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Abstract

Many real-world decision problems consider more than one objective. These
objectives usually con�ict with each other. In the problem environments, many
data and parameters are usually uncertain at the time of planning. So multi-
objective optimization combined with uncertainty is a challenging research topic.
To deal with the basic search process in such problems, in this paper, a new ap-
proach has been proposed that combines multiple population based algorithms
under a single algorithm structure. To deal with the uncertainty, a dynamic
scenario-based approach is developed and integrated with the search process, in
which the number of scenarios is dynamically set during the solution process.
This is a new way of solving multi-objective optimization problems under un-
certainty. To judge the performance of the proposed approach, we have solved
a set of standard test problems without uncertainty and a number of prac-
tical problems with uncertainty. The practical problems are the well-known
dynamic economic and emission dispatch problems, with di�erent combinations
of energy sources. The experimental studies demonstrated that the proposed
approach performs better than other well-known algorithms compared in this
paper.

Keywords: multi-objective optimization, evolutionary algorithm; dynamic
economic and environmental dispatch; renewable energy; uncertainty.

1. Introduction

Over the last few decades, multi-objective optimization has become a very
popular decision making tool in practice, and also a challenging research topic,
where the problem objectives cannot be represented by a single objective func-
tion. The basic condition of multi-objective optimization is that these objec-
tives must be con�icting to each other. If they are not con�icting, they can
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be combined together as a single objective function with appropriate scaling.
In multi-objective optimization problems (MOPs), there is no single optimal
solution, instead a set of non-dominated solutions (also called Pareto front) is
generated [3].

The optimization algorithms for MOPs are categorized into two types: a
priori and posteriori [32]. In the former, a single-objective function is gener-
ated based on a weighted sum of all the considered objectives. With a given set
of weights, the MOP can be solved using a single objective algorithm that gen-
erates a single solution. The major drawback of this approach is to determine
the right weights for the objectives. However, depending on the mathematical
properties of the functions, multiple solutions may be generated by changing
the weights, where one solution is generated through a single run of the algo-
rithm. That means it is necessary to repeatedly run the algorithm for multiple
solutions. A posteriori approach optimizes all the objective functions simulta-
neously, so that it �nds a set of non-dominated solutions in a single run. For this
approach, the population-based algorithms, such as multi-objective evolution-
ary algorithms (MOEAs) have been receiving growing interest, in solving many
real-world complex MOPs, due to their �exible, e�cient search features and the
generation of many non-dominated solutions in a single run [32, 47, 33]. Among
the existing MOEAs, non-dominated sorting genetic algorithm-II (NSGA-II),
multi-objective particle swarm optimization (MOPSO), multi-objective di�er-
ential evolution (MODE), multi-objective bee Algorithm and multi-objective
bat algorithm (MOBA) have shown admirable performances for many problems
[32].

The existing MOEAs have been widely applied to MOPs where the data and
parameters are known with certainty. There are only very limited attempts to
deal with MOPs under uncertainty, which is inevitable in many real-world ap-
plications, such as power system, mining, and project scheduling [24]. Over the
last few years, several scenario-based approaches have been developed for solv-
ing di�erent optimization problems with uncertainty [5, 48]. In such approaches,
a scenario represents an instance of the problem with a �xed set of parameters.
Those parameters are generated using a stochastic representation, such as the
probability distribution of the given uncertain parameters [48]. Once a speci�ed
number of scenarios is generated, all the problem instances are solved. To in-
crease the solution stability of this approach, it is necessary to consider a large
number of scenarios, which renders these algorithms computationally burden
for a large system [34].

Considering the context of multi-objective optimization with uncertainty,
the dynamic economic and emission dispatch (DEED) problem is an excellent
example from real-world applications [21]. In this problem, it is intended to min-
imize both fuel cost and gas emission, simultaneously, by scheduling the given
electrical generators, that include fossil-fuel-base as well as renewable genera-
tors under an uncertain environment. As the generation of renewable energy
�uctuates greatly, scheduling the right mix of generation from a number of re-
newable and thermal units to satisfy a daily load demand, while dealing with
the generation capacity and technical constraints, is a challenging optimization
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problem [47, 36]. Although many e�cient algorithms based on di�erent evolu-
tionary algorithms (EAs) have been developed [47], most of them disregard the
uncertainties of renewable energy production, in spite of the fact that managing
them is a critical issue when solving the DEED problem.

It is well-known that no single algorithm performs well for solving a wide
range of MOPs, with and without considering their uncertainties. This might
be due to the underlying characteristics of optimization problems are not con-
sistent. Although multi-method based multi-operator algorithms have been suc-
cessfully applied for solving several optimization problems without uncertainty
[48, 18], to our best knowledge, adopting them to solve MOPs under uncertainty
has not yet been explicitly explored.

In this paper, we develop a multi-method-based bi-objective algorithm
(MMBA) for solving MOPs, with or without uncertainties. The MMBA consid-
ers three e�cient algorithms, namely NSGA-II, MODE and MOPSO, based on
their demonstrated performances in solving many real-world optimization prob-
lems. These three algorithms are evolved in three di�erent sub-populations,
where the algorithms perform sequentially one after another. In the initial gen-
eration, the same numbers of individuals are allocated to each sub-population.
However, in subsequent generations, the sizes of the sub-populations are varied,
based on their performance in previous generations, with the best algorithm in-
volving more individuals than the others. After a certain number of generations
(say, a cycle), only the best algorithm performs for the next cycle, and it con-
siders all the individuals from the other two algorithms, while they are not run.
Once that cycle is completed, all three algorithms are restarted with equal num-
bers of individuals, and the above steps are repeated. This process continues
until a stopping criterion is reached. Furthermore, to increase the convergence
rate of the MMBA algorithm, a heuristic repair technique is employed to reduce
the sum of constraints violations (CV) for infeasible individuals.

The performance of the proposed algorithm is demonstrated by solving six
standard MOPs, and three DEED problems, with and without uncertainty.
The experimental results demonstrate the superiority of the proposed approach,
when compared with other well-known approaches.

The key contributions of this study can be summarized as follow:

� Developing a new multi-method based bi-objective optimization algorithm
for solving MOPs, with and without uncertainty.

� Introducing a new way of handling uncertainty in MOPs.

� Proposing a new heuristic to repair infeasible individuals into feasible ones.

The rest of this paper is organized as follows: Section 2 provides a literature
review, Section 3 presents the problem formulation, Section 4 contains the pro-
posed MMBA algorithm, Section 5 reports our experimental results and their
corresponding analysis, and Section 6 provides our conclusions and some possi-
ble directions for future research.
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2. Literature Review

Over the last few decades, a signi�cant number of MOEAs have been devel-
oped for solving di�erent MOPs. Of them, multi-objective GA, niched Pareto
genetic algorithm, NSGA-II, strength Pareto evolutionary algorithm-2, MODE,
and MOPSO are well-known for solving MOPs e�ciently. The general idea
of the above-mentioned algorithms is almost similar, in that the best non-
dominated solutions are stored, and updated in each iteration. The primary
di�erence between one to another algorithm is to set a mechanism to update
the non-dominated solutions. However, most of the algorithms �nd a common
challenge in maintaining a good convergence and coverage of the selected non-
dominated solutions, as the ultimate goal of a MOEA is to �nd an approximate
Pareto-front that covers maximum areas of the true optimal Pareto front. In
the selection operator, convergence helps by pushing solutions toward optimal or
sub-optimal areas, while coverage ensures that selected non-dominated solutions
cover the entire area of the Pareto-front. Nevertheless, they are con�icting, if
a MOEA emphasizes on accuracy (convergence), then diversity (coverage) will
be poor, and vice-versa. Although most of the existing MOEAs periodically
maintain both convergence and coverage of the non-dominated solutions during
the search process, that is not guaranteed for many complex MOPs [32].

An alternative but popular approach is the decomposition based MOEAs
(MOEAs/D), in which a MOP is decomposed into a number of scalar opti-
mization problems with adjusted di�erent weight-values for di�erent objectives.
Subsequently, the scalar problems are solved as single-objective optimization
problems. However, this process is assumed to be overextended for some MOPs.
In that case, sometimes grid-based approaches are used, in which the non-
dominated solutions are selected by using a grid-based method towards the
optimal direction while conserving identical distribution between the selected
solutions [31].

However, no algorithm performs well for a wide range of optimization prob-
lems, with each sometimes showing a better performance in one problem, but
a worse performance in another [47]. To overcome this, recently several re-
searchers have designed ensemble algorithmic frameworks that consider multiple
algorithms, search operators, and heuristics [19]. Initially, ensemble techniques
were used to enhance the performance of a single EA by using multiple search
operators; for example, Gong et. al. [22] enhanced some existing single objective
EAs by employing a new ensemble technique, based on a surrogate model. Sub-
sequently, ensemble techniques have been widely used in various optimization
areas, such as single objective, constrained, multi-objective, and multi-modal
optimization problems [43]. For MOPs, Haiping et. al. [29] developed an en-
semble algorithm based on three population-based algorithms, in which they
performed in parallel in three di�erent populations with new o�spring gener-
ated using their own operators. After a generation, the selected individuals from
all algorithms were combined to update the parent population. This process led
to a better set of solutions at the end.

Although ensemble approaches have shown great performance in solving
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some problems, they have not been studied well for optimization with uncer-
tainty, particularly in uncertain MOPs. Solving an uncertain MOP with the
population-based algorithms, is challenging due to the problem characteristics
[45]. In practice, many real-world problems have been formulated as bi-objective
optimization problems with uncertainty. One of the complex optimization prob-
lems in power system, namely DEED problems, are formulated as uncertain
bi-objective problems, with uncertainties in renewable generations and load de-
mands [48]. During the last decade, various MOEAs have been applied to
solve di�erent DEED problems to obtain a set on non-dominated solutions in
a single run [21]. For example, Purkayastha et al. [38] applied NSGA-II with
an adaptive crowding distance mechanism to improve diversity when solving a
bi-objective DEED problem. Although this method was tested on a 40-unit
test problem, the results were not compared with any others, even those of the
traditional NSGA-II. Also, when a modi�ed crowding distance approach was
applied, solutions with lower crowding distances were rejected as survivors for
the following generations, and although diversity was improved, the convergence
rate decreased. To tackle this drawback, a niched Pareto GA with a clustering
technique, in which the tournament size for the crossover was adaptively set,
was developed in [1, 2]. This algorithm started with a large population, and the
clustering technique was used to determine the manageable non-dominated so-
lutions from the population. This method was tested on a 6-unit static problem,
with the results indicating that it obtained a wider set of Pareto solutions than
other state-of-the-art algorithms. Later, the same authors developed a MOPSO
to solve the same problem [4]. This approach used the above mentioned clus-
tering technique to update the set of non-dominated solutions. A comparison
of the niched Pareto GA and MOPSO showed that the latter performed bet-
ter in terms of the quality of the non-dominated solutions obtained. However,
both were tested on only a small-scale problem with a single-hour load demand.
Basu [10] developed a MODE for solving a large DEED problem, in which a
non-dominated sorting technique [14] was used as a selection operator in a DE
algorithm. It was the best of several other MOEAs, but since its parameters
were arbitrarily set, it might not work well for other DEED problems. Recently,
Liang [27] developed a multiobjective hybrid bat algorithm for the large-scale
DEED problems, in which a learning-based non-dominated sorting archive was
used. In it, a learning algorithm was employed to determine the global and
local best for the algorithm to use in the next stage. Although they obtained
very competitive results comparing to other algorithms, they solved only a few
deterministic problems. Later, the same authors developed another variant of
the hybrid bat algorithm [28] for solving single-objective, uncertain, economic
dispatch problems.

