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Abstract

In this paper, we deal with the problem of handling solutions in an
external archive with the use of a relaxed form of Pareto dominance
called ǫ-dominance and a variation of it called paǫ-dominance. These
two relaxed forms of Pareto dominance have been used as archiving
strategies in some multi-objective evolutionary algorithms (MOEAs).
The main objective of this work is to improve the ǫ-dominance based
schemes to handle nondominated solutions, or to retain nondominated
solutions in an external archive. Thus, our main contribution is to add
an extra objective function only at the time of accepting a nondomi-
nated solution into the external archive, in order to preserve some so-
lutions which are normally lost when using any of the aforementioned
relaxed forms of Pareto dominance. Such a proposal is inexpensive
(computationally speaking) and quite effective, since it is able to pro-
duce Pareto fronts of much better quality than the aforementioned
archiving techniques.

Keywords: Epsilon-Dominance; Pae-Dominance; Pareto Dominance;
Multi-Objective Optimization; Evolutionary Algorithms

1 Introduction

In many disciplines, optimization problems have two or more objectives,
which are normally in conflict with one another, and that we wish to opti-
mize simultaneously. These problems are called “multi-objective”, and give
rise to a set of solutions (called the Pareto optimal set) that represent the
best possible trade-offs among all the objectives, such that no objective can
be improved without worsening another. The vectors corresponding to the
solutions in the Pareto optimal set are said to be nondominated with respect
to each other. The objective function values of the solutions contained in the
Pareto optimal set constitute the so-called Pareto front of the problem.

In the absence of preference information from the user, all the solutions
contained in the Pareto optimal set are equally good. However, since this set
could be very large (or infinite, if dealing with continuous search spaces), in
practice, only a few of such solutions are actually maintained. Thus, ideally,
the search engine adopted to generate such nondominated solutions should
be able to provide a reduced set in a way such that they are both optimal
and well-distributed along the Pareto front. This will allow the decision
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maker (DM) to have sufficient information to choose only one (or very few)
solution(s) from that set.

In the last few years, researchers have developed powerful multi-objective
optimizers based on evolutionary algorithms. Most of these multi-objective
evolutionary algorithms (MOEAs) incorporate an external archive in which
the nondominated solutions generated during the search are stored. A non-
dominated solution is allowed to enter such an external archive only if it either
dominates some solution from the archive (in that case, the dominated solu-
tion is deleted) or if it is nondominated with respect to its contents. Thus,
external archives impose an elitist mechanism to MOEAs, since they allow
the storage of the solutions that are globally (i.e., with respect to all the solu-
tions generated so far by the MOEA) nondominated. However, and mainly
because of practical issues (as indicated before), external archives tend to
be bounded in their maximum size. This has motivated the development of
techniques that enforce a good distribution of solutions within a bounded
external archive. The most popular approaches are: clusters [29], adaptive
grids [15], crowding [3], entropy [9] and the use of relaxed forms of Pareto
dominance [11, 17, 16].

Thus, the main aim of this work is to show how a relatively simple modifi-
cation in the classical relaxed Pareto dominance relation adopted by filtering
schemes such as ǫ-dominance [17] or paǫ-dominance [11] results in a remark-
able improvement in performance. The proposed modification helps to the
preservation of solutions lying at the extreme parts of the Pareto front (such
solutions are normally lost when using ǫ-dominance) and the computation of
an appropriate ǫ value is thus better controlled.

We propose three different schemes whose use depends on the user’s pref-
erences. These schemes can be easily implemented for any sort of Pareto
front:

Scheme 1: When the user provides the number of desired nondominated
solutions but such limit can be exceeded.

Scheme 2: When the user provides the number of desired nondominated
solutions and is able to incorporate information about the geometric
characteristics of the Pareto front.

Scheme 3: When the user provides the number of desired nondominated
solutions and does not want to exceed it, but there is no information
about the geometric characteristics of the Pareto front. In this case,
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taking into account the minimum and the maximum capacity of the
grid, the ǫ value is adjusted in order to match the expected number of
solutions that the user wants.

The remainder of this paper is organized as follows. In Section 2, we
present some basic concepts related to multi-objective optimization. Then, in
Section 3 we present others schemes used to handle nondominated solutions.
In Section 4, we present our proposed mechanism. Then, in Section 5 we
show the results obtained. Finally, in Section 6 we provide our conclusions
as well as some possible paths for future research.

2 Multi-Objective Optimization

Without loss of generality, the problems that we will deal with in this pa-
per are unconstrained multi-objective optimization problems. However, the
proposed method can also be used in constrained multi-objective problems,
since such an approach is independent of the constraint-handling mechanism
adopted by the search engine. The (unconstrained) multi-objective opti-
mization problem (MOP) can be formally defined as the problem of finding
~x∗ = (x∗

1, x
∗

2, . . . , x
∗

n)T which optimizes the vector function:

~f(~x) = (f1(~x), f2(~x), . . . , fk(~x))T .

In other words, we aim to determine those points that yield the optimum
values for all the k objective functions simultaneously.

Pareto dominance (assuming minimization) is formally defined as follows:
A vector ~u = (u1, . . . , uk) is said to dominate a vector ~v = (v1, . . . , vk)

if and only if ~u is partially less than ~v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, . . . , k} such that ui < vi.

In order to say that a solution dominates another one, such a solution
needs to be strictly better in at least one objective, and not worse in any of
them. So, when we are comparing two different solutions, A and B, there
are 3 possibilities: A dominates B, A is dominated by B or A and B are
incomparable.

The formal definition of Pareto optimality is the following:
A solution ~xu ∈ S is said to be Pareto optimal if and only if there is

no ~xv ∈ S for which ~v = f(~xv) = (v1, . . . , vk) dominates ~u = f(~xu) =
(u1, . . . , uk).
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Figure 1: Mapping of the Pareto optimal solutions to the objective function
space.

In words, this definition says that ~xu is Pareto optimal if there exists no
vector ~xv which would decrease some objective without causing a simultane-
ous increase in at least one other objective.

This definition does not provide us a single solution (in decision variable
space), but a set of solutions which form the so-called Pareto Optimal Set
(P ∗). The vectors that correspond to the solutions included in the Pareto
optimal set are nondominated.

When all nondominated solutions are plotted in objective function space,
the nondominated vectors are collectively known as the Pareto Front (PF ∗).
Formally:

PF ∗ := {~f(~x) = (f1(~x), . . . , fk(~x))|~x ∈ P ∗}.

It is, in general, impossible to find an analytical expression that defines
the Pareto front of a problem, so the most common way to get the Pareto
front is to compute a sufficient number of points in the feasible region, and
then filter out the nondominated vectors from them.

The previous definitions are graphically depicted in Figure 1 for a gen-
eral constrained MOP, showing the Pareto front, the Pareto optimal set and
dominance relations among solutions.
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3 Handling Well-Distributed Solutions in Ex-

ternal Archives

As indicated before, over the years, a variety of mechanisms have been pro-
posed in order to enforce a good distribution of solutions (normally in objec-
tive function space) stored in an external archive. The most popular of such
mechanisms will be briefly discussed next.

