
1

A Study of Multi-Objective Metaheuristics when
Solving Parameter Scalable Problems

J.J. Durillo, A.J. Nebro, C.A. Coello Coello, J. Garcı́a-Nieto, F. Luna, E. Alba

Abstract—To evaluate the search capabilities of a multi-
objective algorithm the usual approach is to choose a bench-
mark of known problems, to perform a fixed number of
function evaluations, and to apply a set of quality indicators.
However, while real problems could have hundreds or even
thousands of decision variables, current benchmarks are nor-
mally adopted with relatively few decision variables (normally
from ten to thirty). Furthermore, performing a constant num ber
of evaluations does not provide information about the effort
required by an algorithm to get a satisfactory set of solutions;
this information would also be of interest in real scenarios,
where evaluating the functions defining the problem can be
computationally expensive. In this paper we study the effect
of parameter scalability in a number of state-of-the-art multi-
objective metaheuristics. We adopt a benchmark of parameter-
wise scalable problems (the ZDT test suite) and analyze the
behavior of eight multi-objective metaheuristics on the these
test problems when using a number of decision variables that
ranges from 8 up to 2048. By using the hypervolume indicator
as a stopping condition, we also analyze the computational
effort required by each algorithm in order to reach the Pareto
front. We conclude that the algorithms based on particle swarm
optimization and differential evolution yield the best overall
results.

I. I NTRODUCTION

Many real-world optimization problems require the op-
timization of more than one objective function at the same
time. These problems are called Multi-objective Optimization
Problems (MOPs). In constrast to single-objective optimiza-
tion problems, the solution to MOPs is not a single solution,
but a set of non-dominatedsolutions called thePareto
optimal set. A solution that belongs to this set is said to
be aPareto optimumand, when the solutions of this set are
plotted in objective space, they are collectively known as the
Pareto front. Obtaining the Pareto front is the main goal in
multi-objective optimization.

The fact that real-world MOPs tend to be nonlinear and
with objective functions that are very expensive to evaluate
has led to the use ofmetaheuristics[1], [3], [13] to deal with
them. Metaheuristics are a family of techniques comprising

J.J Durillo, A.J. Nebro, J.Garcı́a Nieto, F. Luna and E. Albaare with the
Departamento de Lenguajes y Ciencias de la Computación, University of
Málaga, Spain (e-mail:{durillo,antonio,jnieto,flv,eat}@lcc.uma.es)

C.A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN, Mexico (e-mail:{ccoello@cs.cinvestav.mx). He is also
affiliated to the UMI-LAFMIA 3175 CNRS.

This work has been partially funded by the “Consejerı́a de Innovación,
Ciencia y Empresa”, Junta de Andalucı́a under contract P07-TIC-03044
DIRICOM project,http://diricom.lcc.uma.es. Juan J. Durillo is
supported by grant AP-2006-03349 from the Spanish goverment.

Evolutionary Algorithms(EAs),Particle Swarm Optimization
(PSO),Ant Colony Optimization, Tabu Search, Differential
Evolution, Scatter Search, and many others. The most pop-
ular algorithms for multi-objective optimization based on
metaheuristics in current use (NSGA-II [8] and SPEA2 [35])
adopt EAs as their search engine [5], [7].

The performance of these algorithms has been typically
assessed using benchmark problems, such as the Zitzler-Deb-
Thiele (ZDT) test problems [34], the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test problems [9], and the Walking-Fish-
Group (WFG) test problems [14], [15]. These three problem
families are scalable in the number of decision variables, and
the last two are also scalable in the number of objectives. The
methodology commonly adopted in the specialized literature
is to compare several algorithms using a fixed (pre-defined)
number of objective function evaluations and then to evaluate
the values of different quality indicators (e.g.,generational
distance[32] or hypervolume[36], among others).

The main motivation of this work is that many real-world
problems have hundreds or even thousands of decision vari-
ables, which constrasts with the current practice of validat-
ing multi-objective metaheuristics using the aforementioned
benchmarks, but with a low number of decision variables
(normally, no more than 30). Thus, the studies currently
available do not consider the capability of current multi-
objective evolutionary algorithms to properly scale when
dealing with a very large number of decision variables.
Scalability is a key issue in optimization algorithms, but
it has been rarely addressed in the multi-objective domain.
An example is the study presented in [30], in which the
so-called intelligent multi-objective evolutionary algorithm
(IMOEA) is compared to several elitist and non-elitist multi-
objective evolutionary algorithms (MOEAs) in several of
the ZDT test problems, adopting 63 decision variables. This
comparative study was undertaken to validate the hypothesis
of the authors of IMOEA, who argued the capability of
such approach to deal with large parameter MOPs. Another
example can be found in [33], where a study using only the
ZDT1 problem with up to 100 variables is included. This
contrasts with the interest in studying function scalability,
which is currently an active research topic, leading to the
area known asmany-objective optimization[2], [16], [10],
[26], [25], [28].

Another interesting issue that has been scarcely covered
in the specialized literature is the analysis of the behavior
of a multi-objective metaheuristic reaching the Pareto front
of a problem. Typically, a fixed number of evaluations (and,

2

in consequence, of iterations) is defined by the user, and the
performance of the different algorithms studied is compared.
However, this sort of comparison only measures the front
aspect, and it does not provide any indication regarding the
computational effort that a given algorithm requires to reach
the true Pareto front of a problem, i.e., the efficiency of
the algorithm. We believe that this is an important issue,
because if we take into account that evaluating the objective
functions of a MOP can be very time-consuming, it becomes
of interest to know how expensive for a certain algorithm it
is to generate the Pareto front.

We carried a first analysis of these ideas in [11], where
six state-of-the-art multi-objective metaheuristics were com-
pared when solving the ZDT benchmark, considering their
formulation ranging from 8 up to 2048 variables. The al-
gorithms included in the study reported in [11] were three
genetic algorithms (GAs) (NSGA-II [8], SPEA2 [35], and
PESA-II [6]), one evolution strategy (PAES [17]), one PSO
(OMOPSO [27]), and one cellular GA (MOCell [23]). In
that work, the number of evaluations required to provide a
satisfactory solution was also analyzed. Given that the Pareto
fronts of the ZDT problems are known, an algorithm was
considered successful when the hypervolume of its current
population (or archive, depending on the algorithm) was
higher than the 95% of the hypervolume of the Pareto front.

The current paper conducts further research along this
line. Compared to our previous work in [11], the main
contributions of this paper are the following:

• Two additional modern multi-objective metaheuristics
have been included, GDE3 [19] (a Differential Evo-
lution algorithm) and AbYSS [22] (a Scatter Search
algorithm), leading to a total of eight multi-objective
metaheuristics, representative of the state-of-the-art.

• We analyze the search capabilities of the algorithms
when solving the scalable ZDT problems using a
stronger stopping condition, by which the algorithms
stop either when they find a solution set having a
hypervolume higher than the 98% of the hypervolume
of the true Pareto front or when they have performed
10,000,000 function evaluations (500,000 in [11]).

• A more complete statistical analysis is performed, in-
cluding pair-wise comparisons among the techniques in
order to determine the significance of the results.

• We study the behavior of the most promising techniques
in order to propose mechanisms that enhance their
search capabilities.

The remainder of this paper is organized as follows.
Section II includes basic background on multi-objective
optimization. Sections III and IV describe, respectively,the
problems and the metaheuristics we have used. Section V is
devoted to the presentation and analysis of the experiments
carried out. In Section VI, we include a discussion about the
obtained results. Finally, Section VII summarizes the paper
and discusses possible lines of future work.

II. M ULTI -OBJECTIVE OPTIMIZATION

In this section, we include some background on multi-
objective optimization. More specifically, we define the con-
cepts of MOP, Pareto optimality, Pareto dominance, Pareto
optimal set, and Pareto front. In these definitions we are
assuming, without loss of generality, the minimization of all
the objectives.

A general multi-objective optimization problem (MOP)
can be formally defined as follows:

Definition 1 (MOP): Find a vector~x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

which satisfies them inequality constraintsgi (~x) ≥ 0, i =
1, 2, . . . , m, the p equality constraintshi (~x) = 0, i =
1, 2, . . . , p, and minimizes the vector function~f (~x) =
[f1(~x), f2(~x), . . . , fk(~x)]

T , where~x = [x1, x2, . . . , xn]
T is

the vector of decision variables.
The set of all values satisfying the constraints defines the

feasible regionΩ and any point~x ∈ Ω is a feasible solution.
As mentioned before, we seek for thePareto optima. Its
formal definition is provided next:

Definition 2 (Pareto Optimality):A point ~x∗ ∈ Ω is
Pareto optimal if for every~x ∈ Ω and I = {1, 2, . . . , k}
either ∀i∈I (fi (~x) = fi(~x

∗)) or there is at least onei ∈ I
such thatfi (~x) > fi (~x∗).

This definition states that~x∗ is Pareto optimal if no
feasible vector~x exists which would improve some criterion
without causing a simultaneous worsening in at least one
other criterion. Other important definitions associated with
Pareto optimality are the following:

Definition 3 (Pareto Dominance):A vector
~u = (u1, . . . , uk) is said to dominate~v = (v1, . . . , vk)
(denoted by~u 4 ~v) if and only if ~u is partially smaller than~v,
i.e., ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 4 (Pareto Optimal Set):For a given MOP
~f(~x), the Pareto optimal set is defined asP∗ = {~x ∈
Ω|¬∃~x′ ∈ Ω, ~f(~x′) 4 ~f(~x)}.

Definition 5 (Pareto Front):For a given MOP~f(~x) and
its Pareto optimal setP∗, the Pareto front is defined as
PF∗ = {~f(~x), ~x ∈ P∗}.