Multi-objective mixed DEED problems, such as wind-thermal, solar-thermal
and hydro-thermal ones, have not been fully studied in the literature. Recently,
a few attempts have been made to solve mixed bi-objective DEED problems
using MOEAs, such as a NSGA-II and MODE for hydro-thermal [41, 9], and
MOPSO for wind/solar-thermal [11, 17]. Although these methods have the
capability to generate all the trade-o� solutions in a single run, in order for
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them to handle a large number of equality constraints, they require extensive
computational time, and some authors have simpli�ed the DEED formulations
by ignoring ramp constraints. Furthermore, in most of the above methods, the
uncertainties of the renewable generations and the forecasted load demand, are
ignored. Although this simpli�cation of a DEED problem makes it easier to
solve, the applicability of the method is not guaranteed.

Recently, a few researchers have incorporated some uncertainties into a
DEED model in which the problem is formulated as a scenario-based proba-
bilistic DEED one [35, 12, 48]. The scenarios represent the stochastic behaviors
of variable load demand and intermittent generation from renewable generators.
Each scenario is solved using various optimization methods, such as MILP [42],
branch and bound algorithm [15], 2m-point estimated method (PEM) [7], GA
[48] and DE [51]. However in these methods, the quality of a solution depends
on the given number of scenarios; the more scenarios, the better the quality of
solutions and vice versa. As a result, they require a great deal of computational
e�ort to produce good solutions [44].

Using an ensemble algorithm, the authors in [40, 16] developed a GA frame-
work while considering multiple crossover operators, Elsayed et al. [18] devel-
oped an evolutionary framework using multi-operator of GA and DE, and Zaman
et. al. [47] a GA-DE framework for solving a broad range of single objective
economic dispatch problems. All these multi-operator approaches consider two
or more algorithms, each of which uses di�erent methods to share information
among the considered algorithms. Nevertheless, we believe that solving an un-
certain bi-objective DEED problem using such a multi-method-based approach
has not yet been tested.

3. Background of DEED Problems

Generally, the DEED problem considers two objectives to simultaneously
minimize the fuel costs and gas emissions of the given power plants while sat-
isfying their equality and inequality constraints. However, with considering the
uncertainties of forecasted load demand and renewable generations, the problem
to be modeled as an uncertain optimization problem. The notation to specify
uncertain parameters (say, X) is that of adding a tilde above the variable, i.e.,
X̃. Details of the mathematical formulations of all these hydro-, wind and
solar-thermal DEED problems are described below.

3.1. Hydro-thermal

In this section, the formulation of a bi-objective uncertain hydro-thermal
DEED problem is described. The objectives and constraints are shown below.

3.1.1. Objective Functions

In a hydro-thermal system, the objectives are to simultaneously minimize both
the operating cost and gas emission, de�ned as follows [47]:
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Min: E 〈Fc〉 =
∑n
s=1

∑T
t=1

∑NT

i=1

(
ai + biPTi,t,s

+ ciP
2
Ti,t,s

+
∣∣∣di sin

{
ei

(
Pmin
Ti,t
− PTi,t,s

)}∣∣∣) (1)

Min: E 〈FE〉 =
∑n
s=1

∑T
t=1

∑NT

i=1

(
10−2

(
αi + βiPTi,t,s

+γiP
2
Ti,t,s

)
+ ηie

λiPTi,t,s

)
,∀i, t, s (2)

The �rst (Eqn. (1)) and second (Eqn. (2)) objectives represent the expected
fuel costs and gas emissions, respectively. PTi,t,s is the ith thermal power plant
at tth time period of an operational cycle T in sth scenario. Note that, the
uncertainties of renewable generations and forecasted load demand to be repre-
sented using a number of possible scenarios, which are generated using a normal
distribution in which its mean and standard deviation are taken from histori-
cal data (see subsection 4.3 for details). NT is the number of thermal power
plants, and E 〈Fc〉 and E 〈FE〉 are their expected fuel costs and gas emissions,
respectively. ai, bi, ci, di, ei are the cost coe�cients, and αi, βi, γi the emission
coe�cients of the ith thermal generator.

The cost function considers the valve point e�ect of the thermal power plants,
which adds a sinusoidal term to the basic quadratic cost function. The im-
portance of adding this to the cost function is discussed in previous research
[51]. The emission function is for the atmospheric pollutants, as SO2 and NO2

caused for the fossil-fuel-based-thermal power plants which modeled in previous
research [45].

3.1.2. Constraints

In the hydro-thermal DEED problem, a number of equality and inequality
constraints are considered, as shown below:

NT∑
i=1

PTi,t,s +

NH∑
j=1

PHj,t,s = P̃Dt,s t ∈ T, s ∈ n (3)

PHj,t,s
= C1,jV

2
j,t,s + C2,jX

2
j,t,s + C3,jVj,t,sXj,t,s (4)

+C4,jVj,t,s + C5,jXj,t,s + C6,j j ∈ NH , t ∈ T, s ∈ n

Vj,t+1,s = Vj,t,s −Xj,t,s + Ij,t,s − Sj,t,s+ (5)
Nup∑
r=1

(
Xr,(t−tdrj),s + Sr,(t−tdr,j),s

)
, j ∈ NH , s ∈ n

Pmin
Hj
≤ PHj,t,s

≤ Pmax
Hj

j ∈ NH , t ∈ T, s ∈ n (6)

Pmin
Ti
≤ PTi,t,s

≤ Pmax
Ti

i ∈ NT , t ∈ T, s ∈ n (7)
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V min
Hj
≤ VHj,t,s ≤ V max

Hj
j ∈ NH , t ∈ T, s ∈ n (8)

Xmin
Hj
≤ XHj,t,s

≤ Xmax
Hj

j ∈ NH , t ∈ T, s ∈ n (9)

|Vj,t,s|t=0
= V inij , and |Vj,t,s|t=T = V endj j ∈ NH , s ∈ n (10)

Eqn. (3) represents the power balance constraint, in which the forecasted de-
mand is considered as uncertain and is represented in di�erent random scenarios
as P̃Dt,s

, which is the power demand at the tth time period in the sth scenario.
The hydro power generation of the jth hydro plant at the tth time interval in
the sth scenario is PHj,t,s

, water storage rate Xj,t,s, and volume Vj,t,s. NH is
the number of hydro power plants and Ck,j(k = 1, 2, . . . , 6) are its generation
coe�cients, Ij,t,s, Nup and Sj,t,s are the water in�ow rate, number of upstream
plants, spillage water (set to zero, as in [9]). tdr,j is the transportation delay of
water from rth to jth reservoir. The capacity limits of the hydro and thermal
plants are represented in Eqns. (6) to (9), in which the minimum and maxi-
mum output power of the hydro generations, water-discharge rates and -storage
volumes are PminHj,t,s

and PmaxHj,t,s
, Xmin

j,t,s and Xmax
j,t,s and V minj,t,s and V maxj,t,s , respec-

tively. Eqn. (10) is the initial and �nal reservoir storage volumes, where, V inij

and V endj are the initial and �nal water-volumes of the jth reservoir respectively.

3.2. Solar-thermal

Based on the nature of the decision variables, the solar-thermal DEED prob-
lem is represented as a mixed-integer non-linear optimization problem, in which
a thermal unit is represented as a continuous variable and a solar unit as a binary
one [25]. Furthermore, the generation from solar sources and the forecasted load
demand, are considered as uncertain and are represented using di�erent random
scenarios. The details of the formulation are discussed below.

3.2.1. Objective Functions

The objective functions of an uncertain bi-objective solar-thermal DEED
problem are de�ned as:

Min: E 〈FC〉 =
∑n
s=1

∑T
t=1

(∑NT

i=1

(
Fci,s(PTi,t,s

)
)

+∑NS

k=1

(
FSk,s

(USk,t,s
)
)) (11)

where, Fci,s(PTi,t,s
) = ai + biPTi,t,s

+ ciP
2
Ti,t,s

+
∣∣∣di sin

{
ei

(
Pmin
Ti,t
− PTi,t,s

)}∣∣∣ (12)

FSk,s
(Usk,t,s

) = PUcos tk P̃Sk,t,s
Usk,t,s

, USk,t,s
∈ {0, 1}

k ∈ NS t ∈ T, s ∈ n
(13)

P̃Sk,t,s
= Prk

{
1 + Ω

(
T̃ambk,t,s

− Trefk
)} Sik,t,s

1000
(14)
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Min: E 〈FE〉 =

n∑
s=1

T∑
t=1

NT∑
i=1

hi
(
FEi,s(PTi,t,s)

)
(15)

=

n∑
s=1

T∑
t=1

NT∑
i=1

(
Fci,s (Pmax

i )

FEi,s
(Pmax
i )

)(
FEi,s

(PTi,t,s
)
)

FEi,s(PTi,t,s) = αi + βiPTi,t,s + γiP
2
Ti,t,s

+ηie
λiPTi,t,s i ∈ NT t ∈ T s ∈ n

(16)

Eqn. (11) shows the �rst objective function that associates with the opera-
tional costs of both thermal and solar generators, and Eqn. (15) is the second
objective function, which corresponds to the gas emissions from the considered
thermal plants. Note that, the gas emission function is normalized to make a
same order as the cost function. P̃Sk,t,s

is the solar power generation which is
considered as uncertain and its operation cost is represented in Eqn. (13), in
which USk,t,s

is a binary variable indicates the kth unit is turned on or o� in the
sth scenario at the tth time interval, and PUcostk is its per unit cost. The avail-
able solar generation

(
PSk,t,s

)
of the kth unit at the tth time interval in the sth

scenario is determined using Eqn. (14), where Prk is its rated power, Trefk and
Tambk,t,s

are the reference temperature and ambient temperature respectively,
the temperature coe�cient is Ω, and Sik,t,s is the incident solar radiation.

