that the behavior of the algorithms is pretty much the same: PAES
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and SMPSO have been the algorithms obtaining the overall best results in the two test suites.

6.3. Comparison with Previous Work

In this section we compare the results of this paper with those obtained in our previous
work [18]. In that paper, the main conclusions were that, considering the speed to converge
towards the true Pareto front of a problem, using the hypervolume as our indicator for
measuring convergence, MOCell, OMOPSO, and AbYSS were the most competitive algorithm
followed by NSGA-II, and PAES, while SPEA2 appeared as the slowest algorithm of the
comparison. The fact that PAES appeared as one of the slowest algorithms in that comparison
is explained by the criterion used in that work: it measured both convergence and diversity
of solutions. Here, we have also considered another two criteria to measure the convergence
speed: to compute a Pareto front containing a certain pre-defined number of optimal solutions,
and to compute a Pareto front with a fixed value of the I1

ǫ + indicator. The former criterion has
allowed us to observe that PAES is one of the fastest algorithms in obtaining Pareto optimal
solutions, but at the expense of not taking into account diversity.

Two new algorithms have been included in this comparison: on the one hand, we have
replaced OMOPSO by an improved version, SMPSO; on the other hand, we have also included
GDE3. If we consider SMPSO, its results improve significantly those obtained by OMOPSO
in [18]. Specifically, SMPSO has been the fastest algorithm in the present study, outperforming
the behavior of AbYSS and, particularly, MOCell, that was the fastest algorithm in our
previous study [18].

7. CONCLUSIONS AND FUTURE WORK

We have analyzed the convergence speed of seven state-of-the-art multi-objective
metaheuristics in order to study their efficiency in terms of the required number of evaluations,
when converging towards the Pareto optimal front. The benchmark has been composed of 12
bi-objective problems from the ZDT and DTLZ test suites. In order to perform a broader
analysis, we have proposed three different convergence criteria based on:

• determining the number of Pareto optimal solutions generated by each algorithm,
• the convergence of that approximation to the true Pareto front, and,
• both, the convergence and diversity of that Pareto front.

Our study has revealed that the analyzed particle swarm optimization and differential
evolution algorithms are the most promising approaches to deal with the problems used in
this work. Furthermore, it is also worth mentioning that PAES is the fastest algorithm in
obtaining a pre-fixed number of Pareto optimal solutions, but it fails when the aim is to
compute an entire front with good convergence and diversity.

The results have shown that MOCell and AbYSS, the cellular GA and scatter search
metaheuristics, respectively, are, in general in the middle of the rankings according to the three
criteria. The genetic algorithms NSGA-II and SPEA2 are always in the last positions, which
indicates that, in the context of the considered convergence criteria, benchmark problems, and
parameters settings, they are far from being the best choices in terms of efficiency. These four
algorithms share in common the use of the SBX crossover operator, which suggests an open
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research line consisting in studying whether or not the use of other crossover operators can
make them converge faster.

Furthermore, the effects of the Pareto drift issue (loss of solutions) in the convergence
speed of the algorithms have been analyzed with respect to the first criterion. Although the
algorithms have converged faster when using such criterion, the behavior of the algorithms
when compared with respect to each other, did not change.

Our next step is an extension of this work including not only benchmark problems but
also real world problems from industry in order to assess whether or not the features of these
problems confirm the results obtained in this work. Furthermore, it is also a matter of future
research to extend the convergence criteria so that they can cover problems with a higher
number of objectives.
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de Andalućıa under contract P07-TIC-03044 DIRICOM project (http://diricom.lcc.uma.es), and
the Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01
(the M* project). Juan J. Durillo is supported by grant AP-2006-03349 from the Spanish goverment.
F. Luna acknowledges support from the Spanish Ministry of Education and Science and FEDER under
contract TIN2005-08818-C04-01 (the OPLINK project).

REFERENCES

1. F. W. Glover and G. A. Kochenberger, Handbook of Metaheuristics. Kluwer, 2003.
2. C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual

Comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268–308, 2003.
3. E. Alba, Parallel Metaheuristics: A new class of algorithms. Wiley, 2005.
4. T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, N. V. Queipo, and K. Tucker, “Response surface

approximation of Pareto optimal front in multi-objective optimization,” Computer Methods in applied
mechanics and engineering, no. 196, pp. 979–893, 2007.

5. Y. Lian and M. Liou, “Multiobjective Optimization Using Coupled Response Surface Model and
Evolutionary Algorithm,” AIAA Journal, vol. 43, no. 6, pp. 1316–1325, 2005.

6. C. Coello, D. Van Veldhuizen, and G. Lamont, Evolutionary Algorithms for Solving Multi-Objective
Problems, ser. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, 2002.

7. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, 2001.
8. E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative Case Study and the

Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

9. J. Knowles, L. Thiele, and E. Zitzler, “A Tutorial on the Performance Assessment of Stochastic
Multiobjective Optimizers,” Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Tech.
Rep. 214, 2006.

10. C. A. C. Coello and G. T. Pulido, “A micro-genetic algorithm for multiobjective optimization,” in
Evolutionary Multi-Criterion Optimization. 1st International Conference, EMO 2001, ser. Lecture Notes
in Computer Science. Springer, 2001.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



CONVERGENCE SPEED IN MULTI-OBJECTIVE METAHEURISTICS: EFFICIENCY STUDY 21

11. G. T. Pulido and C. A. C. Coello, “The micro genetic algorithm 2: Towards on-line adaptation in
evolutionary multiobjective optimization,” in Evolutionary Multi-Criterion Optimization. 1st International
Conference, EMO 2003, ser. Lecture Notes in Computer Science. Springer, 2003.

12. L. V. Santana-Quintero, N. Ramı́rez-Santiago, C. A. Coello Coello, J. Molina Luque, and A. G. Hernández-
Dı́az, “A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough
Sets Theory,” in Parallel Problem Solving from Nature (PPSN IX), ser. LNCS 4193, 2006, pp. 483–492.

13. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. Coello Coello, R. Caballero, and J. Molina, “A New
Proposal for Multi-Objective Optimization using Differential Evolution and Rough Sets Theory,” in Genetic
and Evolutionary Computation Conference (GECCO’2006), M. K. et al., Ed., 2006, pp. 675–682.

14. G. Toscano-Pulido, C. A. Coello Coello, and L. V. Santana-Quintero, “EMOPSO: A Multi-Objective
Particle Swarm Optimizer with Emphasis on Efficiency,” in Evolutionary Multi-Criterion Optimization
(EMO 2007), ser. LNCS 4403, 2007, pp. 272–285.

15. H. Eskandari, C. D. Geiger, and G. B. Lamont, “FastPGA: A dynamic population sizing approach for
solving expensive multiobjective optimization problems,” in Evolutionary Multi-Criterion Optimization.
4th International Conference, EMO 2007, ser. Lecture Notes in Computer Science, S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, Eds., vol. 4403. Springer, 2007, pp. 141–155.

16. J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 1,
pp. 50–66, 2006.

17. K. Sindhya, K. Deb, and K. Miettinen, “A local search based evolutionary multi-objective optimization
approach for fast and accurate convergence,” in Parallel Problem Solving for Nature, G. Rudolph, T. Jansen,
S. Lucas, C. Poloni, and N. Beume, Eds. Berlin, Germany: Springer-Verlag, 2008, pp. 815–824.

18. A. J. Nebro, J. J. Durillo, C. A. C. Coello, F. Luna, and E. Alba, “A study of convergence speed in
multi-objective metaheuristics,” in Parallel Problem Solving for Nature, G. Rudolph, T. Jansen, S. Lucas,
C. Poloni, and N. Beume, Eds. Berlin, Germany: Springer-Verlag, 2008, pp. 763–772.

19. D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for Optimization,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, April 1997.

20. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

21. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,”
in EUROGEN 2001, 2002, pp. 95–100.

22. J. Knowles and D. Corne, “The pareto archived evolution strategy: A new baseline algorithm for
multiobjective optimization,” in Proceedings of the 1999 Congress on Evolutionary Computation.
Piscataway, NJ: IEEE Press, 1999, pp. 9–105.

23. S. Kukkonen and J. Lampinen, “GDE3: The third Evolution Step of Generalized Differential Evolution,”
in IEEE Congress on Evolutionary Computation (CEC’2005), 2005, pp. 443 – 450.
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Table I. Summary of characteristics of the problems belonging to the ZDT and DTLZ benchmarks
Name Optimization Domain Number of Variables Type
ZDT1 Continuous 30 convex
ZDT2 Continuous 30 concave
ZDT3 Continuous 30 concave, disconnected
ZDT4 Continuous 10 convex, multimodal
ZDT6 Continuous 10 concave, non-uniformily spaced
DTLZ1 Continuous 7 linear, multimodal
DTLZ2 Continuous 12 concave
DTLZ3 Continuous 12 concave, multimodal
DTLZ4 Continuous 12 concave
DTLZ5 Continuous 12 degenerate
DTLZ6 Continuous 12 degenerate
DTLZ7 Continuous 22 disconnected
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Table II. Parameterization
NSGA-II [20]

Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

(L = individual length)
SPEA2 [33]

Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

(L = individual length)
PAES [22]

Mutation polynomial, pm = 1.0/L
(L = individual length)

Archive Size 100
Grid Size 32 × 32

SMPSO [24]
Particles 100 particles
Mutation Polynomial
Leaders Size 100

GDE3 [23]
Population Size 100 individuals
Recombination Differential Evolution, CR = 0.1, F = 0.5

MOCell [35]
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

(L = individual length)
Archive Size 100 individuals

AbYSS [25]
Population Size 20 individuals
Reference Set Size 10 + 10
Recombination simulated binary, pc = 1.0
Mutation (local search) polynomial, pm = 1.0/L

(L = individual length)
Archive Size 100 individuals
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Table III. Median (x̃) and interquartile range (IQR) of the number of Evaluations for reaching Pareto
Optimal Points in the ZTD benchmark (cells with dark and light background indicate the best and

second best values, respectively). PAES and SMPSO provide the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem n x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1

1 1.14e41.7e3 1.31e41.6e3 3.35e31.0e3 9.60e37.0e2 6.25e31.4e3 1.12e41.4e3 1.07e41.6e3 +
5 1.99e41.8e3 2.23e42.2e3 3.70e31.1e3 1.04e47.0e2 6.65e31.5e3 1.62e41.8e3 1.99e42.4e3 +
10 2.36e41.8e3 2.63e42.0e3 4.20e31.2e3 1.08e48.0e2 6.85e31.5e3 1.73e41.6e3 2.38e42.0e3 +
20 2.64e41.6e3 2.96e42.0e3 5.10e32.3e3 1.12e48.0e2 7.15e31.8e3 1.86e41.6e3 2.62e41.8e3 +
50 3.13e42.2e3 3.37e42.0e3 1.09e45.8e3 1.22e48.0e2 8.40e32.0e3 2.18e42.0e3 3.06e42.1e3 +
100 – – – 1.62e41.6e3 1.30e51.5e5 – – +

ZDT2

1 2.29e41.4e3 2.64e42.2e3 3.45e31.0e3 9.85e37.5e2 4.40e32.2e3 1.62e42.7e3 1.82e46.8e3 +
5 2.46e41.3e3 2.82e42.0e3 3.80e31.3e3 1.04e49.0e2 4.90e31.6e3 1.70e42.7e3 2.01e46.4e3 +

