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For over 25 years, most multi-objective evolutionary algorithms (MOEAs) have adopted selection criteria based

on Pareto dominance. However, the performance of Pareto-based MOEAs quickly degrades when solving

multi-objective optimization problems (MOPs) having four or more objective functions (the so-called many-

objective optimization problems) mainly because of the loss of selection pressure. Consequently, in recent

years, MOEAs have been coupled with indicator-based selection mechanisms in furtherance of increasing the

selection pressure so that they can properly solve many-objective optimization problems. Several research

efforts have been conducted since 2003 regarding the design of the so-called indicator-based (IB) MOEAs.

In this paper, we present a comprehensive survey of IB-MOEAs for continuous search spaces since their

origins up to the current state-of-the-art approaches. We propose a taxonomy that classifies IB-mechanisms

into two main categories: (1) IB-Selection, (which is divided into IB-Environmental Selection, IB-Density

Estimation, and IB-Archiving) and (2) IB-Mating Selection. Each of these classes is discussed in detail in this

paper, emphasizing the advantages and drawbacks of the selection mechanisms. In the final part, we provide

some possible paths for future research.
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1 INTRODUCTION
Evolutionary multi-objective optimization (EMOO), originated in the mid-1980s, has been steadily

growing since the late 1990s, focusing on the solution of problems that involve the simultaneous

optimization of several, often conflicting, objective functions. Due to the conflict among the

objectives, these multi-objective optimization problems (MOPs) do not have a single solution,

but a set of them that represent the best possible trade-offs among the objective functions. The

solutions of an MOP conform the so-called Pareto optimal set (defined in decision variable space),

and its image, in objective function space, is called Pareto optimal front (PF ∗). In the last 15 years,

Multi-Objective Evolutionary Algorithms (MOEAs) have become a popular choice for tackling
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complex MOPs [6, 24, 44, 118]. MOEAs are stochastic population-based metaheuristics that employ

the principles of natural selection (i.e., the survival of the fittest individuals in a population) to

drive a set of solutions towards the Pareto optimal front. Since it is, in general, not possible (as

well as undesirable) to generate all the elements of the Pareto optimal set, MOEAs produce finite

approximation sets of an MOP on a single algorithmic execution. Thus, the three main goals of

an MOEA are: 1) to produce solutions that are as close as possible to PF
∗
, 2) to generate evenly

distributed solutions, and 3) to cover completely PF
∗
.

For several years, most MOEAs have incorporated the concept of Pareto dominance1 in their

selection mechanisms [20]. Pareto-based MOEAs have shown a good performance when tackling

MOPs with two and three objective functions [24, 124]. However, the selection pressure of Pareto-

based MOEAs quickly dilutes when solving MOPs having four or more objective functions, i.e.,

the so-called many-objective optimization problems (MaOPs). This dilution is due to the rapid

increase of the number of solutions preferred by the Pareto dominance relation, which eventually

causes a Pareto-based selection mechanism to choose solutions at random [34]. In recent years, the

design of methods that improve the performance of MOEAs on MaOPs has received much interest

since these problems are widespread in science and engineering applications. In general, the most

popular methodologies to improve the performance of MOEAs on MaOPs are the following:

(1) MOEAs using relaxed Pareto dominance relations: In this case, the main idea is to employ alter-

native preference relations that relax the Pareto dominance relation [74]. Relaxed preference

relations induce a finer grain order on the solutions belonging to MaOPs, which directly

increases the selection pressure of MOEAs. Some examples of these preference relations

are the following: the (1 − k )-dominance relation proposed by Farina and Amato [34], the

favour ranking proposed by Drechsler et al. [28], and the expansion relation that controls the

dominance area of solutions [90].

(2) Decomposition-based MOEAs: This methodology aims to transform an MOP into multi-

ple single-objective optimization problems (SOPs), using scalarizing functions such as the

weighted Tchebycheff function. The distinctive feature of these MOEAs is that all the SOPs

are solved in a single run, producing an entire approximation set. The most typical approach

within this class is the MOEA based on Decomposition (MOEA/D) [100, 118].

(3) Reference set-based MOEAs: The Non-dominated Sorting Genetic Algorithm III (NSGA-III)

[23] best represents this category. In this case, a reference set is constructed to guide the

search process by measuring the quality of the population conforming it. According to Li

et al. [65], the two main aspects related to this methodology are: (1) how to construct the

reference set when no information about the Pareto optimal front is available, and (2) how to

measure the quality of solutions using the reference set.

(4) Indicator-based MOEAs: These MOEAs employ quality indicators, which are functions that

assess approximation sets, to define selection mechanisms. The underlying idea is to optimize

the indicator value of the population throughout the evolutionary process. The S-Metric

Selection EvolutionaryMulti-Objective Algorithm (SMS-EMOA) [6] is the most representative

indicator-based MOEA (IB-MOEA). It employs the Hypervolume indicator (HV) [125] that

measures the dominated volume of an approximation set, bounded by an anti-optimal point.

SMS-EMOA imposes a total order among the solutions by calculating their contribution to

the hypervolume indicator.

In this paper, we focus our attention on IB-MOEAs whose popularity has increased since 2003

[6, 32, 44, 60, 62, 82, 123]. The backbone of IB-MOEAs is the use of quality indicators (QIs) as

1
A vector u⃗ Pareto dominates another vector v⃗ if the former is as good as the latter in every element and it is better in at

least one of them.
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the basis of selection mechanisms. QIs are functions that assign a real value to one or more

approximation sets, depending on certain quality aspects such as convergence and diversity of

solutions. The origins of QIs can be traced back to the mid-1990 where some isolated efforts were

undertaken to try to (numerically) assess the performance of MOEAs [31, 37, 64, 93]. However, the

Ph.D. thesis of David Van Veldhuizen [105] can be considered as the cornerstone of QIs due to his

comprehensive review of most of the QIs available at that time. In 2003, Zitzler et al. [126] provided
the first theoretical analysis of QIs, using a mathematical framework to understand how QIs were

related to a set of outperformance relations. In the last few years, Jiang et al. [59] and Liefooghe

and Derbel [73] have conducted empirical studies aiming to determine the correlation between

different QIs and their behavior when assessing a wide variety of Pareto front shapes. Additional

reviews of QIs to evaluate the performance of MOEAs have been published by some researchers

[30, 35, 39, 89, 95, 113, 116].

Since the late 1990s, several QIs have been proposed [71]. Van Veldhuizen [105] proposed

different indicators, including the Generational Distance (GD) and Error Ratio (ER), among others.

GD measures the average distance from the approximation set to a reference set, while ER reports

the number of solutions of the approximation set that do not belong to PF
∗
. Zitzler and Thiele

[125] introduced the hypervolume indicator (HV) that rewards the convergence towards PF
∗
as

well as the extent of solutions along the Pareto front. HV measures the size of the dominated space

by an approximation set. Currently, HV is the only unary quality indicator that is known to be

Pareto-compliant.
2
Hansen and Jaszkiewicz [42] proposed the R-family indicators(R1,R2 and R3)

from a set of outperformance relations and some utility functions. Coello Coello and Cruz Cortés

[19] proposed to measure the average Euclidean distances between the true Pareto front (or the

reference set) and the approximation produced by an MOEA. Since this is exactly the opposite way

in which GD operates, this indicator was called Inverted Generational Distance (IGD) and its use

was reported for the first time in [21].
3
More recently, Ishibuchi et al. [52] proposed the Inverted

Generational Distance plus (IGD
+
) that determines the distance between an approximation set and

a reference set, using a distance measure that adopts Pareto dominance. Despite of the plethora of

QIs currently proposed, no one can assess all the desired features of an approximation set, since

each QI exhibits a specific preference, and, in this regard, Zitzler et al. claimed that it is necessary

an infinite number of QI values to characterize the quality of an approximation set [126]. Hence,

we should choose a QI depending on the type of conclusions we would like to draw.

IB-MOEAs transform the MOP into a single-objective optimization problem, i.e., the optimization

of a given QI. To this end, IB-MOEAs solve at each iteration an indicator-based subset selection

problem [5]. The origins of IB-MOEAs can be traced back to the work of Knowles and Corne [62]

that proposed an HV-based external archive. By doing this, they maintained a convergent and

well-distributed approximation to the Pareto front that maximized the HV value. However, the

turning point in this area was the proposal of Zitzler et al. [122], called Indicator-Based selection

Evolutionary Algorithm (IBEA) where an individual’s fitness value is calculated based on HV [120]

or the ϵ+ indicator [126]. It is worth emphasizing that over the years, HV has been widely used by

MOEAs to improve their search properties due to its nice mathematical properties [4, 6, 18, 60, 119].

Nevertheless, the high computational cost involved in computing exact HV contributions when

increasing the number of objectives, has limited the use of this QI. Consequently, other low-cost

QIs have been proposed as selection mechanisms in spite of their theoretical limitations. Among

these indicators, the most remarkable are R2 [13, 43], ∆p [87, 91], the ϵ+-indicator [122, 126] and

2
A Pareto-compliant QI guarantees that one algorithm’s indicator values are better than another in case the approximation

sets of the former Pareto-dominates the other’s.

3
The original proposal of IGD was published in a journal but it appeared until 2005, whereas its first reported use was at a

conference paper that was published in 2004.
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IGD
+
[33, 52, 76]. It is worth emphasizing that the solutions found by an IB-MOEA, are strongly

related to the preferences that the indicator expresses. Hence, by the No-Free Lunch Theorem [112],

there is no IB-MOEA that can provide the best possible performance over all the possible classes of

MOPs.

In spite of the numerous IB-MOEAs currently available, no comprehensive review of them has

been published so far to the authors’ best knowledge. Hence, this paper aims to provide such an

analysis of the currently available IB-MOEAs for continuous multi-objective optimization, using

genetic algorithms as a search engine. Our review is based on a taxonomy (proposed here) that

classifies approaches according to the usage that a QI has had within an MOEA. Furthermore, we

also provide some possible future research directions in this area.

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts

required to make of this a self-contained paper. Section 3 briefly reviews some state-of-the-art

QIs that have been commonly used by IB-MOEAs. Our proposed taxonomy and the description

of IB-MOEAs, including a discussion of their main advantages and disadvantages, are presented

in Section 4. Section 5 is devoted to present a brief review of real-world applications tackled by

IB-MOEAs. Some potential future research trends related to IB-MOEAs are outlined in Section 6.

Finally, our conclusions are drawn in Section 7.

2 BACKGROUND
According to Coello et al. [20], a multi-objective optimization problem

4
(MOP) is mathematically

defined as:

min

x⃗ ∈Rn
F⃗ (x⃗ ) :=

[
f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ )

]T
(1)

subject to:

дi (x⃗ ) ≤ 0 i = 1, 2, . . . ,q (2)

hj (x⃗ ) = 0 j = 1, 2, . . . ,p (3)

where x⃗ = (x1,x2, . . . ,xn )
T
is the n-dimensional vector of decision variables; fk : Rn → R,

k = 1, . . . ,m are the objective functions and дi ,hj : R
n → R, i = 1, . . . ,q, j = 1, . . . ,p are the

constraint functions of the problem which define that feasible region Ω.

Definition 1 (Pareto Dominance [20]). Given two vectors x⃗ , y⃗ ∈ Rn , x⃗ Pareto dominates
y⃗ (denoted by F⃗ (x⃗ ) ≺ F⃗ (y⃗)) if fi (x⃗ ) ≤ fi (y⃗) for i = 1, . . . ,m and there exists at least one index
j ∈ {1, . . . ,m} such that fj (x⃗ ) < fj (y⃗).

Definition 2 (Weak Pareto Dominance [20]). Given two vectors x⃗ , y⃗ ∈ Rn , x⃗ weakly Pareto
dominates y⃗ (denoted by F⃗ (x⃗ ) ⪯ F⃗ (y⃗)) if fi (x⃗ ) ≤ fi (y⃗) for all i = 1, . . . ,m.

Definition 3 (Pareto Optimality [20]). A vector of decision variables x⃗∗ ∈ Ω is Pareto optimal
if there does not exist another x⃗ ∈ Ω such that F⃗ (x⃗ ) ≺ F⃗ (x⃗∗).

4
Without loss of generality, we will assume only unconstrained minimization problems. To transform a minimization

problem into a maximization one, we can use: max f = −min(−f )
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Based on the previous definitions, the Pareto Optimal Set P∗ is defined as the set of all Pareto

optimal decision vectors for a given MOP, i.e., P∗ = {x⃗∗ ∈ Ω | x⃗ is Pareto optimal} [20]. The

image of P∗ in objective space is called the Pareto Optimal Front and it is defined as follows:

PF ∗ = {F⃗ (x⃗∗) ∈ Rm | x⃗∗ ∈ P∗}.

Definition 4 (Reference set [73]). We denote a reference setZ as a finite subset of solutions
from the Pareto optimal front, i.e.,Z ⊆ PF ∗.

Definition 5 (Set Dominance [126]). Given two sets A and B (A , B) ofm-dimensional points,
we say that A dominates B (denoted as A ⪯ B) if for every b⃗ ∈ B there exists at least one a⃗ ∈ A such
that a⃗ ⪯ b⃗ [83].

Definition 6 (Ideal Objective Vector [83]). The Ideal Objective Vector (⃗z∗ ∈ Rm) is constructed
using the minimum of each of the objective functions, considered separately. Each ith-component of
the ideal vector is defined as z∗i = minx⃗ fi (x⃗ ).

Definition 7 (Nadir Objective Vector [83]). The Nadir Objective Vector (⃗znad ∈ Rm) is con-
structed using the worst values of PF ∗. Each ith-component is defined as znadi = maxx⃗ ∈P∗ fi (x⃗ ).

In order to formally define a QI, we first describe the outcome of a multi-objective optimizer as a

set of incomparable solutions [42].

Definition 8 (Approximation Set [126]). LetA ⊆ Ψ be a set ofm-dimensional objective vectors.
A is called an approximation set or approximate Pareto front if any element of A does not
weakly dominate any other vector in A. The set of all approximation sets is denoted as Ψ.

Definition 9 (Quality Indicator [126]). “A k-ary quality indicator I is a function I : Ψk →

R, which assigns to each vector (A1,A2, · · · ,Ak ) of k approximate Pareto fronts a real value
I (A1, · · · ,Ak )”.

Definition 10 (Pareto compliance [20]). “A QI denoted by I : Ψ → R is Pareto compliant if for
all A,B ∈ Ψ : A ⪯ B ⇒ I (A) > I (B), assuming that greater indicator values correspond to higher
quality (otherwise, A ⪯ B ⇒ I (A) < I (B))”.

3 QUALITY INDICATORS
Quality indicators are set functions that simultaneously assign a real value to k approximation sets.

However, this definition is not enough to describe QIs because they possess several features. Overall,

Knowles and Corne [61], Zitzler et al. [121] and Jiang et al. [59] have distinguished their following

characteristics: cardinality, performance criteria, Pareto compliance, scalability, scaling invariance,

knowledge and parameter dependence as well as computational complexity. The cardinality of a QI

is the number k of approximation sets that can be simultaneously assessed. Performance criteria

are related to what the QI measures: capacity,
5
convergence, diversity (divided into distribution and

5
According to Jiang et al. [59] “capacity QIs quantify the number or ratio of non-dominated solutions in the approximation

set that conforms to the predefined requirements”.
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spread of solutions) or convergence-diversity. Pareto compliance is directly related to convergence

QIs. The sensitivity of a QI to the different units and scales of the objective functions determines its

scaling invariance. If the computation of the indicator requires knowledge of the MOP being solved,

then it is knowledge-dependent. Similarly, a QI is parameter-dependent if it needs user-supplied

parameters. A critical aspect in practice is its runtime complexity. Additionally, it is crucial that

indicators can properly deal with solution sets to MOPs having a different number of objectives as

current MOEAs generate approximation sets in high-dimensional objective spaces, i.e., QIs should

be scalable.

In this section, we mathematically define the indicators: HV, R2, GD, IGD, IGD+, ∆p , and ϵ
+
and

we discuss their main properties. Additionally, we introduced the Shift-based Density Estimation

method (SDE) [70]. These QIs have mostly promoted the development of IB-MOEAs. In all cases,

letA be an approximation set,Z be a reference set, andm be the dimension of the objective space.

Definition 11 (Hypervolume [125]). Let Λ denote the Lebesgue measure in Rm , then HV is
defined as follows:

HV (A, z⃗r ef ) = Λ *.
,

⋃
a⃗∈A

{x⃗ | a⃗ ≺ x⃗ ≺ z⃗r ef }
+/
-
, (4)

where z⃗r ef ∈ Rm is a reference point which should be dominated by all points in A.

HV is a unary QI that simultaneously assesses convergence and maximum spread of an approxi-

mation set of any dimension. To this end, HV considers the volume of the objective space dominated

by A. Currently, it is the only unary QI which is known to be Pareto compliant. However, it has

two main drawbacks. First, its computational cost increases super-polynomially with the number of

objectives [111]. The other issue is related to the fact that it requires a reference point that bounds

the dominated volume. Auger et al. [3] examined that the optimal µ-distributions preferred by HV

depend on the choice of the reference point. A recent empirical study, proposed by Ishibuchi et al.
[50], has supported the above-mentioned result, showing that HV’s preferences on triangular and

inverted triangular Pareto fronts, change based on the choice of z⃗r ef . In consequence, z⃗r ef should

be selected according to the Pareto front shape.

Definition 12 (Unary R2 indicator [13]). The unary R2 indicator is defined as follows:

R2(A,W ) = −
1

|W |

∑
w⃗ ∈W

max

a⃗∈A
{uw⃗ (a)}, (5)

where W is a set of m-dimensional weight vectors and uw⃗ : Rm 7→ R is a scalarizing function,
parameterized by w⃗ ∈W , that assigns a real value to each solution vector.

Hansen and Jaszkiewicz initially proposed R2 as part of the R-family of indicators [42]. However,

it was Brockhoff et al. [13] who proposed the discrete version that is currently employed. Given a

set of weight vectorsW and an utility function, R2 measures the average optimum utility values

produced byA. In consequence, R2 is a unary indicator for assessing convergence and distribution.