3.2.2. Constraints

The following equality and inequality constraints are considered for the solar-
thermal DEED problem.

NT∑
i=1

PTi,t,s +

NS∑
k=1

P̃Sk,t,s
USk,t,s

= P̃Dt,s , t ∈ T, s ∈ n (17)

Pmin
Ti
≤ PTi,t,s ≤ Pmax

Ti
i ∈ NT , t ∈ T, s ∈ n (18)

−DRi ≤ PTi,t,s − PTi,t−1,s ≤ URi i ∈ NT t ∈ T, s ∈ n (19)

Eqn. (17) represents the power balance equality constraints, in which P̃Dt,s

and P̃Sk,t,s
are considered as uncertain parameters and are represented in the

form of random scenarios. The capacity limits of the thermal generators are
shown in Eqns. (18), while their ramp limits are in (19), in which UR and DR
are the upward and downward transition rates, respectively.

3.3. Wind-Thermal

In this section, the mathematical model of a wind-thermal DEED problem
is discussed.

9



3.3.1. Objective Function

The objectives of a wind-thermal DEED problem are to simultaneously min-
imize the operating cost and gas emission by utilizing the thermal and wind
generators over a planning horizon of T hours. The power generated by a wind
generator, and its forecasted load demand, are considered as uncertain, and vary
within a range. The objective functions are de�ned as [37]:

Min: E〈FC〉 =

NS∑
s=1

T∑
t=1

NT∑
i=1

Fci
(
PTi,t,s

)
+

NS∑
s=1

T∑
t=1

NW∑
w=1

(

FWw

(
P̃Ww,t,s

)
+ FUw

(
P̃Ww,t,s

)
+ FOw

(
P̃Ww,t,s

))
(20)

Min: E 〈FE〉 =
∑NS

s=1

∑T
t=1

∑NT

i=1

(
10−2

(
αi + βiPTi,t,s

+γiP
2
Ti,t,s

)
+ ηie

λiPTi,t,s

) (21)

where NW is the number of wind power plants, PTi,t,s
and P̃Ww,t,s

are the output
of the ith and wth thermal and wind generator, respectively, in the sth scenario
in which Fci is the fuel cost of the ith thermal generator (as in Eqn. (12)),
while FWw

is the operating cost, FUw
and FOw

are the penalty costs for the
under- and over-estimated wind energy, respectively. Eqn. (21) is the cost for
gas emissions where αi, βi, γi, ηi and λi are the emission coe�cients of the
ith thermal generator, respectively. A liner function is used to represent the
operating cost of wind generators, as:

FWw(P̃Ww,t,s
) = δwP̃Ww,t

, w ∈ NW t ∈ T s ∈ NS (22)

where δw is the per unit cost of the wth wind generator, with its output at the
tth time interval expressed as [23]:

P̃Ww,t,s
=


0 if voutw < ṽw,t,s < vinw

PRw

ṽw,t,s−vinw

vrw−vinw
if vinw

< ṽw,t,s < vrw

PRw if vrw < ṽw,t,s < voutw

(23)

where voutw , vinw , vrw and ṽw,t,s are the cut-out, cut-in, rated and tth-hour
wind speed of the wth wind farm in the sth scenario, respectively, and PRw

is
the rated wind power from the wth wind generator.

Furthermore, we include penalty costs for any forecasted wind farm being
under- or over-estimated, which are expressed as [47]:

FUw(P̃Ww,t,s) = kUw

∫ PRw

PWw,t,s

(
w − P̃Ww,t,s

)
fPWw,t,s

(w)dw (24)

FOw(P̃Ww,t,s
) = kOw

∫ PRw

0

(
P̃Ww,t,s

− w
)
fPWw,t,s

(w)dw (25)
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Earlier research shows that the wind speed follows Weibull distribution func-
tion, as [47]:

fPWw,t
(W ) =

Ktlvin
ct

φKt−1e−φ
Kt
, 0 < Wt < WR (26)

where the constants kt, ct and φ are determined as:

Kt = (σt/µt)
−1.086

, (27)

ct =
µt

Γ(1 +K−1t )
(28)

φ =
(1 + (W/WR)l)v

ct
(29)

where l =
vr − vin
vin

(30)

where µt and σt are the mean and standard deviations of the wind speed at the
tth hour, respectively.

3.3.2. Constraints

The load demand, capacity and ramp constraints are considered in a wind-
thermal DEED problem, as:

NT∑
i=1

PTi,t,s
+

NW∑
w=1

P̃Ww,t,s
= P̃Dt,s

s ∈ NS (31)

Pmin
Ti
≤ PTi,t,s

≤ Pmax
Ti

i ∈ NT , t ∈ T s ∈ NS (32)

0 ≤ P̃Ww,t,s
≤ PRw

w ∈ NW , t ∈ T s ∈ NS (33)

−DRi ≤
(
Pi,t,s − Pi,(t−1),s

)
≤ URi, if Pi,(t−1),s > Pmin

i (34)

−DR0
i ≤

∣∣Pi,t,s − Pi,(t−1),s∣∣ ≤ UR1
i , if 0 < Pi,(t−1),s < Pmin

i (35)

[
T oni,(t−1),s − T

on
mini

] [
UTi,(t−1),s

− UTi,t,s

]
≥ 0 (36)[

T offi,(t−1),s − T
off
mini

] [
UTi,t,s − UTi,(t−1),s

]
≥ 0

Eqn. (34) shows the conventional ramp limits between two consecutive
hours, and Eqn. (35) is the initial/�nal ramp limits when a generating unit
is in the process of startup or shutdown, in which UR1 and DR0 are the initial
ramp up and down respectively. Eqn. (36) represents the minimum on/o� time
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of a thermal generator, where T onmini
and T offmaxi

are the minimum on and o� time
of the ith unit, respectively. T oni,(t−1),s and T

off
i,(t−1),s are the continuous on and

o� time of the ith unit at the tth time interval in the sth scenario, respectively,
and UTi,t,s

are the operational status of the ith thermal unit at the tth time
interval in the sth scenario, i.e., 0 - unit o�, 1 - unit on.

4. Proposed Approach

In this research, we design an MMBA for solving a wide range of bi-objective
optimization problems. In the design, we consider three e�cient population-
based algorithms (NSGA-II, MODE, and MOPSO), as they have shown good
performance in solving many real-world optimization problems, particularly, bi-
objective DEED problems [4, 50]. Each algorithm uses its own sub-population
and each sub-population size is updated self-adaptively during the evolutionary
process. An overview of the proposed framework is discussed below.

4.1. Overview of MMBA

The MMBA starts with NP random individuals, generated using Eqn. (41).
Then, their corresponding f values and CV are evaluated, based on the prob-
lems objective functions and constraints. For solving real-life DEED prob-
lems, which have a number of complex constraints, a heuristic was used to
improve the solution quality, as described in subsection 4.9. Then, all the in-
dividuals are randomly distributed under three sub-populations of equal size,
i.e., NP1

= NP2
= NP3

, where NP1
, NP2

and NP3
are the sub-population size

for NSGA-II, MODE and MOPSO, respectively. In the subsequent generations,
all these three algorithms generate NP1

, NP2
and NP3

new individuals. In this
evolutionary step, each algorithm uses random individuals from the whole pop-
ulation (NP ) instead of its own individuals. The reason for this is to exchange
useful information from other good individuals, that might have been generated
by the other algorithms.

Once the new individuals are generated, the new values of f and CV are
evaluated. As uncertainty may exist, the expected values of f and CV are
determined, that is n−number of random scenarios of the renewable production
and load demand are generated. Then, each individual from each sub-population
is evaluated, based on the generated scenarios. Subsequently the average of
these values is considered the �nal expected value. More details are given in
sub-section 4.4. In the cases when we solve a problem without any uncertainty,
f and CV are directly calculated from the problem's objective function and
constraints.

After that, a non-dominated sorting approach [14] is applied to both parents
and o�spring, with the best individuals being selected for the next generation.
Subsequently, the values of NP1

, NP2
and NP3

are updated, based on their
performance in previous generations, i.e., based-on the success rate (SR) of the
generating successful o�spring from their parents, as [47]:
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SR =
Number of o�spring selected for the next generation
Total number of o�spring (i.e., population size)

(37)

A higher value of SR of an algorithm, indicates that higher numbers of successful
o�spring were found after a generation. To calculate NP1 , NP2 and NP3 , the
normalized SR (NSR) is used, as [47]:

NPi
= max

[
Nmin
P ,min {Nmax

P , NSRi × SRi,k}
]
, i ∈ 3 (38)

where

NSRi =
SRi,k +∆i∑3

i=1 (SRi,k + ∆i)
(39)

and Nmin
P and Nmax

P are the minimum and maximum sub-population sizes
respectively, and SRi,k is the SR of the ith algorithm at the kth generation.
The values of NPi

(i = 1, 2, 3) remain the same when all SRi,k(i = 1, 2, 3) are
zero. However, if one is a very small value and the others zero, there is a
possibility to overly bias towards one algorithm. To avoid such a situation, a
small ∆i(i = 1, 2, 3) (here, we set it to 0.001) is added to all SRi,k(i = 1, 2, 3)
[47].

This process is continued until a cycle is completed. A cycle (we call it as
NGC

) is a predetermined number that allows the algorithm to update NP1
, NP2

and NP3
using Eqn. (38). Once a cycle is completed, the average SR (ASR) of

each algorithm is determined, as:

ASRi = average 〈SRi,k〉 k = cyclestart, . . . , (cyclestart +NGc − 1), i ∈ 3 (40)

where cyclestart is the particular generation number when a cycle has been
started. Based on the maximum ASR, only the best algorithm is performed
in the next cycle, in which the algorithm considers all the updated NP indi-
viduals, while the other two algorithms remain o� until the cycle is �nished.
Afterwards, the updated individuals are randomly and equally distributed to
all three algorithms, which restart to perform for the next cycle, with the sizes
of their sub-populations updated using Eqn. (38). Once the cycle is completed,
the best algorithm again performs in the next cycle. The process is continued
until the algorithm reaches to its maximum number of generations (NG). A
�owchart of the proposed algorithm is shown in A.12 in Appendix, while its
Pseudo-code is discussed in Algorithm 1. The details operators of the proposed
algorithm are described in the subsequent subsections.