10 2.54e41.4e3 2.89e41.9e3 4.15e31.5e3 1.08e49.0e2 5.00e31.8e3 1.78e42.6e3 2.12e45.9e3 +
20 2.68e41.6e3 3.03e42.0e3 4.50e32.0e3 1.13e49.0e2 5.15e31.6e3 1.87e43.1e3 2.24e46.0e3 +
50 3.15e41.6e3 3.48e42.1e3 8.05e35.4e3 1.21e48.5e2 5.70e32.4e3 2.20e43.0e3 2.68e46.6e3 +
100 – – – 1.62e41.7e3 9.51e41.3e5 – – +

ZDT3

1 1.18e41.3e3 1.41e41.4e3 2.80e36.0e2 9.40e36.0e2 8.30e32.4e3 1.11e41.8e3 1.21e41.8e3 +
5 1.34e41.2e3 1.58e41.2e3 3.10e38.5e2 1.00e46.0e2 9.10e32.4e3 1.22e41.5e3 1.36e41.5e3 +
10 1.47e41.2e3 1.71e41.4e3 3.50e39.0e2 1.04e46.0e2 9.50e32.5e3 1.27e41.7e3 1.50e41.4e3 +
20 1.64e41.3e3 1.90e41.5e3 4.00e31.0e3 1.08e47.0e2 1.00e42.8e3 1.37e41.7e3 1.68e41.4e3 +

50 2.14e41.8e3 2.47e41.7e3 5.60e32.8e3 1.19e47.5e2 1.22e43.8e3 1.62e41.8e3 2.16e42.0e3 +
100 – – – – – – – -

ZDT4

1 1.72e44.0e3 1.92e44.0e3 2.92e41.7e4 – 9.00e27.0e2 1.54e47.0e3 1.24e46.0e3 +
5 3.28e41.1e4 3.24e41.4e4 3.93e42.3e4 – 2.60e31.2e3 4.50e43.2e4 3.10e41.3e4 +
10 4.17e41.8e4 4.47e41.9e4 5.38e42.6e4 – 3.80e31.2e3 6.42e43.8e4 3.90e41.6e4 +
20 5.68e42.8e4 5.48e42.5e4 6.52e43.4e4 – 7.70e35.4e3 8.24e44.8e4 4.80e41.9e4 +
50 8.07e44.8e4 7.30e44.0e4 9.84e44.8e4 – 3.12e41.3e4 1.18e56.6e4 5.95e42.0e4 -
100 – – – – – – – -

ZDT6

1 2.08e41.2e3 2.45e41.6e3 2.25e31.0e3 2.80e33.0e2 1.50e35.5e2 1.15e41.2e3 1.38e41.3e3 +

5 2.22e41.3e3 2.62e41.4e3 2.30e39.5e2 3.10e33.0e2 1.65e35.0e2 1.24e41.3e3 1.58e41.4e3 +
10 2.36e41.2e3 2.80e41.6e3 2.30e39.5e2 3.30e33.0e2 1.80e34.0e2 1.33e41.4e3 1.73e41.3e3 +
20 2.67e41.6e3 3.23e41.6e3 2.30e31.0e3 3.40e33.0e2 2.00e34.0e2 1.50e41.3e3 2.10e41.8e3 +
50 3.58e42.0e3 4.29e41.8e3 2.70e31.4e3 3.50e33.0e2 2.30e35.0e2 1.92e41.8e3 3.04e42.4e3 +
100 – – – – – – – -
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Table IV. Median (x̃) and interquartile range (IQR) of the number of Evaluations for reaching Pareto
Optimal Points in the DTLZ benchmark (cells with dark and light background indicate the best and

second best values, respectively). PAES and SMPSO provide the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem n x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1

1 2.36e48.5e3 2.45e49.2e3 2.54e41.6e4 9.30e31.1e3 7.00e23.5e2 2.78e41.7e4 1.95e46.6e3 +
5 2.56e48.8e3 2.63e41.1e4 2.72e41.8e4 9.80e39.0e2 2.20e31.4e3 2.96e41.9e4 2.15e47.4e3 +
10 2.65e49.6e3 2.76e41.2e4 2.82e41.8e4 9.95e39.0e2 3.20e31.6e3 3.06e41.8e4 2.24e48.0e3 +
20 2.82e41.1e4 2.92e41.2e4 3.09e42.0e4 1.02e41.0e3 4.15e31.5e3 3.19e42.1e4 2.38e49.0e3 +
50 3.36e41.6e4 3.52e41.5e4 4.44e43.6e4 1.08e41.0e3 6.90e32.5e3 4.26e42.9e4 2.86e41.0e4 +
100 – – – – – – – -

DTLZ2

1 3.50e35.0e2 4.00e37.0e2 7.00e22.5e2 4.50e35.0e2 6.00e23.0e2 2.20e36.0e2 2.40e38.5e2 +
5 4.20e35.0e2 4.70e36.5e2 7.00e23.0e2 5.00e34.0e2 1.40e36.0e2 2.60e36.0e2 3.20e39.0e2 +

10 4.70e36.0e2 5.20e38.0e2 8.00e23.0e2 5.35e33.0e2 1.95e36.0e2 2.80e36.5e2 3.70e39.0e2 +
20 5.30e35.0e2 6.00e39.0e2 1.00e37.0e2 5.70e34.0e2 2.85e31.1e3 3.20e39.0e2 4.50e39.0e2 +
50 7.70e31.2e3 8.55e31.0e3 3.20e31.8e3 6.80e34.0e2 6.45e32.4e3 4.90e39.0e2 7.00e31.1e3 +
100 – – – – – – – -

DTLZ3

1 6.00e42.0e4 6.77e42.0e4 8.60e45.5e4 – 1.00e36.0e2 7.69e43.2e4 4.76e41.6e4 +
5 6.23e42.2e4 7.35e42.2e4 9.22e46.0e4 – 3.60e33.3e3 8.38e43.8e4 5.08e41.6e4 +
10 6.68e42.5e4 7.66e42.2e4 1.08e57.4e4 – 5.00e33.6e3 8.56e44.0e4 5.46e41.7e4 +
20 7.64e42.9e4 8.42e42.8e4 1.17e51.0e5 – 6.00e33.8e3 9.80e44.9e4 5.78e41.6e4 +