3.1 Adaptive Grids

This mechanism was first incorporated in the Pareto Archived Evolution
Strategy (PAES), proposed by Knowles and Corne [15]. PAES is a simple
(1+1)-evolution strategy which consists of a single parent generating a sin-
gle offspring through the use of mutation. PAES uses an external archive
(with an upper bound on its size) that contains all the nondominated so-
lutions generated so far. Each solution generated by PAES is a candidate
to be accepted in the external archive which uses an adaptive hyper-grid in
objective function space (see Figure 2) to divide it into several hyper boxes.
The adaptive grid is really a space formed by hypercubes. An integer vec-
tor is used to refer to such hypercubes, where these integer vectors have as
many components as objective functions has the problem to be solved. Each
hypercube can be interpreted as a geographical region that contains an n
number of individuals. The adaptive grid allows us to store nondominated
solutions and to redistribute them when its maximum capacity is reached.
In the case in which an offspring solution is nondominated by the reference
set, another solution that resides in the most crowded region is removed from
the external archive.

Over the years, a number of MOEAs have adopted variations of the adap-
tive grid (see for example [1, 2]).

3.2 Crowding Distance

This mechanism was originally proposed by Deb et. al for the Nondominated
Sorting Genetic Algorithm–II (NSGA-II) [7]. NSGA-II ranks solution based
on Pareto dominance (using a procedure called nondominated sorting). For
each ranking level, a crowding distance between two solutions is estimated by
calculating the sum of the Euclidean distances between the two neighboring
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Figure 2: Adaptive grid in PAES.

solutions from either side of the solution along each of the objectives (see
Figure 3).

Although NSGA-II does not use an external archive because of its µ + λ
selection scheme (which is implicitly elitist), several researchers have adopted
variations of the crowding comparison operator of NSGA-II to distribute
solutions in an external archive (see for example [22, 26]).

3.3 Clustering

The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler et
al. [29] adopts a clustering technique called “average linkage method” [18] to
prune the contents of its bounded external archive. In SPEA, the external
archive participates in the selection process. Thus, if its size grows too large,
it might reduce the selection pressure, which, consequently, slows down the
search.

Other MOEAs have also adopted clustering techniques for maintaining
diversity in their external archives and even in decision variable space (see
for example [19, 14, 25]).
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Figure 3: Crowding distance as a diversity operator used in NSGA-II.

3.4 Relaxed forms of Pareto dominance

ǫ-dominance is a relaxed form of Pareto dominance proposed by Laumanns
et al. [17]. Its most common version (the additive one) is defined as follows:
Let f, g ∈ R

k. Then f is said to ǫ-dominate g for some ǫ > 0, if and only if
ǫ + fi ≥ gi, for all i ∈ {1, . . . , m}.

The so-called ǫ-Pareto set is an archiving strategy that maintains a subset
of generated solutions. It guarantees convergence and diversity according
to well-defined criteria, namely the value of the ǫ parameter, which defines
the resolution of the grid to be adopted for the secondary population. The
general idea of this mechanism is to divide objective function space into boxes
of size ǫ. Each box can be interpreted as a geographical region that contains
a single solution. This algorithm is very attractive both from a theoretical
and from a practical point of view. However, in order to achieve the best
performance, it is necessary to provide the size of the box (the ǫ parameter)
which is problem-dependent, and it is normally not known before executing
a MOEA.

ǫ-dominance has been incorporated into several MOEAs from which the
most famous is the so-called ǫ-MOEA [6].

In spite of its advantages, ǫ-dominance has several limitations, from which
the following are the most important:

1. We can lose a high number of nondominated solutions if the decision
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Figure 4: Uniform (left) an non-uniform (right) grids with 100 boxes (maxi-
mum capacity of 10 points) for x2 + y2 = 1 (left) and x1/2 + y1/2 = 1 (right).
ǫ-dominance (left) allows a maximum of 6 points, whereas the paǫ-dominance
grid (right) can retain the 10 solutions.

maker does not take into account (or does not know beforehand) the
geometric characteristics of the true Pareto front of the problem to be
solved.

2. It is normally the case that we lose the extreme points of the Pareto
front, as well as points located in segments of the Pareto front that are
almost horizontal or vertical, as shown in Figure 4.

3. The upper bound for the number of points allowed by a grid is not easy
to achieve. For a non-adaptive grid, the upper bound is only achieved
when the true Pareto front is linear.

In order to address some of the problems previously described, Hernández-
Dı́az et. al proposed in [11] an alternative ǫ-dominance scheme, called Pareto
adaptive ǫ-dominance (paǫ-dominance, for short). This scheme maintains the
good properties of ǫ-dominance while overcoming its main limitations.

In that proposal, it is considered not only a different ǫ value for each
objective but also the vector ǫj =

(

ǫ1
j , ǫ

2
j , ..., ǫ

m
j

)

associated to each fj depends
on the geometric characteristics of the Pareto optimal front. In other words,
the approach takes into consideration different intensities of dominance for
each objective according to the position of each point along the Pareto front.
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Then, the size of the boxes is adapted depending on their corresponding
area in objective function space, so that the boxes are smaller where needed
(normally at the extremes of the Pareto front), and larger in other (less
problematic) parts of the Pareto front, as can be seen at the right handside
of Figure 4.

paǫ-dominance was originally incorporated into a hybrid MOEA based
on differential evolution and rough sets called DEMORS (see [23]) and it has
been adopted by other researchers (see for example [10]).

In spite of the improvements introduced by paǫ-dominance with respect
to the original ǫ-dominance, this approach has some problems of its own.
Namely, there are still problems in which paǫ-dominance is not able to main-
tain a good distribution of solutions at the very extreme parts of the Pareto
front (as can be seen in Figure 11-(c) or in [11]). Evidently, this affects the
distribution of solutions along the Pareto front and also has a negative effect
on the performance of ǫ-dominance. Such problems were precisely the main
motivation for the work reported here. Our proposal is to modify the selec-
tion mechanism shared by both ǫ-dominance and paǫ-dominance, and briefly
described next.

In ǫ-dominance and paǫ-dominance, the objective function space is di-
vided into hyper-boxes, and each solution in the ǫ-dominance grid is associ-
ated with an identification array Boxc = (Boxc,1, Boxc,2, . . . , Boxc,k), where
Boxc,1, Boxc,2, and Boxc,k are integer values referring to the identification
box assigned for ǫ-dominance or paǫ-dominance for each objective, where k
is the number of objectives (see [17] or [11] for further details). The identifi-
cation array works as a marker to identify the hyper-box in which the solution
is in the ǫ-dominance grid. For instance, Figure 5 includes five points whose
identification array values are Boxc1 = (0, 7), Boxc2 = (1, 5), Boxc3 = (2, 3),
Boxc4 = (4, 2) and Boxc5 = (6, 1). The minimum value of 0 is given to all
the solutions whose objective function value is in the range [0, ǫ) and the
value of 1 is given to the solutions whose objective function value is in the
range [ǫ, 2 × ǫ). The maximum value N is given to the solutions that are in
the range [Nǫ, (N +1)ǫ) = [1, 1+ ǫ), only when they are at the very extreme
part of the objective function, where f = 1.