Unlike HV, R2 is a weakly Pareto-compliant indicator whose complexity is Θ(m |W | · |A|). In spite

of its low computational cost, R2 has some drawbacks. When using the Simplex-Lattice-Design

method [118] to generateW , the cardinality of this set is a combinatorial number N = CH+m−1
m−1 ,

whereH ∈ N is a user-supplied parameter, andm is the number of objective functions. Additionally,

the preferences of R2 strongly depend on the choice of the utility functions, and most of these

functions require a reference point that it is usually the ideal vector [83, 85].
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Definition 13 (Generational Distance [107]). GD evaluates the average distance from each
a⃗ ∈ A to its closest reference point z⃗ ∈ Z. It is defined as follows:

GD(A,Z) =
1

|A|

*.
,

∑
a⃗∈A

d (a⃗,Z)p+/
-

1/p

, (6)

where p > 0 is a user-defined parameter (usually set to p = 2) and d is the Euclidean distance from
a⃗ ∈ A to its nearest member ofZ:

d (a⃗,Z) = min

z⃗∈Z

√√ m∑
i=1

(ai − zi )2. (7)

Definition 14 (Inverted Generational Distance [19]). In contrast to GD, “IGD measures the
average distance from each reference point to its nearest solution in A” as follows:

IGD(A,Z) = GD (Z,A) =
1

|Z|

*.
,

∑
z⃗∈Z

d (z⃗,A)p+/
-

1/p

, (8)

where p > 0 is a parameter usually set to p = 2.

Definition 15 (Inverted Generational Distance plus [52]). The IGD+, for minimization, is
defined as follows:

IGD+ (A,Z) =
1

|Z|

∑
z⃗∈Z

min

a⃗∈A
d+ (a⃗, z⃗) (9)

where d+ (a⃗, z⃗) =
√∑m

k=1 (max{ak − zk , 0})
2.

GD was proposed by Van Veldhuizen and Lamont [107] and it estimates how far are the elements

in A from those inZ, i.e., it exclusively measures the convergence of the approximation set. Since

GD is non-Pareto-compliant, in some cases, it produces misleading results when comparing MOEAs

[52, 126]. Additionally, GD is sensitive to the size of the approximation set [7]. For example, an

important problem takes place when A has very few points, but they all are clustered together. In

order to overcome this issue, Coello Coello and Cruz Cortés [19] proposed IGD, which unlike GD,

measures the average distance fromZ toA. Unfortunately, IGD is also a non-Pareto-compliant QI.

In furtherance of improving the mathematical properties of IGD, Ishibuchi et al. proposed IGD
+

[52] that is a variant of it that adopts Pareto dominance in the Euclidean distance. Due to this

modification, IGD
+
is weakly Pareto-compliant. Bezerra et al. [7] broadly discuss the differences

between IGD and IGD
+
. However, an important issue that GD, IGD, and IGD

+
share is how to

constructZ when no information about PF
∗
is available [51]. The computational cost of these

indicators is θ (m |Z| · |A|).

Definition 16 (∆p indicator [91]). For a given p > 0, ∆p is defined as follows:

∆p (A,Z) = max

{
GDp (A,Z), IGDp (A,Z)

}
. (10)

∆p is composed of two indicators: GDp and IGDp which are slight modifications of GD and IGD,

respectively. These are defined as follows:

Definition 17 (GDp indicator [91]).

GDp (A,Z) = *.
,

1

|A|

∑
a⃗∈A

d (a⃗,Z)p+/
-

1/p

. (11)
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Definition 18 (IGDp indicator [91]).

IGDp (A,Z) = GDp (Z,A) = *.
,

1

|Z|

∑
z⃗∈Z

d (z⃗,A)p+/
-

1/p

. (12)

Although the Hausdorff distance is a metric in the mathematical sense on the set of compact

subsets of Rm , it tends to penalize outlier solutions that are commonly generated by MOEAs.

Consequently, Schütze et al. introduced the ∆p indicator that measures the averaged Hausdorff

distance of the approximation set to the reference set [91]. ∆p is based on the indicators GDp and

IGDp which are slight modifications of the original GD and IGD indicators that aim to reduce the

penalization of outliers. It is worth noting that such averaging of the distances leads to violations

of the triangle inequality, and hence, ∆p is not a metric. Additionally, ∆p is a non-Pareto-compliant

QI, and it assesses convergence and distribution simultaneously. Similarly to GD, IGD and IGD
+
,

this indicator requires a reference set which is difficult to construct without information of the

Pareto optimal front.

Definition 19 (Unary ϵ+ indicator [126]). Mathematically, it is defined as follows:

ϵ+ (A,Z) = max

z⃗∈Z
min

a⃗∈A
max

1≤i≤m
{zi − ai }. (13)

Zitzler et al. [126] introduced the unary ϵ-indicator to measure the minimum distance that an

approximation set needs to be translated in each dimension to weakly Pareto dominate a reference

set. Consequently, ϵ+ exclusively assesses the convergence of a Pareto front approximation. It is

worth emphasizing that ϵ+ is a weakly Pareto-compliant QI. Although it is a parameterless QI, a

reference set is required for its computation. Additionally, ϵ+ is not very sensitive to small changes

of the solutions in A.

Li et al. [70] introduced in 2014 the SDE that is a general density estimation methodology. Given

a⃗ ∈ A, a general density estimator D is a function as follows:

D (a⃗,A) = D
({
dist(a⃗, b⃗)

}
b⃗ ∈A\{a⃗ }

)
(14)

where dist(a⃗, b⃗) is a function, usually a distance function, that determines the similarity between

solutions a⃗ and b⃗. D measures the similarity between a⃗ and each element in A \ {a⃗}. It is worth
noting that the implementation of D depends on the MOEA employed. Regarding the issues of

Pareto-based MOEAs when tackling MaOPs, Li et al. proposed a modification to Eq.(14) to improve

the performance of a density estimator. They proposed to shift the location of other individuals

in A \ {a⃗} according to the convergence comparison between them and a⃗, giving rise to the SDE

methodology.

Definition 20 (Shift-based Density Estimator [70]). Given the density estimator of Eq. (14),
the SDE methodology is defined as follows:

D ′(a⃗,A) = D
({
dist(a⃗, S (b⃗, a⃗))

}
b⃗ ∈A\{a⃗ }

)
(15)

where S is the shift function

v⃗ = S (b⃗, a⃗) =

{
aj , if bj < aj
bj , otherwise

}
j ∈{1, ...,m }

. (16)
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ALGORITHM 1: MOEA general framework

1 Generate initial population P of size µ;

2 Randomly initialize A;

3 while stopping criterion is not fulfilled do
4 M ← Select µ parents from P or A;

5 O ←Generate a set of λ offspring solutions based onM , using variation operators;

6 Q ← P ∪ O;

7 Update archive A using Q ;

8 S ← select(Q,A, µ );

9 P ← S ;

10 end
11 return P or A

4 INDICATOR-BASED MOEAS
Multi-Objective Evolutionary Algorithms aim to determine a set of solutions that satisfy spe-

cific optimality properties. The Pareto dominance relation [20] has represented the most general

optimality notion. However, the degree of freedom to determine what is an optimal solution is

still considerable. In consequence, QIs integrated into MOEAs (i.e., the so-called indicator-based

MOEAs) introduce additional information that describes the preference of the user and improves

the notion of optimality imposed by the Pareto dominance relation [96, 122]. The underlying

idea of IB-MOEAs is to optimize an indicator value through the evolutionary process [96]. Since

2003, IB-MOEAs have been developed to overcome the drawbacks of Pareto-based MOEAs, with a

particular emphasis on diversity issues and the dilution of selection pressure when tackling MaOPs

[65, 108]. In this section, we review the development of IB-MOEAs from the earliest proposals to

the current state-of-the-art approaches.

4.1 Our Proposed Taxonomy
Currently, several indicator-based mechanisms (IB-Mechanisms) have been designed and integrated

into MOEAs. However, there is no clear distinction among them. Consequently, we introduce

a taxonomy (see Figure 1) to classify IB-Mechanisms based on a comprehensive review of the

state-of-the-art approaches. It is worth emphasizing that, to the authors’ best knowledge, this is

the first taxonomy ever proposed to organize the mechanisms of IB-MOEAs.

Let us start the discussion of our proposed taxonomy for IB-Mechanisms by analyzing the general

framework of an MOEA, shown in Algorithm 1. First, the main population P and the archive A

(also known as the external population) are initialized. Lines 3 to 9 show the main loop of an MOEA.

At each iteration, mating selection is performed to select µ parent solutions from either P or A.

Variation operators (e.g., crossover and mutation) further explore this setM of parent solutions to

create the set O of λ offspring solutions. Then, the archive A is updated using selection rules that

are executed on the joint population Q = P ∪ O in line 7. The next step (line 8) involves solving

or approximating a subset selection problem since it is necessary to choose the best µ solutions,

according to a certain criterion fromQ to shape the set S . Finally, S replaces the main population P.

In line 11, an MOEA returns either P or A since both of them have Pareto front approximations.

This decision is based on the following: (1) if P was returned, the MOEA employed A to maintain

diversity during the evolutionary process, and (2) if A is the outcome, the main population was

utilized as an exploration and exploitation tool to construct A.
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Fig. 1. IB-Mechanisms are divided into two main categories: (1) IB-Selection, and (2) IB-Mating Selection.
Furthermore, the former category is classified in three groups: IB-Environmental Selection, IB-Density
Estimation, and IB-Archiving.

Our taxonomy, shown in Figure 1, is based on the primary mechanisms that are present in

Algorithm 1, i.e., mating selection and selection schemes applied on the main population and the

archive. It is worth emphasizing that our taxonomy aims to classify the indicator-based mechanisms

that MOEAs have adopted, rather than classifying IB-MOEAs themselves. IB-Mechanisms are

divided into two categories: (1) IB-Mating Selection, and (2) IB-Selection. On the one hand, IB-

Mating Selection aims to select µ parents to create λ promising offspring solutions. These IB-

Mating Selection methods can be variations, for instance, of the commonly employed tournament

selection, roulette wheel selection, or proportional selection [8, 20] or new proposals, but applying

QIs as the core of the methods. On the other hand, IB-Selection comprises three classes: (1) IB-

Environmental Selection (IB-ES), (2) IB-Density Estimation (IB-DE), and (3) IB-Archiving (IB-AR).

The main difference between IB-Mating Selection and IB-Selection is that the latter aims to solve

or approximate the Indicator-based Subset Selection Problem (IBSSP) [5] that is defined as follows:

Definition 21 (Indicator-based Subset Selection Problem [5]). Let Z ⊆ Rm be a space of
m-dimensional vectors, and let I be a unary quality indicator. Without loss of generality, we assume
that this indicator is to be maximized. Given R ⊆ Z , a reference set of cardinality N , and k ≤ N a
positive subset size, the IBSSP consists in determining the set S ⊆ R of maximal quality:

argmax

S ⊆R
|S |=k

I (S ). (17)

In other words, IBSSP aims to select a subset of k ≤ N solutions that optimizes the indicator value.

The solution space size of IBSSP is

(
N
k

)
. Apart from the inherent complexity of computing indicator

values, this makes of IBSSP a challenging combinatorial optimization problem. The next question to

solve is why IB-Selection is divided into three categories since, at first sight, they seem to overlap.

On the one hand, IB-Archiving corresponds to selection rules that update the external population

A. The first proposed IB-MOEA implements an IB-AR scheme based on the hypervolume indicator

[62, 63]. In this regard, many MOEAs have an external population whose purpose is to maintain

an approximation to the Pareto front, i.e., the global non-dominated solutions generated by the

MOEA [20]. Each time a new point is considered for addition to the archive, it must be analyzed

for non-dominance concerning the points currently stored. Hence, at the end of the evolutionary

process, the archive will only include solutions that are non-dominated for all the objective vectors

that have been generated by the MOEA (i.e., the global non-dominated solutions).

On the other hand, IB-ES and IB-DE are exclusively applied to the main population P. These

two mechanisms are involved in line 8 of Algorithm 1. However, there is no clear distinction
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between IB-ES and IB-DE. Environmental selection dictates which solutions should survive at each

generation. Thus, this mechanism has particular importance because convergence is closely related

to it. Thiele [96] has pointed out that IB-ES can be designed using two algorithmic methodologies:

hierarchical selection and selection based on fitness assignment. Hierarchical selection imposes a

partial order among the solutions in P just as the non-dominated sorting algorithm [24] does, but

it needs a refinement using a density estimator. On the contrary, fitness assignment imposes a total

order among the solutions which implies that a density estimator is not required. As we previously

mentioned, density estimators refine the partial order imposed by hierarchical environmental

selection mechanisms. In this regard, they perform as the second selection criterion to reduce the

size of the joint population of parents and offspring, aiming simultaneously to enhance diversity.

Although they have different purposes, an IB-DE can perform as an IB-ES under certain conditions.

For instance, when the non-dominated sorting algorithm is coupled with an IB-DE [6, 14, 33], the

latter will eventually replace the former since it tends to create a single rank of solutions when

tackling MaOPs, i.e., it loses selection pressure. Hence, only when an IB-DE is working with an

environmental selection mechanism that loses selection pressure, it will perform as the primary

selection mechanism. Otherwise, an IB-DE will perform as the second selection criterion.

In the following sections, we will review several IB-Mechanisms that have been proposed until

the end of 2018. The review will be done following our taxonomy. For each proposal, we will focus

on discussing their properties, advantages, and drawbacks.

4.2 IB-Selection
The first IB-MOEA was proposed by Knowles et al. [63] in 2003. This algorithm employed an

archiving update rule based on the hypervolume indicator. Since then, a plethora of proposals

have been published in the specialized literature. In this section, we present a review of the most

important MOEAs that use an IB-Selection mechanism. Tables 1, 2, and 3 summarize MOEAs

adopting IB-ES, IB-DE, and IB-AR methods, respectively.

4.2.1 IB-Environmental Selection.

HV. Zitzler and Künzli [123] proposed the Indicator-Based Evolutionary Algorithm (IBEA)

whose general framework is shown in Algorithm 2. The underlying idea of IBEA is to provide a

general framework for (µ + λ) environmental selection based on arbitrary binary indicators that

are integrated into a fitness function (see line 5). This fitness function measures the loss in quality

when each x⃗ ∈ Q is removed. According to the authors, the exponential function is employed

to amplified the influence of dominating solutions members over dominated ones. This fitness

function also requires a fitness scaling factor κ that depends on the indicator being used and the

MOP. The IB-ES, decribed in lines 6 to 10, is a greedy algorithm that deletes at each iteration the

solution having the minimal fitness value while |Q | > µ. To illustrate the effectiveness of IBEA, its

authors proposed the IBEAHV that uses a binary hypervolume indicator. IBEAHV was compared to

NSGA-II [24] and SPEA2 [124] on the 100-item 0/1 knapsack problem and the low-dimensional

continuous MOPs: ZDT6, DTLZ2, DTLZ6 and Kursawe (KUR) [20]. IBEAHV outperformed NSGA-II

in almost all MOPs. Interestingly enough, however, the bi-objective KUR problem, which has a

disconnected and a concave Pareto front, was the most challenging problem for IBEAHV.

An important disadvantage of IBEA is related to the κ parameter which is dependent on the

MOP and the indicator employed. Regarding this drawback, IBEA2 [58] was proposed to adaptively

adjust parameter κ. This adaptive mechanism looks for the best κ parameter using the Nelder-Mead

method where the objective function is defined as a similarity measure between two sets: one

produced by the IB-ES of IBEAHV and another one using a density estimator based on HV [60].

IBEA2 was tested on the benchmarks ZDT, DTLZ andWFG for 2 to 5 objective functions, comparing
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Table 1. IB-Environmental Selection mechanisms. The algorithmic structure of the IB-ES is termed as ‘Algo-
rithmic approach’ while ‘Method’ indicates what kind of information is employed to select the solutions. For
each approach, we show the test problems and the number of objective functions on which the IB-MOEA
was tested on.

Indicator Algorithm Algorithmic
approach Method Problems # Objetives Year Ref.

HV

IBEAHV Greedy Fitness assignment ZDT, KUR, DTLZ 2 & 3 2004 [122]

Iterative-IBEA Greedy Fitness assignment

500-item 0/1

Knapsack problem

2 - 4 2007 [54]

iSMS-EMOA Greedy Worst contribution DTLZ & WFG 3 - 6 2013 [78]

DIVA Greedy Fitness assignment WFG 2 2014 [101]

IBEA2 Greedy Fitness assignment ZDT, DTLZ, WFG 2 - 5 2016 [58]

mIBEA Greedy Fitness assignment DTLZ 3 2017 [72]

aviSMS-EMOA Greedy Worst contribution DTLZ & WFG 3 - 6 2017 [81]

R2

R2-MOGA Hierarchical Worst contribution ZDT, DTLZ, WFG 2 - 10 2013 [26]

R2-MODE Hierarchical Worst contribution ZDT, DTLZ, WFG 2 - 10 2013 [26]

R2-IBEA Greedy Fitness assignment ZDT & DTLZ 2 - 5 2013 [102]

MOMBI Hierarchical

Scalarizing function

optimization

DTLZ & WFG 2 - 8 2013 [43]

MOMBI-II Hierarchical

Scalarizing function

optimization

DTLZ & WFG 3 - 10 2015 [44]

TS-R2EA Hierarchical

R2 contribution

and fitness assignment

DTLZ & WFG 3 - 15 2018 [67]

R2-MOEA/D Decomposition Worst contribution DTLZ & WFG 3 - 15 2018 [68]

IGD
+ IGD

+
-EMOA

Linear Assignment

Problem

Kuhn-Munkres

algorithm

DTLZ & WFG 2 - 8 2015 [76]

IGD
+
-EMOA II

Linear Assignment

Problem

Kuhn-Munkres

algorithm

DTLZ, WFG,

MAF, Viennet

2 - 8 2018 [77]

GD

GD-MOEA Greedy

Minimize distance

to PF
∗ DTLZ, WFG 3 - 6 2015 [79]

GDE-MOEA Greedy

Minimize distance to

PF
∗
and ϵ dominance

DTLZ, WFG 3 - 6 2015 [80]

ϵ+

IBEAϵ+ Greedy Fitness assignment

ZDT6, KUR,

DTLZ2, DTLZ6

2 - 3 2004 [122]

AGE Greedy Worst contribution DTLZ 2 - 20 2011 [12]

AGE-II Greedy Worst contribution DTLZ, WFG 2 - 20 2013 [109]

Two_Arch2 Greedy Fitness assignment DTLZ, WFG 2- 20 2014 [110]

∆p
∆p -DDE Greedy Worst contribution ZDT, DTLZ 2 - 10 2012 [87]

∆p -MOEA

Greedy

Hierarchical

Minimize point-to-set

distance

WFG 3 - 6 2016 [82]

its performance to NSGA-II, SPEA2, MOEA/D and IBEAHV in terms of HV. Based on the analysis

of the experimental results, IBEA2 is a very good optimizer for MOPs whose Pareto fronts are

linear, concave and degenerated. However, it has low performance when tackling MOPs having

disconnected, mixed and multifrontal Pareto fronts. Additionally, the results show that due to the

use of the adaptive mechanism, IBEA2 is better than IBEAHV in most of the test problems adopted.