Obtaining the Pareto front of a MOP is the main goal of
multi-objective optimization. However, given that a Pareto
front can contain a large number of points, a good solution
must contain a limited number of them, which should be as
close as possible to the true Pareto front, as well as being
uniformly spread; otherwise, they would not be very useful to
the decision maker. Closeness to the Pareto front ensures that
we are dealing with optimal solutions, and a uniform spread
of the solutions means that we have made a good exploration
of the search space and no regions are left unexplored.

III. SCALABLE PARAMETER-WISE MULTI -OBJECTIVE

OPTIMIZATION PROBLEMS

To carry out our study, it would be helpful to use problems
which are scalable in terms of the number of decision
variables while keeping an invariable Pareto front. The ZDT
test function family [34] fulfills this requirement. It offers,
furthermore, a group of problems with different properties:

3

TABLE I
ZDT TEST FUNCTIONS

Problem Objective functions Variable bounds Comments

ZDT1
f1(~x) = x1

f2(~x) = g(~x)[1 −
p

x1/g(~x)]
g(~x) = 1 + 9

`Pn
i=2 xi

´

/(n − 1)
0 ≤ xi ≤ 1 convex

ZDT2
f1(~x) = x1

f2(~x) = g(~x)
ˆ

1 − (x1/g(~x))2
˜

g(~x) = 1 + 9
`Pn

i=2 xi

´

/(n − 1)
0 ≤ xi ≤ 1 non-convex

ZDT3

f1(~x) = x1

f2(~x) = g(~x)
h

1 −
q

x1
g(~x) − x1

g(~x) sin (10πx1)
i

g(~x) = 1 + 9
`Pn

i=2 xi

´

/(n − 1)

0 ≤ xi ≤ 1
convex
disconnected

ZDT4

f1(~x) = x1

f2(~x) = g(~x)[1 − (x1/g(~x))2]
g(~x) = 1 + 10(n − 1)+

Pn
i=2[x

2
i − 10 cos (4πxi)]

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5
i = 2, ..., n

non-convex
multi-frontal

ZDT6
f1(~x) = 1 − e−4x1 sin6 (6πx1)
f2(~x) = g(~x)[1 − (f1(~x)/g(~x))2]
g(~x) = 1 + 9[(

Pn
i=2 xi)/(n − 1)]0.25

0 ≤ xi ≤ 1
non convex
many-to-one
non uniformly spaced

convex, non-convex, disconnected, multi-frontal, many-to-
one problems (see Table I). These problems have been widely
used in many studies in the field since they were first
formulated. Table I shows the formulation of the ZDT test
problem family. We omitted problem ZDT5 because it is
binary encoded. The Pareto front of each problem is plotted
in Fig. 1.

Since we are interested in studying the behavior of the
algorithms when solving scalable parameter-wise problems,
we have evaluated each ZDT problem with 8, 16, 32, 64,
128, 256, 512, 1024, and 2048 variables. This way, we can
study not only what techniques behave more efficiently when
solving problems having many variables, but also if their
search capabilities remain constant or not when the number
of decision variables increases.

IV. M ULTI -OBJECTIVE OPTIMIZATION ALGORITHMS

In this section, we briefly describe the eight metaheuristics
that we have considered in this study. We have used the
implementation of these algorithms provided by jMetal [12],
a Java-based framework for developing metaheuristics to
solve multi-objective optimization problems.1

The NSGA-II algorithm was proposed by Debet al. [8]. It
is a genetic algorithm based on obtaining a new population
from the original one by applying the typical genetic opera-
tors (selection, crossover, and mutation); then, the individuals
in the two populations are sorted according to their rank,
and the best solutions are chosen to create a new population.
In case of having to select some individuals with the same
rank, a density estimation based on measuring the crowding
distance to the surrounding individuals belonging to the same
rank is used to get the most promising solutions.

SPEA2 was proposed by Zitleret al. in [35]. In this
algorithm, each individual has a fitness value that is the
sum of its strength raw fitness plus a density estimation.
The algorithm applies the selection, crossover, and mutation
operators to fill an archive of individuals; then, the non-
dominated individuals of both the original population and

1jMetal is freely available for download at the following URL:
http://jmetal.sourceforge.net/.

the archive are copied into a new population. If the number
of non-dominated individuals is greater than the population
size, a truncation operator based on calculating the distances
to thek-th nearest neighbor is used. This way, the individuals
having the minimum distance to any other individual are
chosen.

PESA-II [6] uses an internal population from which par-
ents are selected to create new solutions, and an external
population in which the non-dominated solutions found are
stored. This external population uses the same hyper-grid
division of phenotype (i.e., objective funcion) space adopted
by PAES [18] to maintain diversity in which region-based
selection is adopted. In region-based selection, the unit
of selection is a hyperbox rather than an individual. The
procedure lies in selecting (using any of the traditional
selection techniques) a hyperbox and then randomly choosing
an individual within that hyperbox.

PAES is a metaheuristic proposed by Knowles and
Corne [18]. The algorithm is based on a simple (1+1)
evolution strategy. To find diverse solutions in the Pareto
optimal set, PAES uses an external archive of nondominated
solutions, which is also used to decide about the new
candidate solutions. An adaptive grid is used as a density
estimator in the archive. We have used a real coded version
of PAES, applying a polynomial mutation operator.

OMOPSO (Optimized MOPSO) is a particle swarm opti-
mization algorithm for solving MOPs [27]. Its main features
include the use of the crowding distance from NSGA-II
to filter out leader solutions and the use of mutation op-
erators to accelerate the convergence of the swarm. The
original OMOPSO algorithm makes use of the concept of
ǫ-dominance to limit the number of solutions produced by
the algorithm. We consider here a variant discarding the use
of ǫ-dominance, and considering the leader population as the
result yielded by the algorithm.

GDE3 [19] is an improved version of the Generalized
Differential Evolution (GDE) algorithm [20]. It starts with a
population of random solutions, which becomes the current
population. At each generation, an offspring population is
created using the differential evolution operators; then,the

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT1

f 2

f
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT2

f
1

f 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
ZDT3

f
1

f 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT4

f 2

f
1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT6

f
1

f 2

Fig. 1. Pareto fronts of the ZDT test functions.

current population for the next generation is updated using
the solutions of both, the offspring and the current popu-
lation. Before proceeding to the next generation, the size
of the population is reduced using non-dominated sorting
and a pruning technique aimed at diversity preservation, ina
similar way as NSGA-II, although the pruning used in GDE3
modifies the crowding distance of NSGA-II in order to solve
some of its drawbacks when dealing with problems having
more than two objectives.

MOCell [23] is a cellular genetic algorithm (cGA). Like
many multi-objective metaheuristics, it includes an external
archive to store the non-dominated solutions found so far.
This archive is bounded and uses the crowding distance of
NSGA-II to keep diversity in the Pareto Front. We have used
here an asynchronous version of MOCell, called aMOCell4
in [24], in which the cells are explored sequentially (asyn-
chronously). The selection is based on taking an individual
from the neighborhood of the current solution (calledcell in
cGAs) and another one randomly chosen from the archive.
After applying the genetic crossover and mutation operators,
the new offspring is compared with the current one, replacing
it if better; if both solutions are non-dominated, the worst
individual in the neighborhood is replaced by the current
one. In these two cases, the new individual is inserted into
the archive.

AbYSS is an adaptation of thescatter searchmetaheuristic
to the multi-objective domain [22]. It uses an external archive
similar to the one employed by MOCell. The algorithm
incorporates operators from the evolutionary algorithms do-
main, including polynomial mutation and simulated binary
crossover in the improvement and solution combination

methods, respectively.

V. EXPERIMENTATION

In this section, we describe the parameter settings used
in the experiments, as well as the methodology we have
followed in the tests, and the results we have obtained.

A. Parameterization

We have chosen a set of parameter values such that we
allow a fair comparison among all the algorithms compared.
All the GAs (NSGA-II, SPEA2, PESA-II, and MOCell) as
well as GDE3, use an internal population size equal to 100;
the size of the archive is also 100 in PAES, OMOPSO,
GDE3, MOCell, and AbYSS. OMOPSO has been configured
with 100 particles. For AbYSS, the population and the
reference set have a size of 20 solutions.

In the GAs we have used simulated binary crossover
(SBX) and polynomial mutation [7]. The distribution indices
for both operators areηc = 20 and ηm = 20, respectively.
The crossover probability ispc = 0.9 and the mutation
probability ispm = 1/L, whereL is the number of decision
variables. In PAES we have also adopted a polynomial mu-
tation operator, with the same distribution index as indicated
before. AbYSS uses polynomial mutation in the improvement
method and SBX in the solution combination method. GDE3
uses 0.5 for the two parameters:CR andF [19]. OMOPSO
applies a combination of uniform and non-uniform mutation
to the particle swarm [27]. A detailed description of the
parameter values adopted for our experiments is provided
in Table II.

5

TABLE II
PARAMETERIZATION

Parameterization used in NSGA-II [8]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

(L = individual length)
Parameterization used in SPEA2 [35]

Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

(L = individual length)
Parameterization used in PESA-II [6]

Population Size 100 individuals
Selection of Parents region based selection + region based selection
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

(L = individual length)
Archive Size 100 individuals

Parameterization used in PAES [17]
Mutation polynomial,pm = 1.0/L

(L = individual length)
Archive Size 100

Parameterization used in OMOPSO [27]
Particles 100 particles
Mutation uniform + non-uniform
Leaders Size 100

Parameterization used in GDE3 [19]
Population Size 100 individuals
Recombination Differential Evolution,CR = 0.1, F = 0.5

Parameterization used in MOCell [24]
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

(L = individual length)
Archive Size 100 individuals

Parameterization used in AbYSS [22]
Population Size 20 individuals
Reference Set Size 10 + 10
Recombination simulated binary,pc = 1.0
Mutation (local search) polynomial,pm = 1.0/L

(L = individual length)
Archive Size 100 individuals

B. Methodology

We are interested in two main goals: analyzing the be-
havior of the algorithms when solving the scalable ZDT
benchmark and their speed (efficiency) in reaching the Pareto
front. Given that the Pareto fronts of the ZDT problems are
known beforehand, a strategy could be to run the algorithms
until they are able to produce them. However, it is possible
that some of them never produce the true Pareto front, or
simply take too long to do it. Thus, we adopt instead a
stopping condition for all the algorithms compared, based
on the high quality of the Pareto front produced. For that
purpose, the hypervolume [36] quality indicator is adopted.