4.2. Initialization and Encoding

The MMBA algorithm starts with a random initial population, and each
individual (~xi) is encoded, as:

~xi = ~xmin + (~xmax − ~xmin)LHS(NP )∀ ∈ NP (41)
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Algorithm 1 Pseudo-code of the proposed MMBA algorithm

Require: NG, NP , Nmin
P and Nmax

P .
1: Set, count1 = count2 = 0.
2: Randomly generate initial population, as in subsection 4.2.
3: Evaluate the f and CV of each individual, as discussed in Algorithm 3.
4: Randomly distribute NP individuals in three subpopulations with sizes of
NP1

, NP2
and NP3

(i.e., NP1
= NP2

= NP3
) for GA, DE and PSO, respec-

tively.
5: for k = 1 : NG do

6: if count1 ≤ NGC
then

7: Set, count1 = count1 + 1
8: Generate NP1

, NP2
and NP3

o�spring from all parents (i.e., NP )
using NSGA-II, MODE, and MOPSO respectively.

9: Repeat step 3 for all NP1
, NP2

and NP3
.

10: Select best individuals based on a non-dominated approach de-
scribed in subsection 4.8.

11: Update the best NP individuals, based on the selected individuals,
as: NP ← NP1

+NP2
+NP3

.
12: Calculate SRi,k, i = 1, 2, 3 using Eqn. (37)
13: Update NPi∀i, based on normalized SR, using Eqns. (38) and (39).
14: else

15: Set, count2 = count2 + 1
16: if count2 ≤ Ngc then
17: if Count2 = 1 then
18: Calculate average SR (ASR) of all three algorithms using Eqn.

(40).
19: Determine the best algorithm, based on the maximum ASR.
20: end if

21: switch Best Algorithm do

22: case GA
23: Generate new individuals using GA

operators while considering,
NP1 ← NP1 +NP2 +NP3 .

24: case DE
25: Generate new individuals using DE

operators while considering,
NP2

← NP1
+NP2

+NP3
.

26: case PSO
27: Generate new individuals using PSO

operators with considering,
NP3

← NP1
+NP2

+NP3
.

28: end if

29: if count2 6= NGC
then

30: Perform the best algorithm by repeating steps 3 and 10.
31: else

32: Repeat from step 4, and set again,
count1 = count2 = 0.

33: end if

34: end if

35: end for
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Table 1: ~xi and Nx for DEED problems

Hydro-thermal Wind-thermal Solar thermal
~xi PTi,t,

, Xj,t PTi,t,
, PWw,t,s

PTi,t,
, Usk,t,s

Nx (NT +NH)× T (NT +NW )× T (NT +NS)× T

where ~xi =
{
x1i , x

2
i , ..., x

D
i

}
, D is the number of decision variables, ~xmin ={

x1min, x
2
min, ..., x

D
min

}
and ~xmax =

{
x1max, x

2
max, ..., x

D
max

}
the lower and upper

limit vectors, respectively. NP is the population size, and LHS means that ~xi
is generated using the Latin Hypercube Sampling (LHS). LHS ensures that the
generated samples are equally distributed over the search space.

The actual decision variables and their limits depend on the considered
optimization problem. For example, Table 1 shows ~x and Nx for di�erent
DEED problems, where i = 1, 2, . . . , NT , j = 1, 2, . . . , NH , w = 1, 2, . . . , NW ,
k = 1, 2, . . . , NS , t = 1, 2, . . . , NT and s = 1, 2, . . . , n.

4.3. Uncertainty Considerations

In this research, the intermittent generation of the renewable sources (i.e.,
wind and solar) and forecasted load demand, are represented as n -number of
random scenarios. As previously mentioned, a scenario represents a potential
occurrence of an uncertain variable. For example, we want to schedule two ther-
mal and one renewable generators to meet a certain load. The per unit cost of
the thermal power plants is higher than that of the renewable one. However,
the output of a renewable source is uncertain, which means a forecasted output
with a standard deviation (σ), are given. Assume that the capacities of the two
thermal power plants are 200 to 500 MW, the forecasted output of the renewable
sources is 50 MW with σ = 5 MW. If the electricity demand at a certain hour is
500 MW, what would be the optimal decision from each power plant with mini-
mizing the overall cost. Generally, when the renewable output is maximum, the
cost is minimum, i.e., the optimal solution would be 50 from renewable and 450
from the two thermal plants. Nevertheless, the risk would be maximum, as there
is a chance for the renewable source's output to deviate. A common approach
is to consider the worst case for the uncertain variable. However, the worst-case
approach is usually over-conservative. Therefore, the scenario-based-approach
is very popular. In it, the uncertain variables (renewable and load demand for
this study) are represented with a certain number of possible scenarios, which
are generated using a normal distribution with the mean values (µ) and σ of
their forecasted values and historical errors, respectively [25]. Then, n−number
of problem instance are assumed for n−scenarios, with the f for each problem
instance individually calculated. Finally, the solution of the optimization prob-
lem is determined from the expected f values, that is determined after averaging
all �tness values obtained from the problem instances. A solution is said to be
better if its expected f is minimum and consistent with other possible scenar-
ios. Therefore, when the expected f of an individual is minimum, even after
considering a higher number of scenarios, it is more likely to be stable for other
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scenarios. However, selecting the number of scenarios is a trade-o� between
solution stability and computational time (further discussed in section 5.3.1).
Earlier research demonstrated that the generated scenarios must be covered by
following a 3σ−rule, which is computationally burden for a large but practical
renewable-based DEED system [34]. Therefore, the proposed algorithm consid-
ers a lower number of scenarios at the initial stage of the evolution, as most
solutions are either infeasible and/or far away from the global optimum. Nev-
ertheless, to increase the solution stability at the later stages of the evolution,
the algorithm increases the number of scenarios over the generations, as:

n = min
[
nmax, nmin (1 + �oor bk/rc)

]
(42)

where nmin and nmax are the minimum and maximum scenarios size, k the
current generation number and r the period of generations to increment n.
In other words, the algorithm runs r− generations with the same number of
scenarios to obtain a sub-optimal solution.

Algorithm 2 shows the process of generating n−scenarios, in which the value
of n is calculated using Eqn. (42). Note that for simplicity, we assume the
uncertainties of wind and solar sources are in their power outputs instead of
their wind speeds and solar irradiance, respectively [46]. Also, the scenario
generation scheme does not generate any infeasible scenarios that are impossible
to solve by an algorithm.

Algorithm 2 Scenario Generation Approach
Require: µ, σ, and T . T is the number of time periods of intermittent generations.
for t = 1 : T do

for r = 1 : R do . R is the number of uncertain variables that to be
represented in the form of scenarios.

Get corresponding (µw
r,t, σ

w
r,t), (µ

s
r,t, σ

s
r,t) and µ

d
r,t, σ

d
r,t from the historical

data of wind speed, solar irradiance and forecasted load demand, respec-
tively.
Generate n− random variables using a normal distribution, as: PSr,t,s =
N
(
µs
r,t, σ

s
r,t

)
, and PDt,s = N

(
µd
r,t, σ

d
r,t

)
; s = 1, 2, ..., n.

end for

end for

4.4. Evaluations

As mentioned before, the DEED problem has two objectives, 1) minimize
the cost function and 2) minimize gas emission. When the uncertainties are
included, the objective values are not deterministic, but probabilistic. In this
paper, the f of a DEED problem is determined based on its objective functions,
while the CV is calculated as:

CVi =

P∑
p=1

max (0, Gp (−→xi)) +

Q∑
q=1

max (0, Hq (−→xi)) (43)
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where −→xi are the decision variables of the ith individual. The inequality and
equality constraints are G and H respectively, while P and Q are their numbers,
respectively. The procedure to calculate G and H of a DEED problem can be
found in Appendix B. After calculating all G and H, if CV = 0, the individual
is called feasible, otherwise it is infeasible.

For the uncertain DEED problem, a solution (−→x i) is considered infeasible,
if it does not satisfy all the n scenarios considered in any generation, where the
total CV for −→x i is the sum of the CVs over all scenarios, as:

CVi =

n∑
s=1

CVi,s∀i ∈ NP (44)

where CVi,s is the CV of the ith individual for the sth scenario. Algorithm 3
shows the detailed process to calculate fi and CVi of an individual, ~xi, i ∈ NP
under uncertain conditions, with its �owchart given in Fig. A.13.

Algorithm 3 Evaluating the f and CV of an individual (~xi, i ∈ NP ) under
n−scenarios
Require: An individual, ~xi, i ∈ NP
1: Set,fs = {} and CVi,s = {}, are the �tness values and constraints

violations for sth scenario, respectively.
2: for s = 1 : n do

3: Calculate, CVi,s of the ith individual using Eqn. (43) with consid-
ering sth scenario.

4: if CVi,s 6= 0 then
5: Repair the ~xi using the heuristic described in subsection 4.9, with

considering the parameters for sth scenario.
Update, CVi,s.

6: end if

7: Calculate fs of ~xi with sth scenario, as described in Section 3 and
Eqn. (43).

8: end for

9: Return the expected �tness values, f =
∑n

s=1 fs
n and total con-

straints violations, CVi =
∑n
s=1 CVi,s.

Algorithm 3 starts with n−scenarios and each individual in the population
is assessed based on all scenarios. First, CVi,s of the individual with the sth

scenario is calculated, based on Eqn. (43). If the solution is not feasible, i.e.,
CVi,s 6= 0, the heuristic is used to repair it as much as possible, i.e., reducing
CVi,s to reach 0 if possible (Algorithm 3, lines 2-6). Then, the corresponding
�tness value is calculated (line 7). Once the ith individual is evaluated on all
scenarios, its expected (average) �tness and total CVi are returned (line 9).

4.5. GA Search Operators

GA is a population-based meta-heuristic algorithm that has two main search
operators, known as crossover and mutation. During crossover, a new o�spring
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is generated by exchanging chromosomes of its parents. Mutation helps to diver-
sify the individuals in a population. Of the many search operators, simulated-
binary-crossover (SBX) and non-uniform mutation (NUM) have shown excel-
lent performance when solving real-value optimization problems [47]. In this
research, they are considered and are brie�y discussed below.