50 9.98e44.1e4 1.11e55.2e4 – – 8.45e34.6e3 1.42e51.0e5 7.85e42.9e4 +
100 – – – – – – – -

DTLZ4

1 – – – – – – – -
5 – – – – – – – -
10 – – – – – – – -
20 – – – – – – – -
50 – – – – – – – -
100 – – – – – – – -

DTLZ5

1 3.40e35.5e2 4.00e36.0e2 7.00e23.0e2 4.50e33.0e2 6.00e23.0e2 2.20e36.0e2 2.45e38.5e2 +

5 4.10e35.5e2 4.70e36.0e2 7.00e23.0e2 5.00e33.0e2 1.40e36.5e2 2.60e36.0e2 3.20e38.5e2 +
10 4.60e35.0e2 5.20e38.0e2 8.50e24.0e2 5.30e33.5e2 2.00e38.0e2 2.80e36.5e2 3.80e38.5e2 +
20 5.20e36.5e2 5.90e39.5e2 1.10e36.0e2 5.70e34.0e2 3.10e31.2e3 3.25e38.0e2 4.60e38.0e2 +
50 7.65e31.2e3 8.50e31.1e3 3.40e31.8e3 6.80e34.0e2 6.55e32.6e3 4.70e31.2e3 7.30e31.0e3 +
100 – – – – – – – -

DTLZ6

1 – – 3.20e31.2e3 2.50e32.0e2 4.70e32.2e3 – – +
5 – – 3.20e31.2e3 2.70e32.0e2 5.00e32.2e3 – – +
10 – – 3.20e31.2e3 2.80e32.0e2 5.10e32.2e3 – – +
20 – – 3.30e31.4e3 2.90e31.0e2 5.35e32.3e3 – – +

50 – – 3.60e31.6e3 3.00e32.0e2 5.60e32.4e3 – – +
100 – – – – – – – -

DTLZ7

1 1.31e41.2e3 1.51e41.3e3 2.30e36.0e2 7.10e35.0e2 3.50e31.6e3 9.40e31.5e3 1.06e41.0e3 +
5 1.41e48.0e2 1.65e41.0e3 2.60e31.0e3 7.40e35.5e2 3.70e31.4e3 1.01e41.2e3 1.18e41.0e3 +
10 1.49e41.0e3 1.73e41.1e3 2.85e31.0e3 7.70e36.0e2 3.90e31.6e3 1.06e41.4e3 1.26e41.1e3 +
20 1.60e41.0e3 1.86e41.2e3 3.10e31.0e3 7.90e35.5e2 4.15e31.6e3 1.12e41.4e3 1.38e41.1e3 +
50 2.01e41.6e3 2.26e41.4e3 4.20e31.8e3 8.60e37.5e2 4.65e31.8e3 1.36e41.4e3 1.76e41.8e3 +
100 – – – – – – – -
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Table V. Problems in which statistical confidence cannot be assured in Criterion 1 (number of Pareto
optimal solutions found)

n GDE3 SMPSO

PAES

1 - DTLZ2, DTLZ5
5 - -

10 - -
20 - ZDT2
50 - DTLZ7
100 - ZDT3, ZDT4

GDE3

1 -
5 -
10 -

20 ZDT3
50 ZDT3, DTLZ2, DTLZ5
100 ZDT6, DTLZ6
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Table VI. Median (x̃) and interquartile range (IQR) of the number of Evaluations for different values
of the I

1
ǫ + indicator in the ZDT benchmark (cells with dark and light background indicate the best

and second best values, respectively). SMPSO provides the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem I
1

ǫ + x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1
0.10 6.10e36.0e2 7.60e31.1e3 8.20e36.5e3 6.20e33.0e2 5.80e31.2e3 8.00e31.3e3 5.50e31.2e3 +
0.05 7.85e36.0e2 9.50e39.5e2 9.95e38.7e3 7.50e33.5e2 6.45e31.4e3 9.55e31.6e3 6.95e31.1e3 +
0.01 2.94e48.2e3 1.94e41.4e3 – 1.13e47.0e2 7.90e31.7e3 1.92e45.0e3 1.54e41.6e3 +

ZDT2
0.10 8.90e39.0e2 1.22e48.8e3 8.90e35.6e3 7.45e35.5e2 4.85e31.7e3 9.20e33.2e3 6.55e32.5e3 +
0.05 1.07e49.5e2 1.48e47.2e3 1.05e48.8e3 8.30e33.5e2 5.10e31.6e3 1.01e43.0e3 7.75e31.7e3 +
0.01 2.80e45.4e3 2.16e42.4e3 – 1.17e48.5e2 6.20e31.8e3 1.84e44.6e3 1.24e44.0e3 +

ZDT3
0.10 6.30e37.5e2 7.70e39.5e2 3.72e49.3e4 6.70e33.0e2 8.60e32.5e3 1.32e42.6e4 7.20e33.0e3 +
0.05 8.00e38.0e2 9.60e31.2e3 4.00e49.3e4 8.00e36.0e2 9.55e32.4e3 1.34e42.6e4 8.75e32.6e3 +

0.01 1.39e41.4e3 1.79e42.2e3 – 1.17e41.6e3 1.20e42.7e3 1.54e42.1e4 1.39e42.2e3 +

ZDT4
0.10 1.64e43.8e3 2.18e45.7e3 1.58e41.1e4 1.38e41.0e3 3.20e31.2e3 1.50e44.2e3 1.26e43.2e3 +
0.05 1.78e44.0e3 2.40e47.5e3 2.26e41.1e4 1.45e41.0e3 4.05e31.4e3 1.57e44.3e3 1.36e43.2e3 +
0.01 4.96e41.6e4 3.15e47.4e3 – – 8.70e32.2e3 2.96e41.9e4 2.09e47.1e3 +