The hypervolume computes the volume (in objective func-
tion space) covered by members of a non-dominated set
of solutionsQ for problems in which all objectives are to
be minimized. Mathematically, for each solutioni ∈ Q, a
hypercubevi is constructed with a reference pointW and
the solutioni as the diagonal corners of the hypercube. The

reference point can simply be found by constructing a vector
of worst objective function values. Thereafter, the union of all
hypercubes is found and its hypervolume (HV) is calculated:

HV = volume

|Q|
⋃

i=1

vi

 . (1)

Higher values of the HV performance measure imply more
desirable solutions. A property of this quality indicator is that
it measures both convergence to the Pareto front and diversity
of the obtained fronts.

Once the quality indicator we are going to use has been
described, we need to establish a stopping condition to be
used in the execution of the algorithms. The idea is that the
metaheuristics stop when they reach a certain percentage of
the HV of the Pareto front, which ensures that the obtained
front represents an accurate approximation to it. To decide
about that percentage, we show different approximations of
the Pareto front for the problem ZDT1 with different percent-
ages ofHV in Fig. 2. We can observe that a front with a hy-
pervolume of 98.26% represents a reasonable approximation
to the true Pareto fronts in terms of convergence and diversity
of solutions. This same value has been corroborated using the
other test problems from the ZDT suite. So, we have taken
98% of the HV of the Pareto front as a criterion to consider
that a MOP has been successfully solved. Furthermore, those
algorithms requiring fewer function evaluations to achieve
this termination condition can be considered to be more
efficient or faster. In those situations in which an algorithm
is unable to obtain a front fulfilling this condition after the
maximum number of function evaluations, we consider that
it has failed in solving the problem; this way, we can obtain a
hit rate for the algorithms, i.e., their percentage of successful
executions. We set the maximum number of evaluations to
ten million.

In our experiments, we check the stopping condition every
100 evaluations (that is, each iteration in the population-
based metaheuristics), where we measure the hypervolume
of the non-dominated solutions found so far. Therefore,
in NSGA-II, SPEA2, and GDE3 we have considered the
non-dominated solutions at each generation; in PESA-II,
PAES, AbYSS, and MOCell, the external population and,
in MOPSO, the leaders archive.

Normality

(Kolmogorov-Smirnov)

Variance Homogeneity

(Levene)

Kruskal-Wallis Welch ANOVA

No Yes

YesNo

Fig. 3. Statistical analysis performed in this work.

We have executed 100 independent runs for each algo-

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

ZDT1

True front
HV = 60.32%
HV = 75.45%
HV = 96.82%
HV = 98.26%

Fig. 2. Pareto fronts with differentHV values obtained for problem ZDT1.

rithm and each problem instance. Since we are dealing
with stochastic algorithms, we need to perform a statistical
analysis of the obtained results to compare them with a
certain level of confidence. Next, we describe the statistical
test that we have carried out for assuring this [29]. First,
a Kolmogorov-Smirnov test is performed in order to check
whether the values of the results follow a normal (Gaussian)
distribution or not. If so, the Levene test checks for the
homogeneity of the variances. If samples have equal variance
(positive Levene test), an ANOVA test is done; otherwise we
perform a Welch test. For non-Gaussian distributions, the
non-parametric Kruskal-Wallis test is used to compare the
medians of the algorithms.

We always consider in this work a confidence level of
95% (i.e., significance level of 5% orp-value under0.05)
in the statistical tests, which means that the differences are
unlikely to have occurred by chance with a probability of
95%. Successful tests are marked with “+” symbols in the
last row in the tables containing the results (see Tables III
to VII); conversely, “−” means that no statistical confidence
was found (p-value > 0.05). For the sake of homogeneity
in the presentation of the results, all the tables include the
median,x̃, and the interquartile range,IQR, as measures
of location (or central tendency) and statistical dispersion,
respectively.

We have performed a post-hoc testing phase using the
multcompare function provided by Matlabc©, which al-
lows for a multiple comparison of samples. This way, we
can make pairwise comparison between algorithms to know
about the significance of their results.

C. Analysis of results

Tables III, IV, V, VI, VII show the median and the in-
terquartile range of the number of evaluations needed by the
different optimizers for ZDT1, ZDT2, ZDT3, ZDT4, ZDT6,

respectively. This indicates that all the 100 independent runs
have been successful, which means a hit rate of1.0. When
an optimizer is not able to reach an acceptable front upon
performing 10,000,000 function evaluations in all the 100
independent runs, its cell in the tables includes the ‘−’
symbol, and it is not taken into account in the statistical
tests. In other words, the ‘−’ symbol means that, in order to
solve successfully the problem in all the independent runs,
the optimizer may need more than 10,000,000 of function
evaluations. In these cases, the hit rate would be less than
1.0. To ease the analysis of the results in these tables, the
cells containing the lowest number of function evaluations
have a grey colored background. There are two grey levels:
the darker grey indicates the best (lowest) value, while lighter
grey is used to point out the second best value. We can
observe that the results in these tables are significant, as
can be seen in the last row of each of them, where each
cell contains a “+” symbol, except for ZDT4 with 1024 and
2048 variables (where there are no results to compare).

Next, we analyze the results obtained for each of the
problems. To make the results clearer, we include a figure
summarizing the values, using a logarithmic scale, in addition
to the corresponding table. The discussion is organized in the
following order: first, we analyze the success of the algo-
rithms when solving the different instances of the problem;
second, we analyze the speed of the techniques to obtain
the Pareto front when solving the problems; and, finally, we
make a pairwise comparison of the algorithms, considering
those problems in which there are no statistical differences
between each pair of techniques (if we included the problems
with statistical significance, this would lead to larger tables).

• ZDT1: This problem presents a uniform density of
solutions in the search space and a convex Pareto front.
Table III and Fig. 4 show the number of evaluations
needed to obtain a Pareto front with 98% of the HV of

7

TABLE III
EVALUATIONS FOR ZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 4.40e+34.0e+2 8.10e+35.0e+2 1.52e+49.0e+2 2.88e+41.4e+3 5.72e+43.0e+3 1.21e+55.2e+3 2.71e+59.3e+3 6.31e+51.6e+4 1.45e+63.3e+4

SPEA2 5.00e+33.0e+2 9.30e+38.0e+2 1.69e+41.1e+3 3.14e+41.4e+3 6.03e+42.7e+3 1.25e+55.0e+3 2.69e+59.4e+3 6.01e+51.6e+4 1.34e+62.8e+4

PESA-II 4.15e+31.2e+3 8.40e+39.5e+2 1.73e+41.6e+3 3.74e+42.8e+3 8.36e+45.0e+3 1.96e+59.3e+3 4.78e+51.8e+4 1.18e+64.0e+4 2.93e+68.9e+4

PAES 3.40e+32.5e+3 7.25e+34.4e+3 1.34e+48.0e+3 2.57e+41.6e+4 4.70e+43.5e+4 9.07e+43.9e+4 1.73e+51.3e+5 3.68e+54.7e+5 -
OMOPSO 1.40e+34.0e+2 3.40e+39.0e+2 7.40e+31.8e+3 1.38e+42.8e+3 2.80e+44.4e+3 6.31e+47.4e+3 1.58e+51.8e+4 4.55e+53.4e+4 1.41e+61.0e+5

GDE3 2.80e+32.0e+2 5.30e+33.0e+2 1.00e+44.0e+2 1.81e+44.5e+2 3.30e+49.0e+2 6.10e+41.2e+3 1.16e+51.8e+3 2.40e+53.0e+3 5.64e+57.0e+3

MOCell 1.80e+33.0e+2 3.80e+36.0e+2 9.20e+38.0e+2 2.18e+41.8e+3 4.92e+44.0e+3 1.13e+56.4e+3 2.56e+58.6e+3 5.62e+51.6e+4 1.20e+62.7e+4

AbYSS 3.40e+37.0e+2 6.80e+39.0e+2 1.49e+41.8e+3 3.30e+42.7e+3 7.29e+46.1e+3 1.58e+57.8e+3 3.50e+51.2e+4 7.06e+52.1e+4 1.39e+62.6e+4

+ + + + + + + + -

TABLE IV
EVALUATIONS FOR ZDT2

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 7.50e+36.0e+2 1.37e+48.0e+2 2.60e+41.6e+3 4.98e+43.2e+3 1.01e+54.8e+3 2.08e+51.0e+4 4.54e+51.8e+4 1.01e+62.6e+4 2.28e+64.5e+4

SPEA2 7.80e+31.0e+3 1.46e+41.3e+3 2.60e+41.7e+3 4.86e+43.2e+3 9.50e+44.4e+3 1.90e+56.0e+3 3.95e+59.0e+3 8.51e+51.7e+4 1.89e+62.6e+4

PESA-II 1.50e+47.8e+3 3.51e+42.5e+4 9.38e+46.0e+4 3.98e+54.2e+5 - - - - -
PAES 3.14e+44.5e+4 6.94e+47.1e+4 1.29e+51.2e+5 2.93e+54.2e+5 - - - - -

OMOPSO 1.75e+34.0e+2 3.90e+31.6e+3 9.70e+33.8e+3 1.68e+45.0e+3 3.06e+45.3e+3 5.44e+48.4e+3 1.11e+51.1e+4 2.83e+52.7e+4 7.71e+57.9e+4

