Optimal Design of Reinforced Concrete
Beams using Genetic Algorithms

Carlos Coello Coello * Filiberto Santos Herndndez Francisco Alonso Farrera

Escuela de Ingenieria Civil, Universidad Auténoma de Chiapas, México

Abstract: This paper presents a method for optimizing the design of reinforced concrete beams subject to a spec-
ified set of constraints. A new model of optimization is proposed, leading to more realistic and practical designs.
As there are an infinite number of possible beam dimensions and reinforcement ratios that yield the same moment
of resistance, it becomes difficult to achieve the least-cost design by conventional iterative methods. We present a
method based upon a search technique using genetic algorithms. Several applications show how our system pro-
vides more realistic designs than other methods based on mathematical programming techniques. Also, we show
our results of experimenting with several representation schemes for the genetic algorithm, and the methodology
that we used to adjust its parameters—i.e., population size, crossover and mutation rates, and mazimum number
of generations— so that it produces a reasonable answer in a short period of time. A prototype of this system is
currently being tested at our school, to see its potential use as a tool for real-world applications.

Keywords: structural optimization, genetic algorithms, design optimization, artificial intelligence.

1 Introduction

The design of reinforced concrete elements plays a very important role in México, because of its extended
use by civil engineers. In the traditional design methodology, a solution is proposed and then corroborated by
mathematical analysis in order to verify that the problem requirements are satisfied. If the requirements are not
satisfied, a new solution is proposed. In this trial and error process the engineer gains experience, but at a very
high cost in terms of time and effort (see Figure 1). As time is always a constraint in real design, a reasonable
sub-optimal solution is normally adopted. Computers have been recently used to help engineers automate this
process. However, their use has concentrated mainly in performing the tedious mathematical calculations that
are required.

Alternatively, the optimal design approach consists of changing the design based on a certain “optimality
condition” (see Figure 2). However, the general optimal design problem is highly nonlinear and nonconvex [1].
As a result, structural optimization problems are characterized by having multiple local optima.

This paper focuses on the use of an artificial intelligence (AI) technique based on the mechanics of natural
selection, called the genetic algorithm [16] [13]. The design process based on this technique is very similar to the
optimal design process previously shown (see Figure 3). The main difference is the notion of a fitness function
instead of a cost function, and the fact that the adaptation of the design is dependent upon neither (a) the
engineer nor (b) the gradient of the cost function, as in the two previous cases. Even more interesting is that
initial designs are randomly generated, without any human intervention, and nevertheless the technique converges
to an optimal design in a reasonable amount of time.

The design of a reinforced concrete beam is normally an interative process like the one shown in Figure 1,
in which the engineer assumes the self-weight of the beam beforehand, and a trial section is chosen. Then, the
moment of resistance of this section is determined, to check its suitability against the given applied bending
moment. This process is repeated until a trial section is found suitable. This procedure often creates difficulty

*Currently at the Department of Computer Science of Tulane University, in New Orleans, LA (USA)

Real World Problem

Generate data to describe structure

|

Initial Design

Analysis

Modify design using

Is it a valid design?
experience/heuristics

Yes

Final Design

Figure 1: Traditional design process.

Real World Problem

]
Identify:
a) Design variables
b) Cost function to be minimized
c) Constraint functions to be satisfied

l

‘ Generate data to describe structure ‘

|

‘ Initial Design ‘
I

!

‘ Analysis ‘

Does the design satisfy
convergence criteria?

Modify design using
optimization technique

Final Design

Figure 2: Optimal design process [1].

Real World Problem

Identify:
a) Design variables and devise a representation scheme
b) Fitness function to be maximized
c) Constraint functions to be satisfied and decide how to
incorporate them into the fitness function

‘ Generate data to describe structure ‘

|

‘ Initial Design (Random) ‘
|

|

‘ Decoding ‘

]

‘ Analysis ‘

Modify design No
using crossover
and mutation

Maximum number of
Generations reached?