ZDT6
0.10 1.54e41.1e3 1.81e41.0e3 4.40e33.9e3 3.70e34.0e2 2.70e31.4e3 8.15e31.1e3 7.90e39.0e2 +
0.05 1.80e49.0e2 2.13e41.3e3 6.30e35.4e3 4.20e36.0e2 3.30e31.4e3 9.85e31.2e3 1.08e41.0e3 +
0.01 3.78e43.5e3 3.46e42.0e3 – 6.90e32.0e3 4.70e31.7e3 1.68e41.4e3 2.22e41.3e3 +
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Table VII. Median (x̃) and interquartile range (IQR) of the number of Evaluations for different values
of the I

1
ǫ + indicator in the DTLZ benchmark (cells with dark and light background indicate the best

and second best values, respectively). SMPSO provides the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem I
1

ǫ + x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1
0.10 1.48e43.9e3 1.76e44.5e3 – 8.40e38.0e2 3.60e31.8e3 1.68e48.6e3 1.48e44.6e3 +
0.05 1.60e43.6e3 1.92e44.0e3 – 8.95e37.5e2 4.30e32.0e3 1.72e48.4e3 1.56e44.8e3 +
0.01 4.28e42.5e4 2.66e47.1e3 – 1.12e41.2e3 8.10e32.0e3 2.78e41.3e4 2.20e45.4e3 +

DTLZ2
0.10 1.50e31.0e2 1.80e33.0e2 2.80e32.3e3 2.10e31.0e2 6.00e23.0e2 1.40e36.0e2 9.00e23.0e2 +
0.05 2.10e32.0e2 2.55e33.0e2 3.70e32.7e3 2.95e33.0e2 1.10e33.0e2 2.10e36.0e2 1.40e34.0e2 +
0.01 6.40e31.6e3 5.20e37.0e2 – 5.60e34.0e2 3.70e31.1e3 4.20e31.0e3 3.50e36.0e2 +

DTLZ3
0.10 3.06e48.2e3 3.67e48.5e3 – – 5.15e33.4e3 3.98e41.3e4 3.02e49.0e3 +
0.05 3.36e48.6e3 3.88e47.6e3 – – 5.90e33.2e3 4.08e41.2e4 3.11e49.0e3 +

0.01 7.04e42.7e4 6.14e41.4e4 – – 8.60e33.5e3 6.80e43.0e4 4.34e41.0e4 +

DTLZ4
0.10 – – – 4.75e31.8e3 1.45e35.0e2 1.50e36.0e2 – +
0.05 – – – 6.40e32.1e3 1.90e35.0e2 2.00e35.0e2 – +
0.01 – – – 8.85e31.8e3 4.25e31.1e3 4.80e31.1e3 – +

DTLZ5
0.10 1.50e31.0e2 1.80e32.5e2 3.20e33.4e3 2.10e32.0e2 7.00e23.0e2 1.50e36.5e2 9.00e22.0e2 +
0.05 2.10e32.0e2 2.60e34.5e2 3.65e33.8e3 2.90e32.0e2 1.15e33.0e2 2.10e36.5e2 1.40e33.0e2 +
0.01 6.25e31.7e3 5.35e36.0e2 – 5.60e33.0e2 3.60e38.0e2 4.20e31.0e3 3.60e36.0e2 +

DTLZ6
0.10 2.36e48.5e2 2.83e41.1e3 1.24e41.2e4 2.90e32.0e2 5.15e31.9e3 – – +
0.05 – – 1.48e41.5e4 3.10e32.0e2 5.30e32.0e3 – – +

0.01 – – – 4.30e34.0e2 6.30e32.2e3 – – +

DTLZ7
0.10 6.00e35.0e2 – – 5.80e33.5e2 3.90e31.3e3 – – +
0.05 7.20e37.0e2 – – 6.70e34.5e2 4.30e31.2e3 – – +
0.01 1.33e41.3e3 – – 9.85e31.0e3 5.40e31.4e3 – – +
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Table VIII. Problems in which statistical confidence cannot be assured in Criterion 2 (I1
ǫ + indicator

values)
n SMPSO MOCell

GDE3
0.10 - DTLZ4

0.05 - DTLZ4
0.01 ZDT3 ZDT2, DTLZ4, DTLZ7

SMPSO
0.1 -
0.05 ZDT3
0.01 DTLZ2, DTLZ5
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Table IX. Median (x̃) and interquartile range (IQR) of the number of Evaluations for different values
of the IHV indicator in the ZDT benchmark (cells with dark and light background indicate the best

and second best values, respectively). SMPSO provides the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem % x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1
98 1.43e48.5e2 1.58e41.1e3 1.22e49.6e3 9.50e34.0e2 7.00e31.6e3 1.32e41.5e3 1.32e41.3e3 +
99 2.43e41.4e3 2.34e41.2e3 – 1.10e45.5e2 7.65e31.6e3 1.76e41.8e3 1.98e41.3e3 -

ZDT2

98 2.45e41.6e3 2.46e41.6e3 1.62e52.4e5 1.12e46.5e2 5.75e31.6e3 1.75e42.6e3 1.69e46.6e3 +
99 – – – – – – – -

ZDT3
98 1.28e41.2e3 1.54e41.3e3 2.36e42.9e4 1.02e45.0e2 1.02e42.6e3 1.22e42.4e3 1.30e41.4e3 +
99 1.64e41.2e3 1.98e41.4e3 5.08e49.7e4 1.13e46.0e2 1.10e42.8e3 1.50e44.3e3 1.67e41.8e3 +