So, each archive member a is compared with c using the procedure illus-
trated in Figure 6 and described next:

1. If the identification array Boxa of any archive member a dominates
that of the offspring c, then it means that the offspring is ǫ-dominated

10
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Figure 5: Representation of the objective space with box identification.

by this archive member and thus, the offspring is not accepted. This is
case (a) in Figure 6.

2. If Boxc of the offspring dominates the Boxa of any archive member a,
the archive member is deleted and the offspring is accepted. This is
case (b) in Figure 6.

If none of the above cases occur, then it means that the offspring is
not ǫ-nondominated with respect to the archive contents. There are
two further possibilities in this case:

(a) If the offspring shares the same box vector with an archive member
(meaning that they belong to the same hyper-box), then they
are first checked for the usual nondomination. If the offspring
dominates the archive member or the offspring is nondominated
with respect to the archive member but is closer to the corner
of the box vector (in terms of the Euclidian distance) than the
archive member, then the offspring is retained. This is case (c) in
Figure 6.

(b) In the event of an offspring not sharing the same box vector with
any archive member, the offspring is accepted. This is case (d) in
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Figure 6.
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Figure 6: Four cases of accepting an offspring into the external archive

In our proposal, we allow the above selection mechanism to admit one
nondominated solution in all the boxes crossed by the Pareto front, as de-
scribed in the next section.

4 Description of our Proposed Approach

In order to address the problems presented by the two previous approaches
based on ǫ-dominance, we propose a new scheme that involves adding an
appropriate extra objective to every nondominated solution only when we
want to add it to the set of nondominated solutions (or external population)
and then apply the conventional Pareto dominance with this extra objective.
In order to include a nondominated solution into this external archive, it
is compared with respect to each member already contained in the external
archive using ǫ-dominance or paǫ-dominance (see Section 3.4). This new
objective has to fulfill the following requirements:
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1. Adding an extra objective aims to retain some solutions that are in
the extreme parts of the Pareto front. If we have two nondominated
solutions that are close to each other at the extreme parts of the Pareto
front, both ǫ-dominance and paǫ-dominance normally lose one of them.
Thus, the new objective should be defined in such a way that these two
solutions are incomparable with respect to Pareto dominance, so that
both of them can be stored in the external archive.

2. The behavior of the extra objective has to be strictly related to the
position of the other objectives. That is, it has to be independent
of the shape and specific features of the Pareto front (e.g., convexity,
linearity, etc.).

The extra objective which satisfies the above requests is in Table 1, as-
suming that the objective functions are normalized (0 ≤ fi ≤ 1, for all i).

2 objectives 3 objectives

g1(~x) = Box1

g2(~x) = Box2

g3(~x) = 1 − f1(~x) − f2(~x)

g1(~x) = Box1

g2(~x) = Box2

g3(~x) = Box3

g4(~x) = 1 − f1(~x) − f2(~x) − f3(~x)
k objectives

g1(~x) = Box1

...
gk(~x) = Boxk

gk+1(~x) = 1 − f1(~x) − f2(~x) − · · · − fk(~x)

Table 1: Definition of the extra objective function for 2 and 3 objective
functions and its generalization to more than 3 objectives.

So, each nondominated solution is assigned to a new extended identification
array, denoted by Box+ = (g1, g2, · · · , gk+1).

Thus, the new selection mechanism is as follows: the identification array
Box+

c of a new nondominated solution c is compared with the identification
array of each archive member a, Box+

a , and one of the following cases could
happen (see Figure 7), being the diagonal line crossing a the contour line of
gk+1(~x) = 1 − f1(~x) − f2(~x) − · · · − fk(~x) at the level of a:

13



box
2

box
1

0 1 32 4

0

1

2

3

4
1

1

4

4 0

0

3

2

a

Figure 7: Selection mechanism with the extra objective function.

Region 0: In this case, c is in Region 0, so c and a are incomparable, and
they are both marked as incomparable with each other.

Region 1: In this case, c is in Region 1, which means that c is better than
a in one of the objectives, but the extra objective of c is lower than a
(because c is over the diagonal that crosses a). So, both are marked as
incomparable and c will be accepted if the box of c is empty.

Region 2: In this case, c is in Region 2, which means that they share the
same box because they have exactly the same identification array val-
ues. But c has a lower value than a in the extra objective (because it
is over the diagonal that crosses a), so c will replace a as it dominates
a using the extra objective.

Region 3: In this case, c is in Region 3, so they are both sharing the same
box as they have exactly the same identification array values. But c
has a greater value than a in the extra objective (because it is under
the diagonal that crosses a), so c will be discarded, as it is dominated
by a using the extra objective.

Region 4: In this case, c is in Region 4, which means that c is better than
a in one of the objectives, but the extra objective of c is greater than a
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(because c is under the diagonal that crosses a). So, both are marked
as incomparable and c will be accepted if the box of c is empty.

It is important to mention that when c and a are nondominated with
respect to each other, with the proposed approach there is no risk of losing
any good solutions and, therefore the convergence properties of the approach
remain intact. Moreover, the versatility of this extra objective function is
reflected in its behavior when facing Pareto fronts with different geometric
characteristics. Next, we describe some of its main features:

Convex Pareto fronts: If the Pareto front is convex and continuous as
in Figure 8, g3(~x) ≥ 0 for all ~x, and g3(~x) = 0 only at the extreme
points of the Pareto front. Moreover, the third objective increases its
value whereas the box vectors are decreasing, and the third objective
decreases its value where the box vectors are increasing. But the key
factor is that both tendencies change at the same point, which is when
the maximum point in g3 intersects with the Pareto front at the point
having a slope of −1. In order to show this, let’s assume that the
Pareto front and the extra objective function can both be formulated
in objective function space as

f2 = F (f1) and g3(f1, f2) = 1 − f1 − f2,

being F a proper continuous function. Thus,

δF (f1)

δf1

=
δf2

δf1

= −1.

On the other hand, the monotonicity of the extra objective, g3, changes
exactly when

δg3(f1, f2)

δf1
= 0,

or, equivalently, when

δg3(f1, f2)

δf1
= −1 −

δf2

δf1
= 0 ⇔

δf2

δf1
= −1.

This shows that all the boxes crossed by the Pareto front are nondom-
inated to each other. In case of a disconnected Pareto front, this proof
can be locally reproduced for each of the continuous parts of the front
with an appropriate function F .
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Figure 8: Convex Pareto front and the plot of the third objective with respect
to the first and second objectives.

Concave Pareto fronts: If the Pareto front is concave as in Figure 9,
g3(~x) ≤ 0 for all ~x, and g3(~x) = 0 only at the extreme points of the
Pareto front. Now, the third objective decreases its value when the box
indices are increasing, and viceversa. Again, it can be easily seen that
the monotonicity of the third objective changes exactly at the same
point in the Pareto front at which the slope is equal to −1.

Linear Pareto fronts: If the Pareto front is linear, both ǫ-dominance and
paǫ-dominance generate identical uniform grids (see [11]) and g3(~x) = 0
for all ~x. So the third objective does not have any effect.