In SBX, �rstly two parents are selected using a tournament-based selection
scheme, in which a parent is randomly chosen from two based on their f and
CV . Then, the two children are generated as:

~y1p = 0.5
[
(1 + βqp)~x

1
p + (1=βqp)~x

2
p

]
(45)

~y2p = 0.5
[
(1− βqp)~x1p + (1 + βqp)~x

2
p

]
(46)

where

βqp =


(
2up
)1/ηc+1

up ≤ 0.5,(
1

2(1−up)

)1/ηc+1

up > 0.5
(47)

up ∈ [0, 1] is a uniform random number and ηc a distribution factor.
Non-uniform mutation, which has shown admirable performance for con-

strained optimization problems [51], is used to maintain diversity in the popula-
tion. A mutated individual (~y′p) is obtained from its original ~yp in a generation
k, as:

y′p,j,k+1 = yp,j,k + δp,j , j = 1, 2, . . . , D (48)

δp,j =


(
xmaxp − yp,j,k

)(
1− [u]1−(k/NG)b

)
u ≤ 0.5,(

xmpnp − yp,j,k
)(

1− [u]1−(k/NG)b
)

u > 0.5
(49)

∀p ∈ NP and j ∈ D
where b is the speed of the step length, and it is set to 5, as in [47].

4.6. DE Search Operators

DE is another variant of EA which also has two search operators: mutation
and crossover. In this research, we use two mutation operators: `DE/rand/1'
and `DE/rand−to−best/1', and a binomial crossover, to ensure a good balance
between diversity and convergence, as these operators have found to show good
search capabilities [18]. At each generation, new individuals (~yp,k) are generated
from their parent (~xp,k), as:

~yp,k+1 =



~xr3,k + Fp
(
~xr1,k − ~xr2,k

)
,

if rand1 ≤ Crp and rand2 ≤ prob1,
~xp,k + Fp

(
(~xr1,k − ~xr2,k) + (~xbest,t − ~xp,k)

)
,

if rand1 ≤ Crp and rand2 > prob1,

~xp,k, otherwise

(50)
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where r1, r2, and r3 are three random integer values, such that p 6= r1 6= r2 6= r3,
the ampli�cation factor for the mutation operator is FP , the crossover rate is
Crp and prob1 is a prede�ned probability of choosing the mutation operator
(here set to a value of 0.5).

The performance of DE depends highly on its control parameters, i.e., the
values of Fp and Crp [51]. To obtain the best performance from the DE, an
adaptive mechanism for setting the values of FP and CrP is used [48]. In
it, they are initially generated using a normal distribution with a mean and
standard deviation 0.5 and 0.1, respectively, i.e., {Ḟ , Ċr} ∈ N(0.5, 0.1) [20]. In
the following generations, they are updated as:

Fp =

{
Ḟr1 + rand1(Ḟr2 − Ḟr3), if (rand2 < τ1),

rand3, otherwise
(51)

Crp =

{
Ċrr1 + rand4(Ċrr2 − Ċrr3), if (rand5 < τ1),

rand6, otherwise
(52)

where τ1 = 0.75 and randk ∈ [0, 1], k = 1, 2, .., 6 [20]. However, the values of
both Fp and Crp must lie between 0.1 and 1. So, if one is less than 0.1 or
greater than 1, it is �xed to 0.1 and 1, respectively. Once the best individuals
are selected for the next generation using the selection operator (discussed in
subsection (4.8)), the corresponding best set of Fp and Crp are also selected.

4.7. PSO Search Operators

The PSO method is also a population-based optimization technique, and has
been used for a wide range of real-world problems [13]. It is simple in structure
with its individuals being called particles, which have a position de�ned by
~x =

{
x1p, x

2
p, . . . , x

D
p

}
, and velocity, de�ned by ~v =

{
v1p, v

2
p, . . . , v

D
p

}
. At each

generation, ~v and ~x are updated as [13]:

~vk+1 = w ~vk + c1r1

(
~Pk − ~xk

)
+ c2r2

(
~Gk − ~xk

)
(53)

~xk+1 = ~xk + χ~vk+1 (54)

where w, c1, c2, χ ≥ 0. The inertia of a particle is w; c1 and c2 are two constants

that set in the velocity towards the local
(
~P
)
and the global best

(
~G
)
, χ is a

shift factor (here, set to 1) to update the overall position, and r1 and r2 are two
random values set between 0 and 1. Selecting the values of the inertia factor
(w) is important when updating a particle, as it should be set dynamically to
maintain a balance between convergence and diversity, as:

w = wmax − (wmax − wmin)× k

NG
(55)

where wmax and wmin are the maximum and minimum values of w, which are
set to 0.9 and 0.4, respectively.
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4.8. Selection Operator

In order to facilitate the bi-objective approach, the solutions of each gen-
eration are sorted using the well-known non-dominated and crowding distance
(CD) mechanism [14]. In it, the individuals are ranked by following one of three
criteria: (a) all solutions are infeasible (i.e., CVi 6= 0, i = 1, 2, . . . , NP ), (b)
some of the them are feasible and the rest are infeasible, and (c) all solutions
are feasible (i.e., CVi = 0, i = 1, 2, . . . , NP ). For (a), the individuals with lower
CVs are selected, regardless of their f values, for (b), the feasible individuals are
always preferred over infeasible ones, and for (c), the individuals are sorted by
examining their f and CD neighboring solutions, i.e., solutions with the same
f but that are non-crowded, are preferred over those with in a crowded area, as
per Deb's [14] crowding rules. For uncertain bi-objective problems, both parents
and children are evaluated under the same n scenarios, and their mean f and
total CV are retained, as discussed in Algorithm 3. Then they are sorted, based
on their f , CV , and CD, as discussed above.

4.9. Heuristic

As mentioned, the bi-objective DEED problem is a constrained complex opti-
mization problem with a number of complex equality and inequality constraints.
The individuals generated using an EA may not satisfy all the constraints, par-
ticularly the demand (equality type) ones. Therefore, the convergence rate of
an EA method is very poor while solving a DEED problem [51]. The situation
becomes worse when the load demand to be satis�ed by considering the intermit-
tent generation from renewable sources. Therefore, a heuristic is used to rectify
an infeasible individual to a feasible one, or at least reduces its constraint vio-
lation (meaning coming closer to the feasible space). In it, the T−hour DEED
problem is decomposed into T−hourly sub-problems. Then, the available pro-
ductions is reallocated to the generators using a slack generation approach. The
details of the heuristic can be found in our earlier research work [47].

5. Experimental Test

The performance of the proposed MMBA method is demonstrated by solving
six standard test problems and three real-world bi-objective DEED problems,
for a 24-hour planning horizon with one-hour time interval, such as for a hydro-
thermal, wind-thermal and solar-thermal DEED. Furthermore, the uncertainties
in renewable productions and forecasted load demand are considered in the
DEED formulations. The problems are described as follows:

Benchmarks: six bi-objective test problems, such as Scha�er, Kursawe,
ZDT1, ZDT2, ZDT3, and ZDT6 without uncertainties;

Case-Ia: seven-unit hydro-thermal DEED problems without uncertain-
ties;

Case-Ib: seven-unit hydro-thermal DEED problems with uncertainties in
load demand;
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Case-IIa: seven-unit wind-thermal DEED problems without uncertain-
ties;

Case-IIb: seven-unit wind-thermal DEED problems with uncertainties
in load demand and solar productions;

Case-IIIa: nineteen-unit solar-thermal DEED problems without uncer-
tainties;

Case-IIIb: nineteen-unit solar-thermal DEED problems with uncertain-
ties in load demand and solar productions;

The uncertainties of forecasted load demand, wind and solar productions are
represented with n− scenarios in which the value of n is dynamically updated
over generations using Eqn. (42), with the values of r, nmin and nmax being
set to 10, 10 and 100, respectively. All the test problems are solved using the
following algorithms:

� Decomposition-based EA (DBEA) [6]

� NSGA-II

� MODE

� MOPSO

� Proposed MMBA

As our earlier research [45] showed that algorithms without a heuristic perform
very poorly when solving DEED problems, all the above algorithms consider
the heuristic described in Section 4.9. Each algorithm is run 30 times and their
feasible non-dominated solutions over n−scenarios are reported and compared
with results from state-of-the-arts algorithms. The parameters of GA such as,
crossover and mutation probabilities are set to 0.9 and 0.1, respectively, and the
distribution index (η) is set to 3. The PSO parameters are set, as c1 = c2 = 2,
w = 0.8 and mutation rate of 0.1. The DE parameters are set self-adaptively
with the mutation and crossover rates varying within the range of 0.1 to 1.0.

All the algorithms are executed on an Intel Core i7 3.4 GHZ desktop com-
puter with 16 GB of RAM in a Matlab (R2017a) environment. Based on the
empirical experiments and our earlier research [47], we set the values of NP ,
NG, Nmin

P , Nmax
P and NGC

of each problem, as listed in Table 2. Note that
while solving the uncertain DEED problems (Case-Ib, -IIb and -IIIb), we set
smaller values of NP and NG to reduce the computational burden.

To validate the obtained results from MMBA, all the DEED problems were
also solved using a recent algorithm for many-objective optimization problems,
namely decomposition-based evolutionary algorithm (DBEA) [6]. The code for
DBEA was taken from an online source where all the parameters are set as de-
fault, and the maximum number of generations is calculated as: (NP ×NG) /13,
so that all algorithms use the same number of FFEs. Note that, 13 is the refer-
ence point which used to solved all DEED problems.
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Table 2: Di�erent parameters used in di�erent problems

Problem NP NG Nmin
P Nmax

P NGC

Case-Ia 200 500 40 160

20

Case-Ib 60 100 12 48
Case-IIa 100 200 20 80
Case-IIb 100 200 20 80
Case-IIIa 200 500 40 160
Case-IIIb 60 100 12 48

Table 3: Comparison of the performance of algorithms for the benchmark problem

Alg.
Average HV indicator (ref.: [1,1])

MMBA NSGA-II MODE MOPSO DBEA MOPSO* [13]
Scha�er 0.83 0.83 0.83 0.83 0.79 0.83
Kursawe 0.40 0.40 0.40 0.40 0.36 0.40
ZDT1 0.67 0.66 0.66 0.66 0.59 0.67
ZDT2 0.33 0.33 0.33 0.33 0.26 0.33
ZDT3 0.52 0.51 0.52 0.52 0.43 0.52
ZDT6 0.41 0.26 0.38 0.38 0.32 0.40

5.1. Solving bi-objective benchmark problems

In this section, to verify the e�ciency of our proposed MMBA, standard
bi-objective test problems (`Scha�er', `Kursawe', `ZDT1', `ZDT2', `ZDT3', and
`ZDT6') [13], which have known Pareto-frontiers, are solved. The results ob-
tained from the proposed algorithm are compared with the state-of-the-art algo-
rithms. For a fair comparison, we use the same problem data, and NP and NG
values, as those in [13]. All the problems are solved 30 times. To measure the
performance of each algorithm, the hyper-volume (HV) values are calculated
based on their normalized �tness values as [45]:

fnorm =
f − fideal

fNadir − fideal
(56)

where fnorm and f are normalized and actual �tness values, respectively, while
fideal, and fNadir are the ideal and nadir points respectively [26].