ZDT4
98 2.18e45.6e3 2.58e45.7e3 4.34e42.0e4 – 4.90e31.3e3 2.09e41.0e4 1.70e46.2e3 +
99 4.15e41.7e4 3.76e41.6e4 – – 8.80e32.0e3 5.06e42.7e4 3.12e49.8e3 -

ZDT6
98 2.92e41.2e3 3.32e41.2e3 9.70e37.4e3 4.60e36.0e2 3.40e31.5e3 1.54e41.4e3 2.17e41.4e3 +
99 3.56e41.7e3 3.98e41.5e3 – 5.20e36.5e2 3.85e31.5e3 1.78e41.4e3 2.71e41.6e3 -
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Table X. Median (x̃) and interquartile range (IQR) of the number of Evaluations for reaching different
values of the IHV quality indicator in the DTLZ benchmark (cells with dark and light background
indicate the best and second best values, respectively). SMPSO and GDE3 provide the best overall

results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem % x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1
98 2.46e48.0e3 2.52e48.0e3 – 1.01e49.5e2 5.50e32.0e3 2.66e41.4e4 2.06e46.2e3 +
99 4.86e42.6e4 3.64e41.6e4 – 1.09e41.0e3 8.35e32.1e3 4.36e43.0e4 3.02e41.1e4 +

DTLZ2
98 7.95e31.2e3 7.45e38.0e2 2.86e42.4e4 6.40e33.5e2 5.50e31.4e3 4.60e38.5e2 5.90e31.0e3 +
99 – – – 9.60e36.0e2 3.58e41.1e4 1.35e43.6e3 1.69e41.6e3 +

DTLZ3
98 1.15e55.4e4 1.02e54.3e4 – – 8.85e34.2e3 1.10e56.8e4 6.58e42.3e4 +

99 – 3.37e51.7e5 – – 3.50e41.5e4 3.53e52.5e5 1.37e54.6e4 +

DTLZ4
98 – – – 8.05e31.2e3 5.90e31.4e3 4.80e36.0e2 – -
99 – – – 1.04e48.5e2 4.09e41.1e4 1.27e43.0e3 – -

DTLZ5
98 8.20e31.2e3 7.40e37.5e2 2.70e42.8e4 6.40e34.0e2 5.60e31.5e3 4.50e38.0e2 5.95e31.0e3 +
99 – – – 9.60e35.5e2 3.55e41.1e4 1.34e42.7e3 1.71e42.2e3 -

DTLZ6
98 – – – 3.80e33.0e2 5.95e32.3e3 – – +
99 – – – 5.00e35.5e2 7.55e34.1e3 – – -

DTLZ7
98 1.36e48.0e2 – – 8.40e35.0e2 4.80e31.4e3 – – -

99 2.03e41.6e3 – – 9.40e35.0e2 5.40e31.4e3 – – -
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Table XI. Problems in which statistical confidence cannot be assured in Criterion 3 (IHV indicator
percentages)
n SMPSO AbYSS

GDE3
98% ZDT3 -
99% ZDT3 -

SMPSO
98% -
99% -
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Table XII. Ranking of the algorithms: obtaining a pre-defined number (1, 5, 10, 20, 50, and 100) of
Pareto optimal solutions

Rank 1 sol. 5 sols. 10 sols. 20 sols. 50 sols. 100 sols. Global
1. SMPSO PAES PAES PAES SMPSO GDE3 PAES
2. PAES SMPSO SMPSO SMPSO PAES SMPSO SMPSO
3. GDE3 GDE3 GDE3 GDE3 GDE3 – GDE3
4. MOCell MOCell MOCell MOCell MOCell – MOCell
5. AbYSS AbYSS AbYSS AbYSS AbYSS – AbYSS
6. NSGA-II NSGA-II NSGA-II NSGA-II NSGA-II – NSGA-II
7. SPEA2 SPEA2 SPEA2 SPEA2 SPEA2 – SPEA2
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Table XIII. Ranking of the algorithms: computing Pareto fronts with different values (0.1, 0.05, and
0.01) of the Epsilon indicator

Rank 0.1 0.05 0.01 Global
1. SMPSO SMPSO SMPSO SMPSO
2. MOCell GDE3 GDE3 GDE3
3. GDE3 MOCell MOCell MOCell
4. NSGA-II NSGA-II AbYSS NSGA-II
5. AbYSS AbYSS NSGA-II AbYSS
6. SPEA2 SPEA2 SPEA2 SPEA2
7. PAES PAES PAES PAES
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Table XIV. Ranking of the algorithms: computing Pareto fronts with different percentages (0.98 and
0.99) of the Hypervolume indicator

Rank 0.98 0.99 Global
1. SMPSO SMPSO SMPSO
2. AbYSS GDE3 GDE3
3. GDE3 AbYSS AbYSS
4. MOCell MOCell MOCell
5. NSGA-II NSGA-II NSGA-II
6. SPEA2 SPEA2 SPEA2
7. PAES PAES PAES
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Table XV. Median (x̃) and interquartile range (IQR) of the number of Evaluations for reaching
Pareto Optimal Points in the ZTD benchmark when using an external unbounded archive for avoiding
Pareto Drift issues (cells with dark and light background indicate the best and second best values,

respectively). PAES and SMPSO also provide the best overall results in this case.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem n x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1