Another improvement of the IBEA framework is the modified IBEA (mIBEA), proposed by Li et
al. [72]. Its main motivation was to improve the bad distribution of points generated by IBEAHV. To

this aim, the authors hybridized the IBEA framework with the non-dominated sorting algorithm

to exclude dominated solutions at each generation. Due to this modification, the scaling of the

objective functions scores is no longer affected by dominated solutions which are far away from

the best non-dominated solutions. The uniformity and convergence analysis of solutions showed

that mIBEA performs better than IBEAHV. However, the authors did not show an exhaustive

performance analysis with respect to other state-of-the-art MOEAs.
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In 2007, Ishibuchi et al. [54] proposed the Iterative-IBEA
6
that produces at each execution a

single solution to maximize the HV value. In other words, it iteratively constructs the final solution

set S . At execution k , Iterative-IBEA uses HV(S (k−1) ∪ {u⃗}) as its fitness function (where S (k−1) is
the solution set generated in the previous execution, thus, |S (k−1) | = k − 1). The IB-ES computes

the fitness values of the (µ + λ) solutions and deletes the worst λ individuals. If we want an Pareto

front approximation of size N , we have to execute Iterative-IBEA the same number of times which

implies a high-computational cost due to the use of the hypervolume indicator. This IB-MOEA was

only compared to NSGA-II on the 500-item 0/1 knapsack problem for 2, 3 and 4 objective functions.

Ulrich et al. [101] proposed the Diversity Integrating Hypervolume-based Search Algorithm

(DIVA) that combines a decision space diversity measure and HV into one single set measure, where

the trade-off between the two measures is tunable. DIVA employs a greedy environmental selection

that aims to remove the worst contributing solutions to HV to obtain the best µ solutions out of

a set of (µ + λ) individuals. DIVA was tested on the WFG test suite for two objective functions.

Experimental results showed that DIVA significantly improves diversity compared to HypE [4] (see

Section 4.2.2) due to the integration of the diversity measure into HV. However, its main drawback is

related to the high computational cost associated with both HV and the diversity measure adopted.

Since the main limitation of the above-mentioned proposals is the expensive calculation of HV,

Menchaca-Mendez and Coello Coello [78] proposed an IB-ES that exploits the locality property of

HV.
7
This approach, called iSMS-EMOA, generates at each generation one offspring solution that

must compete, regarding its HV contribution, with its nearest neighbor in objective space and r ≥ 1

randomly chosen solutions from the population (they set r = 1). In consequence, it only needs

to compute r + 2 HV contributions instead of handling the whole population. iSMS-EMOA was

compared to SMS-EMOA and HypE on the DTLZ test suite for 3 to 6 objective functions, regarding

HV. The stopping criterion of all MOEAs was 50,000 function evaluations or a maximum of four

hours of running time (since SMS-EMOA computes the exact HV, it is very time-consuming for

many-objective problems). For 3 and 4 objectives, iSMS-EMOA presented a competitive performance

compared to SMS-EMOA. However, for 5 and 6 objective functions, iSMS-EMOA completely

outperformed the adopted MOEAs since they ran out of running time. Hence, iSMS-EMOA can be

considered as a promising approach for solving MaOPs due to its less expensive IB-ES while still

relying on the nice mathematical properties of HV.

Finally, in 2017, the same authors proposed an improvement of iSMS-EMOA. denoted as approxi-

mate version of the improved SMS-EMOA (aviSMS-EMOA) [81]. The idea of aviSMS-EMOA is to

combine the selection scheme of iSMS-EMOA with a recently proposed mechanism to approximate

the hypervolume contributions with a minimal error [10]. Due to the exploitation of the locality

property and the mechanism to approximate HV contributions, aviSMS-EMOA is able to balance

the quality of the outcome set and the running time required to obtain it. In its experimental

results, considering the DTLZ and WFG test suites, aviSMS-EMOA was able to outperform both

iSMS-EMOA and HypE. However, SMS-EMOA obtained better results since it employs the exact

calculation of the hypervolume, but if the trade-off between computational cost and quality is taken

into account, then aviSMS-EMOA is a very competitive alternative to the use of SMS-EMOA.

R2. In 2013, Phan and Suzuki [102] proposed R2-IBEA following the scheme of IBEA (see Al-

gorithm 2) but adopting a binary version of R2. Additionally, the authors suggested two new

mechanisms. First, a hypervolume-based weight vector generation approach that uniformly dis-

tributes the weight vectors required by R2, aiming to maximize HV. Additionally, they proposed

6
Although this MOEA is called IBEA, it does not follow the IBEA framework of Algorithm 2.

7
For two dimensions, “given three consecutive points on the Pareto front, moving the middle point will only affect the HV

contribution that is dedicated to this point, but the joint HV contribution remains fixed” [3].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:14 Falcón-Cardona and Coello Coello

ALGORITHM 2: IBEA general framework

Input: Fitness scaling factor κ
Output: Pareto front approximation

1 Randomly initialize population P of size µ;

2 while stopping criterion is not fulfilled do
3 Create the set O of λ offspring solutions;

4 Q ← P ∪O ;

5 fitness(x⃗ ) =
∑
y⃗∈Q\{x⃗ } −e

−I ( {y⃗ }, {x⃗ })/κ ,∀x⃗ ∈ Q ;

6 while |Q | > µ do
7 x⃗min ← argminx⃗ ∈Q fitness(x⃗ );

8 Q ← Q \ {x⃗min};

9 Update fitness values of all individuals in Q ;

10 end
11 end
12 return P

an adaptive reference point adjustment mechanism that aids R2-IBEA to reduce the bias of the

R2 indicator to prefer the knee of the Pareto front therefore promoting the generation of uniform

solutions. The performance of R2-IBEA was examined on MOPs from the ZDT and DTLZ test suites

(using 3 and 5 objectives), using the HV, GD, IGD and ϵ+ indicators and it was compared with

Pareto-based, indicator-based and decomposition-basedMOEAs. Although R2-IBEA had remarkable

results in almost all problems in terms of convergence and diversity, it is worth emphasizing its

poor performance on multifrontal MOPs, i.e., ZDT4 and DTLZ3 for 2 and 3 objective functions,

respectively. For 5-dimensional problems, R2-IBEA obtained the best HV value in problems DTLZ1,

DTLZ3, DTLZ4 and DTLZ7. However, the authors did not test their proposal on degenerated

problems (DTLZ5 and DTLZ6).

In the same year, Díaz-Manríquez et al. [26] proposed a hierarchical IB-ES similar to the non-

dominated sorting scheme of NSGA-II. However, instead of computing ranks of non-dominated

solutions, they suggested the creation of ranks of contributing solutions to the R2 indicator. The first
layer contains solutions that do contribute to R2; then, these solutions are temporarily removed and

a new layer is generated. This process continues until there are no more solutions left. The authors

embedded this IB-ES into two search engines: a genetic algorithm and a differential evolution

algorithm, giving rise to the R2-Multi-Objective Genetic Algorithm (R2-MOGA) and the R2-Multi-

Objective Differential Evolution (R2-MODE). Both proposals were compared to NSGA-II, MOEA/D

and SMS-EMOAon the ZDT, DTLZ, andWFG test suites using 2 and 3 objective functions. According

to their HV results, R2-MOGA and R2-MODE had a poor performance on these MOPs. Additionally,

the authors experimented on MaOPs, comparing R2-MOGA and R2-MODE to SMS-EMOA and

HypE using the HV indicator. They employed the DTLZ1-DTLZ4 test instances with 4 to 10

objective functions. These results indicated that their two proposals were competitive with respect

to SMS-EMOA and HypE regarding HV. Additionally, the proposed approaches outperformed the

HV-based MOEAs adopted in the comparison in terms of computational time.

Hernández Gómez and Coello Coello [43] proposed the R2-ranking algorithm which is similar to

the one previously described. However, instead of creating ranks of R2-contributing solutions, this

approach identifies solutions that optimize the set of utility functions involved in the definition of

R2. This selection mechanism was implemented in the Many-Objective Metaheuristic Based on the

R2 Indicator (MOMBI). The authors adopted the DTLZ and WFG test suites in their experiments,

assessing the performance of MOMBI, MOEA/D, and SMS-EMOA in terms of HV using MOPs
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with 2 to 8 objective functions. From the results, it is evident that MOMBI outperformed the other

MOEAs on the multifrontal MOPs and those having disconnected and mixed Pareto front shapes,

such as DTLZ7 and WFG1, respectively. However, MOMBI was outperformed by the other MOEAs

on degenerated MOPs (DTLZ5, DTLZ6, and WFG3) and concave MOPs (DTLZ2 and WFG4-WFG9).

Regarding concave MOPs, the distribution of points generated by MOMBI was strongly biased

towards the knee of the Pareto front due to the adoption of the weighted Tchebycheff utility function

(WTCH). Additionally, a running time analysis showed that MOMBI was less computationally

expensive than SMS-EMOA and that it was slightly more costly than MOEA/D.

In furtherance of solving the distribution bias of MOMBI, the same authors proposed MOMBI-II

[44] that uses the achievement scalarizing function (ASF) instead of WTCH, where the former

promotes a more uniform distribution of points. Additionally, MOMBI-II employs a mechanism to

statistically estimate the nadir point that is needed to normalize the population. MOMBI-II was

tested on one linear MOP (DTLZ1) and 5 concave MOPs (DTLZ2-DTLZ4, WFG6 and WFG7) using

3 and 5 objective functions and it was compared to numerous MOEAs, using the indicators HV and

∆p . The results show that due to the use of ASF, MOMBI-II produces evenly distributed solutions

in the considered MOPs, outperforming all of the adopted MOEAs. However, the authors did not

test MOMBI-II in MOPs having complicated Pareto fronts such as DTLZ5, DTLZ6, WFG3 nor in

MOPs having degenerated or disconnected Pareto fronts such as DTLZ7 and WFG2.

In recent years, some studies have emphasized that MOEAs using a set of convex weight vectors,
8

using, for example, the Simplex Lattice Design method [118], may lose diversity when solving

MaOPs [23, 44]. This is the case of all the above mentioned R2-based MOEAs (except for R2-IBEA).

In consequence, Li et al. [67] have enhanced the diversity management of the R2 environmental

selection mechanisms by taking advantage of the Reference Vector guided Evolutionary Algorithm

(RVEA) [16]. This selection mechanism first divides the population into contributing and non-

contributing solutions to the R2 indicator, keeping the contributing ones. If the next population
is not complete, the remaining solutions are selected from the non-contributing ones, enhancing

diversity with the RVEA mechanism that clusters the population into different subregions where a

weight vector defines each subregion. Then, the idea is to avoid deleting solutions from isolated

subregions, i.e., to remove solutions from the most crowded subregions. The proposed approach,

called Two-Stage R2 Evolutionary Algorithm (TS-R2EA), was mainly compared to MOMBI-II and

RVEA on the DTLZ and WFG test suites for 3 to 15 objective functions, using the HV and IGD
+

indicators. Statistically, TS-R2EA had a better performance on MaOPs with more than 10 objective

functions and on multifrontal problems such as DTLZ1. However, it did not show good results

when tackling test problems with irregular Pareto fronts, namely, WFG1, WFG2 and WFG3 which

have mixed, disconnected and degenerated Pareto front geometries.

In 2018, Li et al. [68] proposed an environmental selection mechanism that combines the R2
indicator with the decomposition strategy of MOEA/D [118]. The motivation of this algorithm

(called R2-MOEA/D) is that in some cases a simple R2 selection strategy may lose the diversity of

solutions in objective space. Based on the set of weight vectors required by R2, the authors defined
subspaces where the solutions are assigned depending on their proximity to each weight vector.

Instead of using the scalarizing values for each solution as in MOEA/D, R2-MOEA/D assigns to

each solution its contribution to R2. The underlying idea of this hybrid selection scheme is to avoid

deleting solutions from isolated subregions even if the pure R2 selection mechanism aims to do it. In

this way, a better diversity of solutions is promoted. To the authors’ best knowledge this is the first

approach that combines an IB-Mechanism with a decomposition strategy. Compared to MOMBI-II,

R2-MOEA/D produces better results regarding the ∆p indicator that assesses convergence and

8
A vector w⃗ is a convex weight vector if and only if

∑m
i=1wi = 1 and ∀i ∈ {1, . . . ,m }wi ≥ 0.
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diversity simultaneously. However, due to the use of convex weight vectors, it is likely that the

performance of R2-MOEA/D strongly depends on specific Pareto front shapes [53].

IGD+. Manoatl and Coello Coello introduced the IGD
+
-EMOA which is the only algorithm

currently available (to the authors’ best knowledge) that uses an environmental selection based

on IGD
+
[76]. It transforms the selection process into a Linear Assignment Problem (LAP) such

that the best relationship between the reference set and the population is found from the modified

Euclidean distance of IGD
+
. The authors proposed to use the Kuhn-Munkres’ algorithm to solve

the LAP. The reference set is a crucial aspect of IGD
+
-EMOA. Manoatl and Coello Coello proposed

the construction of this set using γ -superspheres [29] to approximate convex, linear or concave

geometries of the Pareto front. A γ -supersphere is a type of curve defined as: {(y1, . . . ,ym ) ∈
Rm+ | y

γ
1
+ · · · +y

γ
m = 1}, where γ ∈ Rm+ is a parameter that controls the geometry of the curve. The

authors proposed to find the value of γ by solving a root-finding problem using Newton’s method.

However, due to the limitation of geometries that can be approximated using this strategy, IGD
+
-

EMOA cannot properly solve MOPs having degenerated and disconnected Pareto front shapes.

IGD
+
-EMOA II [77], proposed by the same authors, aims to solve the problem of the previous

version with difficult Pareto front shapes. Its main contribution is a new method to generate the

reference set. This mechanism employs an external archive of non-dominated solutions from which

certain ones are selected to be part of the reference set based on their contribution to the hypercube

(a concept closely related to the hypervolume). Regarding the experimental results, it is confirmed

that the HV-based strategy to build the reference set allows IGD
+
-EMOA II to solve MOPs having

complex Pareto front shapes, for example, the Viennet problems [106] and the MAF test suite [17],

making it a very versatile multi-objective optimizer.

GD. Menchaca and Coello Coello [79] proposed the Generational Distance-based Multi-Objective

Evolutionary Algorithm (GD-MOEA) that employs an environmental selection scheme based on GD.

However, since GD only promotes convergence leaving aside diversity, the authors introduced a

mechanism based on Euclidean distances that compensates for this deficiency. At each iteration, the

population is divided into non-dominated and dominated solutions. In case that we have less than

µ non-dominated solutions, the remaining solutions are selected from the dominated ones using a

GD-based environmental selection mechanism in which the non-dominated individuals represent

the reference set. The IB-DE aims to choose the nearest dominated solutions to the reference set,

diversifying the set by analyzing its nearest neighbors. If the number of non-dominated solutions

is greater than µ, then the diversity mechanism is applied. GD-MOEA was compared to MOEA/D

and HypE on the DTLZ and WFG test suites using 3 to 6 objective functions, and adopting the

hypervolume indicator. The results reported by the authors showed that HypE outperformed

GD-MOEA in 75% of the test problems and the latter outperformed MOEA/D in 67% of the MOPs.

It is worth noting that GD-MOEA had difficulties to solve multifrontal MOPs such as DTLZ1 and

DTLZ3. We can only distinguish a good performance of GD-MOEA on problems DTLZ7 and WFG7

for high-dimensional objective spaces. Regarding running time, GD-MOEA is 168 times faster than

HypE and 1.46 times slower than MOEA/D.

Menchaca et al. [80] found that the diversitymechanism of GD-MOEA did not sufficiently increase

the selection pressure when tackling MaOPs. Thus, they replaced the old diversity mechanism

with one based on the ϵ-dominance
9
whose aim is to uniformly distribute solutions among the

hypercubes produced by this dominance relation. The new algorithm, called GDE-MOEA, controls

the ϵ value that divides objective function space. To validate the performance of GDE-MOEA,

9
Given u⃗, v⃗ ∈ Rm and ϵ > 0, u⃗ is said to ϵ -dominate v⃗ (denoted by u⃗ ≺ϵ v⃗ ) if for all i = 1, . . . ,m ui ≤ (vi + ϵ ) and
∃j ∈ {1, . . . ,m } : ui < (vi + ϵ ).
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the authors employed the same experimental setup of GD-MOEA and this algorithm was also

included. From the results, it is clear that GDE-MOEA is a bad option for MOPs similar to DTLZ1

and DTLZ2 since in all cases it was outperformed by the adopted MOEAs. However, with respect

to HV, GDE-MOEA was an outstanding optimizer for disconnected problems such as DTLZ7 and

WFG2 in which it consistently obtained the best results. In general, GDE-MOEA had better results

than GD-MOEA and MOEA/D. Unlike GD-MOEA that was outperformed by HypE, GDE-MOEA

had a competitive performance with respect to this HV-based MOEA.

ϵ+ϵ+ϵ+. When Zitzler and Künzli proposed the IBEA framework (see Algorithm 2), they also showed

the effectiveness of the binary ϵ+ indicator in its selection mechanism, giving rise to IBEAϵ+

[123]. The experimental scenario was the same as that of IBEAHV’s. However, IBEAϵ+ performed

significantly better on the problem DTLZ6 which is a degenerated MOP that other MOEAs cannot

properly solve because of the generation of numerous weakly dominated solutions.