‘ Final Design ‘

Figure 3: Optimal design process using a Genetic Algorithm.

in exactly matching the moment of resistance of the section with the total applied bending moment due to the
self-weight of the beam, which may be quite substantial in many cases. Therefore, the design process of a beam
is not only slow, but also has a complete lack of economics, since the only concern is to find any section suitable
for the given conditions, instead of looking for the most economic one.

In this paper, we will present a model for optimal design which minimizes the cost of a reinforced concrete beam
based not only on the allowable stresses of the element, but also in the costs of concrete, steel and shuttering. Our
model follows the one proposed by Chakrabarty [2] [3], with certain modifications (i.e., additional constraints)
that makes it suitable for practical applications. In the next section, we will introduce some general concepts from
reinforced concrete design. Then, our model will be shown and the genetic algorithm approach will be described.
Finally, we will present the results found by our model when solving some problems found in the literature, and
we will briefly discuss some of the issues that arose when using genetic algorithms in this kind of application.

2 Basic Concepts

For the purposes of this research, we adopted strength design procedures, because they have, among others,
the following advantages [9]:

e Strength design better predicts the strength of a section because of the recognition of the non-linearity of
the stress-strain diagram at high stress levels.

e Because the dead loads to which a structure is subjected are more certainly determined than the live loads,
it is unreasonable to apply the same factor of safety to both. Therefore, this approach allows the use of
different safety factors for them.

The basic assumptions that are taken when using strength design are the following [9]:
¢ Plane sections before bending remain plane after bending.

e At ultimate capacity, strain and stress are not proportional.

e Strain in the concrete is proportional to the distance from the neutral axis.

e Tensile strength of concrete is neglected in flexural computations.

e The ultimate concrete strain is 0.003.

e The modulus of elasticity of the reinforcing steel is 29, 000, 000 psi (200,000 MPa).
e The average compressive stress in the concrete is 0.85 f;

o The average tensile stress in the reinforcement does not exceed f,.

According to this design method, the nominal moment capacity M, of a rectangular beam with tension
reinforcement only is given by [9]:

M, = bd” fw(1 — 0.59w) (1)

where b is the width of the beam, d is the distance from the extreme compressive fibre to the centroid of
tension reinforcement, fcl is the compressive strength of concrete, w = (Asf,/ bdfcl), fy is the yield strength of
reinforcement and A; is the area of tension reinforcement.

There is an infinite amount of solutions to equation (1) that yield the same value of M, [9]. In the traditional
design process, the values of b and/or d are assumed, and the remaining parameters are calculated based on them,
iterating until a suitable section is found. An obvious restriction of this approach is that only a few sections can
be evaluated in this manner. Since equation (1) does not incorporate any cost parameter, there is no way of
achieving a least-cost design. Therefore, we need to include certain cost parameters combined with the design
parameters in our optimal design model, so that we can produce least-cost suitable designs.

3 Previous Work

The optimal design of beams was first proposed by Galileo [10], even though his calculations were wrong,.
Apparently, the doctoral dissertation by E. J. Haug Jr. [15] (see also [14]) in 1966 is one of the first modern
attempts to use a digital computer as a tool for the optimal design of this structural element. Haug reduced
the non-linear optimal design problem to a Lagrange problem in the Calculus of Variations. His model includes
restrictions and tries to minimize the weight of the beam in several different situations.

Venkayya [21] developed a method based on an energy criteria and a search procedure for design of structures
subjected to static loading. He argues that his method can handle very efficiently, (a) design for multiple load
conditions, (b) stress constraints, (c) constraints on displacements, (d) constraints on sizes of the elements. His
method has been successfuly applied to the design of trusses, frames and beams.

Osyczka [18] [19] has applied multi-objective optimization techniques to beam design problems. Also, Prakash
et al. [20] proposed a model for optimal design of reinforced concrete sections in which the costs of steel, concrete
and shuttering were included. Chakrabarty’s model [2] [3] has some similarities with Prakash’s model, but the
former is more complete and detailed. That’s the main reason why we decided to use Chakrabarty’s model as
a basis for our implementation, even though we had to slightly modify it in order to produce designs that fall
into Mexico’s standard regulations for reinforced concrete design, since the original model lead in some cases to
inconsistent designs.