There is one additional detail that is important to clarify regarding our
proposed approach. If we have, for example, a bi-objective optimization
problem, both the classical ǫ-dominance and paǫ-dominance retain a maxi-
mum of N nondominated solutions in an N × N grid. But now, since one
solution is always stored in each box, that “maximum” capacity can be ex-
ceeded. So, as it was commented in the introduction, three different schemes
are proposed here depending on the user’s preferences:
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Figure 9: Concave Pareto front and the plot of the third objective with
respect to the first and second objectives.

Scheme 1: When the user provides the number of desired nondominated
solutions but such limit can be exceeded. In this case, the most accurate
grid is ǫ-dominance improved with the new proposed objective function,
although an N × N -grid (for bi-objective problems) could store up to
2N + 1 nondominated solutions (only in extreme cases of concave or
convex Pareto fronts. See Scheme 3 for more details). This scheme
presents several advantages such as the fact that it does not require
any information about the geometric characteristics of the Pareto front
and that there is no need of adjusting the ǫ value too accurately.

Scheme 2: When the user provides the number of desired nondominated so-
lutions and is able to incorporate information about the geometric char-
acteristics of the Pareto front. In this case, if we are able to incorporate
such type of information, the most accurate grid is the paǫ-dominance
improved with the new proposed objective function. Although again
an N × N -grid (for bi-objective problems) could store up to 2N + 1
nondominated solutions, paǫ-dominance takes advantage of that infor-
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mation and minimizes the deviation from the maximum “traditional”
capacity of N solutions (see again Section 3 or [11] for further details),
as we will see in our experimental results. This scheme presents more
advantages such as the fact that there is no need of calculating the ǫ
value.

Scheme 3: When the user provides the number of desired nondominated
solutions and does not want to exceed it, but there is no information
about the geometric characteristics of the Pareto front.

Here, we propose the use of ǫ-dominance with a new mechanism for
computing the ǫ value. In this case, taking into account the minimum
and the maximum capacities of the grid, the ǫ value will be adjusted
to match the expected number of solutions stored by the grid with the
user’s value. Next, we explain this in more detail for problems having
two and three objectives.

Bi-objective optimization problems. It has been previously discussed
that an N × N ǫ-dominance grid can store between N + 1 and 2N +
1 points. The reason is that the extreme solutions belong to boxes
(0, N) and (N, 0) and, depending on the geometric characteristics of the
Pareto front, the compromise solutions should occupy between N − 1
and 2N − 1 more boxes. N − 1 is the number of stored solutions when
we have a linear Pareto front, including the extremes, i.e., we would
have points in all the diagonal, in boxes with values of: (1, N − 1),
(2, N −2),. . . , (N −1, 1). Meanwhile, we would retain 2N −1 solutions
when the Pareto front is extremely convex (or concave) and would go
through the boxes with values of: (1, N), (2, N),..., (N −1, N), (N, N),
(N, N − 1),. . . , (N, 1). Thus, the average capacity of the grid is

Average capacity =
1 + N + 1 + 2N

2
=

2 + 3N

2
.

Then, the appropriate N∗ values (or, equivalently, the best ǫ value
computed as ǫ∗ = 1

N∗ ) to obtain a desired capacity of DCap solutions
are shown in Table 2.

Three-objective optimization problems. Now, for a N ×N ×N grid, the
three extreme solutions belong to boxes (N, 0, 0), (0, N, 0) and (0, 0, N)
and it can be seen that the Pareto front may cross through a minimum
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DCap N∗ ǫ∗

10 6 0.16
25 16 0.0625
50 32.6 0.0306
100 66 0.015
150 99.3 0.01
200 132.6 0.00753

Table 2: Appropriate ǫ value for bi-objective functions according to the num-
ber of nondominated solutions desired.

of

(N + 1) + N + (N − 1) + · · ·+ 1 =
N2 + 3N + 2

2

boxes and a maximum number of boxes of 1 + 3N2. So,

Average capacity =
N2+3N+2

2
+ 1 + 3N2

2
=

7N2 + 3N + 4

4
.

Then, the appropriate N∗ values (or, equivalently, the best ǫ values
computed as ǫ∗ = 1

N∗ ) to obtain a desired capacity of DCap solutions
are shown in Table 3.

DCap N∗ ǫ∗

10 2.06 0.4854
25 3.4951 0.2861
50 5.08 0.1968
100 7.31 0.1367
150 9.015 0.1109
200 10.45 0.0957

Table 3: Appropriate ǫ value for three-objective functions according to the
number of nondominated solutions desired.
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5 Results

In this section we describe the results of the experiments that we conducted
to validate our proposed approach. It is important to mention that the
efficiency of ǫ-dominance depends only on the geometric properties of the
Pareto front.

In the specialized literature, there are well-known test suites to validate
MOEAs (see for example [28, 8, 12]). These test problems, however, are de-
signed to test certain search capabilities of MOEAs, and not aspects related
to archiving techniques (i.e., many of these test problems have Pareto fronts
with the same geometrical shape). This is the reason why we selected a set of
test functions that are challenging in terms of the geometrical shapes of their
Pareto fronts, since that is what we aim to assess in our case. The test prob-
lems adopted are the following five bi-objective problems (three taken from
the Zitzler-Deb-Thiele (ZDT) set [28], two more from [4]), five problems with
three objectives (one taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
set [8], two more from the the Walking-Fish-Group (WFG) set [12], and the
last two are new proposals designated specifically to measure the capability
of an algorithm to deal with convex problems). The definitions and char-
acteristics of these test problems are provided in Table 13. It is important
to mention again that these test problems were chosen because they have
different geometric characteristics, so that we can assess the performance of
our proposed approach when dealing with convex, concave, connected and
disconnected Pareto fronts. For each test problem, we generated an approxi-
mation of the real Pareto front with thousands of solutions and kept them in
different files. Then, we provided the solutions in a deterministic way to each
of the different mechanisms used for the comparison, so they all had the same
set of points for their filtering process. The aim of all the approaches under
comparison was then to reduce the original (large) file to a much smaller set
of solutions maintaining an appropriate distribution along the Pareto front.

In order to allow a fair comparison of the proposed approach with the
others, each scheme includes the following experiments:

Scheme 1: Filtered true Pareto fronts obtained with ǫ-dominance are com-
pared with their corresponding filtered Pareto fronts obtained with the
improved ǫ-dominance (we call it implicit ǫ-dominance) for a desired
capacity of N = 100 solutions.

Scheme 2: Filtered true Pareto fronts obtained with paǫ-dominance are
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compared with their corresponding filtered Pareto fronts obtained with
the improved paǫ-dominance (we call it implicit paǫ-dominance) for a
desired capacity of N = 100 solutions.

Scheme 3: Filtered true Pareto fronts obtained with the improved ǫ-domi-
nance, using the appropriate ǫ values included in Tables 2 and 3 for a
desired capacity of 100 solutions, are compared with their correspond-
ing filtered Pareto fronts obtained with Scheme 1.