GDE3 3.20e+32.0e+2 6.10e+34.5e+2 1.18e+46.5e+2 2.26e+41.2e+3 4.33e+41.8e+3 8.18e+41.3e+3 1.58e+52.1e+3 3.27e+54.2e+3 7.66e+59.8e+3

MOCell 2.90e+31.0e+3 4.90e+31.4e+3 8.25e+32.2e+3 1.74e+41.1e+4 4.42e+42.5e+4 1.26e+54.3e+4 2.91e+51.1e+4 6.60e+51.1e+4 1.46e+62.0e+4

AbYSS 4.50e+37.5e+2 9.10e+31.7e+3 1.86e+42.5e+3 3.96e+43.5e+3 8.26e+47.2e+3 1.75e+58.6e+3 3.68e+59.6e+3 7.74e+51.9e+4 1.60e+62.4e+4

+ + + + + + + + +

TABLE V
EVALUATIONS FOR ZDT3

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 4.20e+35.0e+2 7.40e+36.0e+2 1.36e+49.5e+2 2.53e+41.4e+3 5.06e+43.1e+3 1.08e+54.8e+3 2.38e+59.0e+3 5.37e+51.6e+4 1.20e+62.5e+4

SPEA2 4.90e+36.0e+2 9.10e+37.0e+2 1.62e+41.0e+3 3.00e+42.0e+3 5.89e+44.0e+3 1.21e+55.8e+3 2.56e+59.4e+3 5.58e+51.6e+4 1.22e+62.5e+4

PESA-II 3.75e+39.0e+2 7.60e+31.0e+3 1.59e+42.0e+3 3.43e+43.8e+3 7.76e+47.8e+3 1.77e+58.0e+3 4.14e+51.5e+4 9.83e+53.3e+4 2.28e+64.5e+4

PAES 6.90e+38.8e+3 1.21e+41.2e+4 2.56e+43.2e+4 5.68e+46.1e+4 9.92e+41.2e+5 2.03e+52.0e+5 3.65e+56.3e+5 8.17e+58.4e+5 -
OMOPSO 2.60e+31.0e+3 5.40e+32.4e+3 1.01e+43.3e+3 2.20e+44.0e+3 5.06e+48.1e+3 1.26e+52.3e+4 3.53e+53.9e+4 1.03e+68.3e+4 3.17e+61.9e+5

GDE3 2.90e+32.5e+2 5.60e+33.0e+2 1.08e+44.0e+2 1.96e+48.0e+2 3.46e+49.5e+2 6.29e+41.3e+3 1.20e+51.8e+3 2.50e+52.8e+3 6.07e+57.2e+3

MOCell 1.90e+36.0e+2 4.20e+38.0e+2 9.90e+31.4e+3 2.30e+42.2e+3 5.24e+43.4e+3 1.16e+59.3e+3 2.57e+51.7e+4 5.44e+51.6e+4 1.15e+63.6e+4

AbYSS 3.35e+31.6e+3 6.75e+31.8e+3 1.40e+42.1e+3 2.87e+43.8e+3 6.02e+46.1e+3 1.23e+51.6e+4 2.57e+52.0e+4 5.47e+54.4e+4 1.12e+64.5e+4

+ + + + + + + + +

8

TABLE VI
EVALUATIONS FOR ZDT4

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 1.62e+43.4e+3 4.38e+41.2e+4 1.37e+53.3e+4 4.25e+59.1e+4 1.20e+61.8e+5 3.29e+63.5e+5 8.85e+66.7e+5 - -
SPEA2 2.11e+44.2e+3 4.54e+48.7e+3 1.34e+53.1e+4 3.69e+56.4e+4 1.07e+61.3e+5 2.98e+62.4e+5 8.24e+65.9e+5 - -
PESA-II 1.84e+45.2e+3 5.00e+41.4e+4 1.51e+53.2e+4 4.12e+57.3e+4 1.06e+61.3e+5 2.72e+62.5e+5 6.69e+63.8e+5 - -
PAES 3.08e+41.1e+4 8.53e+44.1e+4 2.17e+56.4e+4 5.41e+51.9e+5 1.28e+63.0e+5 3.18e+67.2e+5 - - -

OMOPSO - - - - - - - - -
GDE3 1.18e+48.0e+2 - - - - - - - -

MOCell 8.80e+32.2e+3 2.04e+45.4e+3 5.86e+41.0e+4 1.65e+52.7e+4 4.67e+55.8e+4 1.23e+61.0e+5 3.25e+61.6e+5 8.14e+62.8e+5 -
AbYSS 1.46e+45.4e+3 5.46e+42.1e+4 1.61e+54.3e+4 4.82e+51.0e+5 1.39e+61.5e+5 3.81e+64.2e+5 - - -

+ + + - + + + - -

TABLE VII
EVALUATIONS FOR ZDT6

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 2.31e+41.3e+3 4.60e+41.4e+3 8.84e+42.8e+3 1.68e+53.5e+3 3.24e+56.4e+3 6.47e+51.1e+4 1.33e+61.6e+4 2.77e+62.7e+4 5.80e+64.6e+4

SPEA2 2.64e+41.2e+3 5.26e+42.0e+3 9.94e+42.2e+3 1.87e+54.2e+3 3.53e+57.0e+3 6.84e+51.1e+4 1.37e+61.4e+4 2.81e+62.3e+4 5.82e+63.8e+4

PESA-II 2.16e+41.8e+3 4.78e+42.4e+3 9.85e+44.7e+3 2.01e+57.2e+3 4.10e+51.1e+4 8.57e+52.1e+4 1.83e+62.9e+4 3.89e+64.4e+4 8.32e+68.9e+4

PAES 6.80e+36.8e+3 1.62e+41.6e+4 3.21e+42.8e+4 - - - - - -
OMOPSO 2.90e+31.6e+3 4.20e+31.9e+3 7.70e+32.7e+3 1.38e+43.5e+3 2.88e+45.2e+3 6.10e+41.0e+4 1.26e+51.6e+4 2.76e+53.0e+4 6.12e+56.6e+4

GDE3 3.70e+35.0e+2 6.60e+35.0e+2 1.32e+41.1e+3 3.14e+42.6e+3 1.53e+56.7e+3 3.21e+53.8e+3 6.36e+54.0e+3 1.35e+67.5e+3 3.27e+61.8e+4

MOCell 1.07e+41.0e+3 2.58e+41.4e+3 5.65e+42.6e+3 1.19e+53.0e+3 2.47e+54.7e+3 5.18e+57.8e+3 1.10e+69.4e+3 2.35e+61.9e+4 5.00e+63.4e+4

AbYSS 1.23e+41.1e+3 2.57e+41.8e+3 5.26e+43.0e+3 1.08e+53.8e+3 2.26e+57.2e+3 4.67e+59.2e+3 9.60e+51.4e+4 1.96e+62.1e+4 4.00e+64.1e+4

+ + + + + + + + +

9

1 0 0 0
1 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 1

N S G A � I I S P E A 2 P E S A � I I P A E S O M O P S O G D E 3 M O C e l l A b Y S S
Fig. 4. Number of evaluations when solving ZDT1.

TABLE VIII
HIT RATE FOR ZDT1

Algorithm/Variables. 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √

SPEA2
√ √ √ √ √ √ √ √ √

PESA-II
√ √ √ √ √ √ √ √ √

PAES
√ √ √ √ √ √ √ √

0.95
OMOPSO

√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

the Pareto front for this problem. Table VIII presents
the hit rate indicator, where we have used the symbol√

to indicate a value of1.0 (a 100% success rate).
Table IX contains the problems for which no statisti-
cal differences have been found between each pair of
algorithms.
We begin by analyzing which algorithms are able to
solve the problems in all the independent runs carried
out. The results in Table III show that all the algorithms
have success in all the instances, except for PAES in
the instance with 2048 variables. This is corroborated
considering the hit rate (see Table VIII), where all the
algorithms have a hit rate of1.0 except for PAES in the
2048 instance, which has0.95. This means that in five
out of the100 executions carried out for this instance,
PAES reached the maximum number of evaluations
before obtaining a Pareto front with the desired HV
value.
We pay attention now to the speed, i.e., the number
of function evaluations needed by the metaheuristics to

find a Pareto front according to our success condition.
In Fig. 4, we plot the results using a logarithmic
scale. We have connected by a line the symbols of
the two algorithms yielding the best values. Thus, we
can observe that OMOPSO (dotted line) is the fastest
algorithm up to 128 variables, while GDE3 scales better
from 256 to 2048 variables. The lines clearly depict that
there is a tendency change in these two algorithms at
256 variables, indicating that GDE3 tends to be faster
than the other techniques as the number of decision vari-
ables increases, while OMOPSO exhibits the opposite
behavior. This suggests that GDE3 could be the most
appropriate algorithm to solve ZDT1 with more than
2048 variables. Accordingly, we determine that GDE3
is the algorithm that scales the best in problem ZDT1.
Considering the rest of techniques, MOCell is the
second fastest algorithm up to 32 variables and in the
case of 2048 variables. NSGA-II, SPEA2, and AbYSS
tend to need a similar number of evaluations when the
instances are larger.

10

TABLE IX
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONS FOR ZDT1

NSGA-II 128, 256, 512, 1024 8, 16 16, 32, 64, 128 2048 - 256 32
SPEA2 16, 32 2048 - - - 64
PESA-II 8 - - - 128
PAES 512, 1024 - 128, 256, 512, 1024 8, 16, 32
OMOPSO 128, 256 8, 16, 32 2048
GDE3 32 -
MOCell -

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

Finally, we make an analysis considering the outcome
of the statistical tests included in Table IX. If we focus
on OMOPSO and GDE3, the tests are non-successful
only in the instances of 128 and 256 variables, which
does not affect the previous analysis. It is interesting to
note that PAES, the simplest of the evaluated techniques,
presents no differences in many instances compared to
NSGA-II and MOCell. We can also observe that NSGA-
II and SPEA2 do not present statistical confidence in
four cases.