The Approximation-Guided EvolutionaryMulti-Objective Optimizer (AGE) [12] employs a greedy

environmental selectionmechanism that reduces the population size based on theworst contribution

to the ϵ+ indicator.10 An external archive that stores non-dominated solutions is employed as the

reference set. AGE does not need additional parameters, unlike IBEAϵ+ . Furthermore, the authors

proposed a fast method to reduce the number of calculations related to the greedy selection

mechanism. AGE was comprehensively tested on four MOPs of the DTLZ test suite, varying the

number of objective functions from 2 to 20. Experimental results showed that AGE does not perform

well on MOPs having 2 and 3 objective functions and it is competitive in MaOPs with respect to

SMS-EMOA, IBEAHV and NSGA-II.

Wagner and Neumann proposed AGE-II [109] that tackles the two main limitations of AGE. First,

AGE adopts an unbounded external archive whose update rule is solely based on Pareto dominance,

slowing down its execution time. In contrast, AGE-II uses a bounded external archive adopting ϵ
dominance in the update rule. However, this introduces the need for a parameter ϵgrid for the ϵ
dominance. To improve performance in MOPs with 2 and 3 objective functions, AGE-II proposes

a crowding distance-based parent selection that aims to maintain a diverse genetic material for

the variation operators. Experimental results based on HV showed that AGE-II outperforms its

predecessor, AGE, for MOPs in low- and high-dimensional objective space. Additionally, under time

constraints, AGE-II is also able to be competitive or even get better results than SMS-EMOA and

IBEAHV. AGE-II presented remarkable results for multifrontal problems, i.e., DTLZ1 and DTLZ3.

The Two Archive algorithm 2 (Two_Arch2) [110] is a hybrid MOEA that uses two subpopulations,

one dedicated to maintain convergence and the other to preserve diversity. Two_Arch2 was

especially designed to tackle MaOPs. To this purpose, the convergence subpopulation is updated

based on the ϵ+ indicator, using the scheme of IBEAϵ+ . The current solutions of the convergence

subpopulation and the non-dominated solutions from the newly created offspring are merged into

a single temporary population Q . If Q exceeds its maximum allowable size, a greedy selection

is performed by calculating the fitness values of all solutions, using the equation on Line 5 of

Algorithm 2 with κ = 0.05. The solution with the lowest fitness value is removed and, then, all

fitness values are updated. This process continues until Q reaches its maximum size. The other

subpopultion of Two_Arch2 aims to maintain diversity by using an update rule based on a L1/m
norm, where m is the number of objective functions. Both subpopulation interact to produce

a Pareto front approximation with both convergence and diversity properties. Two_Arch2 was

tested on MOPs from the DTLZ and WFG benchmarks, varying the number of objective functions

from 2 to 20. The performance of Two_Arch2 was compared with respect to IBEAϵ+ and AGE-II,

outperforming both algorithm in low- and high-dimensional MOPs.

10
In the original paper, the authors denoted the ϵ+ indicator as the α indicator.
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∆p∆p∆p . In 2012, Rodríguez Villalobos and Coello Coello [87] proposed to use the ∆p indicator in a

selection mechanism coupled to differential evolution, giving rise to the ∆p -DDE algorithm. The

selection method used in this case is a greedy algorithm that removes the worst contributing

solutions. Since ∆p is based onGDp and IGDp , the authors decided to give more importance to the

latter because it rewards both convergence and distribution while the former is specifically focused

on convergence. Hence, when the individual ∆p contributions of all solutions are computed, the

first criterion to check is the IGDp contribution. It is worth noting that unlike other IB-MOEAs

using a greedy strategy, ∆p -DDE only needs to compute all contributions once and then it identifies

the best µ solutions. In consequence, this reduces its computational cost. Regarding the reference

set, it is constructed by fitting the current non-dominated points of the population into a frame

formed by the approximations to the ideal and nadir points, uniformly distributing the points using

a distance measure. Regarding HV results on the ZDT and DTLZ test suites, ∆p -DDE produced poor

solution sets for discontinuous problems (such as DTLZ7 and ZDT3) and the degenerated DTLZ5

and DTLZ6 problems. However, it had outstanding results when tackling multifrontal problems

such as DTLZ1 and DTLZ3. Unfortunately, ∆p -DDE was not exhaustively tested on MaOPs, and

the authors only considered the many-objective version of DTlZ2 in which SMS-EMOA obtained

better results than ∆p -DDE.

In a further paper, Menchaca et al. designed the ∆p -selection mechanism that was integrated into

the ∆p -MOEA [82]. Unlike ∆p -DDE which prefers to use IGDp for selection, ∆p -MOEA switches

between IGDp and GDp to select solutions, depending on which of these two QIs best assesses the

population. The GDp -selection is the same as GDE-MOEA. The IGDp -based environmental selection

is similar to the non-dominated sorting mechanism of NSGA-II but considering the proximity of

the solutions to the reference set. Concerning the reference set, it is constructed using the non-

dominated solutions and ϵ dominance to assign each solution to a certain hypercube. ∆p -MOEAwas

compared to MOEA/D and HypE on the WFG test suite using 3 to 6 objective functions, adopting

HV and ∆p as QIs. ∆p -MOEA outperforms both MOEAs, only showing poor results for WFG1

whose Pareto front is mixed (i.e., it combines convex and concave shapes). Additionally, ∆p -MOEA

performs better on discontinuous MOPs such as WFG2 where ∆p -DDE fails. It is worth noting that

even ∆p -MOEA has better results than GD-MOEA and GDE-MOEA.

Discussion. Due to its strong mathematical properties, the hypervolume seems to be the best

option to design environmental selection schemes. It has been proved that the maximization of the

HV is related to finding the Pareto optimal set [36]. However, its high computational cost is a critical

drawback. From Table 1, we observe that none of the HV-ES performs a hierarchical selection; as a

matter of fact, all of them are greedy algorithms. The lack of HV-based hierarchical mechanisms is

related to the complexity of the hypervolume subset selection problem (HSSP) which is NP-hard

[11]. The solution of the HSSP would allow us to find a subset of solutions that maximizes the HV

value. However, there is no polynomial-time algorithm able to solve the HSSP unless P = NP. Due

to the computational limitations involved, greedy strategies have to be implemented. Nevertheless,

Bradstreet et al. [9] claim that a greedy strategy does not always produce the desired results.

From the HV-selection mechanisms presented before, the one implemented in iSMS-EMOA and

aviSMS-EMOA should be strongly considered. The key aspect of both IB-MOEAs is to exploit the

locality property of HV to reduce the number of times the HV-contribution is computed. These

algorithms considerably reduce the computational time with respect to the other proposals without

sacrificing the quality of the generated approximation in a significant way.

Other indicators have been employed to avoid the drawbacks of the HV. The R2 indicator is a
remarkable option because of its weak Pareto compliance. MOMBI-II and TS-R2EA are perhaps

the best R2-based algorithms currently available. However, since all R2-based MOEAs need to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Indicator-based Multi-Objective Evolutionary Algorithms 1:19

Table 2. IB-Density Estimators. The ‘Method’ determines how the solutions are selected. For each IB-MOEA,
it is shown in which problems it has been tested on as well as the number of objectives adopted in each case.

Indicator Algorithm Method Problems # Objectives Year Ref.

HV

ESP Worst contribution ZDT 2 2003 [47]

SIBEA Worst contribution ZDT 2 2007 [119]

SMS-EMOA Worst contribution ZDT & DTLZ 2 & 3 2007 [6]

MO-CMA-ES Worst contribution ZDT & FON 2 2007 [48]

SMS-EMOA-Apr

HV contribution

using ASF-based

approximation

DTLZ 3 & 6 2010 [56]

HypE HV approximation

DTLZ, WFG

knapsack problem

2, 3, 5, 7,

10, 25, 50

2011 [4]

FV-MOEA Worst contribution ZDT, DTLZ, WFG 2 - 5 2015 [60]

I-SIBEA Worst contribution ZDT & DTLZ 2 & 3 2015 [18]

R2 R2-EMOA Worst contribution ZDT, DTLZ 2 2015 [14]

IGD
+

IGD
+
-MaOEA Worst contribution DTLZ & DTLZ

−1
3 - 7 2018 [33]

IGD

MyO-DEMR Worst contribution DTLZ

2, 3, 5, 8,

10, 15, 20

2013 [25]

MOEA/IGD-NS Worst contribution ZDT & DTLZ 2 - 3 2016 [98]

MaOEA/IGD

Linear Assignment

Problem

DTLZ & WFG 8, 15, 20 2018 [94]

AR-MOEA Worst contribution

DTLZ, DTLZ
−1
,

WFG, MAF

3, 5, 10 2018 [97]

∆p RIB-EMOA Worst contribution DTLZ 3 - 10 2014 [117]

be supplied a set of convex weight vectors, that forms an (m − 1)-simplex, in order to define the

utility functions and to maintain diversity. This requirement is indeed its main drawback. As the

dimensionality of the objective space increases, the number N of weight vectors increases in a

combinatorial fashion, i.e., N = Ch+m−1
m−1 , where h is an integer parameter [13, 69]. Maintaining a

relatively small N in MaOPs affects the number of intermediate vectors in the simplex. A two-layer

set of weight vectors has been used to overtake this last issue [23]. Another important problem

related to the set of weight vectors is a possible overspecialization on Pareto fronts that are strongly

coupled with these vectors [53]. Regarding ϵ+, ∆p , GD and IGD
+
, their performance is strongly

related to the way in which the reference set is built [51]. Each approach proposes a different way

to define the reference set. However, from the experimental results, the method to construct the

reference set of IGD
+
-EMOA II seems the best option currently available since it is based on a

HV-based method which is less computationally expensive. Its usage allows IGD
+
-EMOA II to

solve problems having complex Pareto front shapes which directly tackles the problem stated by

Ishibuchi et al. [53].

4.2.2 IB-Density Estimation.

HV. In 2007, Beume et al. introduced the S-Metric Selection Evolutionary Multiobjective Op-

timization Algorithm (SMS-EMOA) [6] which is a steady-state
11

version of NSGA-II, in which

the density estimator originally based on crowding distance is replaced by one that removes the

least HV-contributing solution. Algorithm 3 provides the general framework of SMS-EMOA. At

each generation, the union set P ∪ {a⃗new} (where a⃗new is the newly created solution and P is the

11
It implements a (µ + 1)-selection scheme.
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ALGORITHM 3: SMS-EMOA general framework

Output: Pareto front approximation

1 Randomly initialize population P of size µ;

2 while stopping criterion is not fulfilled do
3 Create a new offspring solution a⃗new;

4 Q ← P ∪ {a⃗new};

5 {R1, . . . ,Rk } ← non-dominated sorting(Q );

6 if |Rk | > 1 then
7 zmax

i ← maxq⃗∈Q fi (q⃗),∀i = 1, . . . ,m;

8 q⃗worst ← argminq⃗∈Rk HV (Q, z⃗max) − HV (Q \ {q⃗}, z⃗max);

9 else
10 q⃗worst is equal to the sole solution in Rk ;

11 end
12 P ← Q \ {q⃗worst};

13 end
14 return P

population) is categorized in layers or ranks {R1,R2, · · · ,Rk } using the Pareto dominance relation

(see line 5). If Rk has more than one solution, then we need to delete in line 8 the solution q⃗worst
that has the least HV contribution (this is the HV-based density estimator). In case Rk has one

solution, this one is eliminated since it is the worst solution regarding Pareto dominance. Due

to the mathematical properties of HV, SMS-EMOA can theoretically solve any MOP, producing

convergent and uniformly distributed solutions along the Pareto front (although it prefers the

Pareto front knee since solutions in this part of the front have a more substantial HV contribution).

An essential aspect of SMS-EMOA is that it can solve MOPs whose Pareto front is degenerated

such as DTLZ5, DTLZ6, and WFG3, which are very difficult for other MOEAs, including IB-MOEAs.

However, it has some drawbacks. First, when solving MaOPs the number of ranks tends to one,

forcing SMS-EMOA to calculate the HV contributions of the whole population which implies an

additional computational cost to the already expensive calculation of HV in high-dimensional

objective spaces. Recently, it has been empirically shown that the reference point employed by HV

is dependent on the MOP and its geometry [49, 50]. This has a severe impact on the performance

of HV-based MOEAs.

Although SMS-EMOA is the most remarkable HV-based MOEA, the underlying idea of its density

estimator had been previously presented by Huband et al. in 2003 in their Evolution Strategy with

Probabilistic Mutation (ESP) algorithm [47]. The only difference between SMS-EMOA and ESP is

that the latter is a (µ+λ)-Evolution Strategy (ES) which implies that the HV-based density estimator

has to compute much more HV contributions than the HV-based density estimator of SMS-EMOA.

This is a critical aspect that avoids the use of ESP and that is why all HV-based proposals employ a

steady-state scheme. ESP was compared to a variety of other MOEAs, outperforming them on the

ZDT test suite due to the use of its HV-based density estimator.

Igel et al. [48] proposed the Multi-Objective Covariance Matrix Adaptation Evolution Strategy

(MO-CMA-ES) that uses two types of density estimators: one adopting crowding distance (as

NSGA-II) and another one which is the same as that adopted in SMS-EMOA and ESP. A steady-state

MO-CMA-ES was tested on the ZDT test suite and the Fonseca problem (FON) [20], obtaining

similar results to SMS-EMOA.

On the other hand, Zitzler et al. [119] defined the weighted HV indicator which allows the user

to incorporate preferences through a set of weight vectors (as R2-based MOEAs do), preserving the
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Pareto compliance of the original HV indicator. A density estimator based on this weighted HV was

integrated into the NSGA-II framework that performs a (µ + λ)-selection scheme, giving rise to the

Simple Indicator-Based Evolutionary Algorithm (SIBEA). Due to the incorporation of preferences,

SIBEA can focus the search on a specific region of the objective space and it can circumvent the bias

towards the knee of the Pareto front that is related to traditional HV-based mechanisms. However,

SIBEA is restricted to bi-objective MOPs due to the mathematical definition of the weighted HV

that makes it computationally expensive. Additionally, due to the (µ + λ)-selection scheme, the

execution of SIBEA is very time-consuming even for bi-objective MOPs.

Due to the high computational cost of the hypervolume, some authors have proposed its approx-

imation. Bader and Zitzler [4] proposed the Hypervolume Estimation Algorithm for Multiobjective

Optimization (HypE). HypE uses Monte Carlo sampling with the aim of approximating the HV

contributions. The authors stated that “the main idea is that the actual indicator values are not

important, but rather the rankings of solutions induced by the hypervolume indicator” [4]. HypE

is a (µ + λ)-EA that works under the same framework of NSGA-II. It is worth noting that HypE

uses the exact HV contribution for two and three dimensions of the objective space and, in case of

MaOPs, it employs the approximation. Additionally, the quality of the solution set is sensitive to

the number of samples that the Monte Carlo method adopts. Although the quality of the solutions

is a bit lower than those of SMS-EMOA, the computational cost of HypE in MaOPs is considerably

lower. HypE was compared to NSGA-II, SPEA2 and IBEAHV on the DTLZ and WFG test suites using

2, 3, 5, 10, 25 and 50 objective functions. According to the hypervolume results, HypE performs

better than the adopted MOEAs which implies that the approximation of the ranks produced by

HV allows an MOEA to get good results.

Ishibuchi et al. [56] proposed an HV approximation approach based on the use of achievement

scalarizing functions (ASFs) [85]. They decided to use ASFs because: (1) they have shown to

be effective when solving MaOPs, and (2) the accuracy and computational load can be adjusted

through the number of weight vectors employed. The idea of the approximation is to measure

the distance from the reference vector employed by HV to the solution set using the ASFs. This

approximation method was incorporated into SMS-EMOA, giving rise to SMS-EMOA-Apr. The

authors claim that this new approach drastically decreased the runtime of SMS-EMOA. Furthermore,

they observed that the use of an approximation to HV does not severely deteriorate the quality of

the solutions produced. However, SMS-EMOA-Apr was only tested in DTLZ1 and DTLZ2, leaving

aside MOPs with interesting properties. It is worth noting that the accuracy of this approximation

method strongly depends on the number of weight vectors. As the dimensionality of the objective

space increases, it would be necessary to provide even more weight vectors than those commonly

employed by R2-based MOEAs which will increase the runtime of the algorithm.

In 2015, Jiang et al. [60] presented the Simple and Fast Hypervolume Indicator-Based MOEA (FV-

MOEA). The main contribution of this work is a new method to update the exact HV contributions

of different solutions based on the locality property of HV. The IB-density estimator using this fast

HV calculation was incorporated into the NSGA-II framework. Experimental results confirmed the

superiority of FV-MOEA regarding HV as well as its lower cost with respect to SMS-EMOA and

IBEAHV. The distribution of points is similar to other HV-based MOEAs. A possible drawback of

FV-MOEA is that the locality property is well-defined for the two-objective case, while it is not

entirely stated form > 2 objectives.

Finally, the Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA), introduced

by Chugh et al. [18], is an interactive MOEA [83], i.e., it asks the decision maker (DM) to provide

preference information throughout the evolutionary process. I-SIBEA uses a density estimator

based on the weighted HV to reduce the population size, and it collects data from the decision

maker, related to preferred and non-preferred solutions. Since I-SIBEA is an interactive MOEA, it
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asks for preference information through the search process. Due to this interaction, the solution

process of I-SIBEA could be complicated, especially when the decision maker does not have a

clear idea of his preferences. However, focusing the search on some areas of the objective space

could be beneficial when solving MaOPs because of the reduction of the search space. Additionally,

the DM can decide how many times s(he) wants to interact with the algorithm and how many

solutions s(he) wants to compare while interacting. Therefore, the DM does not need to compare

more solutioms than s(he) is able to consider at a time. Unfortunately, the comparative study only

included ZDT4, DTLZ1 and DTLZ2 problems using 2 and 3 objective functions. These MOPs are

not very challenging for most MOEAs.

R2. Brockhoff et al. [14] proposed the R2-EMOA that substitutes the HV-based density estimator

of SMS-EMOA by one based on the R2 indicator. R2-EMOA obtained promising results because of

the weakly Pareto compliance of the R2 indicator and the even distribution of points promoted by

the required set of convex weight vectors. Another remarkable feature of R2-EMOA is that it is

less computationally expensive than SMS-EMOA, allowing it to solve MaOPs at an affordable time.