Usually, in order to allow a quantitative comparison of results among the
different algorithms, there are two distinct goals that we pursue: (1) the
solutions should be as close to the Pareto optimal solutions as possible (i.e.,
closest to the true Pareto front) and (2) the solutions should be as diverse as
possible along the Pareto front (i.e., to have a good distribution of solutions
along the Pareto front). Apparently, these two goals are independent from
each other and there exist different performance measures to deal with each
one or both of these goals. Thus, it does not exist a single performance
measure that can indicate the superiority of one algorithm over the other in
these two aspects. So, in general, there is a clear need of having at least
two performance measures for adequately evaluate both goals (convergence
and diversity) of a MOEA. Nevertheless, due to the fact that we are filtering
the true Pareto fronts, we are only interested in measuring the distribution
of solutions (evidently, assessing convergence in this case, makes absolutely
no sense). That is why we propose the use of the four following measures
specifically designed for assessing diversity:

Number of points (#): #(A) shows us how far the number of solutions
in A is from the desired capacity of the grid. This measure is more
relevant for Schemes 2 and 3, where both have been designed in such a
way that the maximum capacity of the grid can be exceeded. So, in all
our experiments, the grid was defined with an a priori desired capacity
of 100 points. So, the closer to 100 that an algorithm gets, the better
the value of this performance measure. When the user prefers Scheme
1 and it does not care about exceeding it, this measure is not taken
into account, although it is, nevertheless, computed.

Spread (∆): Deb [5] proposed ∆ with the idea of measuring both progress
towards the Pareto optimal front and the extent of the spread. To this
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end, if A is a Pareto front approximation, ∆ is defined as follows:

∆ =

k
∑

i=1

de
i +

#(PFtrue)
∑

i=1

|di − d|

k
∑

i=1

de
i + #(PFtrue)d

.

where de
i denotes the distance between the i-th coordinate for both

extreme points in A and the true Pareto front PFtrue. di measures the
distance of each point in A to its closer point in PFtrue meanwhile d
represents their mean value.

From the above definition, it is easy to conclude that 0 ≤ ∆ ≤ 1
and the lower the ∆ value, the better the distribution of solutions. A
perfect distribution, that is ∆ = 0, means that the extreme points of
the Pareto optimal front have been found and di is constant for all i.

Spacing (Spacing): This measure was proposed by Schott [24] and cal-
culates the distances from each point to its closest neighboor in the
approximated Pareto front, A. It can be formally defined as:

Spacing =

√

√

√

√

1

#(A)

#(A)
∑

i=1

(di − d̄)2

where di = minj∈A

∑k
m=1 |f

i
m − f j

m| and d̄ is the mean value of the
distance di, this is, the minimum value of the sum of the absolute
difference in objective function values between the i − th solution and
any other solution in the Pareto optimal set. A value of 0 means that
all the solutions are equally distributed along the Pareto front.

Standard deviation of the crowding distances (SDC): This perfor-
mance measure tries to get more information with the crowding dis-
tance (see Section 3.2) through the use of the standard deviation from
a Pareto set as:

SDC =

√

√

√

√

1

#(A)

#(A)
∑

i=1

(di − d)2
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where di is the crowding distance for the i− th point in A and d̄ is the
mean value of the distance di. Now, 0 ≤ SDC ≤ ∞ and the lower the
value of SDC, the better the distribution of vectors in A. A perfect
distribution, that is SDC = 0, means that di is constant for all i.

5.1 Discussion of Results

Tables 4, 5 and 6 show a summary of our results for all the bi-objective
problems and Tables 7, 8 and 9 show the results for the problems with three
objectives, for the three schemes considered, respectively. For each test prob-
lem, we report the values obtained for each algorithm with respect to each
performance measure. The algorithms only do the reduction of solutions once
and the process is deterministic for that set of solutions. The best values in
each case are shown in boldface.

The graphical results are shown in Figures 10, 11, 12, 13, and 14 for the
problems with two objectives and in Figures 15, 16, 17, 18 and 19 for the
problems with three objectives. These plots correspond to the unique and
single result provided by each algorithm. In all the bi-objective optimization
problems, the true Pareto front is shown with a continuous line and the
approximation obtained by each algorithm is shown with circles.

5.1.1 Scheme 1: ǫ-dominance vs implicit ǫ-dominance

The main purpose of this experiment is to reduce the number of solutions
using both ǫ-dominance and the improved mechanism (implicit ǫ-dominance).

For bi-objetive problems, we fixed the number of divisions per objective
to 100 and, once the objective functions are normalized, ǫ = 1/100. So,
we expect to have 100 nondominated solutions as a result in each front. In
Table 4 we can see the performance measures comparison and the graphical
results are shown in Figures 10-a, 10-b, 11-a, 11-b, 12-a, 12-b, 13-a, 13-b, 14-
a, and 14-b. It can be clearly seen in Table 4 that the performance measures
show that implicit ǫ-dominance produced the best values in all cases for the
bi-objective problems. We obtained more solutions in the Pareto front than
using the original ǫ-dominance, obtaining the best performance in all the
metrics adopted. Graphically, we can see in three problems (Deb24, Deb52
and ZDT3), that the ǫ-dominance method is not able to retain the solutions
in the extreme parts of the Pareto fronts, and that our implicit ǫ-dominance
can retain the solutions in those extreme parts of the Pareto front without
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degrading the performance and the distribution quality of the nondominated
solutions.

For three-objetive optimization problems, we set the number of divisions
per objective to 10, ideally expecting to get 100 nondominated solutions in
the problems with three objectives. We can see in Table 7 the performance
measures comparison and the graphical results are shown in Figures 15-a, 15-
b, 16-a, 16-b, 17-a, 17-b, 18-a, 18-b, 19-a, and 19-b. It can be seen in Table 7
that the performance measures show that the new implicit ǫ-dominance pro-
duced the best results in all cases. It obtained more solutions in the final
front, and the distribution of the solutions was better in all cases. Graphi-
cally, we can see that the ǫ-dominance mechanism retains just a few solutions
from all the Pareto front. More specifically, it cannot retain good solutions in
the extreme parts of the Pareto fronts. In contrast, our implicit ǫ-dominance
is able to retain more solutions along the Pareto front in all cases.

5.1.2 Scheme 2: paǫ-dominance vs implicit paǫ-dominance

In this experiment, we tried to control the number of solutions using the paǫ-
dominance and we added the improved paǫ-dominance to the comparison.

For bi-objective problems, we fixed the number of nondominated solutions
to 100 for each problem. In Table 5 we can see the performance measures
comparison and the graphical results are shown in Figures 10-c, 10-d, 11-c,
11-d, 12-c, 12-d, 13-c, 13-d, 14-c, and 14-d. It can be clearly seen in Table 5
that the new method, implicit paǫ-dominance, outperformed in all cases to
the original paǫ-dominance method with respect to all the performance mea-
sures. It obtained more solutions in the final front, and the distribution of
the solutions was better in all cases. Graphically, we can see indeed that paǫ-
dominance obtained, in general, better results than the original ǫ-dominance,
but still has some problems to retain the solutions in the extreme parts of the
Pareto front, especially in problem Deb52, in which the left part of the Pareto
front is almost completely lost. But, for the new implicit ǫ-dominance, those
parts of the Pareto front are filled up with nondominated solutions. In fact,
implicit ǫ-dominance is able to retain the solutions in all cases, for convex
and nonconvex Pareto fronts.