• ZDT2: This problem also presents a uniform density
of solutions in the search space, but it has a non-
convex Pareto front. The number of evaluations needed
to solve the ZDT2 problem are included in Table IV and
Fig. 5. Table X shows the hit rate of each algorithm.
The problems in which each pair of algorithms are
statistically independent appear in Table XI.
We start by commenting that some optimizers have
difficulties when solving this problem, as can be seen
in Table IV and Fig. 5. In particular, neither PAES nor
PESA-II are able to reach a hit rate of1.0 in instances
with more than 64 variables. These results indicate that
problems having a non-convex Pareto front can cause
difficulties for some algorithms.
Consequently, the hit rate indicator shows that six
algorithms have a100% success rate in all the instances.
Among the algorithms with a hit rate smaller than1.0,
PESA-II is the algorithm having the worst value,0.49
in the problem with 128 variables, and0.0 in the next
ones. PAES does not achieve a 100% of success after
128 variables but, in constrast to PESA-II, the values are
near 100% in the instances ranging from 128 to 1024
variables.
Let us examine now the speed of the algorithms. A
look at Fig. 5 reveals that OMOPSO and GDE3 are
the fastest algorithms. The lines connecting the values
of these solvers indicate that OMOPSO requires a lower
number of function evaluations than GDE3 to get the
desired Pareto fronts in all but in the largest instance. In
fact, when observing the lines we can see that the one of
GDE3 suggests again that it could scale better than the
other techniques in order to solve instances of more than
2048 variables. MOCell, AbYSS, SPEA2, and NSGA-
II, in this order, are the following metaheuristics in
terms of speed, although they tend to get close to each
other when the number of decision variables of the
problem increases.

The pairwise tests in Table XI reveal some inter-
esting facts. On the one hand, the results of GDE3
and OMOPSO in the two largest instances are non-
significant; on the other hand, the tests show the dif-
ferences between MOCell and OMOPSO up to 64
variables and between MOCell and GDE3 up to 512
variables are also non-significant.

• ZDT3: This problem presents a uniform density of
solutions in the search space and its Pareto front is
composed of several discontinuous regions; therefore,
the main complexity is to find all these discontinuous
regions. The evaluations required for solving the differ-
ent instances are shown in Table V and Fig. 6. Table XII
presents the hit rate of the algorithms. The problems in
which there are not statistical differences between each
pair of algorithms are shown in Table XIII.
Proceeding as before, we start by analyzing which al-
gorithms are able to solve successfully all the instances
of the problem. Therefore, at Table V we see that all
the algorithms solve all the instances, except for PAES,
which fails in the largest one.
Concerning the speed of the algorithms, in Table V and
Fig. 6 we can see which algorithms need a lower number
of function evaluations to reach the target results. We
have drawn a dotted line joining the points of GDE3,
which shows clearly that this optimizer is the best
when solving this problem, considering scalability. The
dashed line joins the number of evaluations required by
NSGA-II, which is the second fastest algorithm in ZDT3
from 128 to 1024 variables. We can see that NSGA-II,
MOCell, and SPEA2 are very close, and we observe
in Fig. 6 that they tend to similar values when the
number of decision variables of the problem is higher.
OMOPSO appears as the worst algorithm with 1024 and
2048 variables, so it scales as well as other algorithms
in this problem.
The pairwise tests in Table XIII do not alter the pre-
vious discussion. All the differences between GDE3
and NSGA-II have statistical confidence. Considering
MOCell and NSGA-II, the tests are non-successful in
only two instances (128 and 1024). We note that SPEA2
does not provide statistical differences with respect to
PAES and AbYSS in five instances.

• ZDT4: This problem has a total of 100 different Pareto
optimal fronts of which only one is global. Conse-
quently, the main difficulty for the different algorithms
is to reach this global front. The number of evaluations

11

1 0 0 0
1 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 2

N S G A � I I S P E A 2 P E S A � I I P A E S O M O P S O G D E 3 M O C e l l A b Y S S
Fig. 5. Number of evaluations when solving ZDT2.

TABLE X
HIT RATE FOR ZDT2

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √

SPEA2
√ √ √ √ √ √ √ √ √

PESA-II
√ √ √ √

0.43 0.0 0.0 0.0 0.0
PAES

√ √ √ √
0.99 0.98 0.99 0.96 0.79

OMOPSO
√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

TABLE XI
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONS FOR ZDT2

NSGA-II 8, 16, 32, 64, 128 - - - - -
SPEA2 - - - - - 128, 256, 512
PESA-II 8, 16, 32, 64 - - - -
PAES - - - -
OMOPSO 32, 1024, 2048 16, 32, 64 -
GDE3 8, 16, 64, 128, 256, 512 -
MOCell -

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

required by the different algorithms is shown in Ta-
ble VI and Fig. 7. The hit rate indicator is presented
in Table XIV. The problems in which there are no
statistical differences in each pair of algorithms are
shown in Table XV.
The fact that the problem has many sub-optimal Pareto
fronts represents a great challenge for the different
algorithms, as can be concluded from seeing Table VI
and Fig. 7. On the one hand, none of them is able
to solve the problem successfully with 2048 variables.
Only MOCell needs a number of evaluations lower than

the maximum established for 1024 variables. On the
other hand, OMOPSO and GDE3, which are among
the most effective algorithms for the problems analyzed
until now, cannot solve successfully any of the instances
(except for the one with 8 variables, in the case of
GDE3).
Looking at the hit rate of the different algorithms
(Table XIV), the only solver able to reach sometimes the
Pareto optimal front in all the instances is AbYSS, the
scatter search algorithm. The rest of the algorithms have
a hit rate of0 with 1024 and 2048 (with the exception

12

1 0 0 0
1 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 3

N S G A � I I S P E A 2 P E S A � I I P A E S O M O P S O G D E 3 M O C e l l A b Y S S
Fig. 6. Number of evaluations when solving ZDT3.

TABLE XII
EVALUATIONS ZDT3

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √

SPEA2
√ √ √ √ √ √ √ √ √

PESA-II
√ √ √ √ √ √ √ √ √

PAES
√ √ √ √ √ √ √ √

0.88
OMOPSO

√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

TABLE XIII
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONS FOR ZDT3

NSGA-II 2048 8, 16 - 128 - 128, 1024 8, 16, 32, 1024
SPEA2 32 8, 16, 32, 64, 1024 256 - 256, 512, 1024 64,128, 256, 512, 1024
PESA-II 32, 64 1024 - - 8,16
PAES 512 - - -
OMOPSO 8, 16, 32 8, 32, 64, 128 256
GDE3 32 -
MOCell 512, 1024, 2048

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

of MOCell with 1024 variables).
Analyzing the speed of the algorithms, we see in Ta-
ble VI that MOCell needs less than half of the function
evaluations than the next fastest solvers, PESA-II and
NSGA-II.
The tests included in Table XV show the instances of
the problem where the differences are non-significant.
However, they do not change the main conclusion about
ZDT4, which is that, given that MOCell needs more
than eight million function evaluations to achieve the
stopping condition in the 1024 variables instance, it is

clear that none of the analyzed techniques scales well
on this problem.

• ZDT6: This problem presents a non-convex Pareto front,
in which the density of solutions across the Pareto-
optimal region is not uniform. Table VII and Fig. 8
show the number of evaluations required for reaching a
front with the target HV value. Table XVI presents the
hit rate of the algorithms. In Table XVII, the problems
in which there are no statistical differences for each pair
of algorithms appear.
As before, we start analyzing which algorithms are able

13

1 0 0 0
1 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 4

N S G A � I I S P E A 2 P E S A � I I P A E S O M O P S O G D E 3 M O C e l l A b Y S S
Fig. 7. Number of evaluations when solving ZDT4.

TABLE XIV
HIT RATE FOR ZDT4

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √
0.0 0.0

SPEA2
√ √ √ √ √ √ √

0.0 0.0
PESA-II

√ √ √ √ √ √ √
0.0 0.0

PAES
√ √ √ √ √ √

0.85 0.0 0.0
OMOPSO 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GDE3
√

0.96 0.86 0.7 0.0 0.0 0.0 0.0 0.0
MOCell

√ √ √ √ √ √ √ √
0.0

AbYSS
√ √ √ √ √ √

0.40 0.16 0.22

TABLE XV
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONS FOR ZDT4

NSGA-II 16, 32, 64, 512 8, 16, 32, 64 128, 256, 512 - - - 8
SPEA2 8, 16, 32, 64, 128 - - 32 - 16
PESA-II 16 - - 16 16, 32
PAES - - - 64, 128
OMOPSO - - 512
GDE3 - 512
MOCell -

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

to achieve the desired results in the different instances
of the problem. Looking at Fig. 8 and Table VII we
see that all the optimizers, except for PAES, are able
to solve the problem in all cases. Anyway, if we have
a look at the hit rate indicator (Table XVI), we can
observe that PAES achieves values near100% in the
instances ranging from 64 to 2048 variables.
We focus now on the speed of the algorithms. We can
clearly see in Table VII and Fig. 8 that the fastest
algorithm is OMOPSO, followed by GDE3. The lines
joining the values of these algorithms in Fig. 8 indicate

that both of them scale well and they would probably
successfully solve larger instances. In fact, this conclu-
sion could be applied to all the algorithms but PAES.
If we analyze the tests included in Table XVII, the
most remarkable fact is that the differences between
OMOPSO and GDE3 that are non-significant affect only
the smallest instances (8, 16, and 32 variables).

VI. D ISCUSSION OF RESULTS

In this section, we analyze the results globally, trying to
identify the strengths and weaknesses of the algorithms when

14

1 0 0 0
1 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 6

N S G A � I I S P E A 2 P E S A � I I P A E S O M O P S O G D E 3 M O C e l l A b Y S S
Fig. 8. Number of evaluations when solving ZDT6.