1 1.13e41.2e3 1.30e41.6e3 3.40e31.3e3 9.70e39.5e2 6.10e31.8e3 1.08e41.8e3 1.04e41.5e3 +
5 1.46e41.4e3 1.69e41.8e3 4.20e31.5e3 1.04e48.0e2 6.30e31.8e3 1.28e42.0e3 1.31e41.8e3 +
10 1.68e41.5e3 1.92e41.4e3 4.70e31.8e3 1.08e47.0e2 6.50e31.8e3 1.38e42.1e3 1.56e41.6e3 +
20 1.92e41.6e3 2.19e41.3e3 5.70e32.3e3 1.12e47.0e2 6.75e31.8e3 1.52e41.9e3 1.78e41.6e3 +
50 2.24e41.3e3 2.51e41.2e3 9.50e33.0e3 1.18e48.0e2 7.15e31.8e3 1.68e41.8e3 2.16e42.0e3 +
100 2.49e41.4e3 2.79e41.3e3 1.43e49.9e5 1.25e48.0e2 7.60e32.0e3 1.78e41.7e3 2.44e41.9e3 +

ZDT2

1 2.26e41.8e3 2.62e42.1e3 3.60e31.1e3 9.80e39.0e2 4.40e32.0e3 1.56e42.6e3 1.62e46.8e3 +
5 2.38e41.4e3 2.73e42.0e3 4.20e31.5e3 1.04e49.0e2 4.70e31.5e3 1.60e42.6e3 1.70e46.6e3 +

10 2.43e41.4e3 2.78e42.0e3 4.60e31.8e3 1.08e49.5e2 4.85e31.6e3 1.63e42.5e3 1.76e46.6e3 +
20 2.50e41.5e3 2.85e42.0e3 5.90e32.2e3 1.11e48.5e2 5.10e31.6e3 1.66e42.6e3 1.84e46.7e3 +
50 2.59e41.4e3 2.94e41.9e3 9.30e32.6e3 1.17e48.5e2 5.45e31.8e3 1.72e42.6e3 1.94e46.9e3 +
100 2.68e41.6e3 3.05e42.0e3 1.42e49.9e5 1.24e48.0e2 5.70e31.9e3 1.78e42.6e3 2.05e46.8e3 +

ZDT3

1 1.18e41.0e3 1.39e41.2e3 2.90e37.0e2 9.40e36.0e2 8.40e32.8e3 1.10e41.4e3 1.19e41.2e3 +
5 1.29e41.0e3 1.51e41.4e3 3.40e31.0e3 1.02e45.5e2 9.20e32.8e3 1.17e41.5e3 1.29e41.1e3 +
10 1.36e49.0e2 1.58e41.4e3 4.00e31.1e3 1.04e46.5e2 9.50e32.8e3 1.21e41.5e3 1.36e41.3e3 +
20 1.43e49.5e2 1.67e41.2e3 5.00e31.5e3 1.10e46.0e2 1.02e43.0e3 1.27e41.4e3 1.45e41.2e3 +

50 1.56e49.5e2 1.83e41.3e3 8.00e32.6e3 1.18e46.0e2 1.11e43.0e3 1.37e41.4e3 1.59e41.3e3 +
100 1.72e49.0e2 1.98e41.3e3 1.60e49.9e5 1.29e45.0e2 1.20e43.0e3 1.47e41.6e3 1.75e41.2e3 +

ZDT4

1 1.72e43.0e3 1.94e43.7e3 2.86e41.8e4 – 8.00e26.0e2 1.58e45.7e3 1.15e43.9e3 +
5 2.15e44.7e3 2.34e44.4e3 4.28e42.4e4 – 2.60e31.0e3 1.72e45.3e3 1.48e44.0e3 +
10 2.44e46.2e3 2.71e45.8e3 5.08e42.3e4 – 3.70e31.4e3 1.96e46.1e3 1.80e45.1e3 +
20 2.92e47.8e3 3.24e47.0e3 5.60e42.6e4 – 5.20e31.8e3 2.20e47.8e3 2.24e46.9e3 +
50 3.58e41.0e4 4.02e41.0e4 7.10e49.4e5 – 8.00e32.0e3 2.70e48.2e3 3.02e49.8e3 +
100 4.26e41.2e4 4.58e41.5e4 7.94e49.4e5 – 1.08e42.1e3 3.18e41.4e4 3.61e41.0e4 +

ZDT6

1 2.05e41.2e3 2.42e41.3e3 2.20e38.0e2 2.80e34.5e2 1.60e36.0e2 1.19e41.0e3 1.38e41.2e3 +

5 2.16e41.2e3 2.52e41.4e3 2.30e37.0e2 3.20e34.0e2 1.80e37.0e2 1.26e41.2e3 1.50e41.2e3 +
10 2.22e41.1e3 2.60e41.4e3 2.40e39.0e2 3.40e33.0e2 2.00e37.0e2 1.31e41.4e3 1.56e41.4e3 +
20 2.30e41.1e3 2.70e41.4e3 2.60e31.0e3 3.50e33.0e2 2.10e37.0e2 1.37e41.2e3 1.66e41.5e3 +
50 2.52e41.4e3 2.95e41.4e3 3.30e31.7e3 3.80e33.0e2 2.40e37.0e2 1.53e41.4e3 1.91e41.4e3 +
100 2.81e41.4e3 3.27e41.3e3 5.80e31.0e6 4.10e33.5e2 2.75e37.0e2 1.71e41.4e3 2.20e41.7e3 +
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Table XVI. Median (x̃) and interquartile range (IQR) of the number of Evaluations for reaching Pareto
Optimal Points in the DTLZ benchmark when using an external unbounded archive for avoiding
Pareto Drift issues (cells with dark and light background indicate the best and second best values,

respectively). PAES, GDE3 and SMPSO provide the best overall results.
NSGA-II SPEA2 PAES GDE3 SMPSO AbYSS MOCell