However, the cardinality of the set of weight vectors increases in a combinatorial fashion as the

number of objective functions does. Moreover, the performance strongly depends on the utility

function that is employed. Each utility function allows R2-EMOA to find solutions in different

regions of the objective space [85]. The authors performed an empirical analysis of their greedy

heuristic strategy, i.e., the R2-based density estimator could produce the µ-optimal distributions

associated with the R2 indicator. To this aim, they employed some ZDT and DTLZ problems. The

experimental results showed that R2-EMOA produces approximation sets similar to the µ-optimal

distributions. However, no comprehensive comparative study is available yet.

IGD+IGD+IGD+. Motivated by the overspecialization of MOEAs using convex weight vectors (as search

directions, reference sets or as part of a quality indicator) on certain benchmark problems, Falcón-

Cardona and Coello Coello have proposed an MOEA that employs the IGD
+
indicator as its

density estimator [33]. Based on an empirical analysis, they found out that an IGD
+
-based search

could produce similar Pareto front approximations to those of SMS-EMOA. Hence, they proposed

the IGD
+
-Many-Objective Evolutionary Algorithm (IGD

+
-MaOEA) that replaces the HV density

estimator of SMS-EMOA in Algorithm 3 by the IGD
+
contributions of all solutions in the last

dominated rank. Additionally, they introduced a method to reduce the computational cost of

computing the IGD
+
contributions of the entire population. The authors compared IGD

+
-MaOEA

with respect to IGD
+
-EMOA, NSGA-III, MOEA/D and SMS-EMOA on the DTLZ and DTLZ

−1

[53] test suites using 3 to 7 objective functions. The DTLZ
−1

test suite is a slight modification of

the original DTLZ test suite, where all the objective functions of the MOPs are multiplied by −1,

producing in some cases MOPs whose Pareto front is not correlated to the simplex that a set of

convex weight vectors forms. On the basis of the HV results, IGD
+
-MaOEA is very competitive

with respect to the adopted MOEAs in the DTLZ test suite and it outperforms all the other MOEAs

when tackling the DTLZ
−1

test problems. On the basis of these results, the authors claimed that

IGD
+
-MaOEA is a more general many-objective optimizer since its performance does not depend

on the Pareto front shapes.

IGD. In 2013, Denysiuk et al. [25] introduced the Many-Objective Differential Evolution with

Mutation Restriction (MyO-DEMR) based on the NSGA-II framework. MyO-DEMR replaces the

density estimator of NSGA-II by one based on the individual contributions to the IGD indicator.

The reference setZ is equal to the hyperplane that dominates the set of solutions in the rank R j
that makes the population size to exceed µ solutions. After calculating the individual contribution

of each solution in R j , the contributions are sorted in descending order, and the elements that
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make the population equal to µ are kept. This strategy differs from the one employed by R2-EMOA

where each time a solution is removed, all the contributions must be recomputed. Hence, this

saves computational time. MyO-DEMR showed competitive results with respect to state-of-the-art

algorithms, producing well-covered and well-distributed solutions for problems with up to 20

objectives. However, MyO-DEMR was not tested on MOPs having degenerated and discontinuous

Pareto fronts. It is worth noting that MyO-DEMR presented remarkable results for multifrontal

MOPs such as DTLZ1 and DTLZ3, although the authors mentioned that this behavior was due to

the restriction strategy contained in the differential evolution search engine.

Tian et al. [98] proposed an enhanced IGD indicator, called IGD with noncontributing solution

detection (IGD-NS). This indicator defines a value on the basis of all noncontributing solutions

which penalizes the original IGD value. Noncontributing solutions are the ones which are avoided

to be the nearest neighbors of any point in the required reference set. The authors proposed the

MOEA/IGD-NS that employs Pareto dominance as its environmental selection mechanism and a

density estimator that removes the worst IGD-NS contributing solutions, i.e., it follows the NSGA-II

scheme. MOEA/IGD-NS has an external archive that stores non-dominated solutions, improving

their diversity with a scheme similar to that of RVEA, i.e., it clusters solutions in different subregions

[16]. This external archive is employed as the reference set of IGD. Evidently, the identification

of noncontributing solutions increases the computational cost of MOEA/IGD-NS in comparison

to MyO-DEMR. Experimental results on low-dimensional instances of the ZDT and DTLZ test

suites showed that MOEA/IGD-NS produces evenly distributed solutions. Nevertheless, the authors

claimed that MOEA/IGD-NS could not solve MaOPs because it is complicated to maintain an

external archive with both a good convergence and a good diversity. Hence. the performance of

the approach is not scalable.

In 2018, Sun et al. [94] introduced the IGD Indicator-based Many-Objective Evolutionary Algo-

rithm (MaOEA/IGD). This IB-MOEA first constructs an ideal version of the Pareto front on the

basis of the (m − 1)-dimensional hyperplance that is shaped by the set of approximated extreme

points. This hyperplane is employed to classify the population in three groups based on the Pareto

dominance relation: (1) rank R1 contains points that dominate the hyperplane, (2) rank R2 has

points mutually non-dominated with the hyperplane, and (3) points dominated by the hyperplane

belong to rank R3. Unlike the non-dominated sorting procedure that creates different ranks of

solutions, the previous classification only generates three ranks of solutions that are added to the

next population whenever the population size is not exceeded. It is worth noting that depending

on the rank, a distance between a point and the reference set (the hyperplane) is measured: a

negative Euclidean distance, a modified Euclidean distance of IGD
+
and an Euclidean distance

for R1,R2 and R3, respectively. Starting from the rank that exceeds the population, the remaining

solutions are selected by transforming the selection problem into a Linear Assignment Problem

just as Manoatl and Coello Coello proposed in IGD
+
-EMOA [76]. The authors were interested

in showing the effectiveness of MaOEA/IGD in MaOPs. Thus, they compared it with NSGA-III,

MOEA/D, HypE and RVEA on the DTLZ and WFG test suites using 8, 15 and 20 objective functions,

adopting the hypervolume indicator. Their experimental results showed that MaOEA/IGD performs

better than the other MOEAs on MaOPs with 8 and 20 objective functions and its performance

is significantly better for MaOPs DTLZ1, DTLZ7, WFG1, and WFG3, which covers a wide range

of Pareto front shapes. However, an important aspect to consider is that its performance mainly

depends on the proper construction of the approximated hyperplane. The method to approximate

the extreme points that shape the hyperplane is very time-consuming since it involvesm additional

approximation sets and it may sometimes fail to produce good points.

As in the case of IGD
+
-MaOEA whose primary motivation is the overspecialization of MOEAs

using convex weight vectors on specific benchmark problems, Tian et al. presented the Adaptive
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Reference Set-based MOEA (AR-MOEA) [97] as an alternative to deal with a wider variety of Pareto

front shapes. AR-MOEA is an improvement of MOEA/IGD-NS since the latter showed to have a poor

performance on MOPs having different Pareto front geometries. Although the indicator IGD-NS

solves some problems of IGD when selecting solutions, the former tends to choose non-contributing

solutions that are clustered together and too near to a reference point. Consequently, the density

estimator based on IGD-NS of AR-MOEA also includes an adaptive reference set that approximates

the inner geometry of the Pareto front, using an approach similar to that of RVEA [16]. Hence,

AR-MOEA takes advantage of both the adaptive reference set and the IGD-NS-based selection.

AR-MOEA follows the framework of NSGA-II, i.e., it uses Pareto dominance as its main selection

criterion and, additionally, the IGD-NS density estimator is adopted to delete the worst-contributing

solution from the last rank of solutions. AR-MOEA was tested on several test problems that cover

a wide range of Pareto front shapes. They used the DTLZ, DTLZ
−1
, WFG and MAF test suites

adopting 3, 5 and 10 objective functions. Their experimental results showed that AR-MOEA is a

more versatile optimizer since its performance does not depend on the Pareto front shape. For

3-objective functions, AR-MOEA could rank first in terms of HV values only on DTLZ4, WFG3 and

MAF4. In case of MaOPs, its performance was competitive with respect to NSGA-III, RVEA and

MOMBI-II.

∆p∆p∆p . The Reference Indicator-Based Evolutionary Multi-Objective Algorithm (RIB-EMOA) pro-

posed by Zapotecas et al. in 2014 [117] is a steady-state MOEA that adopts ∆p as its second

selection criterion. RIB-EMOA follows the SMS-EMOA framework although it tries to save some

computations of ∆p contributions. Regarding the required reference set, the authors proposed to

generalize its construction using Lamé superspheres such that specific Pareto front geometries

are approximated, namely, linear, concave and convex shapes. Experimental results showed that

RIB-EMOA has some difficulties when solving multifrontal MOPs, namely DTLZ1 and DTLZ3 as

well as MOPs having degenerated Pareto fronts, e.g., DTLZ5 and DTLZ6. Nevertheless, RIB-EMOA

presents better results than IGD
+
-EMOA (see Section 4.2.1) which uses a similar strategy to build

the reference set, in MOPs having degenerated and discontinuous Pareto fronts.

Discussion. IB-Density estimators are mechanisms that aim to reduce the population size of

MOEAs once the main selection criterion has been applied. Unlike mechanisms such as crowding

distance or fitness sharing, the advantages of IB-DEs become clear when solving MaOPs because

the use of quality indicators increase the selection pressure once the Pareto dominance relation

cannot properly rank solutions in several layers. It is worth emphasizing that most of the IB-MOEAs

in Table 2 are based on the NSGA-II framework (a number of them adopt a steady-state version).

The main issue with HV-based MOEAs is the high computational cost associated with computing

exact HV contributions. However, as stated by Ishibuchi et al. [56], the use of an approximation to

the HV does not severely deteriorate the quality of the solutions and allows a significant reduction

in the computational cost required. However, the approximation of HV is currently an open research

area. A remarkable approach within this class is FV-MOEA which calculates exact HV contributions

using an efficient algorithm based on the locality property of HV. FV-MOEA is indeed capable of

producing solutions of the same quality as SMS-EMOA but at a considerably lower computational

cost. However, scalability is an issue in this case, since for high-dimensional objective spaces the

locality property is difficult to interpret.

Regarding the other approaches, they produce competitive results although the Pareto compliance

property is not held in the worst case. R2-EMOA produces competitive results but it is necessary to

analyze its performance in high-dimensional objective spaces. Its main drawbacks are the need for

a set of convex weight vectors whose cardinality increases with the number of objective functions

as well as a possible overspecialization on certain Pareto fronts due to the method adopted to
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Table 3. IB-Archiving methods. The ‘Method’ determines how the solutions are selected. For each IB-MOEA,
it is shown in which problems it has been tested on as well as the number of objectives of the MOPs adopted.

Indicator Algorithm Method Problems # Objectives Year Ref.

HV

LAHC Worst contribution

General point

sequences

2 & 3 2003 [63]

ϵ-MOPSO
UD
MRV Worst contribution ZDT & DTLZ 2 & 3 2009 [57]

∆p

∆p -EMOA Worst contribution

DTLZ, ZDT

spheres model, DENT

2 2011 [38]

∆p -M-EMOA Worst contribution DTLZ & Viennet 3 2012 [99]

∆p -T-EMOA Worst contribution DTLZ & Viennet 3 2013 [88]

SMS-DPPSA Worst contribution DTLZ 4 2013 [27]

PS-EMOA Worst contribution DTLZ 4 2013 [27]

generate the weight vectors. The performance of RIB-EMOA, MyO-DEMR and MOEA/IGD-NS is

strongly dependent on the construction of the reference set. Hence, it would be useful to analyze

the impact that the reference sets have on the performance of these approaches, with the aim of

designing an adaptive method that could generalize their use. Two interesting MOEAs within this

class are AR-MOEA and IGD
+
-MaOEA. The motivation of these two IB-MOEAs is to avoid the

overspecialization of MOEAs on certain benchmark, i.e., they have traced the path to design more

general many-objective optimizers whose performance does not depend on some particular Pareto

front shapes. Both algorithms have been tested on different benchmarks that cover a wide range

of Pareto front geometries. In the future, it would be interesting to compare both algorithms to

determine their advantages and drawbacks.

4.2.3 IB-Archiving.

HV. To the authors’ best knowledge, the Lebesgue Archiving Hillclimber (LAHC) was the first

IB-Mechanism ever proposed [63]. The operation of the archiver A is very simple. If we try to add

a solution u⃗new to the archive and the archive is full, then the solution from A ∪ {u⃗new} having the

least contribution to HV, is deleted. This is similar to the operation of an HV-based steady-state

MOEA, such as SMS-EMOA (see Algorithm 3) although LAHC operates on an external archive.

LAHC was tested on general point sequences that intend to approximate different Pareto front

geometries. However, the experimental analysis did not include the implementation of LAHC in an

MOEA. In spite of this, it is very likely that some MOEA using LAHC behaves in a similar way to

SMS-EMOA, since LAHC operates under a similar principle.

Jiang and Cai [57] introduced the ϵ-MOPSO
UD
MRV that uses an archive acceptance rule called

Minimum Reduced Hypervolume (MRV) that combines HV and ϵ-dominance. The solutions in

the archive are placed on the hyperboxes created by the ϵ-dominance mechanism. Considering a

hyperbox with more than one solution inside, the update rule will delete the solution having the

lowest contribution to the HV. By doing this, convergence and diversity of the archive is promoted.

Experimental results showed that the combination of ϵ-dominance and HV in the archive improves

both convergence and diversity of the Pareto front approximations. However, ϵ-MOPSO
UD
MRV was

only tested on the ZDT and DTLZ test suites using 2 and 3 objective functions.

∆p∆p∆p . Gerstl et al. [38] introduced the first MOEA based on the ∆p indicator. This MOEA, called

∆p -EMOA, is a modified version of the SMS-EMOA (see Section 4.2.2) which is restricted to two-

dimensional objective spaces. ∆p -EMOA adds a ∆p -based archive to the SMS-EMOA to improve

diversity by compensating the distribution bias of the SMS-EMOA’s HV-based density estimator.
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The reference set for ∆p is constructed from the current population produced by SMS-EMOA

which is linearly interpolated, aiming to distribute solutions evenly. Each time a new solution is

considered to be added to the archive, the ∆p contributions of all solutions, including the new

one, are calculated, and the one with the worst value is removed. Unfortunately, the authors did

not show an exhaustive performance analysis. However, a clear disadvantage of ∆p -EMOA is its

reference set construction method that relies on linear interpolation of the main population which

makes the MOEA unable to solve MOPs with more than three objective functions.

In order to scale up ∆p -EMOA, Trautmann et al. proposed ∆p -M-EMOA [99] which is able

to solve three-objective problems. The mechanism to construct the reference set uses the Multi-

Dimensional Scaling (MDS) method to perform a dimensionality reduction fromm dimensions to

two-objective spaces. The solution having the worst ∆p contribution within a set of grid points

inside the ϵ+-convex hull of the population in MDS space is removed from the archive. The

experimental study presented by the authors considered DTLZ1, DTLZ2, DTLZ3 and the Viennet

problem with 3 objective functions and to assess performance, the ∆p indicator was employed. From

the experimental results, it is clear that ∆p -M-EMOA produce Pareto front approximations with

more uniform solutions than those generated by SMS-EMOA, NSGA-II and MOEA/D. However,

as in the case of the ∆p -EMOA, the archiving strategy is computationally expensive. It is worth

noting, however, that reducing the dimensionality always to two-dimensional objective spaces may

lead to the loss of important information, especially when dealing with MaOPs.

Regarding ∆p -M-EMOA, Rudolph et al. [88] claimed that the sequential generation of reference

sets in ∆p -M-EMOA is highly complex. Hence, they proposed the ∆p -T-EMOA which follows the

direction of ∆p -EMOA, but it can solve three-dimensional MOPs using a triangulation technique to

generate the reference set. Using this technique, they circumvented the dimensionality reduction of

∆p -M-EMOA. This archiving strategy is considerably faster than that of ∆p -M-EMOA. An important

issue of ∆p -T-EMOA is the detection of the border of the Pareto front and its inability to solve

MaOPs. ∆p -T-EMOA was compared to ∆p -M-EMOA, SMS-EMOA, MOEA/D and NSGA-II using

the same experimental setup as in ∆p -M-EMOA. From the experimental results, it is clear that the

∆p -based archive improves the uniformity of solutions, outperforming all the adopted MOEAs.

Additionally, the archive update rule of ∆p -T-EMOA is less computationally expensive than the

one of ∆p -M-EMOA.

Finally, Domínguez et al. [27] proposed two algorithms that can be seen as an improvement of

∆p -EMOA, ∆p -M-EMOA and ∆p -T-EMOA. For this purpose, the core idea is the use of the Part and

Selection Algorithm (PSA). Unlike SMS-EMOA, SMS-EMOA with PSA (SMS-EMOA-DPPSA) adds a

∆p -based external archive to store convergent and evenly spaced solutions that are not outliers.

PSA processes the current population to generate a reference set of a given size. Roughly speaking,

PSA is similar to a clustering algorithm because it partitions the set of solutions according to a

dissimilarity function aiming to group alike solutions. Using the reference set described above, the

archiver removes the worst ∆p contributing solutions until the desired population size is reached.

As SMS-DPPSA is a variant of SMS-EMOA, it uses a density estimator based on the hypervolume.

Hence, it is highly expensive when solving MaOPs. In order to circumvent this issue, PS-EMOA

is introduced. PS-EMOA uses Pareto dominance as its main selection criterion and PSA to get

samples of the current archive. The above algorithm is the online version of PS-EMOA. Domínguez

et al. also proposed an offline version of PS-EMOA that first executes the online version to store all

possible non-dominated solutions in the archive and, after that, the ∆p archiver is run to prune

it, optimizing the ∆p value. When using DTLZ1, DTLZ2 and DTLZ3, both algorithms were able

to produce evenly distributed solutions due to the bias of ∆p . Unfortunately, SMS-DPPSA and

PS-EMOA were only well-suited for MOPs having a maximum of four objective functions.
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Discussion. Unlike IB-ESs or IB-DEs, IB-ARs have received little attention from the EMOO

community. It is worth noting that some important reasons for this is the computational overhead

associated with the use of unbounded archives [62]. Also, and mainly for pragmatic reasons (e.g.,

to allow a fair comparison with other MOEAs), most approaches adopted bounded archives.