4 The Optimal Design Model

A schematic section of a rectangular singly reinforced concrete beam is shown in Figure 4. The cost per unit
length of the beam will be given by the following expression [3]:

y(z) = c1m1 + coT23 + C3T2 + c4T3 (2)

Ac— T |]rd

Figure 4: Schematic section of a singly reinforced rectangular beam. Taken from [[4].

where y(z) is the cost per unit length of the beam ($/cm), ¢1 is the cost coefficient due to volume of tensile
steel reinforcement in the beam ($/cm?), ¢y is the cost coefficient due to volume of concrete in the beam ($/cm?),
c3 is the cost coefficient due to shuttering along the vertical surfaces of the beam ($/cm?), cy4 is the cost coefficient
due to shuttering along the bottom horizontal surface of the beam ($/cm?), z; is the variable giving the area of
tensile steel reinforcement as shown in Figure 4 (¢cm?), z5 is the variable giving the depth of the beam as shown
in Figure 4 (cm) and z3 is the variable giving the width of the beam, as shown in Figure 4 (cm).

The variables z1, 2 and z3 not only affect the cost of a beam, but will also determine its moment of resistance.
Since ; may be calculated if we know z» and z3 [9], we’ll propose different values for these two variables so
that the total cost of the beam is minimum, verifying at the same time that our section has a proper resistant
moment. Then, our optimal design model is the following:

minimize: f(m) =121 + caT2L3 + €39 + C4T3
subject to:

alml_lac3m5 <1 (equilibrium constraint) (3)

agmgl + a3m2m3m;1 <1

(bending moment compatibility constraint) (4)

(width — height ratio constraint) (5)

Q(zs — aszs)(frfovszs + z1 fy)as [z > 1
(acting moment constraint) (6)

ag/r3 <1 (minimum width constraint) (7)

T1,T2,T3,T4,Ts > 0 (non —negativity constraint) (8)

Here z4 is a variable defining the total applied bending moment including the bending moment due to self-
weight of the beam; x5 is a variable defining the depth of the equivalent rectangular stress block. Additionally,
we have the following formulas:

c1=ws X cs ($/cm?) (9)

where ws = 0.00785 kg/cm?® (assumed value) is the unit weight of steel reinforcement, and ¢, is the unit cost
of steel reinforcement ($/kg).

ez = (14+7)ce x 1075 ($/cm?) (10)

where ¢, is the unit cost of concrete ($/m?) and r is the cover ratio.

c3=2(147)e, x 107% ($/cm?) (11)

where ¢, is the unit cost of shuttering ($/m?).

ca =cp x 107% ($/cm?) (12)

ay = 0.857./f, (13)

where f, is the yield strength of steel reinforcement (N/ em?) and j; is the compressive strength of concrete

(N/em?).

as = D(1+ r)w.kL? (14)

where D = 1.4 (assumed) is the load factor for dead load, w. = 0.0228 N/cm?® is the unit weight force of
concrete, k is the moment coefficient for the design section (= 1.8 for simply supported beam) and L is the span
of the beam (cm).

as = 1/(£,Qf.) (15)

where @ is the capacity reduction factor (= 0.90 for flexure) and f, = 0.85 (assumed) is the reduction factor of
concrete. Also, as is the applied bending moment (N —cm), a5 = % (assuming the centroid of compressive force
at half the depth of equivalent rectangular stress block), and ag is the minimum acceptable width of the beam.
To determine z4 (total bending moment, including self-weight of the beam), we use:

T4 = G2 + A3T2T3 (16)
To calculate z; (area of reinforcement steel), we use:

r] = me'Tch’/fy (17)

_ 4(0.59)xy

5 7

0.9z323 f,
1.18

1—-, /1
where w =

This last expression can be derived from equation (1). Finally, z5 (depth of the equivalent stress block) is
given by:

Is =1}1/(01$3) (18)

'1]/o/o]ol1[1]o][1]/0]1]0l0l0l0]1/0l1]0]1]

Representation of the number 289.301 using
binary encoding

[2]8]9[3]0!1]

Representation of the number 289.301 using
floating point encoding

Figure 5: Representation of the same number using binary and floating point encodings.