For three-objetive optimization problems, we also fixed the number of
nondominated solutions to 100 for each problem. In Table 8 we can see
the performance measures comparison and the graphical results are shown
in Figures 15-c, 15-d, 16-c, 16-d, 17-c, 17-d, 18-c, 18-d, 19-c, and 19-d. Al-
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though the results shown for the paǫ-dominance mechanism in all the test
problems are better than the ǫ-dominance, the performance of the implicit
paǫ-dominance is even better than paǫ-dominance. With respect to the per-
formance measures shown in Table 8, we see that the implicit paǫ-dominance
gets the best results in most cases. However, paǫ-dominance has the best
performance in 3 test functions with respect to Spread and is also the best
in 2 other functions with respect to SDC. Graphically, we can notice that
the distribution of the points obtained by implicit paǫ-dominance is better
because its distribution is very uniform in all cases regardless of the shape
of the Pareto front (convex or nonconvex), and it is also able to retain more
solutions in the extreme parts of the Pareto fronts.

5.1.3 Scheme 3: Implicit ǫ-dominance adjusting the desired ca-
pacity

For bi-objective problems, we fixed the epsilon value according to Table 2
trying to obtain an average number of nondominated solutions of 100. The
performance measure results are shown in Table 6 and the graphical results
are shown in Figures 10-e, 11-e, 12-e, 13-e, and 14-e. From the performance
measures shown in Table 6, we can see that the average number of non-
dominated solutions obtained by the method is much closer to 100 (with a
mean of 95.6) than the first experiment with 100 divisions (with a mean of
143.3, see Table 4). With respect to Spread, Spacing and SDC, the results
are very similar to those obtained in the first experiment in spite of the fact
that a smaller number of divisions was adopted in this case. Graphically, we
can confirm that the use of less divisions per objective does not affect the
performance of our proposed implicit ǫ-dominance. In all the test problems
we were able to maintain a good performance for the new mechanism when
retaining less nondominated solutions.

Finally, for the three-objetive optimization problems, we first tried to fix
the number of divisions to get 100 nondominated solutions, but the results
in Table 7 show that the improved ǫ-dominance method gets more solutions
than we originally wanted in 3 problems. So, for the third experiment we
fixed the epsilon value according to Table 3. The performance measure results
are shown in Table 9 and the graphical results are shown in Figures 15-e,
16-e, 17-e, 18-e, and 19-e. From Table 9, we can see that the maximum
number of nondominated solutions never exceeds 100 and that the values of
all the performance measures are slightly poorer to those obtained in Table 7
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with more divisions per objective. Regarding the graphical results, we can
see that the Pareto fronts obtained for the different problems are uniformly
distributed along the Pareto front, and that the proposed approach was able
to retain the solutions in all the extreme parts of the Pareto front.

The above results have shown the effectiveness of the relatively simple
filtering scheme introduced in this paper. Note however, that if we want
to incorporate such an approach into any MOEA, it is important to take
into account that the proposed dominance relation has to be used only for
nondominated solutions.

In order to couple this approach to any MOEA, the procedure is the
following. Once the offspring c is generated:

1. First, it is required to check the Pareto dominance relation with respect
to all the nondominated solutions included in the external archive.

2. Once c is classified as a nondominated solution, c has to be sent to the
external archive using the proposed dominance relation with the extra
objective function.

With regard to the updating of the grid in those situations in which the
new nondominated solutions lie outside of the actual dimensions of the grid,
our previous experience using ǫ-dominance and paǫ-dominance suggests to
avoid as much as possible the use of this option. To this end, two of the most
common solutions are:

1. Activate the first grid to filter out the set of nondominated solutions
once the size of this set is big enough. In [11], the authors recommend
a size of 150 solutions before the initialization of the paǫ-dominance
grid.

2. Another solution is the one used by PAES in [15] where the authors
propose the use of extra areas in those extreme boxes (see Figure 2).

Finally, in the case in which the objective functions need to be normalized
before the extra objective is calculated, we use the next equation to normalize
the objectives:

fi,new =
fi,current − fi,min

fi,max − fi,min

∈ [0, 1]

for each i = 1, 2, . . . , k, where fi,new, fi,current, fi,min, fi,max are the normalized
value, the actual value, the minimum and the maximum value, respectively,
in the current population, for objective i.
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5.2 Application to Real World Problems

Finally, we tested our proposal in two real problems frequently used as bench-
marks to validate new evolutionary optimization algorithms: the design of
a gear box [13], also known as the Speed Reducer problem, and the design
of a welded beam structure [21]. A brief description and the mathematical
formulation of both problems are shown in Table 14. Due to the difficulty
of these problems, the true Pareto fronts adopted for the filtering process
only contained 144 and 117 nondominated solutions, respectively. That is
the reason why a grid with a maximum capacity of 50 points was used in
this case, instead of 100. Hence, in Tables 10, 11 and 12 we show a summary
of the results for the same three schemes that we considered in the previous
section. The graphical results are shown in Figures 20 and 21, for the Speed
Reducer and the Welded Beam, respectively. It can be clearly seen that the
performance measures show that implicit ǫ-dominance and the implicit paǫ-
dominance produced the best values in almost all cases. Again, we retained
more solutions in the Pareto front than using the original ǫ-dominance or paǫ-
dominance, obtaining the best performance with respect to all the metrics
adopted.

6 Conclusions and Future Work

In this paper, we have proposed a new scheme to deal with the problem of
how to properly distribute nondominated solutions along the Pareto front
when using an external archive. Our core idea is to use the ǫ-dominance
approach and add an extra objective, which allows us to retain solutions
that are normally lost when using the original ǫ-dominance approach. This
extra objective has the value: g3 = 1 − f1 − f2 for two objectives or g4 =
1 − f1 − f2 − f3 for problems with three objectives. We decided to use
another approach that is based on ǫ-dominance called paǫ-dominance which
is capable of dynamically adjusting to the geometric characteristics of the
Pareto optimal front and that is able to retain more nondominated solutions
than the original ǫ-dominance method.

In order to assess the performance of our proposed implicit ǫ-dominance,
we solved ten test problems with two and three objectives, and having dif-
ferent geometric characteristics. We also adopted three metrics designed
to measure diversity properties and one more measure related to the num-
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ber of points found. In all cases, the new mechanism was able to help the
existing ones (ǫ-dominance and paǫ-dominance) to retain a higher and well-
distributed number of nondominated solutions.

We conducted three experiments: 1) a direct comparison of the new mech-
anism to help ǫ-dominance to get better results, 2) another comparison with
respect to paǫ-dominance to show that our proposed approach could also
help in this case and 3) an adjustment of the value of the ǫ-vector used
by ǫ-dominance in order to retain an expected value of 100 nondominated
solutions in the final Pareto front approximation obtained.