In spite of the nice mathematical properties of HV, its high computational cost has prevented

its use in more mechanisms. The only two HV-archivers currently available employ the same

mechanism, i.e., they remove the solution associated with the lowest HV-contribution. Therefore,

there is no real improvement when considering these archivers. Regarding ∆p -EMOA and its

variants, the main drawback is that they are hard-wired to a specific dimensionality of the objective

space, i.e., they are not MOEAs intended for general use. Furthermore, the construction of the

reference set in all cases is highly complicated, and they do not offer a clear advantage over other

IB-MOEAs that adopt a reference set. Clearly, there is a lot of room for improvement in IB-Archiving

techniques.

4.3 IB-Mating Selection
IB-Mating Selection involves the identification of good parent solutions based on quality indicator

values. This type of selection mechanisms does not aim to solve or approximate the indicator-based

subset selection problem. Instead, this mechanism tries to produce promising offspring solutions to

accelerate the evolutionary process. Unfortunately, the EMOO community has not tuned at all its

gaze towards these mechanisms. To the authors’ best knowledge, there are currently three MOEAs

that use IB-Mating Selection. Such methods are summarized in Table 4. It is worth emphasizing

that none of the authors has conducted experiments to determine the actual contribution in the

search process of these IB-Mating Selection methods. In the following, we will briefly describe the

functioning of them that are entirely based on a binary tournament selection scheme.

By adopting a binary tournament selection scheme [20], R2-IBEA iteratively fills its gene pool

by selecting those solutions that have a higher value regarding the binary R2 indicator. Since the
binary R2 indicator is weakly Pareto-compliant [102], R2-IBEA always ensures to select solutions

that are better in terms of weak Pareto dominance, i.e., the solutions having non-zero contribution.

In second place, we have MaOEA/IGD [94] that creates a binary tournament where the comparisons

among solutions are made on the basis of their rank and their distance value to the hyperplane

(the reference set for the IGD indicator). The first stage is to compare the ranks of solutions, where

the lower the rank, the better. In case that both solutions have the same rank, their distance values

(negative Euclidean distance, the modified Euclidean distance of IGD
+
or Euclidean distance) are

compared and the one having the minimum value is chosen. If there is a tie, a random solution is

selected. This IGD-based mating selection scheme aims to choose solutions having a good degree

of convergence. Finally, AR-MOEA [97] computes the IGD-NS contribution of those solutions that

are selected to compete in the tournament. The one having the larger contribution (the authors

called it fitness value) wins the competition and it is added to the gene pool. As in the case of

MaOEA/IGD, this mating selection process aims to generate offspring solutions on the basis of the

best solutions in terms of convergence.

5 REAL-WORLD APPLICATIONS
In this section, we make a brief review of real-world applications tackled by IB-MOEAs. Table 5

summarizes the most relevant applications, emphasizing the real-world problem, the number of

objectives related to the problem, and the publication year which was used to sort the proposals in

chronological order.

The airfoil design problem is a very important real-world application whose optimization implies

huge potential savings and more secure flight characteristics. When tackling this problem, one
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Table 4. IB-Mating Selectionmechanisms. ‘Method’ is related to the basic algorithm onwhich themechanisms
are based on and ‘Comparison’ is related to the information employed to select solutions.

Indicator Algorithm Method Comparison Year Ref.
R2 R2-IBEA Binary tournament Comparison of binary R2 value 2013 [102]

IGD

MaOEA/IGD Binary tournament Comparison of rank and distance value 2018 [94]

AR-MOEA Binary tournament Comparison of IGD-NS contribution 2018 [97]

Table 5. Real-world applications solved by IB-MOEAs.

IB-MOEA Real-world problem # Objectives Year Ref.
SMS-EMOA Airfoil design optimization 2, 3 2007 [6]

IBEAHV

HypE

Permanent magnet motor design 2 2012 [1]

SMS-EMOA Civil engineering structural design 2 2013 [75]

SMS-EMOA Power distribution network reconfiguration 2 2014 [114]

MOMBI Analog integrated circuit optimization 5 2015 [22]

SMS-EMOA Inventory routing problem 3 2016 [115]

SMS-EMOA Building spatial design 2 2017 [104]

MOMBI2 Route planning 3 2018 [84]

IBEAHV Software product line 5 2019 [41]

aims to maximize the lift to ensure safe and stable flight qualities, while minimizing the drag during

the cruising flight, which has a positive impact on the minimization of the energy consumption.

The SMS-EMOA [6] was tested by its authors on two test cases: (1) airfoil redesign of models

NACA0012 and NACA4412, adopting two objective functions, and (2) the minimization of three

drag coefficients related to the airfoil RAE2822. A computational fluid dynamics tool, based on the

solutions of the Navier-Stokes equations, was employed as the simulation method that evaluates the

solutions created by SMS-EMOA. Hence, the objective function evaluation is very time-consuming

which encourages the authors to employ metamodels to reduce the computational costs. For both

cases, SMS-EMOA was compared to NSGA-II, outperforming it due to the hypervolume-based

density estimator, according to the authors. Additionally, SMS-EMOA using a Kriging metamodel

was compared to the basic SMS-EMOA, where the former presents better-distributed solutions.

Another application of IB-MOEAs to real-world problems is related to the design of permanent

magnet motors. In 2011, Andersen and Santos [1] employed IBEAHV and HypE for the parameter

optimization of a permanent magnet motor. The authors defined the problem as a bi-objective MOP,

where the goals were to maximize efficiency and minimize cost. For comparison purposes, they

used the hypervolume indicator but they fixed one of the components of the reference point to

96% of efficiency since lower values are of no interest. According to the results, both IB-MOEAs

produced numerous solutions with efficiency greater or equal to 96% while generating scarce

solutions with lower efficiency. Regarding HV, HypE was slightly better than IBEAHV and it was

also less time-consuming.

Civil engineering is a discipline highly related to MOPs that usually involve two main goals:

minimizing financial cost and maximizing the final design safety. The structural design of bridges is

a clear example of this type of MOPs. In 2013, Luna et al. [75] tackled the design of a cable-strayed

bridge with two pillars (towers). The bridge had a total length of 162m and the deck length andwidth
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are 90 m and 9 m, respectively. The authors aimed to minimize the total weight of the structure and

the summation of the deformations in specific points of the deck and the columns. The bi-objective

MOP involved 191 decision variables and 4948 side-constraints. Due to the high computational

cost of evaluating the objective functions, the authors proposed a distributed SMS-EMOA, under

the master-slave paradigm, in order to parallelize the computation of the objective functions. For

comparison purposes, the distributed SMS-EMOA was compared with a distributed NSGA-II, where

the former showed better convergence results, according to the empirical attainment surfaces [40].

However, the authors could not conclude which MOEA was better since SMS-EMOA had a strong

bias towards the Pareto front’s knee and NSGA-II produced a better coverage towards extreme

regions.

In 2014, Yang et al. [114] proposed to tackle the power distribution network reconfiguration

problem (DNRP). Roughly, this problem aims to optimize a distribution system so that the security,

efficiency and reliability of the system are enhanced. For this purpose, the network reconfiguration

is related to the change the topology of the power network by operating the switches to minimize

power loss. Since DNRP is an NP-hard problem, several metaheuristics have been proposed to

solve it. The authors decided to employ SMS-EMOA and NSGA-II to solve the DNRP adopting

two objective functions: minimize power loss and voltage profile enhancement. Both SMS-EMOA

and NSGA-II were modified to adopt a sequences-based encoding. Based on the use of attainment

surfaces, SMS-EMOA was found to outperform NSGA-II since the Pareto front of the MOP was

concave, and SMS-EMOA has been found to be able to produce outstanding results when dealing

with such Pareto front geometries.

In logistics, the inventory routing problem (IRP) has been typically formulated as a bi-objective

MOP. However, Yang et al. [115] have recently extended this problem to three objective functions to

be minimized: routing cost, inventory cost and stockout cost. Additionally, the authors decided to

model the multi-objective IRP with uncertain demand, i.e., in this problem, products are repeatedly

delivered from a single supplier to a set of n geographically dispersed customers in a given number

of days. To model the uncertain demand, a Poisson distribution was employed. SMS-EMOA and

NSGA-II were used to solve different instances of the problem, mainly varying the number of

customers from 80 to 200. The experimental results, based on the hypervolume indicator, showed

that both MOEAs behaved similarly.

De la Fraga and Tlelo-Cuautle [22] proposed the use of MOMBI to improve the optimal sizing

of amplifiers design with MOSFETs. This is an analog integrated circuit optimization problem,

which involves the optimization of five objectives: maximize gain, bandwidth and slew rate and

minimize power dissipation and setting time. The problem has twelve inequality constraints. Since

the original version of MOMBI is unable to deal with constrained MOPs, the authors introduced

two modifications to this IB-MOEA: 1) the implementation of a mating selection scheme that takes

into account both feasible and infeasible solutions, and 2) they modified the R2 selection mechanism

to give more importance to feasible solutions. The authors compared the performance of MOMBI

with respect to NSGA-II, and found that the former obtained better results than the latter.

In 2017, Van der Blom et al. [104] studied the multi-objective building spatial design problem,

aiming to optimize: (1) structural efficiency, and (2) energy efficiency. According to the authors,

structural efficiency encompasses themaximal contribution of every individual structural element to

the full structure, while energy efficiency allows reductions to both the impact on the environment

and on the financial costs. The problem was tackled using a tailored version of SMS-EMOA that uses

specific mutation and initialization operators that deal with mixed-integer problems. The authors

adopt landscape analysis to identify the main problem’s features and to investigate the behavior of

the mutation operator. Experimental results, based on the use of attainment surfaces, showed that

the tailored version of SMS-EMOA adopted by the authors had a good performance when solving
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the problem. Additionally, the proposed operators reduced the violation of the constraints of the

problem.

Regarding intelligent transport systems, route planning is a problem of remarkable importance.

In 2018, Osaba et al. [84] focused on tackling a last-mile package delivery routing problem with

third-party drop-off points, applied to bike routes in Madrid, Spain. They modelled this as a MOP

with three objectives: minimize the travelled distance and maximize both the safety of the biker

and the profit. Several MOEAs, including NSGA-II, NSGA-III, MOEA/D and MOMBI2 were adopted

to tackle the problem. From the results in three different scenarios, MOMBI2 showed the worst

performance according to the hypervolume indicator. However, the authors did not provide any

explanation for this poor performance of MOMBI2.

In recent years, software product line (SPL) engineering has attracted the attention of the industry

to reduce development costs, improve software quality and shorten time to market. The main

goal of SPL is to generate an optimal product that meets specific requirements of stakeholders,

i.e., the so-called configuration optimization problem. In 2019, Guo et al. [41] proposed to use

IBEAHV hybridized with the satisfiability modulo theories (SMT) for solving the five-objective

SPL configuration optimization problem. SMT helped IBEAHV to reduce its huge decision variable

space and to validate the satisfaction of the constraints defined in the feature model. The proposed

hybrid IBEAHV showed effectiveness and capability to scale when solving five large real-world

SPLs, ranging from 1,244 to 6,888 features and from 2468 to 343,944 constraints, using the indicators

HV, ϵ+ and IGD.

6 FUTURE RESEARCH DIRECTIONS
In spite of the numerous IB-MOEAs that have been proposed, this is a research area with several

potential topics for future research. Some of them are briefly described next:

6.1 Design of Multi-Indicator-based MOEAs
Currently, IB-MOEAs are based on a single indicator that imposes a certain search bias originated by

its own strengths and weaknesses. Hence, a possible research direction is to propose Multi-Indicator-

based MOEAs (MIB-MOEAs). The core idea of MIB-MOEAs would be to combine the properties of

each indicator-based mechanism to obtain a better global search behavior. Phan and Suzuki [86]

were apparently the first to propose a MIB-MOEA (called BIBEA) that boosts existing IB-selection

operators, using the AdaBoost algorithm. The proposed multi-indicator selection scheme aims to

select the potential parents for crossover. In a further work, Phan et al. [103] proposed BIBEA-P

which improves BIBEA’s parent selection scheme by using an ensemble learning method. The

authors also proposed a multi-indicator environmental selection mechanism. An issue of both

proposals is that they require supervised offline training, using certain MOPs. Hence, apparently,

they would not be able to solve any type of MOP. Unfortunately, the experimental results did not

show that the proposals outperformed state-of-the-art MOEAs. Unlike BIBEA and BIBEA-P which

are ensemble methods, the Stochastic Ranking-based Multi-Indicator Algorithm (SRA) [66] is an

MOEA that aims to balance the search biases of the indicators ϵ+ and SDE. SRA is a steady-state

MOEA that uses the stochastic ranking algorithm as its environmental selection mechanism to sort

the population using the two considered indicators as its sorting criteria. After the sorting is done,

the worst solution is deleted. The authors showed a comprehensive series of experiments using

benchmark problems in low- and high-dimensional objective spaces, comparing their results with

those produced by a wide variety of state-of-the-art MOEAs. On the other hand, Hernández Gómez

and Coello Coello [45] proposed an MOEA, called MOMBI-III, that combines the convergence

effect of an R2-selection mechanism and a density estimator based on the s-energy indicator for

improving diversity. Additionally, the R2-selection mechanism employs a hyper-heuristic to select
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the most suitable utility function for the R2 indicator. Their experimental results showed that

MOMBI-III outperforms several state-of-the-art MOEAs.

6.2 Use of Hyper-heuristics
Due to the No Free Lunch Theorem [112], IB-MOEAs cannot possibly have a good performance

in all types of MOPs. With the aim of reducing the effect of the NFL, hyper-heuristics arise as a

good option because they find from among a pool of low-level heuristics, the one that is more

suitable for a certain problem [15]. Hence, a hyper-heuristic could decide which is the most effective

indicator-based mechanism depending on the MOP being tackled. To the author’s best knowledge,

Falcón-Cardona and Coello Coello [32] were the first to propose a hyper-heuristic that selects from

a pool of density estimators based on the indicators R2, IGD+, ϵ+ and ∆p , the most suitable choice

for a given problem.

6.3 Parallel IB-MOEAs
We believe that it is possible to take advantage of parallelism in at least two ways. First, by designing

parallel IB-mechanisms that reduce the computational cost of IB-MOEAs. In this regard, Hernández

Gómez and Coello Coello [46] proposed a parallel version of SMS-EMOA based on the island model,

where each island has a micro population. This version can substantially reduce the computational

cost of SMS-EMOA without sacrificing the population’s quality in a significant way, regarding HV.

On the other hand, the interactions of subpopulations, using different IB-Mechanisms, in a parallel

model (e.g., the island model) could produce new global search behaviors. To the author’s best

knowledge, no work in this direction has been reported yet.

6.4 IB-MOEAs’ theory
Currently, the understanding of QIs and IB-MOEAs is far from being complete. Regarding QIs,

it is necessary to mathematically analyze them not only in an individual fashion but also when

they are combined. An open research direction is to mathematically prove if there are other unary

Pareto-compliant QIs besides the hypervolume. In case there are no more Pareto-compliant QIs,

we have to turn our attention to the design of efficient algorithms for the exact hypervolume

computation [111] or, at least, a good approximation of it that can be obtained at a relatively low

computational cost [55, 92]. Another remarkable aspect is to study the preference incorporation

in QIs as in the case of the weighted HV [2]. Regarding IB-MOEAs, it would be valuable to have

a theoretical study that characterizes IB-Selection mechanisms with respect to their speed of

convergence, distribution, and spread of solutions. It would also be interesting to propose new

selection mechanisms based on existing or on new QIs and investigate their properties from a

theoretical point of view. Finally, a theoretical aspect around IB-MOEAs that is worth analyzing

is why mechanisms based on non-Pareto-compliant indicators can indeed produce good results,

e.g., ∆p -MOEA or MOEA/IGD-NS. It is clear that from the point of view of quality comparison of

MOEAs, Pareto-compliance is required to avoid generating misleading results. However, based on

the results of IB-MOEAs using non-Pareto-compliant indicators, convergence of an IB-MOEA is

apparently not strictly related to the use of a Pareto-compliant QI. Hence, an interesting topic for

future research is to determine if it is really necessary to adopt a Pareto-compliant QI as part of a

MOEA in order to produce high-quality results. If not, it is clearly important to know the reasons.

7 CONCLUSIONS
In this paper, we have presented a comprehensive survey of different indicator-based (IB) MOEAs.

Such algorithms transform a multi-objective optimization problem into the optimization of a quality

indicator. IB-MOEAs have represented a viable way to solve many-objective optimization problems
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due to their increase of selection pressure in comparison to Pareto-based MOEAs. We have proposed

a taxonomy to classify the IB-Mechanisms of IB-MOEAs currently available in the specialized

literature. Our proposed taxonomy considers two main categories: (1) IB-Mating Selection, and (2)

IB-Selection, where this last category is further divided into three classes: (a) IB-Environmental

Selection, (b) IB-Density Estimation, and (c) IB-Archiving.

Based on our proposed taxonomy, we reviewed several state-of-the-art IB-MOEAs, emphasizing

their main advantages and drawbacks. Moreover, we have outlined some future research paths that

have not been broadly explored so far and that we believe that could produce significant advances

in the design of MOEAs and in our understanding of quality indicators.

ACKNOWLEDGMENTS
The first author acknowledges support from CONACyT to pursue graduate studies in computer

science at CINVESTAV-IPN. The second author gratefully acknowledges financial support from

CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a project

from the 2018 SEP-Cinvestav Fund (application no. 4). The second author is on Sabbatical leave

from CINVESTAV-IPN, Department of Computer Science, Mexico City, México.

REFERENCES
[1] Søren B. Andersen and Ilmar F. Santos. 2012. Evolution strategies and multi-objective optimization of permanent

magnet motor. Applied Soft Computing 12, 2 (2012), 778 – 792. https://doi.org/10.1016/j.asoc.2011.10.013

[2] Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. 2009. Articulating User Preferences in Many-

objective Problems by Sampling theWeighted Hypervolume. In 2009 Genetic and Evolutionary Computation Conference
(GECCO’2009). ACM Press, Montreal, Canada, 555–562. ISBN 978-1-60558-325-9.