5 Use of Genetic Algorithms

To solve this optimization problem, we used the Simple Genetic Algorithm (SGA) proposed by Goldberg [13],
and we experimented with several representation schemes. We have previously used binary representation [7] and
we have tried Gray coding [6] for structural optimization problems with a continuous search space like this one.
For this particular application, we decided to experiment also with floating point representation. We won’t talk
much about the genetic algorithm (GA), since we have done so in previous publications [4] [8] [5]. Instead, we’ll
give some details about the different representation schemes that we used in our experiments.

The traditional representation used by the genetic algorithms community is the binary scheme according to
which a chromosome is a string the form (bl,bz, .. ,bm>, where by,bs,..., by, are called alleles (either zeros or
ones). Since the binary alphabet offers the maximum number of schemata per bit of information of any coding
[13], its use has became very popular among scientists. This coding also facilitates theoretical analysis of the
technique and allows elegant genetic operators. However, since the “implicit parallelism” property of GAs does
not depend on using bit strings [17] it is worthwhile to experiment with larger alphabets, and even with new
genetic operators. In particular, for optimization problems in which the parameters to be adjusted are continuous,
a floating point representation scheme seems a logical choice. According to this representation, a chromosome is
a string of the form (d;,da,...,dy), where di,da,...,d,, are digits (numbers between zero and nine). Consider
the examples shown in Figure 5, in which the same value is represented using binary and floating point encoding.

The term “floating” may seem misleading since the position of the implied decimal point is at a fixed position,
and the term “fixed point representation” seems more appropriate. However, the reason that the term “floating
point” is preferred is because in this representation each variable (representing a parameter to be optimized) may
have the point at any position along the string. This means that even when the point is fixed for each gene, is
not necessarily fixed along the chromosome. Therefore, some variables could have a precision of 3 decimal places,
while others are integers, and still they could all be represented with the same string,.

Floating point representation is faster and easier to implement, and provides a higher precision than its
binary counterpart, particularly in large domains, where binary strings would be prohibitively long. One of the
advantages of floating point representation is that it has the property that two points close to each other in the
representation space must also be close in the problem space, and vice versa [17]. This is not generally true in
the binary approach, where the distance in a representation is normally defined by the number of different bit
positions. Such discrepancy can, however, be reduced by using Gray coding.

To procedures to convert a binary number b = (by,bs,...,by,) into a Gray code number g= (g1, 92, .. ,9m),

Parameter | Chakrabarty | GA (Binary) | GA (Gray Coding) GA (FP)
z1 (em?) 37.6926 36.1893 41.5905 37.5205
z2 (cm) 86.0629 89.5402 78.6177 86.4776
z3 (cm) 30.0000 30.0162 30.0447 30.0022
z4 (N —cm) | 80'064,711.73 | 80'540,242.0620 79’111, 846.5650 80'131,661.9160
z5 (cm) 14.7814 14.1842 16.2857 14.7128
cost ($/cm) 0.4435 0.4442 0.4464 0.4436

Table 1: Comparison of the geometric programming approach used by Chakrabarty [4] and the GA using binary
and floating point representation.

where m denotes the number of bits, may be found in [17]. The Gray code representation has the property that
any two points next to each other in the problem space differ by only one bit [17]. In other words, an increase
of one step in the parameter value corresponds to a change of a single bit in the code. This is a well known
technique used to reduce the distance of two points in the problem space, and it is argued to bring some benefit
because of their adjacency property, and the small perturbation caused by many single mutations. However, the
use of Gray codes did not help much in this particular application, as we will see in the next section.

Finally, we should mention that we used a two-point crossover, and binary tournament selection in all our tests.
The only operator that had to be redefined was mutation, which in the floating point representation consists on
selecting a random number between 0 and 9. Our fitness function was given by equation (2), using a penalty
function of the form fitness = 1/(cost * (v * 500 + 1)) where v depends on the number of constraints violated.
Whenever the design doesn’t violate any constraint, the fitness function is just the inverse of the cost (the GA
only maximizes, and we require a minimization in this case).