With the new mechanism, we were able to maintain the good convergence
properties of the original ǫ-dominance, without requiring any prior informa-
tion about the actual geometric characteristics of the Pareto front. Our
proposed approach was tested in convex and nonconvex problems with two
and three objectives, and in all cases it showed a significant improvement
regarding the distribution of nondominated solutions, being able to reach
regions that the other approaches could not.

The main drawback of the new approach is that it does not give us a well-
defined control mechanism that allows us to obtain an exact (pre-defined)
number of nondominated solutions. However, with the use of paǫ-dominance,
it is possible to have a better control of such solutions and avoid obtaining as
many solutions as when using the original ǫ-dominance mechanism. However,
it remains as part of our future work to provide a better control mechanism for
our proposed approach, such that it can be self-contained when used with any
MOEA. Moreover, we are interested in testing the proposed approach coupled
to a MOEA and compare its performance with respect to other MOEAs,
including those that do not adopt nondominated sorting (e.g., MOEA/D [27]
or fast sorting [20]). These alternative approaches have a lower algorithmic
complexity than NSGA-II. The computational complexity of each generation
in NSGA-II is O(MN2), where M is the number of objectives and N is the
population size. In contrast, the computational complexity of MOEA/D is
O(MNT ), where T is the result of the descomposition of the multi-objective
optimization problem being solve, and is a lower value than N , which makes
this approach faster than NSGA-II. Also, the fast sorting mechanism reported
in [20] refers to a new rank-sum sorting method to divide every objective into
ranks. This has linear complexity O(N), and, therefore, also reduces the
complexity of the original nondominated sorting method adopted by NSGA-
II.

Finally, it would also be interesting to study the effect of the proposed
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implicit ǫ-dominance ǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

ZDT1 126 0.0793 0.0026 0.0050 75 0.2614 0.0061 0.0101

Deb24 148 0.0815 0.0027 0.0054 52 0.4559 0.0110 0.0181

ZDT2 126 0.0722 0.0023 0.0051 77 0.3445 0.0125 0.0181

Deb52 133 0.4965 0.0022 0.0046 29 0.8398 0.0793 0.1332

ZDT3 184 0.4723 0.0021 0.0357 28 0.6041 0.0383 0.0949

Mean 143.3 0.2403 0.0024 0.0112 52.2 0.501 0.029 0.055

Table 4: Performance measure values for the bi-objective problems using
Scheme 1 for a grid size of 100 × 100.

implicit paǫ-dominance paǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

ZDT1 107 0.0731 0.0018 0.0042 90 0.1419 0.0023 0.0056

Deb24 108 0.2141 0.0043 0.0077 81 0.4022 0.0247 0.0346

ZDT2 105 0.0930 0.0025 0.0051 90 0.2563 0.0074 0.0120

Deb52 140 0.5865 0.0024 0.0050 61 0.7974 0.0480 0.0833

ZDT3 108 0.4413 0.0043 0.0447 31 0.5201 0.0313 0.0897

Mean 113.6 0.282 0.003 0.013 70.6 0.424 0.023 0.045

Table 5: Performance measure values for the bi-objective problems using
Scheme 2, that is, the number of points stored is controlled by means of
paǫ-dominance. The size of the grid is 100 × 100.

archiving technique when used with search engines that have been specifically
designed to exploit the properties of ǫ-dominance, such as ǫ-MOEA [6].
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implicit ǫ-dominance

Fun #(P) Spread Spacing SDC

ZDT1 83 0.0774 0.0035 0.0087

Deb24 98 0.0726 0.0038 0.0083

ZDT2 84 0.0738 0.0036 0.0079

Deb52 88 0.1861 0.0037 0.0071

ZDT3 125 0.4376 0.0037 0.0406

Mean 95.6 0.169 0.004 0.015

Table 6: Performance measure values for the bi-objective problems using
Scheme 3 with a grid size of 66×66 or, equivalently, for an expected capacity
of 100.

implicit ǫ-dominance ǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

DTLZ2 162 0.3160 0.0378 0.0592 38 0.3572 0.0789 0.1032

WFG4 142 0.3148 0.1211 0.0595 43 0.3998 0.4429 0.0762

Convex50 50 0.4410 0.0409 0.0452 16 0.7414 0.2029 0.2422

Convex60 60 0.4329 0.0437 0.0386 21 0.5013 0.1009 0.1564

WFG2 107 0.3586 0.1230 0.0523 21 0.4074 0.3308 0.1054

Mean 104.2 0.3727 0.0733 0.0509 27.8 0.4814 0.2313 0.1367

Table 7: Performance measure values for the three-objective problems using
Scheme 1 for a grid size of 10 × 10 × 10.

implicit paǫ-dominance paǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

DTLZ2 71 0.1260 0.0107 0.0975 59 0.3682 0.0691 0.0709

WFG4 70 0.2380 0.1503 0.0844 57 0.3288 0.3031 0.0841

Convex50 85 0.5549 0.0432 0.0798 47 0.5442 0.0900 0.1255

Convex60 79 0.4914 0.0428 0.0736 54 0.4394 0.0729 0.1006

WFG2 95 0.4533 0.1667 0.0590 34 0.4504 0.2978 0.1063

Mean 80.0 0.3727 0.0828 0.0789 50.2 0.4262 0.1667 0.0975

Table 8: Performance measure values for the three-objective problems using
Scheme 2, that is, the number of points stored is controlled by means of
paǫ-dominance. The size of the grid is 10 × 10 × 10.
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implicit ǫ-dominance

Fun #(P) Spread Spacing SDC

DTLZ2 94 0.4079 0.0524 0.0752

WFG2 80 0.3787 0.1763 0.0815

WFG4 33 0.5015 0.0655 0.0726

Convex50 37 0.4176 0.0648 0.0637

Convex60 71 0.5392 0.2264 0.0588

Mean 63.0 0.4490 0.1171 0.0704

Table 9: Performance measure values for the three-objective problems using
Scheme 3 with a grid size of 7.31×7.31×7.31 for an expected capacity of 100.

implicit ǫ-dominance ǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

S.R. 67 0.4275 0.0177 0.0306 5 0.5244 0.3116 0.3079

W.B. 71 0.2919 0.01035 0.0176 19 0.4755 0.05065 0.0898

Mean 69 0.3598 0.0141 0.0241 12 0.5000 0.1812 0.1989

Table 10: Performance measure values for the real world problems using
Scheme 1 for a grid size of 50 × 50.

implicit paǫ-dominance paǫ-dominance

Fun #(P) Spread Spacing SDC #(P) Spread Spacing SDC

S.R. 48 0.4534 0.0220 0.0439 22 0.5361 0.0697 0.1167

W.B. 54 0.3360 0.0127 0.0210 42 0.2627 0.0108 0.02293

Mean 51 0.3948 0.0174 0.0325 32.0 0.3994 0.0403 0.0699

Table 11: Performance measure values for the real world problems using
Scheme 2, that is, the number of points stored is controlled by means of
paǫ-dominance. The size of the grid is of 50 × 50.
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implicit ǫ-dominance