[3] Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. 2009. Theory of the Hypervolume Indicator:

Optimal {µ }-Distributions and the Choice of the Reference Point. In FOGA ’09: Proceedings of the tenth ACM SIGEVO
workshop on Foundations of genetic algorithms. ACM, Orlando, Florida, USA, 87–102.

[4] Johannes Bader and Eckart Zitzler. 2011. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Opti-

mization. Evolutionary Computation 19, 1 (Spring 2011), 45–76.

[5] Matthieu Basseur, Bilel Derbel, Adrien Goeffon, and Arnaud Liefooghe. 2016. Experiments on Greedy and Local

Search Heuristics for d-Dimensional Hypervolume Subset Selection. In 2016 Genetic and Evolutionary Computation
Conference (GECCO’2016). ACM Press, Denver, Colorado, USA, 541–548. ISBN 978-1-4503-4206-3.

[6] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated

hypervolume. European Journal of Operational Research 181, 3 (16 September 2007), 1653–1669.

[7] Leonardo C. T. Bezerra, Manuel López-Ibá nez, and Thomas Stützle. 2017. An Empirical Assessment of the Properties

of Inverted Generational Distance on Multi- and Many-Objective Optimization. In Evolutionary Multi-Criterion
Optimization, 9th International Conference, EMO 2017. Springer. Lecture Notes in Computer Science Vol. 10173, Münster,

Germany, 31–45. ISBN: 978-3-319-54156-3.

[8] Tobias Blickle and Lothar Thiele. 1995. A Comparison of Selection Schemes used in Genetic Algorithms. Technical
Report TIK Report-Nr. 11. Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of

Technology (ETH), Gloriastrasse 35, 8092 Zurich.

[9] Lucas Bradstreet, Luigi Barone, and Lyndon While. 2006. Maximising Hypervolume for Selection in Multi-objective

Evolutionary Algorithms. In 2006 IEEE Congress on Evolutionary Computation (CEC’2006). IEEE, Vancouver, BC,
Canada, 6208–6215.

[10] Karl Bringmann and Tobias Friedrich. 2012. Approximating the least hypervolume contributor: NP-hard in general,

but fast in practice. Theoretical Computer Science 425 (March 30 2012), 104–116.

[11] Karl Bringmann, Tobias Friedrich, and Patrick Klitzke. 2014. Two-dimensional Subset Selection for Hypervolume and

Epsilon-Indicator. In 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press, Vancouver,

Canada, 589–596. ISBN 978-1-4503-2662-9.

[12] Karl Bringmann, Tobias Friedrich, Frank Neumann, and Markus Wagner. 2011. Approximation-Guided Evolutionary

Multi-Objective Optimization. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2011). AAAI Press, Barcelona, Spain, 1198–1203.

[13] Dimo Brockhoff, Tobias Wagner, and Heike Trautmann. 2012. On the Properties of the R2 Indicator. In 2012 Genetic
and Evolutionary Computation Conference (GECCO’2012). ACM Press, Philadelphia, USA, 465–472. ISBN: 978-1-4503-

1177-9.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1016/j.asoc.2011.10.013


Indicator-based Multi-Objective Evolutionary Algorithms 1:33

[14] Dimo Brockhoff, Tobias Wagner, and Heike Trautmann. 2015. R2 Indicator-Based Multiobjective Search. Evolutionary
Computation 23, 3 (Fall 2015), 369–395.

[15] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and Rong Qu.

2013. Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society 64, 12 (2013),

1695–1724.

[16] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. 2016. A Reference Vector Guided Evolutionary Algorithm for Many-

Objective Optimization. IEEE Transactions on Evolutionary Computation 20, 5 (Oct 2016), 773–791. https://doi.org/10.

1109/TEVC.2016.2519378

[17] Ran Cheng, Miqing Li, Ye Tian, Xingyi Zhang, Shengxiang Yang, Yaochu Jin, and Xin Yao. 2017. A Benchmark Test

Suite for Evolutionary Many-Objective Optimization. Complex & Intelligent Systems 3, 1 (March 2017), 67–81.

[18] Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. 2015. An Interactive Simple Indicator-Based

Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems. In Evolutionary Multi-Criterion Opti-
mization, 8th International Conference, EMO 2015, António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos

Coello Coello (Eds.). Springer. Lecture Notes in Computer Science Vol. 9018, Guimarães, Portugal, 277–291.

[19] Carlos A. Coello Coello and Nareli Cruz Cortés. 2005. Solving Multiobjective Optimization Problems using an

Artificial Immune System. Genetic Programming and Evolvable Machines 6, 2 (June 2005), 163–190.
[20] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving

Multi-Objective Problems (second ed.). Springer, New York. ISBN 978-0-387-33254-3.

[21] Carlos A. Coello Coello and Margarita Reyes Sierra. 2004. A Study of the Parallelization of a Coevolutionary Multi-

Objective Evolutionary Algorithm. In Proceedings of the Third Mexican International Conference on Artificial Intelligence
(MICAI’2004), Raúl Monroy, Gustavo Arroyo-Figueroa, Luis Enrique Sucar, and Humberto Sossa (Eds.). Springer

Verlag. Lecture Notes in Artificial Intelligence Vol. 2972, 688–697.

[22] Luis Gerardo de la Fraga and Esteban Tlelo-Cuautle. 2015. Optimizing an amplifier by a many-objective algorithm

based on R2 indicator. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS). 265–268. https:

//doi.org/10.1109/ISCAS.2015.7168621

[23] Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective Optimization Algorithm Using Reference-

Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation 18, 4 (August 2014), 577–601.

[24] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6, 2 (April 2002), 182–197.

[25] Roman Denysiuk, Lino Costa, and Isabel Espírito Santo. 2013. Many-Objective Optimization using Differential Evolu-

tion with Variable-Wise Mutation Restriction. In 2013 Genetic and Evolutionary Computation Conference (GECCO’2013).
ACM Press, New York, USA, 591–598. ISBN 978-1-4503-1963-8.

[26] Alan Díaz-Manríquez, Gregorio Toscano-Pulido, Carlos A. Coello Coello, and Ricardo Landa-Becerra. 2013. A

Ranking Method Based on the R2 Indicator for Many-Objective Optimization. In 2013 IEEE Congress on Evolutionary
Computation (CEC’2013). IEEE Press, Cancún, México, 1523–1530. ISBN 978-1-4799-0454-9.

[27] Christian Domínguez-Medina, Güenter Rudolph, Oliver Schüetze, and Heike Trautmann. 2013. Evenly Spaced

Pareto Fronts of Quad-objective Problems using PSA Partitioning Technique. In 2013 IEEE Congress on Evolutionary
Computation (CEC’2013). IEEE Press, Cancún, México, 3190–3197. ISBN 978-1-4799-0454-9.

[28] Nicole Drechsler, Rolf Drechsler, and Bernd Becker. 1999. Multi-Objected Optimization in Evolutionary Algorithms

Using Satisfyability Classes. In International Conference on Computational Intelligence, Theory and Applications, 6th
Fuzzy Days, Bernd Reusch (Ed.). Springer-Verlag. Lecture Notes in Computer Science Vol. 1625, Dortmund, Germany,

108–117.

[29] Michael T.M. Emmerich and André H. Deutz. 2007. Test Problems Based on Lamé Superspheres. In Evolutionary
Multi-Criterion Optimization, 4th International Conference, EMO 2007, Shigeru Obayashi, Kalyanmoy Deb, Carlo

Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata (Eds.). Springer. Lecture Notes in Computer Science Vol. 4403,

Matshushima, Japan, 922–936.

[30] Michael T.M. Emmerich, André H. Deutz, and Johannes W. Kruisselbrink. 2013. On Quality Indicators for Black-

Box Level Set Approximation. In EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary
Computation, Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A.

Coello Coello, and Oliver Schütze (Eds.). Springer-Verlag. Studies in Computational Intelligence Vol. 447, Heidelberg,

Germany, Chapter 4, 157–185. 978-3-642-32725-4.

[31] Henrik Esbensen and Ernest S. Kuh. 1996. Design space exploration using the genetic algorithm. In IEEE International
Symposium on Circuits and Systems (ISCAS’96). IEEE, Piscataway, NJ, 500–503.

[32] Jesús Guillermo Falcón-Cardona and Carlos A. Coello Coello. 2018. A Multi-Objective Evolutionary Hyper-Heuristic

Based on Multiple Indicator-Based Density Estimators. In 2018 Genetic and Evolutionary Computation Conference
(GECCO’2018). ACM Press, Kyoto, Japan, 633–640. ISBN: 978-1-4503-5618-3.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1109/ISCAS.2015.7168621
https://doi.org/10.1109/ISCAS.2015.7168621


1:34 Falcón-Cardona and Coello Coello

[33] Jesús Guillermo Falcón-Cardona and Carlos A. Coello Coello. 2018. Towards a More General Many-objective

Evolutionary Optimizer. In Parallel Problem Solving from Nature – PPSN XV, 15th International Conference, Proceedings,
Part I. Springer. Lecture Notes in Computer Science Vol. 11101, Coimbra, Portugal, 335–346. ISBN: 978-3-319-99258-7.

[34] M. Farina and P. Amato. 2002. On the Optimal Solution Definition for Many-criteria Optimization Problems. In

Proceedings of the NAFIPS-FLINT International Conference’2002. IEEE Service Center, Piscataway, New Jersey, 233–238.

[35] Stacey L. Faulkenberg and Margaret M. Wiecek. 2010. On the quality of discrete representations in multiple objective

programming. Optimization and Engineering 11, 3 (2010), 423–440.

[36] M. Fleischer. 2003. The Measure of Pareto Optima. Applications to Multi-objective Metaheuristics. In Evolutionary
Multi-Criterion Optimization. Second International Conference, EMO 2003, Carlos M. Fonseca, Peter J. Fleming, Eckart

Zitzler, Kalyanmoy Deb, and Lothar Thiele (Eds.). Springer. Lecture Notes in Computer Science. Volume 2632, Faro,

Portugal, 519–533.

[37] Carlos M. Fonseca and Peter J. Fleming. 1996. On the Performance Assessment and Comparison of Stochastic

Multiobjective Optimizers. In Parallel Problem Solving from Nature—PPSN IV (Lecture Notes in Computer Science),
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel (Eds.). Springer-Verlag, Berlin,

Germany, 584–593.

[38] K. Gerstl, G. Rudolph, O. Schütze, and H. Trautmann. 2011. Finding Evenly Spaced Fronts for Multiobjective Control

via Averaging Hausdorff-Measure. In The 2011 8th International Conference on Electrical Engineering, Computer Science
and Automatic Control (CCE’2011). IEEE Press, Mérida, Yucatán, México, 975–980.

[39] Crina Grosan and Mihai Olteanand Dan Dumitrescu. 2003. Performance metrics for multiobjective optimization

evolutionary algorithms. In 11th Conference on applied and industrial mathematics (CAIM’03). Oradea, Romania,

125–128.

[40] Viviane Grunert da Fonseca and Carlos M. Fonseca. 2010. The Attainment-Function Approach to Stochastic Multiob-

jective Optimizer Assessment and Comparison. In Experimental Methods for the Analysis of Optimization Algorithms,
Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss (Eds.). Springer, Heidelberg, Chapter 9,

103–130.

[41] Jianmei Guo, Jia Hui Liang, Kai Shi, Dingyu Yang, Jingsong Zhang, Krzysztof Czarnecki, Vijay Ganesh, and Huiqun Yu.

2019. SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large constrained software product

lines. Software & Systems Modeling 18, 2 (01 Apr 2019), 1447–1466. https://doi.org/10.1007/s10270-017-0610-0

[42] Michael Pilegaard Hansen andAndrzej Jaszkiewicz. 1998. Evaluating the quality of approximations to the non-dominated
set. Technical Report IMM-REP-1998-7. Technical University of Denmark.

[43] Raquel Hernández Gómez and Carlos A. Coello Coello. 2013. MOMBI: A New Metaheuristic for Many-Objective

Optimization Based on the R2 Indicator. In 2013 IEEE Congress on Evolutionary Computation (CEC’2013). IEEE Press,

Cancún, México, 2488–2495. ISBN 978-1-4799-0454-9.

[44] Raquel Hernández Gómez and Carlos A. Coello Coello. 2015. Improved Metaheuristic Based on the R2 Indicator for
Many-Objective Optimization. In 2015 Genetic and Evolutionary Computation Conference (GECCO 2015). ACM Press,

Madrid, Spain, 679–686. ISBN 978-1-4503-3472-3.

[45] Raquel Hernández Gómez and Carlos A. Coello Coello. 2017. A Hyper-Heuristic of Scalarizing Functions. In 2017
Genetic and Evolutionary Computation Conference (GECCO’2017). ACM Press, Berlin, Germany, 577 –584. ISBN

978-1-4503-4920-8.

[46] Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba Torres. 2016. A Multi-Objective Evolutionary

Algorithm based on Parallel Coordinates. In 2016 Genetic and Evolutionary Computation Conference (GECCO’2016).
ACM Press, Denver, Colorado, USA, 565–572. ISBN 978-1-4503-4206-3.

[47] Simon Huband, Phil Hingston, Lyndon White, and Luigi Barone. 2003. An Evolution Strategy with Probabilistic

Mutation forMulti-Objective Optimisation. In Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003),
Vol. 3. IEEE Press, Canberra, Australia, 2284–2291.

[48] Christian Igel, Nikolaus Hansen, and Stefan Roth. 2007. Covariance Matrix Adaptation for Multi-objective Optimiza-

tion. Evolutionary Computation 15, 1 (Spring 2007), 1–28.

[49] Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, and Yusuke Nojima. 2018. Dynamic Specification of a Reference Point

for Hypervolume Calculation in SMS-EMOA. In 2018 IEEE Congress on Evolutionary Computation (CEC’2018). IEEE
Press, Rio de Janeiro, Brazil, 701–708. ISBN: 978-1-5090-6017-7.

[50] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. 2017. Reference Point Specification in Hypervolume

Calculation for Fair Comparison and Efficient Search. In 2017 Genetic and Evolutionary Computation Conference
(GECCO’2017). ACM Press, Berlin, Germany, 585–592. ISBN 978-1-4503-4920-8.

[51] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. 2014. Difficulties in Specifying Reference Points

to Calculate the Inverted Generational Distance for Many-Objective Optimization Problems. In 2014 IEEE Symposium
on Computational Intelligence in Multi-Criteria Decision-Making (MCDM’2014). IEEE Press, Orlando, Florida, USA,

170–177. ISBN 978-1-4799-4467-5.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1007/s10270-017-0610-0


Indicator-based Multi-Objective Evolutionary Algorithms 1:35

[52] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. 2015. Modified Distance Calculation in Gener-

ational Distance and Inverted Generational Distance. In Evolutionary Multi-Criterion Optimization, 8th International
Conference, EMO 2015, António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello (Eds.). Springer.

Lecture Notes in Computer Science Vol. 9019, Guimarães, Portugal, 110–125.

[53] Hisao Ishibuchi, Yu Setoguchi, Hiroyuki Masuda, and Yusuke Nojima. 2017. Performance of Decomposition-Based

Many-Objective Algorithms Strongly Depends on Pareto Front Shapes. IEEE Transactions on Evolutionary Computation
21, 2 (April 2017), 169–190.

[54] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. 2007. Iterative Approach to Indicator-Based Multiobjective

Optimization. In 2007 IEEE Congress on Evolutionary Computation (CEC’2007). IEEE Press, Singapore, 3967–3974.

[55] Hisao Ishibuchi, Noritaka Tsukamoto, Yuji Sakane, and Yusuke Nojima. 2009. Hypervolume Approximation Us-

ing Achievement Scalarizing Functions for Evolutionary Many-Objective Optimization. In 2009 IEEE Congress on
Evolutionary Computation (CEC’2009). IEEE Press, Trondheim, Norway, 530–537.

[56] Hisao Ishibuchi, Noritaka Tsukamoto, Yuji Sakane, and Yusuke Nojima. 2010. Indicator-Based Evolutionary Algorithm

with Hypervolume Approximation by Achievement Scalarizing Functions. In Proceedings of the 12th annual conference
on Genetic and Evolutionary Computation (GECCO’2010). ACM Press, Portland, Oregon, USA, 527–534. ISBN

978-1-4503-0072-8.

[57] Siwei Jiang and Zhihua Cai. 2009. Enhance the Convergence and Diversity for ϵ -MOPSO by Uniform Design

and Minimum Reduce Hypervolume. In Proceedings of the 2009 International Conference on Artificial Intelligence
and Computational Intelligence (AICI’09), Vol. 1. IEEE Computer Society Press, Shanghai, China, 129–133. ISBN

978-0-7695-3816-7.

[58] S. Jiang, L. Feng, C. K. Heng, Q. C. Nguyen, Y. S. Ong, A. N. Zhang, and P. S. Tan. 2016. Adaptive indicator-based

evolutionary algorithm for multiobjective optimization problems. In 2016 IEEE Congress on Evolutionary Computation
(CEC). 492–499. https://doi.org/10.1109/CEC.2016.7743834

[59] Siwei Jiang, Yew-Soon Ong, Jie Zhang, and Liang Feng. 2014. Consistencies and Contradictions of Performance

Metrics in Multiobjective Optimization. IEEE Transactions on Cybernetics 44, 12 (December 2014), 2391–2404.

[60] Siwei Jiang, Jie Zhang, Yew-Soon Ong, Allan N. Zhang, and Puay Siew Tan. 2015. A Simple and Fast Hypervolume

Indicator-Based Multiobjective Evolutionary Algorithm. IEEE Transactions on Cybernetics 45, 10 (October 2015),

2202–2213.

[61] Joshua Knowles and David Corne. 2002. On Metrics for Comparing Nondominated Sets. In Congress on Evolutionary
Computation (CEC’2002), Vol. 1. IEEE Service Center, Piscataway, New Jersey, 711–716.

[62] Joshua Knowles and David Corne. 2003. Properties of an Adaptive Archiving Algorithm for Storing Nondominated

Vectors. IEEE Transactions on Evolutionary Computation 7, 2 (April 2003), 100–116.

[63] Joshua D. Knowles, David W. Corne, and Mark Fleischer. 2003. Bounded Archiving using the Lebesgue Measure. In

Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), Vol. 4. IEEE Press, Canberra, Australia,

2490–2497.