TABLE XVI
HIT RATE FOR ZDT6

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √

SPEA2
√ √ √ √ √ √ √ √ √

PESA-II
√ √ √ √ √ √ √ √ √

PAES
√ √ √

0.99 0.99 0.98 0.98 0.99 0.94
OMOPSO

√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

TABLE XVII
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONS FOR ZDT6

NSGA-II 1024, 2048 8, 16 - - - - -
SPEA2 32, 64 - - - - -
PESA-II - - - - -
PAES - - - -
OMOPSO 8, 16, 32 - -
GDE3 - -
MOCell 8, 16, 32

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

executing the full set of experiments. To facilitate this discus-
sion, we have made first a rank of the algorithms according
to their scalability and speed. Second, we analyze the poor
behavior of OMOSPO and GDE3 when solving problem
ZDT4 and indicate ways of improving these algorithms.
After that, we analyze the rest of the techniques. Finally, we
compare the results of this study with our previous work [11].

A. Scalability and speed

The scalabity ranking is presented in Table XVIII. This
ranking considers first those algorithms solving the problems

with the highest number of decision variables. The ties are
broken considering the number of evaluations in the most
difficult instances. To make the discusion clearer, we have
marked in boldface those optimizers having a hit rate lower
than 1.0 in at least one experiment, which indicates that the
algorithm does not scale well.

According to this ranking, GDE3 is the most impressive
metaheuristic: it achieves three best and one second best
ranks. However, given the difficulties of this algorithm when
solving ZDT4, MOCell is the technique that appears as the
most reliable, in the sense that it is able to solve all the

15

instances considered in this study but the largest one on
ZDT4, and it occupies the first rank on ZDT4. OMOPSO
scales the best in one problem (ZDT6), and it is the second
best on ZDT2 (although recall that its results on ZDT2
and 2048 variables and those obtained by GDE3 have no
statistical confidence). However, it is unable to solve ZDT4
and it tends to require more evaluations than other algorithms
when solving the larger instances of ZDT1 and ZDT3.
SPEA2, AbYSS, and NSGA-II are in the middle of the
ranking: they never obtain the best result nor they are beyond
the sixth position in the ranking. PESA-II is in the lower
positions mainly because it does not scale well in ZDT2 and
ZDT4. Finally, PAES is the last algorithm in the ranking
because of its low hit-rate in many experiments.

TABLE XVIII
RANKING OF THE ALGORITHMS: SCALABILITY

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1. GDE3 1. GDE 1. GDE3 1. MOCell 1. OMOPSO
2. MOCell 2. OMOPSO 2. AbYSS 2. PESA-II 2. GDE3
3. SPEA2 3. MOCell 3. MOCell 3. SPEA2 3. AbYSS
4. AbYSS 4. AbYSS 4. NSGA-II 4. NSGA-II 4. MOCell
5. OMOPSO 5. SPEA2 5. SPEA2 5. PAES 5. NSGA-II
6. NSGA-II 6. NSGA-II 6. PESA-II 6. AbYSS 6. SPEA2
7. PESA-II 7. PAES 7. OMOPSO 7. GDE3 7. PESA-II
8. PAES 8. PESA-II 8. PAES 8. OMOPSO 8. PAES

The ordering in Table XIX relies on the algorithms requir-
ing globally lower numbers of evaluations to find the target
Pareto front, i.e., we sort them according to their speed. To
make this ranking, we consider all the instances, not only
the largest ones. Thus, for each problem we have sorted
the evaluations of the algorithms when solving each of the
instances, and the sum of the obtained positions determine
the order of the techniques.

If we do not consider the ZDT4 problem, OMOPSO is
globally the fastest algorithm: it requires the lowest number
of evaluations in problems ZDT1, ZDT2, ZDT6, and it is
the fourth one in the ranking of ZDT3. GDE3 is the second
algorithm in the ranking, because it is first one in a problem,
ZDT3, and the second one in ZDT1, ZDT2, and ZDT6. The
next algorithms are MOCell (first rank in ZDT4, a second
position, and two third ones), AbYSS, SPEA2 (the first GA
in the speed ranking), and NSGA-II. Among the slowest
metaheuristics we find again PESA-II and PAES.

An interesting fact is that, if we observe the two tables,
the rankings are the same in problems ZDT2, ZDT4, and
ZDT6. This suggests that when an algorithm scales well
with a problem, it may require a low number of function

TABLE XIX
RANKING OF THE ALGORITHMS: SPEED

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1. OMOPSO 1. OMOPSO 1. GDE3 1. MOCell 1. OMOPSO
1. GDE3 2. GDE3 2. MOCell 2. PESA-II 2. GDE3
3. MOCell 3. MOCell 3. NSGA-II 3. SPEA2 3. AbYSS
4. PAES 4. AbYSS 4. OMOPSO 4. NSGA-II 4. MOCell
5. SPEA2 5. SPEA2 5. AbYSS 5. AbYSS 5. NSGA-II
6. NSGA-II 6. NSGA-II 6. SPEA2 6. PAES 6. PESA-II
6. AbYSS 7. PESA-II 7. PESA-II 7. GDE3 7. SPEA2
8. PESA-II 8. PAES 8. PAES 8. OMOPSO 8. PAES

evaluations to solve it.
The ZDT benchmark is very well-known, but it is not

fully representative in the sense that there are MOPs having
features not covered by ZDT [14] (e.g., linear or degenerate
geometry, variable linkage, etc.). This work is a first step in
the study of the behavior of multi-objective metaheuristics
when solving parameter scalable problems; an extension
including other problem families, such as DTLZ [9] and
WFG [15], would allow more general conclusions to be
drawn. However, many researchers may find useful insights
from the results obtained in this paper when facing the
solution of MOPs having a large number of parameters. For
example, the two reference algorithms in the field, NSGA-II
and SPEA2, are expected to work well, but MOCell can scale
better and provide results faster; and GDE3 and OMOPSO
are techniques to consider if we are looking for efficiency,
although there is a risk that they cannot solve the problem
if this is a multi-frontal one.

B. OMOPSO and Multi-frontal problems

If we do not take into account problem ZDT4, one of the
most outstanding algorithms in our study is OMOPSO. In
this section, we analyze whether its inefficacy when dealing
with ZDT4 is particular of that problem or it happens with
multi-frontal problems in general.

To explore this issue, we have defined two multi-modal
problems using the methodology described in [7]. In this
paper, it is pointed out that given a functiong(~x), a two-
objective problem can be defined as the minimization of

f1(x1, ~x) = x1

f2(x1, ~x) = g(~x)/x1

This problem has a local or global Pareto-optimal solution
(x1, ~x), where~x is the locally or globally minimum solution
of g(~x), respectively, andx1 can take any value.

TABLE XX
GRIEWANK AND ACKLEY MONO-OBJECTIVE FORMULATION

Problem Functions Variables

Griewank g(x) = 1 +
Pp

1

x2
i

400 −
Qp

1 cos
xi
√

i
10

Ackley g(x) = 20 + e + −20exp(−0.2
q

1
p

Pp
1 x2

i) 3

This way, given a mono-objective function with local op-
timal solutions, we can construct a multi-frontal bi-objective
MOP. We have selected two well-known problems having lo-
cal minimal solutions, Griewank and Ackley (see Table XX).
The resulting problems have been solved by the eight meta-
heuristics we are dealing with. Our experiments revealed that
OMOPSO does not converge to the corresponding Pareto
fronts. To illustrate this fact, we include in Figs. 9 and 10
the fronts obtained by OMOPSO and NSGA-II.

In [11] we argued that the reason for this behavior could
be related to an inbalance between (low) diversification and
(high) intensification, given that OMOPSO appears to be
a fast algorithm. Here we go deeper into this issue, in
order to find the explanation and propose a solution. Let us
recall that OMOPSO is a PSO-based MOEA, in which the

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18
Griewank

f
1

f 2

True Pareto Front
OMOPSO
NSGA−II

Fig. 9. OMOPSO solving Griewank’s test problem.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

f
1

f 2

Ackley

True Pareto Front
OMOPSO
NSGA−II

Fig. 10. OMOPSO solving Ackley’s test problem.

potential solutions to the problem are calledparticles and
the population of solutions is called theswarm. The way in
which PSO updates particlexi at generationt is by applying
the following formula:

xi(t) = xi(t + 1) + vi(t) (2)

where the factorvi(t) is known as velocity and it is given
by

vi(t) = w ∗ vi(t − 1) + C1 ∗ r1 ∗ (xibest − xi)
+ C2 ∗ r2 ∗ (xglobal − xi)

(3)

In this formula, xibest is the best solution stored byxi,
xglobal is the best particle that the entire swarm has viewed,
w is the inertia weight of the particle and controls the trade-
off between global and local experience,r1 andr2 are two
uniformly distributed random numbers in the range[0, 1], and
C1 andC2 are specific parameters which control the effect of
the personal and global best particles. If the resulting position
of a particle is out of the limits of its allowable values, the

approach taken in OMOPSO is to assign the limit value to
the particle and to change the direction of the velocity.

� � �� � �� � �� � �� ���� �� �� �� �
� �

� 	 �
 � �
� � � � �S peed

N u m b e r o f i t e r a t i o n s
Z D T 4

Fig. 11. OMOPSO: Velocity of one particle in the swarm.

We have monitored the velocity of the particle representing
the second decision variable in ZDT4 (this variable takes
values in the interval[−5, +5], which provides a better illus-
tration of the following analysis than using the first variable,
which ranges in[−1, +1]). Fig. 11 depicts the velocity of
OMOPSO in the250 iterations. The x-axis represents the
number of iterations. We can observe that the velocity values
suffer a kind of erratic behavior, alternating very high with
very low values, in some points of the execution. Let us note
that the limits of the second variable in ZDT4 are[−5, +5],
and the velocity takes values higher than±20. Thus, as a
consequence, this particle is moving to its extreme values
continuously, so it is not contributing to guide the search.