6 Examples

The following example was taken from Everard and Tanner [9]:

Design a least-cost reinforced concrete rectangular beam simply supported over a span of 10 m supporting a
uniform dead load of 15 £N/m and a uniform live load of 20 kN/m. The concrete strength fcl = 30 MPa and
the steel yield strength f, = 300 M Pa. The unit cost of steel (CS), concrete (CC) and shuttering (CSH) are $
0.72/kg, $ 64.5/m*® and $ 2.155/m?, respectively. Assume a cover ratio (r) of 0.10, unit weight of concrete of
2323 kg/m?® and capacity reduction factor as 0.90.

The ultimate uniform load is

=14x%x 154 1.7 x 20 = 55 kN/m.
The ultimate applied bending moment is
=55 x 102/8 = 687.5 kN, m = 687.5 x 10° N — cm.

Using this information, we can get the values of the cost coefficients and the other model constants:

c1 = 0.0056520
cs = 0.00047410

a1 = 0.08500
as = 438233, 950
as = 0.50

¢z = 0.00007095
cs = 0.00021550
az = 68'750,000
as = 0.00043573
ag = 30.00

Our results and their comparison with the geometric programming method used by Chakrabarty [3] are shown
in Table 1. As we can see, the floating point representation produced the best results and Gray coding the worst.
Our final design for this problem is shown in Figure 6, and has a total height of 95.125, which is about 1% more
than Chakrabarty’s design. This slight difference is due to the fact that Chakrabarty’s model considers the area
of reinforcement steel as a variable, even when this is a parameter that depends on the beam section, and can’t

30cm

e
iy
@ o
86.478 cm
3 barsof
20 mm
48757, __[[-@ L]
o VN |
W 8.648 cm
v

4 bars of 30 mm

Figure 6: Optimum design of the beam of the first example.

Parameter | Chakrabarty | GA (FP)
z1 (cm?) 31.1267 30,5412
z2 (cm) 101.5494 82.7043
z3 (om) 20.000 20.6825

cost ($/cm) 0.3725 0.3885

Table 2: Comparison of the geometric programming approach used by Chakrabarty [4] and the GA using floating
point representation. We assume b = 20 ¢m. Notice how the constraint imposed by equation (5) is violated by
Chakrabarty’s design.

take any arbitraty value. On the other hand, our costs of steel, concrete and shuttering represent the 47.80%,
41.50% and 10.70% of the total cost, which corresponds almost exactly to the costs obtained by Chakrabarty.
Floating point represention was used in all the further experiments, since it provided the best results overall.

An important observation should be made before showing more examples. Our model has more constraints
than Chakrabarty’s model, in order to make it more realistic. For example, we require the relation z3/z? to be
between 0.25 and 0.6 which is a common practice recipe used by civil engineers. The reason for this is not purely
empirical. These limits allow us to have a “reasonable” amount of reinforcement steel in our designs, so that we
can guarantee a good adherence between steel and concrete, and we can provide a good control of the beam’s
deflection. Since Chakrabarty doesn’t impose this constraint in his model, some of the results shown next will
violate it.

First, we’ll perform an analysis similar to that conducted by Chakrabarty, experimenting with different values

Parameter | Chakrabarty | GA (FP)
z1 (em?) 43.6017 43.7644
zs (cm) 76.1499 75.9102
z3 (cm) 20.000 10.0042

cost ($/cm) 0.5073 0.5074

Table 3: Comparison of the geometric programming approach used by Chakrabarty [4] and the GA using floating
point representation. We assume b = 40 cm.

Parameter | Chakrabarty | GA (FP)
z1 (em?) 55.4435 35.7172
23 (cm) 62.5974 104.3223
I3 (rm) 62.500 62.5010

cost ($/cm) 0.6341 0.7274

Table 4: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. We assume b = 62.50 cm. Notice how the constraint imposed by equation (5) is violated
by Chakrabarty’s design.