[64] Michael A. Lee, Henrik Esbensen, and Laurent Lemaitre. 1995. TheDesign of Hybrid Fuzzy/EvolutionaryMultiobjective

Optimization Algorithms. In Proceedings of the 1995 IEEE/Nagoya University World Wiseperson Workshop. Nagoya,
Japan, 118–125.

[65] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2015. Many-Objective Evolutionary Algorithms: A Survey. Comput.
Surveys 48, 1 (September 2015).

[66] Bingdong Li, Ke Tang, Jinlong Li, and Xin Yao. 2016. Stochastic Ranking Algorithm for Many-Objective Optimization

Based on Multiple Indicators. IEEE Transactions on Evolutionary Computation 20, 6 (December 2016), 924–938.

[67] Fei Li, Ran Cheng, Jianchang Liu, and Yaochu Jin. 2018. A Two-Stage R2 Indicator Based Evolutionary Algorithm for

Many-Objective Optimization. Applied Soft Computing 67 (June 2018), 245–260.

[68] Fei Li, Jianchang Liu, Peiqiu Huang, and Huaitao Shi. 2018. An R2 Indicator and Decomposition Based Steadystate

Evolutionary Algorithm for Many-objective Optimization. Mathematical Problems in Engineering 2018 (2018), 18.

[69] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. 2015. An Evolutionary Many-Objective Optimization

Algorithm Based on Dominance and Decomposition. IEEE Transactions on Evolutionary Computation 19, 5 (October

2015), 694–716.

[70] Miqing Li, Shengxiang Yang, and Xiaohui Liu. 2014. Shift-Based Density Estimation for Pareto-Based Algorithms in

Many-Objective Optimization. IEEE Transactions on Evolutionary Computation 18, 3 (June 2014), 348–365.

[71] Miqing Li and Xin Yao. 2019. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey. Comput.
Surveys 52, 2 (March 2019), 26:1–26:38.

[72] Wenwen Li, Ender Özcan, Robert John, John H. Drake, Aneta Neumann, and Markus Wagner. 2017. A Modified

Indicator-Based Evolutionary Algorithm (mIBEA). In 2017 IEEE Congress on Evolutionary Computation (CEC’2017).
IEEE Press, San Sebastián, Spain, 1047–1054. ISBN 978-1-5090-4601-0.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/CEC.2016.7743834


1:36 Falcón-Cardona and Coello Coello

[73] Arnaud Liefooghe and Bilel Derbel. 2016. A Correlation Analysis of Set Quality Indicator Values in Multiobjective

Optimization. In 2016 Genetic and Evolutionary Computation Conference (GECCO’2016). ACM Press, Denver, Colorado,

USA, 581–588. ISBN 978-1-4503-4206-3.

[74] Antonio López Jaimes andCarlos A. Coello Coello. 2009. Study of Preference Relations inMany-Objective Optimization.

In 2009 Genetic and Evolutionary Computation Conference (GECCO’2009). ACM Press, Montreal, Canada, 611–618.

ISBN 978-1-60558-325-9.

[75] Francisco Luna, Gustavo R. Zavala, Antonio J. Nebro, Juan J. Durillo, and Carlos A. Coello Coello. 2013. Solving a

Real-World Structural Optimization Problem With a Distributed SMS-EMOA Algorithm. In 2013 Eighth International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE Computer Society Press, Compiègne,

France, 600–605.

[76] Edgar Manoatl Lopez and Carlos A. Coello Coello. 2016. IGD
+
-EMOA: A Multi-Objective Evolutionary Algorithm

based on IGD
+
. In 2016 IEEE Congress on Evolutionary Computation (CEC’2016). IEEE Press, Vancouver, Canada,

999–1006. ISBN 978-1-5090-0623-9.

[77] Edgar Manoatl Lopez and Carlos A. Coello Coello. 2018. An Improved Version of a Reference-Based Multi-Objective

Evolutionary Algorithm based on IGD+. In 2018 Genetic and Evolutionary Computation Conference (GECCO’2018).
ACM Press, Kyoto, Japan, 713–720. ISBN: 978-1-4503-5618-3.

[78] Adriana Menchaca-Mendez and Carlos A. Coello Coello. 2013. A New Selection Mechanism Based on Hypervolume

and its Locality Property. In 2013 IEEE Congress on Evolutionary Computation (CEC’2013). IEEE Press, Cancún, México,

924–931. ISBN 978-1-4799-0454-9.

[79] Adriana Menchaca-Mendez and Carlos A. Coello Coello. 2015. GD-MOEA: A New Multi-Objective Evolutionary

AlgorithmBased on the Generational Distance Indicator. In EvolutionaryMulti-Criterion Optimization, 8th International
Conference, EMO 2015, António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello (Eds.). Springer.

Lecture Notes in Computer Science Vol. 9018, Guimarães, Portugal, 156–170.

[80] Adriana Menchaca-Mendez and Carlos A. Coello Coello. 2015. GDE-MOEA : A NewMOEA based on the Generational

Distance indicator and ϵ -dominance. In 2015 IEEE Congress on Evolutionary Computation (CEC’2015). IEEE Press,

Sendai, Japan, 947–955. ISBN 978-1-4799-7492-4.

[81] Adriana Menchaca-Mendez and Carlos A. Coello Coello. 2017. An Alternative Hypervolume-Based Selection

Mechanism for Multi-Objective Evolutionary Algorithms. Soft Computing 21, 4 (February 2017), 861–884.

[82] Adriana Menchaca-Mendez, Carlos Hernández, and Carlos A. Coello Coello. 2016. ∆p -MOEA: A New Multi-Objective

Evolutionary Algorithm Based on the ∆p Indicator. In 2016 IEEE Congress on Evolutionary Computation (CEC’2016).
IEEE Press, Vancouver, Canada, 3753–3760. ISBN 978-1-5090-0623-9.

[83] Kaisa Miettinen. 1999. Nonlinear Multobjective Optimization. Kluwer Academic Publishers, Boston.

[84] E. Osaba, J. Del Ser, A. J. Nebro, I. LaÃśa, M. N. Bilbao, and J. J. Sanchez-Medina. 2018. Multi-Objective Optimization

of Bike Routes for Last-Mile Package Delivery with Drop-Offs. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). 865–870. https://doi.org/10.1109/ITSC.2018.8569273

[85] Miriam Pescador-Rojas, Raquel Hernández Gómez, Elizabeth Montero, Nicolás Rojas-Morales, María-Cristina Riff, and

Carlos A. Coello Coello. 2017. An Overview of Weighted and Unconstrained Scalarizing Functions. In Evolutionary
Multi-Criterion Optimization, 9th International Conference, EMO 2017, Heike Trautmann, Günter Rudolph, Kathrin

Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, and Christian Grimme (Eds.). Springer. Lecture Notes in

Computer Science Vol. 10173, Münster, Germany, 499–513. ISBN 978-3-319-54156-3.

[86] Dugh H. Phan and Junichi Suzuki. 2011. Boosting Indicator-Based Selection Operators for Evolutionary Multiobjective

Optimization Algorithms. In 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence. IEEE press,

276–281. https://doi.org/10.1109/ICTAI.2011.49

[87] Cynthia A. Rodríguez Villalobos and Carlos A. Coello Coello. 2012. A New Multi-Objective Evolutionary Algorithm

Based on a Performance Assessment Indicator. In 2012 Genetic and Evolutionary Computation Conference (GECCO’2012).
ACM Press, Philadelphia, USA, 505–512. ISBN: 978-1-4503-1177-9.

[88] Günter Rudolph, Heike Trautmann, Soumyadip Sengupta, and Oliver Schütze. 2013. Evenly Spaced Pareto Front

Approximations for Tricriteria Problems Based on Triangulation. In Evolutionary Multi-Criterion Optimization, 7th
International Conference, EMO 2013, Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco, and

Jane Shaw (Eds.). Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, 443–458.

[89] Ruhul Sarker and Carlos A. Coello Coello. 2002. Assessment Methodologies for Multiobjective Evolutionary Algo-

rithms. In Evolutionary Optimization, Ruhul Sarker, Masoud Mohammadian, and Xin Yao (Eds.). Kluwer Academic

Publishers, New York, 177–195. ISBN 0-7923-7654-4.

[90] Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka. 2007. Controlling Dominance Area of Solutions and Its Impact

on the Performance of MOEAs. In Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007,
Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata (Eds.). Springer. Lecture

Notes in Computer Science Vol. 4403, Matshushima, Japan, 5–20.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/ITSC.2018.8569273
https://doi.org/10.1109/ICTAI.2011.49


Indicator-based Multi-Objective Evolutionary Algorithms 1:37

[91] Oliver Schütze, Xavier Esquivel, Adriana Lara, and Carlos A. Coello Coello. 2012. Using the Averaged Hausdorff

Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary
Computation 16, 4 (August 2012), 504–522.

[92] Ke Shang, Hisao Ishibuchi, Min-Ling Zhang, and Yiping Liu. 2018. A New R2 Indicator for Better Hypervolume

Approximation. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’18). ACM, New York,

NY, USA, 745–752. https://doi.org/10.1145/3205455.3205543

[93] N. Srinivas and Kalyanmoy Deb. 1994. Multiobjective Optimization Using Nondominated Sorting in Genetic Algo-

rithms. Evolutionary Computation 2, 3 (Fall 1994), 221–248.

[94] Y. Sun, G. G. Yen, and Z. Yi. 2018. IGD Indicator-based Evolutionary Algorithm for Many-objective Optimization

Problems. IEEE Transactions on Evolutionary Computation (2018), 1–1.

[95] K.C. Tan, T.H. Lee, and E.F. Khor. 2002. Evolutionary Algorithms for Multi-Objective Optimization: Performance

Assessments and Comparisons. Artificial Intelligence Review 17, 4 (June 2002), 253–290.

[96] Lothar Thiele. 2015. Indicator-Based Selection. Springer Berling Heidelberg, Berlin, Heidelberg, 985–994.
[97] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin. 2018. An Indicator-Based Multiobjective Evolutionary Algorithm

With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation 22, 4 (Aug

2018), 609–622. https://doi.org/10.1109/TEVC.2017.2749619

[98] Y. Tian, X. Zhang, R. Cheng, and Y. Jin. 2016. A multi-objective evolutionary algorithm based on an enhanced inverted

generational distance metric. In 2016 IEEE Congress on Evolutionary Computation (CEC’2016). IEEE Press, 5222–5229.

[99] Heike Trautmann, Günter Rudolph, Christian Dominguez-Medina, and Oliver Schütze. 2012. Finding Evenly Spaced

Pareto Fronts for Three-Objective Optimization Problems. In EVOLVE - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation II, Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia

Tantar, Pascal Bouvry, Pierre Del Moral, and Pierrick Legrand (Eds.). Springer, Advances in Intelligent Systems and

Computing Vol. 175, Berlin, Germany, 89–105. ISBN 978-3-642-31519-0.

[100] Anupam Trivedi, Dipti Srinivasan, Krishnendu Sanyal, and Abhiroop Ghosh. 2017. A Survey of Multiobjective

Evolutionary Algorithms Based on Decomposition. IEEE Transactions on Evolutionary Computation 21, 3 (June 2017),

440–462.

[101] Tamara Ulrich, Johannes Bader, and Eckart Zitzler. 2010. Integrating Decision Space Diversity into Hypervolume-

Based Multiobjective Search. In Proceedings of the 12th annual conference on Genetic and Evolutionary Computation
(GECCO’2010). ACM Press, Portland, Oregon, USA, 455–462. ISBN 978-1-4503-0072-8.

[102] D ung H. Phan and Junichi Suzuki. 2013. R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective

Optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC’2013). IEEE Press, Cancún, México, 1836–1845.

ISBN 978-1-4799-0454-9.

[103] D ungH. Phan, Junichi Suzuki, and Isao Hayashi. 2012. Leveraging Indicator-Based Ensemble Selection in Evolutionary

Multiobjective Optimization Algorithms. In 2012 Genetic and Evolutionary Computation Conference (GECCO’2012).
ACM Press, Philadelphia, USA, 497–504. ISBN: 978-1-4503-1177-9.

[104] K. van der Blom, S. Boonstra, H. Hofmeyer, T. Bäck, and M. T. M. Emmerich. 2017. Configuring advanced evolutionary

algorithms for multicriteria building spatial design optimisation. In 2017 IEEE Congress on Evolutionary Computation
(CEC). 1803–1810. https://doi.org/10.1109/CEC.2017.7969520

[105] David A. Van Veldhuizen. 1999. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations.
Ph.D. Dissertation. Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force

Institute of Technology, Wright-Patterson AFB, Ohio, USA.

[106] David A. Van Veldhuizen and Gary B. Lamont. 1999. Genetic Algorithms, Building Blocks, and Multiobjective

Optimization. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, Annie S.

Wu (Ed.). Orlando, Florida, 125–126.

[107] David A. Van Veldhuizen and Gary B. Lamont. 2000. On Measuring Multiobjective Evolutionary Algorithm Per-

formance. In 2000 IEEE Congress on Evolutionary Computation, Vol. 1. IEEE Service Center, Piscataway, New Jersey,

204–211.

[108] Christian von Lücken, Benjamin Baran, and Carlos Brizuela. 2014. A survey onmulti-objective evolutionary algorithms

for many-objective problems. Computational Optimization and Applications 58, 3 (July 2014), 707–756.

[109] Markus Wagner and Frank Neumann. 2013. A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm.

In 2013 Genetic and Evolutionary Computation Conference (GECCO’2013). ACM Press, New York, USA, 687–694. ISBN

978-1-4503-1963-8.

[110] Handing Wang, Licheng Jiao, and Xin Yao. 2015. Two_Arch2: An Improved Two-Archive Algorithm for Many-

Objective Optimization. IEEE Transactions on Evolutionary Computation 19, 4 (August 2015), 524–541.

[111] Lyndon While, Lucas Bradstreet, and Luigi Barone. 2012. A Fast Way of Calculating Exact Hypervolumes. IEEE
Transactions on Evolutionary Computation 16, 1 (February 2012), 86–95.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3205455.3205543
https://doi.org/10.1109/TEVC.2017.2749619
https://doi.org/10.1109/CEC.2017.7969520


1:38 Falcón-Cardona and Coello Coello

[112] D. H. Wolpert and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation 1, 1 (April 1997), 67–82. https://doi.org/10.1109/4235.585893

[113] Jin Wu and Shapour Azarm. 2001. Metrics for Quality Assessment of a Multiobjective Design Optimization Solution

Set. Transactions of the ASME, Journal of Mechanical Design 123 (2001), 18–25.

[114] Kaifeng Yang, Michael T.M. Emmerich, Rui Li, Ji Wang, and Thomas Bäck. 2014. Power Distribution Network

Reconfiguration by Evolutionary Integer Programming. In Parallel Problem Solving from Nature - PPSN XIII, 13th
International Conference, Thomas Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and Jim Smith (Eds.). Springer.

Lecture Notes in Computer Science Vol. 8672, Ljubljana, Slovenia, 11–23.

[115] Zhiwei Yang, Michael Emmerich, Thomas Bäck, and Joost Kok. 2016. Multi-objective inventory routing with uncertain

demand using population-based metaheuristics. Integrated Computer-Aided Engineering 23, 3 (2016), 205–220.

[116] Gary G. Yen and Zhenan He. 2014. Performance Metric Ensemble for Multiobjective Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation 18, 1 (February 2014), 131–144.

[117] Saúl Zapotecas Martínez, Víctor A. Sosa Hernández, Hernán Aguirre, Kiyoshi Tanaka, and Carlos A. Coello Coello.

2014. Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem. In

Parallel Problem Solving from Nature - PPSN XIII, 13th International Conference, Thomas Bartz-Beielstein, Jürgen

Branke, Bogdan Filipič, and Jim Smith (Eds.). Springer. Lecture Notes in Computer Science Vol. 8672, Ljubljana,

Slovenia, 682–691.

[118] Qingfu Zhang and Hui Li. 2007. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE
Transactions on Evolutionary Computation 11, 6 (December 2007), 712–731.

[119] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. 2007. The Hypervolume Indicator Revisited: On the Design of

Pareto-compliant Indicator Via Weighted Integration. In Evolutionary Multi-Criterion Optimization, 4th International
Conference, EMO 2007, Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata

(Eds.). Springer. Lecture Notes in Computer Science Vol. 4403, Matshushima, Japan, 862–876.

[120] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation 8, 2 (Summer 2000), 173–195.

[121] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. 2008. Quality Assessment of Pareto Set Approximations. In

Multiobjective Optimization. Interactive and Evolutionary Approaches, Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen,

and Roman Slowinski (Eds.). Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 373–404.

[122] Eckart Zitzler and Simon Künzli. 2004. Indicator-based Selection in Multiobjective Search. In Parallel Problem Solving
from Nature - PPSN VIII, Xin Yao et al. (Ed.). Springer-Verlag. Lecture Notes in Computer Science Vol. 3242, Birmingham,

UK, 832–842.

[123] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. 2004. A Tutorial on Evolutionary Multiobjective Optimization.

In Metaheuristics for Multiobjective Optimisation, Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen, and Vincent

T’kindt (Eds.). Springer. Lecture Notes in Economics and Mathematical Systems Vol. 535, Berlin, 3–37.

[124] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the Strength Pareto Evolutionary Algorithm.

Technical Report 103. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology

(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

[125] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative

Study. In Parallel Problem Solving from Nature V, A. E. Eiben (Ed.). Springer-Verlag, Amsterdam, 292–301.

[126] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane Grunert da Fonseca. 2003. Performance

Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7,

2 (April 2003), 117–132.

Received February 2019; revised March 2019; accepted December 2019

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/4235.585893

	Abstract
	1 Introduction
	2 Background
	3 Quality Indicators
	4 Indicator-based MOEAs
	4.1 Our Proposed Taxonomy
	4.2 IB-Selection
	4.3 IB-Mating Selection

	5 Real-world Applications
	6 Future Research Directions
	6.1 Design of Multi-Indicator-based MOEAs
	6.2 Use of Hyper-heuristics
	6.3 Parallel IB-MOEAs
	6.4 IB-MOEAs' theory

	7 Conclusions
	Acknowledgments
	References