To determine whether this is the reason making OMOPSO
unable to solve multi frontal MOPs, we have modified it
including a velocity constraint mechanism, similar to the one
proposed in [4]. In addition, the accumulated velocity of each
variablej (in each particle) is also bounded by means of the
following equation:

vi,j(t) =

deltaj if vi,j(t) > deltaj

−deltaj if vi,j(t) ≤ −deltaj

vi,j(t) otherwise

(4)

where

deltaj =
(upper limitj − lower limitj)

2
(5)

This way, we can ensure an effective new position calcu-
lation, and hence avoid erratic movements. We have called
the resulting algorithm SMPSO (Speed-constrained Multi-
objective PSO).

In Fig. 12, we show again the velocity of the particle
representing the second parameter of ZDT4. We can observe
that the erratic movements of the velocity have disappeared,
so the particle has taken new values and thus it has explored
different regions of the search space.

To evaluate the effect of the changes in SMPSO, we
have used it to solve all the problems, following the same
methodology. The results are included in Table XXI. To
illustrate its search capabilities we have included in Fig.13

17

� � �� � �� � �� � �� ���� �� �� �� �
� �

� 	
 � �
� � � �S peed

N u m b e r o f i t e r a t i o n s
Z D T 4

Fig. 12. SMPSO: Velocity of one particle in the swarm.

five pictures showing the values of SMPSO and OMOPSO,
except for ZDT4, where the evaluations of MOCell are
included instead of those of OMOPSO. Let us comment on
this last case first. We can observe that the results of SMPSO
on ZDT4 are surprisingly good: SMPSO is not only capable
of solving ZDT4, but it scales up to 2048 variables, requiring
a very low number of evaluations (which are several orders
of magnitude lower than those required by MOCell). If we
consider the other problems, we see that in general SMPSO
is faster than OMOPSO up to 64 variables, but OMOPSO
scales better. So, with SMPSO we have a PSO metaheuristic
which is more robust than OMOPSO (in the sense that it can
solve all the problems considered in this work) and faster
when the problems have few decision variables, but at the
price of not being able to scale as well as OMOPSO.

We would like to remark that we have not tried to find
the best possible configuration for SMPSO, i.e., SMPSO has
the same parameter settings as OMOPSO, except for those
affecting the velocity constraint. Thus, there is clearly room
for improvement here.

C. Improving GDE3

GDE3 shows similarities to OMOPSO in the sense that
it is among the top techniques in four problems, but it fails
in ZDT4. It is clear that the factors leading to the poor per-
formance of GDE3 in ZDT4 are different to those affecting
OMOPSO, especially because the search capabilities of a
differential evolution metaheuristic depend on the valuesof
the parametersCR andF . A deeper study that attempts to
find the best values for these parameters is beyond the scope
of this paper; instead, we take the approach of keepingCR
andF unchanged and applying polynomial mutation to the
new generated solutions, as is suggested in [21]. The obtained
results are included in Table XXII.

We proceed now as for OMOPSO, showing a figure
containing a comparison between GDE3 and its variant using
mutation, except for ZDT4, where MOCell is included. The
results indicate that GDE3 with mutation is able to solve
ZDT4 instances of up to 128 variables, while in the rest
of the problems it needs more evaluations than the original
GDE3, although it can be observed in the figures that the
two algorithms have a very similar behavior.

As in the case of PSO and OMOPSO/SMPSO, differential

evolution appears to be a technique worth considering to
solve problems like those considered in this work.

D. About the Rest of Algorithms

In the two previous sections we have analyzed OMOPSO
and GDE3, aiming to improve their search capabilities. We
discuss here the rest of the techniques adopted in our compar-
ative study. Although they are different algorithms (NSGA-
II, SPEA2, and PESA-II are GAs, MOCell is a cellular GA,
PAES is an evolution strategy, and AbYSS is a scatter search
approach), all of them share the use of polynomial mutation
and, except for PAES, the SBX crossover operator. This
means that the main way to modify the search capabilities of
these metaheuristics is by modifying the distribution indices
that govern these operators.

We have made a number of preliminary experiments with
MOCell considering different values, ranging from5.0 to
200.0, in both indexes, and we have not observed noticeable
changes in the behavior of the technique. This, however, does
not mean that there is no room for improvement; the use of
different mutation and crossover operators may change the
search capabilities of a GA.

E. Comparison with Previous Work

In this section we compare the results of this paper with
those obtained in some of our previous work [11]. In that
paper, the main conclusions were that, considering scalabil-
ity, PAES was the most competitive algorithm followed by
OMOPSO, while the latter appeared as the fastest algorithm.
In the present work, however, PAES appears in the last
positions in the scalabily ranking. This is explained by
the fact that we have not considered here the impact of
not having a100% hit rate in the tables containing the
computed evaluations, which undoubtely has penalized PAES
in practically all the problems considered.

If we consider OMOPSO, its results in [11] remain basi-
cally the same. The inclusion in the present work of GDE3
and AbYSS have affected OMOPSO only in the scalabity
ranking, and OMOPSO is still among the fastest algorithms
assessed (excluding the ZDT4 test problem).

Finally, we would like to mention the effort that has been
required to carry out this work. If we consider that we
have studied eight algorithms to solve nine instances of five
problems, the number of experiments is 360. As we have
executed one hundred independent runs per experiment, this
means a total of 36,000 runs. Furthermore, the experiments
with SMPSO and GDE3 with mutation have required 9,000
additional runs. Taking into account also the pilot tests with
the other algorithms to study the influence of the distribution
indices in the mutation and crossover operators, the total
number of runs have been in the order of 50,000. The fact
that we have used a stronger termination condition (98%
instead of95% of the hypervolume of the Pareto front) and
that the maximum number of evaluations have been raised
from 500,000 in [11] to 10,000,000 in this paper, has had

18

TABLE XXI
SMPSO: EVALUATIONS

Problem 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

ZDT1 1.40e+33.5e+2 2.50e+37.0e+2 5.20e+31.3e+3 1.33e+43.0e+3 3.37e+46.2e+3 9.17e+41.7e+4 2.31e+52.7e+4 6.44e+57.4e+4 1.81e+69.4e+4

ZDT2 1.40e+33.0e+2 2.30e+36.0e+2 4.60e+31.5e+3 1.16e+43.8e+3 2.80e+46.0e+3 7.26e+41.4e+4 1.77e+52.8e+4 4.55e+55.9e+4 1.20e+62.2e+5

ZDT3 1.90e+36.0e+2 3.60e+39.0e+2 8.00e+33.0e+3 2.18e+46.2e+3 6.30e+41.2e+4 1.72e+52.5e+4 4.85e+56.3e+4 1.43e+61.2e+5 4.38e+61.7e+5

ZDT4 3.90e+38.0e+2 4.65e+31.0e+3 5.25e+31.4e+3 5.90e+31.2e+3 6.75e+31.4e+3 6.95e+31.4e+3 7.40e+31.8e+3 8.15e+32.0e+3 9.10e+32.6e+3

ZDT6 2.45e+38.5e+2 3.40e+31.4e+3 7.15e+32.7e+3 1.60e+44.4e+3 3.65e+48.0e+3 8.67e+41.6e+4 1.94e+53.1e+4 4.45e+55.6e+4 1.03e+61.0e+5

TABLE XXII
GDE3WITH POLYNOMIAL MUTATION : EVALUATIONS

Problem 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

ZDT1 3.30e+33.0e+2 6.50e+34.0e+2 1.18e+45.0e+2 2.12e+48.0e+2 3.80e+49.0e+2 6.98e+41.4e+3 1.33e+52.4e+3 2.74e+53.5e+3 6.45e+58.4e+3

ZDT2 4.10e+33.0e+2 8.00e+35.0e+2 1.54e+47.5e+2 2.88e+49.0e+2 5.41e+41.6e+3 1.02e+51.8e+3 1.98e+53.4e+3 4.14e+54.4e+3 9.91e+51.4e+4

ZDT3 2.60e+31.0e+3 5.40e+32.4e+3 1.01e+43.3e+3 2.20e+44.0e+3 5.06e+48.1e+3 1.26e+52.3e+4 3.53e+53.9e+4 1.03e+68.3e+4 3.17e+61.9e+5

ZDT4 2.11e+41.4e+3 5.98e+44.8e+3 1.88e+51.4e+4 7.78e+56.9e+4 3.41e+64.6e+5 - - - -
ZDT6 4.50e+34.0e+2 9.10e+37.5e+2 1.90e+42.0e+3 5.02e+45.2e+3 2.24e+58.0e+3 4.67e+55.0e+3 9.39e+57.4e+3 2.02e+61.4e+4 4.97e+63.3e+4

19

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 1 O M O P S OS M P S O 1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 2 O M O P S OS M P S O

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 3 O M O P S OS M P S O 1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 4 M O C e l lS M P S O

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 6 O M O P S OS M P S O
Fig. 13. Results of SMPSO on the ZDT problem family.

as a consequence the fact that the computational time of the
algorithms unable to solve the problems with 1024 and 2048
variables was higher than one hour.

To execute this large amount of experiments, we have used
the computers of the laboratories of the Departament of Com-
puter Science of the University of Málaga, in Spain. Most
of them are equipped with modern dual core processors so,
taking into account that there are more than 180 computers,
that means that up to 360 cores have been available. To run
all the programs, we have used Condor [31], a middleware
that acts as a distributed scheduler, which has proven to be
an ideal tool to cope with the large amount of tasks we have
dealt with.