Parameter | Chakrabarty | GA (FP)
z1 (cm?) 57.0072 50.2583
25 (cm) 59.8678 66.7029
z3 (cm) 20.000 10.0033

cost ($/cm) 0.3680 0.3716

Table 5: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 ¢m, CS = 0.36, CC = 64.5 and CSH = 2.155. Notice how the constraint imposed
by equation (5) is violated by Chakrabarty’s design.

of b. The results of our tests are shown in Tables 2, 3 and 4. For the case in which b = 62.50 Chakrabarty’s model
produces a design 42.98% more expensive than when b = 30. Our design is 63.98% more expensive. However,
Chakrabarty’s design violates the restriction imposed by equation (5). Therefore, in practice an engineer would
prefer our design even when it’s more expensive, for the reasons previously exposed. In all the remaining examples,
it will always be the case that when our results are not equals to those produced by Chakrabarty’s model (or
almost equal, should we say, since there is always a difference in the last digit due to rounding-off errors) it’s
because his design is violating some constraint—normally that defined by equation (5)—.

Finally, we tested different values for the costs of reinforcement steel, concrete and shuttering. The results
are shown in Tables 5 to 11. Again, the discrepancies between our results and those produced by Chakrabarty’s
method will indicate some violation of the constraints imposed by our model.

Future Work and Conclusions
There is still plenty of work to do, and we are considering the possibility of experimenting with other techniques

for adjusting the parameters of the GA, such as fuzzy logic. Also, we are interested on doing a theoretical analysis
of the search space of this optimization problem, so that we can devise some strategies to solve it more efficiently.

Parameter | Chakrabarty | GA (FP)
z1 (em?) 37.2006 37.0318
Z (cm) 80.5455 90.0205
z3 (cm) 40.000 40.0010

cost ($/cm) 0.6206 0.6207

Table 6: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 cm, C'S = 1.08, CC = 64.5 and CSH = 2.155.

Parameter | Chakrabarty | GA (FP)
z1 (em?) 33.2691 33.2279
z2 (cm) 101.1724 101.3565
z3 (cm) 40.000 40.0001

cost ($/cm) 0.7198 0.7199

Table 7: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 cm, C'S = 1.44, CC = 64.5 and CSH = 2.155.

Parameter | Chakrabarty | GA (FP)
z1 (em?) 33.0372 35.0698
z2 (cm) 95.5279 95.4719
z3 (cm) 40.000 40.0001

cost ($/cm) 0.3875 0.3876

Table 8: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 em, C'S = 0.72, CC = 32.25 and CSH = 2.155.

Parameter | Chakrabarty | GA (FP)
T (cmz) 55.4240 49.9278
zs (cm) 61.2698 67.0081
za (cm) 40.000 40.0050

cost ($/cm) 0.6987 0.7035

Table 9: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 cm, CS = 0.72, CC = 129.0 and CSH = 2.155. Notice how the constraint imposed
by equation (5) is violated by Chakrabarty’s design.

Parameter | Chakrabarty | GA (FP)
z1 (em?) 12.3510 125568
x93 (cm) 78.3650 78.0625
z3 (cm) 20.000 20.0001

cost ($/cm) 0.4847 0.4848

Table 10: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 em, C'S = 0.72, CC = 64.5 and CSH = 1.0775.

Parameter | Chakrabarty | GA (FP)
z1 (cm?) 45.9454 45.9012
zs (cm) 72.4085 72.5103
za (cm) 20.000 40.0003

cost ($/cm) 0.5511 0.5512

Table 11: Comparison of the geometric programming approach used by Chakrabarty [5] and the GA using floating
point representation. b = 40 ¢m, CS = 0.72, CC = 64.5 and CSH = 4.31.

However, so far the results seem very promising, and the system has called the attention of more than one
engineer in our University, and even when it has been used only for academic purposes so far, we are considering
the possibility of giving it commercial use.

We have been working in the use of GAs for structural optimization problems during the last two years, and
now we are able to produce optimal designs of beams, columns and plane and space trusses. However, our final
goal is to develop a complete structural optimization system that uses GAs, and that probably incorporates also
the traditional mathematical programming techniques available, together with some other powerful heuristics
such as tabu search [11] [12]. This should provide a powerful tool for engineers involved in design, introducing
considerable savings without sacrificing safety.