Problem n x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1

1 2.38e41.1e4 2.37e47.2e3 2.64e41.5e4 9.30e31.0e3 6.50e24.0e2 2.80e41.5e4 1.96e46.2e3 +
5 2.58e41.1e4 2.48e47.8e3 2.71e41.6e4 9.75e39.5e2 2.30e31.6e3 2.90e41.6e4 2.09e46.9e3 +
10 2.64e41.1e4 2.52e47.7e3 2.88e41.6e4 9.90e39.0e2 3.40e32.0e3 2.96e41.6e4 2.14e46.8e3 +
20 2.72e41.1e4 2.60e48.2e3 3.12e42.1e4 1.01e49.5e2 4.40e32.2e3 3.04e41.5e4 2.22e47.0e3 +
50 2.86e41.2e4 2.70e48.6e3 4.17e49.7e5 1.05e49.0e2 5.70e32.2e3 3.12e41.5e4 2.36e47.4e3 +
100 2.95e41.2e4 2.80e48.6e3 5.24e49.6e5 1.09e49.0e2 6.95e32.6e3 3.20e41.4e4 2.52e47.8e3 +

DTLZ2

1 3.60e35.0e2 3.85e36.0e2 7.00e22.0e2 4.50e34.0e2 6.00e23.0e2 2.20e35.0e2 2.20e37.0e2 +
5 4.00e35.0e2 4.40e37.0e2 9.00e24.0e2 5.00e33.0e2 1.50e35.0e2 2.50e35.0e2 2.80e38.0e2 +

10 4.35e34.5e2 4.70e37.0e2 1.20e36.0e2 5.30e33.0e2 2.00e36.0e2 2.70e35.0e2 3.30e38.0e2 +
20 4.70e35.0e2 5.10e37.5e2 1.70e37.0e2 5.50e33.0e2 2.60e38.0e2 2.90e35.0e2 3.70e38.0e2 +
50 5.30e36.0e2 5.80e37.0e2 3.10e31.0e3 6.10e34.0e2 3.50e31.0e3 3.40e35.5e2 4.60e37.0e2 +
100 6.00e36.0e2 6.50e38.0e2 5.35e31.0e6 6.80e33.0e2 4.60e31.2e3 4.00e34.5e2 5.45e37.0e2 +

DTLZ3

1 6.22e42.6e4 6.42e41.7e4 9.02e46.1e4 – 1.10e36.0e2 7.83e43.7e4 4.60e41.6e4 +
5 6.42e42.5e4 6.62e41.8e4 9.71e46.7e4 – 3.70e38.2e3 8.06e43.7e4 4.83e41.7e4 +
10 6.56e42.4e4 6.70e41.9e4 1.05e57.7e4 – 5.10e38.2e3 8.20e43.9e4 4.96e41.7e4 +
20 6.72e42.6e4 6.91e42.0e4 1.17e58.8e4 – 6.10e38.4e3 8.30e44.1e4 5.10e41.8e4 +

50 7.10e42.6e4 7.26e42.2e4 1.67e59.0e5 – 7.50e39.2e3 8.42e44.1e4 5.31e41.9e4 +
100 7.42e42.6e4 7.59e42.3e4 2.21e58.7e5 – 8.75e38.8e3 8.68e44.1e4 5.54e41.9e4 +

DLTZ4

1 – – – – – – -
5 – – – – – – – -
10 – – – – – – – -
20 – – – – – – – -
50 – – – – – – – -
100 – – – – – – – -

DLTZ5

1 3.50e35.0e2 3.90e37.0e2 7.00e23.0e2 4.50e35.0e2 6.00e23.0e2 2.20e36.5e2 2.30e39.0e2 +

5 4.10e35.0e2 4.50e37.0e2 1.00e34.0e2 5.00e33.0e2 1.50e36.0e2 2.50e37.0e2 3.00e38.5e2 +
10 4.40e35.0e2 4.80e37.0e2 1.40e34.0e2 5.20e33.0e2 2.00e37.0e2 2.65e36.5e2 3.30e39.0e2 +
20 4.70e34.0e2 5.20e36.0e2 1.90e35.0e2 5.50e33.0e2 2.60e38.0e2 2.90e36.5e2 3.80e38.5e2 +
50 5.30e35.0e2 5.80e37.0e2 3.00e38.0e2 6.10e33.0e2 3.50e39.0e2 3.40e36.0e2 4.55e38.0e2 +
100 6.00e35.0e2 6.60e37.0e2 4.90e38.0e2 6.80e33.5e2 4.60e31.3e3 4.00e38.0e2 5.50e38.5e2 +

DLTZ6

1 – – 3.70e31.8e3 2.50e32.0e2 4.30e32.0e3 – – +
5 – – 3.85e31.8e3 2.70e32.0e2 4.60e32.0e3 – – +
10 – – 4.10e32.0e3 2.80e31.0e2 4.70e32.2e3 – – +

20 – – 4.50e32.3e3 3.00e32.0e2 4.90e32.2e3 – – +
50 – – 5.35e32.4e3 3.20e31.0e2 5.10e32.2e3 – – +
100 – – 7.00e32.2e3 3.60e32.0e2 5.40e32.1e3 – – +

DTLZ7

1 1.27e41.0e3 1.48e41.2e3 2.40e37.0e2 7.05e36.0e2 3.40e31.4e3 9.30e31.2e3 1.05e49.5e2 +
5 1.35e49.5e2 1.58e41.0e3 3.00e39.0e2 7.60e35.0e2 3.75e31.2e3 9.70e31.2e3 1.14e41.0e3 +
10 1.39e49.0e2 1.62e41.0e3 3.40e38.5e2 7.80e35.0e2 3.95e31.2e3 9.90e31.2e3 1.18e41.1e3 +
20 1.45e49.0e2 1.67e41.0e3 4.05e31.2e3 8.10e35.0e2 4.20e31.2e3 1.03e41.1e3 1.23e41.0e3 +
50 1.52e49.5e2 1.77e41.1e3 5.90e31.2e3 8.60e35.0e2 4.60e31.3e3 1.09e41.0e3 1.33e41.2e3 +
100 1.63e49.5e2 1.88e41.0e3 8.30e31.4e3 9.35e35.0e2 5.00e31.4e3 1.18e41.2e3 1.44e41.2e3 +
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