Based on the values of HV, reported in Table 3, it is found that the proposed
MMBA outperforms the state-of-the-art ones for `ZDT6', while it obtains the
same solutions for all other problems. It is also noted that the values of HV for
MOPSO* are calculated based on the given online results [30].

5.2. Real-world Bi-objective Optimization Problems

In this subsection, some of the real-world bi-objective optimization problems,
such as hydro-thermal, wind-thermal and solar-thermal DEED problems, are
considered. In addition, uncertainties of these problems are incorporated into
their formulations and they are solved using the proposed MMBA and the state-
of-the-art algorithms.
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Table 4: Comparison of the performance of algorithms for the hydro-thermal DEED problem

Alg.
HV indicator (ref.: [1,1]) Time

Best Avg. Worst σ (min.)

Case-Ia

DBEA 0.78 0.78 0.78 0.00 3.58

NSGA-II 0.86 0.82 0.79 0.03 8.59
MODE 0.71 0.61 0.52 0.07 5.94
MOPSO 0.60 0.46 0.32 0.11 6.70
MMBA 0.91 0.88 0.85 0.02 7.62

Case-Ib

DBEA 0.61 0.53 0.21 0.18 15.25

NSGA-II 0.74 0.62 0.52 0.08 18.33
MODE 0.73 0.63 0.57 0.06 17.38
MOPSO 0.37 0.30 0.21 0.06 20.11
MMBA 0.77 0.63 0.38 0.05 17.99

5.2.1. Hydro-Thermal DEED Problems

The hydro-thermal DEED problem is comprised with three thermal and four
hydro units [45]. Two cases (Case-Ia and Case-Ib) are considered for this prob-
lem and are solved using the NSGA-II, MODE, MOPSO and MMBA on the
same platform. In Case-Ib, the uncertainty of the load demand is considered
and presented with upto 100 random scenarios, in which the mean values are
assumed as the forecasted load demand and the errors are the 10% of the mean
values. To reduce the computational time, a smaller number of scenarios are
considered at the early stages of evolution, and to enhance solution stability, a
larger number of scenarios are used at the later stages of the evolutionary pro-
cess. The process of dynamically generating the number of scenarios is discussed
in Section 4.3.

Both cases are solved thirty times using the above �ve algorithms, and their
best results are recorded. Then, their hyper-volume (HV) values of their ob-
tained solutions are determined based on their normalized values, as shown in
Eq (56). The minimum, maximum, average and σ of the HV values, and the
computational time of the algorithms in both cases, are shown in Table 4, with
the best values shown in boldface. It is seen that the proposed MMBA shows
superiority over the other algorithms. It provides very consistent results in a
rational computational time in both cases. The Pareto fronts of all the algo-
rithms, based on the median runs, are shown in Figs. 1 and 2 for Case-Ia and
Case-Ib respectively, in which it is seen that the proposed MMBA is the best
algorithm, as it produces better and wider Pareto fronts.

5.2.2. Wind-Thermal DEED Problems

In this section, a seven-unit wind-thermal DEED problem without (i.e.,
Case-IIa) and with (i.e., Case-IIb) uncertainties of load demand and wind pro-
duction are solved. The parameters of these two cases are illustrated in Table
5. The uncertainties are represented in the form of n− scenarios in which the
values of n are dynamically increased up to 100, with the mean and standard
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Fig. 1: Pareto fronts of the hydro-thermal problem (Case-Ia)
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Fig. 2: Pareto fronts of the hydro-thermal problem (Case-Ib)
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Fig. 3: Pareto fronts of the wind-thermal problem (Case-IIa)

deviations taken from the forecasted and historical errors, respectively. In this
research, the historical errors are considered as 10% of the forecasted values [48].

The proposed MMBA and state-of-the-art algorithms are applied to solve
both Case-IIa and Case-IIb, and their Pareto fronts are shown in Figs. 3 and
4, respectively. It is seen that the MMBA outperforms the other algorithms
in terms of obtaining solutions of a higher quality. Eventually, MMBA obtains
wider and better Pareto fronts than the state-of-the-art algorithms, in both
the deterministic and the stochastic cases. Table 5 shows the statistics of the
HV values and computational times of the algorithms in both cases. It is clear
that MMBA obtained the best HV values (which are shown in boldface) in a
reasonable computational time.

5.2.3. Solar-Thermal DEED Problems

In the mixed-integer solar-thermal DEED problem, 13-solar and 6-thermal
units are considered from [45]. The problem is solved in two di�erent cases: one
without considering any uncertainty i.e., Case-IIIa; and another incorporating
the uncertainties of solar generation and forecasted load demand, i.e., Case-
IIIb. Both uncertain parameters (i.e., solar generation and load demand) are
simultaneously represented by up to 100 random scenarios, with their mean
values from forecasted solar production and load demand respectively, while
their σ assume 50% of the forecasted solar irradiance and 10% of the load
demand, respectively. The values of solar irradiance and load demand are taken
from [49].

Both cases are solved using the state-of-the art and proposed algorithms
with their Pareto fronts based on the median runs, are illustrated in Figs. 5 and
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Fig. 4: Pareto fronts of the wind-thermal problem (Case-IIb)

Table 5: Comparison of the performance of algorithms for the wind-thermal DEED problem

Alg.
HV indicator (ref.: [1,1])

Time (min.)
Best Avg. Worst σ

Case-IIa

DBEA 0.42 0.37 0.35 0.03 1.70

NSGA-II 0.73 0.72 0.70 0.01 3.17
MODE 0.75 0.71 0.48 0.08 2.91
MOPSO 0.67 0.65 0.63 0.01 2.84
MMBA 0.75 0.74 0.73 0.00 2.73

Case-IIb

DBEA 0.52 0.51 0.51 0.02 21.67

NSGA-II 0.32 0.30 0.26 0.03 48.31
MODE 0.30 0.25 0.20 0.05 28.51
MOPSO 0.19 0.15 0.11 0.04 27.91
MMBA 0.52 0.45 0.36 0.02 40.94
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Fig. 5: Pareto fronts of the solar-thermal problem (Case-IIIa)

6 for Case-IIIa and Case-IIIb, respectively. Both �gures show that the proposed
MMBA is the best.

The results of the HV values for both cases are shown in Table 6, which shows
that the proposed one obtains the maximum HV in both cases. This means the
our proposed algorithm obtains a better spread set of solutions along the Pareto
fronts as shown in Figs. 5 and 6 for Case-IIIa and Case-IIIb, respectively.

5.3. Discussion - Stochastic vs. Deterministic

In this section, we discuss the quality of the obtained solutions from MMBA
under stochastic and deterministic approaches. We �rst discuss the e�ects of
selecting the dynamic number of scenarios in the various stages of the evolution-
ary process, and then we analyze the e�ect of using per MW renewable sources
and di�erent approaches for evaluating f under uncertain environments.

5.3.1. E�ect of the Dynamic Sizes of Scenarios

As mentioned, the uncertain DEED problems are represented as scenario-
based probabilistic problems, and the scenario size (n) is dynamically increased
with solution process. This method helps to signi�cantly reduce computational
time. In this section, we analyze the quality of solutions and the computational
time required for di�erent values of n. The quality of a solution is determined
by evaluating its errors, as [39]:

error = z
Ψ√
n

(57)
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Fig. 6: Pareto fronts of the solar-thermal problem (Case-IIIb)

Table 6: Comparison of the performance of algorithms for solar-thermal DEED problem

Alg.
HV indicator (ref.: [1,1])

Time (min.)
Best Avg. Worst σ

Case-IIIa

DBEA 0.42 0.37 0.35 0.03 10.97
NSGA-II 0.61 0.58 0.57 0.02 10.47
MODE 0.60 0.59 0.57 0.02 10.32

MOPSO 0.51 0.50 0.48 0.01 16.29
MMBA 0.62 0.59 0.58 0.01 11.51

Case-IIIb

DBEA 0.53 0.52 0.50 0.02 27.05

NSGA-II 0.66 0.64 0.61 0.02 38.73
MODE 0.67 0.66 0.64 0.02 39.87
MOPSO 0.64 0.59 0.58 0.02 40.14
MMBA 0.68 0.67 0.65 0.01 39.77
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Table 7: Errors and computational time for di�erent n values

n 10 50 100 200 500 1000 Dynamic*
error 19.44 7.9 5.53 3.89 2.45 1.72 1.73

Time(min) 0.74 4.24 10.35 20.66 52.31 105.99 60.59
*Dynamic means the value of n is dynamically increased from 10 to 1000

Table 8: Errors and computational time for di�erent r values

r Error Time
HV indicator (ref.: [1,1])

Best Avg. Worst σ
5 2.21 42.43 0.43 0.42 0.39 0.03
10 2.75 39.77 0.68 0.67 0.65 0.01

20 2.81 36.37 0.66 0.64 0.61 0.03

where Ψ is the σ of the uncertain parameters of the generated scenarios, n, and
z is a prede�ned value fora given con�dence level. We set z = 1.96 for the
con�dence level of 95% [39]. The error value measures the quality of a solution;
the smaller the error, the more accurate the output f of the considered scenarios.

Table 7 shows the values of errors and computational time for solving a sam-
ple solar-thermal problem (Case-IIIb) with di�erent values of n. It is seen, that
lower values of n produce a higher error of the obtained solutions. Conversely,
higher values of n produce a lower error of the obtained solutions, but also re-
sults in a signi�cantly higher computational time. On the other hand, when the
value of n is dynamically increased, both the error and computational time are
found to be satisfactory.

Now, we discuss the e�ect of the parameter r, which is used to update
the value of n in Eqn. (42). Three di�erent values of r are used to solve
the solar-thermal DEED problem and their corresponding error, computational
time (in minutes) and HV values are shown in Table 8. It is seen, that with
increasing values of r, the errors increase but the computational time decreases.
Furthermore, based on the values of HV, r = 10 is the best value.

5.3.2. E�ect of Costs and Emissions to Use Renewable Energy

We analyze the values of costs and gas emissions of the test problems, under
both stochastic and deterministic renewable production and load demand. From
the above discussion of the simulation results shown in Table 7, scheduling
generators using a lower number of scenarios, have a larger error value. In
contrast, scheduling the generators using a deterministic approach considering
a single forecasted scenario does not give an acceptable solution by itself [8].
Therefore, solving the problems using a dynamic scenario-based approach is
vital.