VII. CONCLUSIONS ANDFUTURE WORK

We have evaluated eight state-of-the-art metaheuristics
over a set of parameter scalable problems in order to study
the behavior of the algorithms concerning their capabilities to

solve problems having a large number of decision variables.
The benchmark has been composed of five problems from
the ZDT family, using instance sizes ranging from 8 to 2048
variables. We have also studied the speed of the techniques
when solving the problems. The stopping condition has been
to reach a front with a hypervolume higher than the98%
of the hypervolume of the true Pareto front, or to compute
10,000,000 function evaluations.

Our study has revealed that differential evolution and par-
ticle swarm optimization are the most promising approaches
to deal with the scalable problems used in this work. GDE3
and OMOPSO do not only scale well, but they are among
the fastest algorithms. Furthemore, we have shown that their
search capabilities can be improved to solve ZDT4, the
problem which has appeared as the most difficult one to
solve.

Two modern optimizers, MOCell and AbYSS, have shown
a high degree of regularity in the tests. With the exception

20

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 1 G D E 3G D E 3 . m u t 1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 2 G D E 3G D E 3 . m u t

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 3 G D E 3G D E 3 . m u t 1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

Z D T 4 M O C e l lG D E 3 . m u t

1 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 0
8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 0

Z D T 6 G D E 3G D E 3 . m u t
Fig. 14. Results of GDE3 with polynomial mutation on the ZDT problem family.

of MOCell in ZDT4 (where it is the overall best technique),
they are not in the first position in the scalabily and the speed
rankings, but also they are always around the third and fifth
positions. Both metaheuristics are in the group of algorithms
having solved a higher number of instances. In this group
we find NSGA-II and SPEA2, which are, in general, very
close in the rankings, but they usually appear after MOCell.
PESA-II has difficulties in ZDT2 and it normally appears
among the algorithms requiring higher numbers of function
evaluations to reach a front with the target HV value.

Finally, PAES, the simplest of the optimizers in the study,
is the algorithm scaling the worst, due to the low hit rates it
obtains in many instances.

We have presented a study about the behavior of eight
multi-objective metaheuristics concerning their scalability
and speed when solving a scalable benchmark. The next
step is an extension including more scalable problems (e.g.,
DTLZ and WFG) to assess whether or not the features of

these problems confirm the results obtained in this work. Our
analysis of OMOPSO and GDE3 has also shown that an open
research line is to study variations and different parameter
settings of the existing multi-objective metaheuristics in order
to improve their scalability, and that is another path for future
research that we aim to explore.

REFERENCES

[1] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison.ACM Computing Surveys,
35(3):268–308, 2003.

[2] D. Brockhoff and E. Zitzler. Are all objectives necessary? On
dimensionality reduction in evolutionary multiobjectiveoptimization.
In Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke,
Juan J. Merelo-Guervós, L. Darrell Whitley, and Xin Yao, editors,
Parallel Problem Solving from Nature - PPSN IX, 9th International
Conference, pages 533–542. Springer. Lecture Notes in Computer
Science Vol. 4193, Reykjavik, Iceland, September 2006.

[3] E.K. Burke and G. Kendall. Search methodologies: Introductory
tutorials in optimization and decision support Techniques. Springer,
2005.

21

[4] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and
convergence in a multidimensional complex space.IEEE Transactions
on Evolutionary Computation, 6(1):58–73, 2002.

[5] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van
Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective
Problems. Springer, New York, second edition, September 2007. ISBN
978-0-387-33254-3.

[6] D.W. Corne, N.R. Jerram, J.D. Knowles, and M.J. Oates. PESA-II:
Region-based selection in evolutionary multiobjective optimization. In
Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 283–290. Morgan Kaufmann, 2001.

[7] K. Deb. Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast andelitist
multiobjective genetic algorithm: NSGA-II.IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test
problems for evolutionary multiobjective optimization. In Ajith
Abraham, Lakhmi Jain, and Robert Goldberg, editors,Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications,
pages 105–145. Springer, USA, 2005.

[10] Francesco di Pierro, Shoon-Thiam Khu, and Dragan A. Savić. An
Investigation on Preference Order Ranking Scheme for Multiobjec-
tive Evolutionary Optimization. IEEE Transactions on Evolutionary
Computation, 11(1):17–45, February 2007.

[11] J.J. Durillo, A.J. Nebro, C.A. Coello Coello, F. Luna, and E. Alba.
A comparative study of the effect of parameter scalability in multi-
objective metaheuristics. In2008 Congress on Evolutionary Compu-
tation (CEC’2008), pages 1893–1900, Hong Kong, June 2008. IEEE
Service Center.

[12] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E.Alba. jMetal:
a Java framework for developing multi-objective optimization meta-
heuristics. Technical Report ITI-2006-10, Departamento de Lenguajes
y Ciencias de la Computación, University of Málaga, E.T.S.I. In-
formática, Campus de Teatinos, 2006.

[13] F. W. Glover and G. A. Kochenberger.Handbook of Metaheuristics.
Kluwer, 2003.

[14] S. Huband, L. Barone, R.L. While, and P. Hingston. A scalable
multi-objective test problem toolkit. In C.A. Coello, A. Hernández,
and E. Zitler, editors,Third International Conference on Evolutionary
MultiCriterion Optimization, EMO 2005, volume 3410 ofLecture
Notes in Computer Science, pages 280–295. Springer, 2005.

[15] S. Huband, P. Hingston, L. Barone, and L. While. A reviewof
multiobjective test problems and a scalable test problem toolkit. IEEE
Transactions on Evolutionary Computation, 10(5):477–506, October
2006.

[16] V. Khare, X. Yao, and K. Deb. Performance scaling of multi-objective
evolutionary algorithms. In Carlos M. Fonseca, Peter J. Fleming,
Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors,Evolution-
ary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pages 376–390, Faro, Portugal, April 2003. Springer.
Lecture Notes in Computer Science. Volume 2632.

[17] J. Knowles and D. Corne. The pareto archived evolution strategy: A
new baseline algorithm for multiobjective optimization. In Proceedings
of the 1999 Congress on Evolutionary Computation, pages 98–105,
Piscataway, NJ, 1999. IEEE Press.

[18] J. D. Knowles and D. W. Corne. Approximating the nondominated
front using the pareto archived evolution strategy.Evolutionary
Computation, 8(2):149–172, 2000.

[19] S. Kukkonen and J. Lampinen. GDE3: The third evolution step of
generalized differential evolution. InIEEE Congress on Evolutionary
Computation (CEC’2005), pages 443 – 450, 2005.

[20] J. Lampinen. DE’s selection rule for multiobjective optimization.
Technical report, Lappeenranta University of Technology,Department
of Information Technology, 2001.

[21] H. Li and Q. Zhang. Multiobjective Optimization Problems with
Complicated Pareto Set, MOEA/D and NSGA-II. Accepted for
publication in theIEEE Transactions on Evolutionary Computation,
2009.

[22] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Be-
ham. AbYSS: Adapting scatter search to multiobjective optimiza-
tion. IEEE Transactions on Evolutionary Computation, 12(4):439–457,
2008.

[23] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E.Alba. A
cellular genetic algorithm for multiobjective optimization. In David A.

Pelta and Natalio Krasnogor, editors,Proceedings of the Workshop
on Nature Inspired Cooperative Strategies for Optimization (NICSO
2006), pages 25–36, Granada, Spain, 2006.

[24] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E.Alba. Design
issues in a multiobjective cellular genetic algorithm. In S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors,Evolution-
ary Multi-Criterion Optimization. 4th International Conference, EMO
2007, volume 4403 ofLecture Notes in Computer Science, pages 126–
140. Springer, 2007.

[25] K. Praditwong and X. Yao. How well do multi-objective evolutionary
algorithms scale to large problems. In2007 IEEE Congress on
Evolutionary Computation (CEC’2007), pages 3959–3966, Singapore,
September 2007. IEEE Press.

[26] Robin C. Purshouse and Peter J. Fleming. On the Evolutionary
Optimization of Many Conflicting Objectives.IEEE Transactions on
Evolutionary Algorithms, 11(6):770–784, December 2007.

[27] M. Reyes and C.A. Coello Coello. Improving PSO-based multi-
objective optimization using crowding, mutation andǫ-dominance. In
C.A. Coello, A. Hernández, and E. Zitler, editors,Third International
Conference on Evolutionary MultiCriterion Optimization,EMO 2005,
volume 3410 ofLNCS, pages 509–519. Springer, 2005.

[28] D.K. Saxena and K. Deb. Non-linear dimensionality reduction
procedures for certain large-dimensional multi-objective optimization
problems: Employing correntropy and a novel maximum variance
unfolding. In Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, To-
moyuki Hiroyasu, and Tadahiko Murata, editors,Evolutionary Multi-
Criterion Optimization, 4th International Conference, EMO 2007,
pages 772–787, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

[29] D.J. Sheskin.Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC; 4 edition, 2007.

[30] Li-Sun Shu Shinn-Ying Ho and Jian-Hung Chen. Intelligent Evolu-
tionary Algorithms for Large Parameter Optimization Problems.IEEE
Transactions on Evolutionary Computation, 8(6):522–541, 2004.

[31] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing
in practice: the Condor experience.Concurrency - Practice and
Experience, 17(2-4):323–356, 2005.

[32] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary
algorithm research: A history and analysis. Technical Report TR-98-
03, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force
Inst. Technol., Wright-Patterson, AFB, OH, 1998.

[33] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition.IEEE Transactions on Evolutionary
Computation, 8(11):712–731, 2008.

[34] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results.Evolutionary Computation,
8(2):173–195, Summer 2000.

[35] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm. In K. Giannakoglou, D. Tsa-
halis, J. Periaux, P. Papailou, and T. Fogarty, editors,EUROGEN 2001.
Evolutionary Methods for Design, Optimization and Controlwith
Applications to Industrial Problems, pages 95–100, Athens, Greece,
2002.

[36] E. Zitzler and L. Thiele. Multiobjective evolutionaryalgorithms:
a comparative case study and the strength pareto approach.IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