Fun #(P) Spread Spacing SDC

S.R. 52 0.2379 0.0138 0.0243

W.B. 51 0.7515 0.2677 0.3075

Mean 51.5 0.495 0.141 0.166

Table 12: Performance measure values for the real world problems using
Scheme 3 with a grid size of 32.6 × 32.6 or, equivalently, for an expected
capacity of 50 (see Table 2).
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Figure 10: Pareto fronts obtained for Deb24.
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Figure 11: Pareto fronts obtained for Deb52.
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Figure 12: Pareto fronts obtained for ZDT1.
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Figure 13: Pareto fronts obtained for ZDT2.
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Figure 14: Pareto fronts obtained for ZDT3.
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Figure 15: Pareto fronts obtained for DTLZ2.
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Figure 16: Pareto fronts obtained for WFG2.
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Figure 17: Pareto fronts obtained for WFG4.
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Figure 18: Pareto fronts obtained for convex50.
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Figure 19: Pareto fronts obtained for convex60.
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Figure 20: Pareto fronts obtained for Speed Reducer.
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Figure 21: Pareto fronts obtained for Welded Beam.
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Function Objectives Bounds Characteristics

ZDT1
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 −
p

f1/g(~x)

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

convex,
connected

ZDT2
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 − (f1/g(~x))2

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

nonconvex,
connected

ZDT3
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 −
p

f1/g(~x) − (f1/g(~x)) sin(10πf1)

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

disconnected

Deb24

f1(x1) = 4 ∗ x1
f2(x1, x2) = g(x2) ∗ h(x1),

where g(x2) =

8

>

>

<

>

>

:

4 − 3 ∗ exp
−

„

x1−0.2
0.02

«2

4 − 2 ∗ exp
−

„

x1−0.7
0.2

«2
if x2 ≤ 0.4

otherwise.

and

h(x1) =

8

<

:

1 −
“

f1(x1)
g(x2)

”0.25+(3.75(g(x2)−1))

0

if f1(x1) ≤ g(x2)

otherwise.

0.1 ≤ xi ≤ 1
i = 1, 2

convex,
connected

Deb52

f1(x1) = 1 − e−4x1 sin4(10πx1)
f2(x1, x2) = g(x2) ∗ h(x1),

where g(x2) = 1 + x2
2 and

h(x1) =

8

<

:

1 −
“

f1(x1)
g(x2)

”10

0

if f1(x1) ≤ g(x2)

otherwise.

0 ≤ xi ≤ 1
i = 1, 2

nonconvex,
connected

DTLZ2

f1(~x) = cos( π
2

x1) cos( π
2

x2)(1 + g(~x))
f2(~x) = cos( π

2
x1) sin( π

2
x2)(1 + g(~x))

f3(~x) = sin( π
2

x1)(1 + g(~x))

g(~x) =
n
P

i=3
(xi − 0.5)2

n = 12
0 ≤ xi ≤ 1
i = 1, ..., 12

nonconvex,
connected

WFG2 The full construction of this problem can be found in [12]

nonseparable,
unimodal,
convex,
disconnected

WFG4 The full construction of this problem can be found in [12]
separable,
multimodal,
nonconvex

Convex50 f1(~x) = x1, f2(~x) = x2, f3(~x) = (1 − x
p
1 − x

p
2)1/p

0 ≤ xi ≤ 1,
i = 1,2
p = 0.5

convex,
connected

Convex60 f1(~x) = x1, f2(~x) = x2, f3(~x) = (1 − x
p
1 − x

p
2)1/p

0 ≤ xi ≤ 1,
i = 1,2
p = 0.6

convex,
connected

Table 13: Definition and description of each of the 10 unconstrained test
problems adopted in this paper.
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The objective of Golinski’s Speed Reducer problem [13] is to find the minimum
volume of a gear box (and, hence, its minimum weight), subject to several
constraints. The problem is illustrated in the Figure and there are
seven design variables, x1 to x7, which represent:
x1 width of the gear face, in cm
x2 teeth module, in cm
x3 number of pinion teeth
x4 shaft 1 length between bearings, in cm
x5 shaft 2 length between bearings, in cm
x6 diameter of shaft 1, in cm
x7 diameter of shaft 2, in cm

Function Objectives Bounds Characteristics

Speed
Reducer

f1(~x) = 0.7854x1 · x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)−

1.5079(x2
6 + x2

7)x1 + 7.477(x3
6 + x3

7) + 0.7854(x4 · x2
6 + x5 · x2

7),

f2(~x) =

r

(
745·x4
x2x3

)2+1.69e7

0.1x3
6

,

subject to:

g1(~x) ≡ 1
x1·x2

2
·x3

− 1
27

≤ 0,

g2(~x) ≡ 1
x1·x2

2
·x2

3

− 1
397.5

≤ 0,

g3(~x) ≡
x3
3

x2·x3·x4
6

− 1
1.93

≤ 0,

g4(~x) ≡
x3
5

x2·x3·x4
7

− 1
1.93

≤ 0,

g5(~x) ≡ x2 · x3 − 40 ≤ 0,

g6(~x) ≡
x1
x2

− 12 ≤ 0,

g7(~x) ≡ 5 −
x1
x2

≤ 0,

g8(~x) ≡ 1.9 − x4 + 1.5x6 ≤ 0,
g9(~x) ≡ 1.9 − x5 + 1.1x7 ≤ 0,
g10(~x) ≡ f2 − 1300 ≤ 0,

g11(~x) ≡

r

(
745·x5
x1·x2

)2+1.575e8

0.1·x3
6

− 1100 ≤ 0,

2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5

convex,
connected

The welded beam design problem [21] involves two nonlinear objective functions
and seven constraints, in which a uniform beam of rectangular cross section
needs to be welded to a base to be able to carry a load of 6000 lb. The objectives
are to minimize the cost of fabrication and beam deflection with four constraints
and four decision variables, which are represented by:
h weld thickness
l weld length
t beam thickness
b beam width

Function Objectives Bounds Characteristics

Welded
Beam

f1(~x) = 1.10471h2 l + 0.04811tb(14.0 + l),
f2(~x) = δ(~x)

subject to:
g1(~x) ≡ 13600 − τ(~x) ≥ 0,
g2(~x) ≡ 30000 − σ(~x) ≥ 0,
g3(~x) ≡ b − h ≥ 0,
g4(~x) ≡ Pc − 6000 ≥ 0.
where:

τ(~x) =

s

(τ′)2+(τ′′)2+(lτ′τ′′)
q

0.25(l2+(h+t)2)
,

τ ′ = 6000√
2·h·l ,

τ ′′ =
6000(14+0.5l)

q

0.25(l2+(h+t)2)

2{0.707hl(l2/12+0.25(h+t)2)} ,

σ(~x) = 504000
t2·b ,

Pc(~x) = 64746.022(1 − 0.0282346t)tb3 .

0.125 ≤ h ≤ 5.0,
0.1 ≤ l ≤ 10.0.
0.125 ≤ b ≤ 5.0,
0.1 ≤ t ≤ 10.0.

convex,
connected

Table 14: Definition and description of the two engineering optimization
problems adopted in this paper.
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