Nevertheless, as the renewable productions and load demand are unmanage-
able and hard to forecast accurately, further production from the conventional
thermal generators are taken to keep a balance between security and stability
of the power network. This raises the total operating costs and gas emissions,
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which can be seen from Figs. 1 to 6, where the expected f with uncertainties
are higher than those without uncertainties. To demonstrate the percentage
increase of both cost and gas emission, we evaluate two metrics as follows [8]:

� Average uncertainty costs (AUC): This matrix in $/MWh is the measure
of the increase in the total electrical energy costs when an MW of uncertain
renewable energy grows is scheduled:

AUC =

E〈Fc〉min−Fcmin∑T
t=1

∑Nren
ren=1 Prenren,t

T
(58)

where E 〈Fc〉min and Fcmin
are the minimum operating cost of stochastic and

deterministic test problems respectively, Pren is the power production from re-
newable energy, Nren is the number of renewable sources. Note that the mini-
mum costs are taken as extreme minimum costs from the corresponding Pareto
fronts.

� Average uncertainty gas emissions (AUE): This matrix in lb/MWh indi-
cates the changes of gas emissions when an additional MW of renewable
energy is scheduled:

AUC =

E〈FE〉min−FEmin∑T
t=1

∑Nren
ren=1 Prenren,t

T
(59)

where E 〈FE〉min and FEmin are the extreme minimum gas emissions of the
Pareto fronts for the stochastic and deterministic test problems, respectively.

AUC and AUE are (5.98,0.0027) and (2.15,0.95) for the wind-thermal and
solar-thermal problems respectively. It is seen that both metrics (AUC and
AUE) are positive, but di�erent for cost and emission, which indicate that their
increasing rates vary with the per MW renewable energy usage.

5.3.3. E�ect of Di�erent Approaches to Evaluate f

As mentioned before, the two objective functions of the stochastic DEED
problem are evaluated by determining the expected (e.g., average) values of cost
and gas emission, respectively. However, the expected objective functions do not
always give the true solution. Sometimes, the expected f result in increasing
computational time. In this subsection, we analyze the Pareto fronts obtained
from the MMBA by determining the f based on di�erent approaches. So far,
we evaluated the f of both operating cost and gas emission by determining their
expected values i.e., the f of a median scenario of the given number of scenarios.
Now, we solve the problems by evaluating the f based on three instances:

� Ins.-A: the f are evaluated for each individual, based on best scenario of
a given number of scenarios;

� Ins.-B: the f are evaluated for each individual, based on the median sce-
nario of a given number of scenarios;
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Fig. 7: Pareto fronts of wind thermal DEED (Case-IIb) and solar-thermal (Case-IIIb) prob-
lems (left to right) with NP = 60 and NG = 100.

� Ins.-C: the f are evaluated of each individual, based on the worst scenario
of a given number of scenarios;

Fig. 7 shows the Pareto fronts of the stochastic wind- and solar-thermal prob-
lems, respectively when they are solved using the MMBA algorithm while con-
sidering the three di�erent approaches to evaluate their f . It is seen that the
�nal solutions widely varied with the f evaluation selection, i.e., when the f
are evaluated based on Ins.-A, the algorithm obtains the best Pareto fronts. In
addition, the Pareto fronts from the di�erent approaches are not identically var-
ied, i.e., their variations are di�erent at di�erent points. This is because when
the algorithm starts with a worst solution, the quality of solutions is inferior,
even in the �nal generation. On the other hand, when the algorithm starts
with a best scenario, it quickly �nds the best solutions which appeared in Fig.
7. However, if the maximum number of generations is increased in the case of
worst scenario selection (i.e., Ins.-B and Ins.-C), the Pareto fronts improve, as
shown in Fig. 8 for wind- and solar-thermal DEED problems, respectively. In
this case, we allow the algorithm to evaluate up to 1000 generations for the
worst case (i.e., Ins.-C), while it stops at 100 generations in the best case (i.e.,
Ins.-A). In conclusion, a stochastic DEED problem can be solved by evaluating
its f in any of the three approaches. However, when the f are evaluated based
on the worst scenario, the algorithm requires a large number of FFEs to obtain
a Pareto front of good quality, whereas such front is found quickly when the f
are evaluated based on the best scenario.

5.4. Statistical Tests

In this subsection, our proposed MMBA is statistically evaluated with state-
of-the-art approaches. Based on the values of HV of di�erent problems, two
non-parametric tests (Wilcoxon sign test and Friedman rank test) are applied.
Table 9 shows the results of the Wilcoxon tests, based on both the best and
average values of HV found in 30 runs, with a 5% signi�cance level for the
above six cases. The last column shows a decision of the test with indicating
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Fig. 8: Pareto fronts of wind thermal DEED (Case-IIb) and solar-thermal (Case-IIIb) prob-
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respectively.

Table 9: Wilcoxon test results for MMBA versus DBEA, NSGA-II, MODE and MOPSO

Algorithms Criterion Better Similar Worse p Decision*

MMBA vs DBEA
Best HV 6 0 0 0.028 +
Mean HV 6 0 0 0.028 +

MMBA vs NSGA-II
Best HV 6 0 0 0.027 +
Mean HV 6 0 0 0.027 +

MMBA vs MODE
Best HV 5 1 0 0.043 +
Mean HV 4 2 0 0.068 −

MMBA vs MOPSO
Best HV 6 0 0 0.028 +
Mean HV 6 0 0 0.027 +

*The MMBA algorithm is statistically better (i.e., ‘+′) when p < 0.05

three signs: ` + ' , `− ' and ` ≡ '. When MMBA is signi�cantly better than the
other algorithms, it represents `+', that `-' when it is signi�cantly worse and
` ≡ ' when there is no signi�cant di�erence between algorithms. From Table 9,
it is seen that the MMBA approach obtains consistently better results than the
state-of-the-art approaches in both cases. In addition, based on the p values,
it can be said that MMBA is statistically better than other algorithms. The
Friedman test results are shown in Table 10, from which, it can be seen, that
the proposed MMBA algorithm is ranked �rst, based on both best and mean
HV.

Table 10: Ranks of DBEA, NSGA-II, MODE, MOPSO and MMBA from Friedman test results

Criteria DBEA NSGA-II MODE MOPSO MMBA
Best HV 3.75 2.50 2.92 4.67 1.17

Mean HV 3.83 2.67 2.67 4.50 1.33
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5.5. E�ect of number of algorithms

In this subsection, we show the performance of each algorithm, considered in
the framework of MMBA, during the solution process. In addition, the proposed
framework is tested by including another population-based algorithm, namely
bat algorithm for multi-objective optimization (MOBA) which is also known as
an e�cient algorithm for real-world problems [27, 28].

Firstly, the performances of all the considered algorithms in MMBA are
demonstrated, based on their SR on generating successful o�spring. As men-
tioned, MMBA considers three algorithms, and their sub-population sizes are
dynamically changed, with the best algorithm run for a full cycle to evolve all
individuals while the other two are kept o�. In Appendix C, Figs C.14 to C.16
show the NSR (normalized success rate) for the �rst 200 generations of di�erent
algorithms for solving deterministic DEED problems, i.e., hydro-thermal (Case-
Ia), wind-thermal (Case-IIa) and solar-thermal (Case-IIIa) ones. It is seen that
MOPSO initially performs better, while MODE and NSGA-II perform better
in the later stages of the search process. Therefore, it can be said that no single
algorithm performs the best, over all generations, for solving the wide range of
DEED problems considered in this paper, and their performance can change
during the solution process. Therefore con�guring the best algorithm during
evolutionary process is the best option. However, in the above con�guration,
the performance of MOPSO is comparatively inferior than those for MODE and
NSGA-II. Therefore, we solve all these three problems considering only MODE
and MOPSO, in addition to adding another algorithm, as shown below:

� var1: it considers NSGA-II and MODE;

� var2: based on the proposal, it considers NSGA-II, MODE and MOPSO;
and

� var3: it considers NSGA-II, MODE, MOPSO and MOBA.

The above three variants of the proposed framework are used to solve three
deterministic DEED problems and their best solutions are shown in Figs. 9
to 11 for hydro-thermal (Case-Ia), wind-thermal (Case-IIa) and solar-thermal
(Case-IIIa), respectively. It is found that the proposed framework with an
additional algorithm (i.e., var3) does not increase solution quality. On the other
hand, when MOPSO is removed from the framework (i.e., var1), it shows almost
similar performance as that found from MMBA (i.e., var2) . However, MMBA
slightly increases the quality of solutions.

The performances of the above three variants are shown in Table 11, in which
the average HV in 30 runs, are reported. It is seen that the proposed MMBA
of var2 is the best algorithm, based on the quality of solutions and reasonable
computational time.

5.6. Feasibility Check

In this subsection, we report the performance of di�erent algorithms in pro-
ducing feasible non-dominated solutions for uncertain DEED problems. As

33



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Operating Cost ($) 105

0

20

40

60

80

100

120

140

160

180

G
as

 E
m

is
si

on
 (

lb
)

var1
var2
var3

Fig. 9: Comparisons between the three frameworks for Case-Ia
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Fig. 10: Comparisons between the three frameworks for Case-IIa
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Fig. 11: Comparisons between the three frameworks for Case-IIIa

Table 11: Average HV and computational time for the three variants of the proposed frame-
work

Problems var1 var2 var3
hydro-thermal 0.8828 0.9131 0.8445
wind-thermal 0.7120 0.7182 0.7089
solar-thermal 0.5417 0.5591 0.4779
Time (sec.) 180.23 194.13 216.45
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Table 12: Minimal, maximal and average rates of feasible non-dominated solutions over 30
runs for di�erent algorithms

Algorithm
Hydro-thermal Wind-thermal Solar-thermal

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
DBEA 0.32 0.62 0.43 0.62 0.62 0.62 1.00 1.00 1.00
NSGA-II 0.30 0.35 0.32 0.11 0.16 0.13 1.00 1.00 1.00
MODE 0.25 0.37 0.31 0.07 0.13 0.11 1.00 1.00 1.00
MOPSO 0.22 0.37 0.31 0.12 0.20 0.17 0.95 1.00 1.00
MMBA 0.39 0.78 0.62 0.96 0.97 0.97 1.00 1.00 1.00

previously mentioned, the f and CV values of individuals are calculated for
n−scenarios, with an individual considered as feasible if it satis�es all the con-
straints over all n−scenarios, otherwise, it is recorded as infeasible.