Acknowledgments

The authors gratefully acknowledge the work of Carlos Narcia Lépez and Ascensién Elizalde Molina and the
support of Ing. Robertony Cruz Diaz at the Escuela de Ingenieria Civil of the Universidad Auténoma de Chiapas.
Without their help and dedication this paper would not have been possible.

References

[1] Ashok Dhondu Belegundu. A Study of Mathematical Programming Methods for Structural Optimization.
PhD thesis, University of Iowa, Dept. of Civil and Environmental Engineering, 1982.

[2] B. K. Chakrabarty. A model for optimal design of reinforced concrete beam. Journal of Structural Engineer-

ing, 118(11):3238 3242, nov 1992.

[3] B. K. Chakrabarty. Model for optimal design of reinforced concrete beams. Computers and Structures,
42(3):447-451, 1992.

[4] Carlos A. Coello. Uso de algoritmos genéticos para el disefio éptimo de armaduras. In Congreso Nacional
de Informdtica - 1994 Herramientas para los Mercados Globales, pages 290 305, Mexico City, México, jun
1994. Fundacién Arturo Rosenblueth. (in Spanish).

[5] Carlos A. Coello and Alan D. Christiansen. Optimization of truss designs using genetic algorithms. Technical
Report TUTR-CS-94-102, Tulane University, nov 1994.

[6] Carlos A. Coello and Alan D. Christiansen. Using genetic algorithms for optimal design of axially loaded
non-prismatic columns. Technical Report TUTR-CS-95-101, Tulane University, jan 1995.

[7] Carlos A. Coello Coello. Discrete optimization of trusses using genetic algorithms. In J.G. Chen, F. G. Attia,
and D. L. Crabtree, editors, EXPERSYS-9. Expert Systems Applications and Artificial Intelligence, pages
331-336, Houston, Texas, nov 1994. I.L.T.T. International. Technology Transfer Series.

[8] Carlos A. Coello Coello. El algoritmo genético como alternativa a la programacién dindmica. In Actas del
VIII Simposio Internacional en Aplicaciones de Informdtica, pages 151 157, Antofagasta, Chile, nov 1994.
Universidad Catélica del Norte. (in Spanish).

[9] Noel J. Everard and John L. Tanner III. Theory and Problems of Reinforced Concrete Design. McGraw-Hill
Book Company, second edition, 1987.

[10] Galileo Galilei. Dialogues Concerning Two New Sciences. Evanston, Ill. Northwestern University Press, 1950.
Originally published in 1665.

[11] Fred Glover. Tabu Search - Part I. ORSA Journal on Computing, 1(3):190-206, 1989.
[12] Fred Glover. Tabu Search - Part II. ORSA Journal on Computing, 2:4-32, 1990.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Mass. :
Addison-Wesley Publishing Co., 1989.

E. J. Haug and P. G. Kirmser. Minimum weight design of beams with inequality constraints on stress and
deflection. Journal of Applied Mechanics. Transactions of the ASME, pages 999-1004, dec 1967.

Edward Joseph Haug. Minimum Weight Design of Beams with Inequality Constraints on Stress and Deflec-
tion. Department of mechanical engineering, Kansas State University, 1966.

John H. Holland. Adaptation in Natural and Artificial Systems. Ann Harbor : University of Michigan Press,
1975.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, second
edition, 1992.

Andrzej Osyczka. Multicriterion Optimization in Engineering with FORTRAN programs. Ellis Horwood
Limited, 1984.

Andrzej Osyczka. Multicriteria optimization for engineering design. In John S. Gero, editor, Design Opti-
mization, pages 193 227. Academic Press, 1985.

Anand Prakash, S. K. Agarwala, and K. K. Singh. Optimum design of reinforced concrete sections. Computers
and Structures, 30(4):1009-1011, 1988.

V. B. Venkayya. Design of optimum structures. Computers and Structures, 1:265-309, 1971.