Table 12 presents the minimum, maximum, and average feasibility rates of
the non-dominated feasible solutions, over 30 runs, for all the algorithms consid-
ered in this research. Note that the number of non-dominated feasible solutions
varies from generation to generation. The reported statistics is based on the
�nal generation of the algorithms. As reported, MMBA obtained the highest
numbers of feasible individuals, for solving all three problems, in comparison to
those of other algorithms.

6. Conclusions and Recommendations for Future Research

In this paper, a MMBA for solving a wide range of benchmarks of deter-
ministic and uncertain optimization problems, is developed. It contains three
e�cient population-based algorithms (NSGA-II, MODE and MOPSO), which
are self-adaptively con�gured during the search process, based on their perfor-
mance in previous generations. Although all three approaches initially consider
the same number of individuals and evolve in their own sub-population, the
sizes of these sub-populations vary dynamically and depend on their SRs for
generating a better o�spring from a parent. After a cycle, only the best algo-
rithm of the three performs in the next cycle. Once that cycle is completed, the
updated individuals are uniformly distributed to all the algorithms to perform
for the following cycle. The process is repeated until it is terminated when a
stopping criterion is met.

The performance of our proposed MMBA algorithm is illustrated by using
it to solve six standard test problems and three real-world bi-objective DEED
problems of which, each of them considers two cases, i.e., with and without
uncertainties. In the uncertain DEED problem, both renewable generations
and load demand are represented in the form of di�erent random scenarios.
The number of scenarios was dynamically increased over generations to keep
a balance solution quality and computational time. The obtained results were
analyzed with those from state-of-the-art algorithms, and the key outcomes
found are as follows.
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� For solving a wide range of bi-objective optimization problems, such as
benchmarks, deterministic DEED and uncertain DEED problems, higher
quality solutions are obtained with the proposed evolutionary framework,
(i.e., MMBA-based-on NSGA-II, MODE and MOPSO) than with the
state-of-the-art algorithms.

� For the deterministic DEED problems, the non-dominated solutions ob-
tained by the MMBA are better, than the solutions from the state-of-the-
art algorithms.

� For the uncertain DEED problems, scenarios of the uncertain parameters
play an important role in obtaining a high quality solution. Higher num-
ber of scenarios gives more stable solutions but increases computational
time. However, the proposed dynamic consideration of scenarios, helps to
reduce the computational time, even after considering a higher number of
scenarios.

� Statistic tests demonstrate that the solutions found from MMBA are sig-
ni�cantly better than those from the state-of-the-art algorithms.

� For solving an optimization problem, it is found that an algorithm may
perform better at early stages of evolution process, while another might
be better in a later stage. It is also seen, that no single algorithm performs
best throughout the generations.

� Therefore, combining them into a framework helps to obtain a high-quality
solution. However, it does not always give bene�ts. For example, solu-
tions are not signi�cantly improved when three algorithms (i.e., NSGA-II,
MODE and MOPSO) are considered instead of two, i.e, NSGA-II and
MODE. In-fact, solution quality is degraded when the framework consid-
ers four algorithms, such as with NSGA-II, MODE, MOPSO and MOBA.

As part of our future work, we plan to improve the performance of the MMBA
by proposing a method for exchanging information among the considered algo-
rithms. Solving more uncertain problems by considering uncertainties of wind
speed, solar irradiation and load demand over short time intervals, could be
another possible research direction.
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Appendix A. Flowchart

For better understanding, algorithms 1 and 3 are shown in Figs. A.12 and
A.13, respectively.

Appendix B. G and H for DEED problems

In this subsection, we show the process to determine values of G and H
for the equality and inequality constraints, respectively, for the hydro-thermal,
solar-thermal and wind-thermal DEED problems.

Appendix B.1. Hydro-thermal

To evaluate G and H, the constraints of the hydro-thermal DEED problem
can be represented, as:

H
(
PTi,t,s , Xj,t,s

)
=

∣∣∣∣∣∣
NT∑
i=1

PTi,t,s +

NH∑
j=1

PHj,t,s

− P̃Dt,s

∣∣∣∣∣∣−tolerance t ∈ T, s ∈ n
(B.1)

G1

(
PTi,t,s , Xj,t,s

)
= Pmin

Hj
− PHj,t,s j ∈ NH , t ∈ T, s ∈ n (B.2)

G2

(
PTi,t,s , Xj,t,s

)
= PHj,t,s − Pmax

Hj
j ∈ NH , t ∈ T, s ∈ n (B.3)

G3

(
PTi,t,s , Xj,t,s

)
= Pmin

Ti
− PTi,t,s i ∈ NT , t ∈ T, s ∈ n (B.4)

G4

(
PTi,t,s , Xj,t,s

)
= PTi,t,s − Pmax

Ti
i ∈ NT , t ∈ T, s ∈ n (B.5)
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Start Read, NG, NP , NGC

Initial
Population

After applying the heuris-
tic, evaluate f and CV .

Set, current gen-
eration, k = 1

Randomly distribute NP individuals in three subpopulations with sizes of NP1
, NP2

and NP3 (i.e., NP1 = NP2 = NP3 ) for NSGA-II, MODE and MOPSO, respectively.
Se, a counter, count = 1.

Start
NSGA-II

Start
MODE

Start
MOPSO

� Generate NP1 o�spring
from all parents (i.e.,
NP ) using GA operators.

� After applying the
heuristic, evaluate f and
CV for all NP1

o�spring.

� Select best individu-
als based on a non-
dominated approach.

� Calculate SR1 based
on generating successful
o�spring.

� Generate NP2 o�spring
from all parents (i.e.,
NP ) using DE operators.

� After applying the
heuristic, evaluate f and
CV for all NP2

o�spring.

� Select best individu-
als based on a non-
dominated approach.

� Calculate SR2 based
on generating successful
o�spring.

� Generate NP3 o�spring
from all parents (i.e.,
NP ) using PSO opera-
tors.

� After applying the
heuristic, evaluate f and
CV for all NP3 o�spring.

� Select best individu-
als based on a non-
dominated approach.

� Calculate SR3 based
on generating successful
o�spring.

� Combined all selected individuals, as: NP ← NP1 +NP2 +NP3 .

� Sorted the NP individuals.

� Update, k = k + 1 and count = count+ 1.

Is k ≥ NG? Finish

Is
count ≤
NGC

?

Update NPi
∀i = 1, 2, 3,

based on normalized SR

� Calculate average SR (ASR) of
all three algorithms.

� Determine the best algorithm
based on the maximum ASR.

� Reset, count = 1.

Run the best algorithm (i.e.,
NSGA-II/MODE/MOPSO)

with considering all
population members.

Set, count = count + 1
and k = k + 1

Is
count ≤
NGC

?

Is
k ≥ NG?

Yes

No

Yes

No
No

Yes

Yes

Yes

Fig. A.12: Flowchart of Algorithm-1
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Start

Get, n-scenario for the renewable
generations and load demands.

Get, current individua, ~xi, i ∈ NP .

Set, current
scenario,
s = 1.

Calculate, CVs of ~xi us-
ing Eqn. (43) with con-
sidering sth scenario.

Is
CVi,s 6= 0?

Repair ~xi using the heuristic
described in subsection 4.9.

Update CVi,s of ~xi.
Calculate the fs of ~xi

with sth scenario using,
as described in Section 3.

Go to the next
scenario, s = s + 1.

Is s > n?
Return the expected �tness values, f =

∑n
s=1 fs
n

,
total constraints violations, CVi =

∑n
s=1 CVi,s

and its repaired individual to the algorithm.

Finish

Yes

No

No
Yes

Fig. A.13: Flowchart of Algorithm-3

G5

(
PTi,t,s

, Xj,t,s

)
= V min

Hj
− VHj,t,s

j ∈ NH , t ∈ T, s ∈ n (B.6)

G6

(
PTi,t,s

, Xj,t,s

)
= VHj,t,s

− V max
Hj

j ∈ NH , t ∈ T, s ∈ n (B.7)

G7

(
PTi,t,s

, Xj,t,s

)
= Xmin

Hj
−XHj,t,s

j ∈ NH , t ∈ T, s ∈ n (B.8)

G8

(
PTi,t,s

, Xj,t,s

)
= XHj,t,s

−Xmax
Hj

j ∈ NH , t ∈ T, s ∈ n (B.9)

G9

(
PTi,t,s

, Xj,t,s

)
=
∣∣∣V inij − |Vj,t,s|t=0

∣∣∣ j ∈ NH , s ∈ n (B.10)

G10

(
PTi,t,s

, Xj,t,s

)
=
∣∣∣V endj − |Vj,t,s|t=T

∣∣∣ j ∈ NH , s ∈ n (B.11)

where tolerance is a small value for the equality constraint relaxation, we set
it to 0.001 which is acceptable in power system [51]. Note that the output of
a hydro-generator, PHj,t,s

depends on the water storage rate, Xj,t,s, and its
volume, VHj,t,s . Their relationships are already de�ned in Eqns. (4) and (5).
The details of the above constraints are discussed in subsection 3.1.
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Appendix B.2. Solar-thermal

To determine the values of G and H, the equality and inequality constraints for
the solar-thermal DEED are represented, as:

H
(
PTi,t,s

, ŨSk,t,s

)
=

∣∣∣∣∣
(
NT∑
i=1

PTi,t,s
+

NS∑
k=1

P̃Sk,t,s
USk,t,s

)
− P̃Dt,s

∣∣∣∣∣−tolerance, t ∈ T, s ∈ n
(B.12)

G1

(
PTi,t,s

, ŨSk,t,s

)
= Pmin

Ti
− PTi,t,s

i ∈ NT , t ∈ T, s ∈ n (B.13)

G2

(
PTi,t,s , ŨSk,t,s

)
= PTi,t,s − Pmax

Ti
i ∈ NT , t ∈ T, s ∈ n (B.14)

G3

(
PTi,t,s

, ŨSk,t,s

)
=
(
PTi,t,s

− PTi,t−1,s

)
− URi i ∈ NT t ∈ T, s ∈ n (B.15)

G4

(
PTi,t,s

, USk,t,s

)
=
(
PTi,t−1,s

− PTi,t,s

)
−DRi i ∈ NT t ∈ T, s ∈ n (B.16)

The descriptions of the above constraints can be found in subsection 3.2.

Appendix B.3. Wind-thermal

The values of G and H for the wind-thermal DEED problem are:

H
(
PTi,t,s , P̃Ww,t,s

)
=

∣∣∣∣∣
(
NT∑
i=1

PTi,t,s +

NW∑
w=1

P̃Ww,t,s

)
− P̃Dt,s

∣∣∣∣∣− tolerance s ∈ NS
(B.17)

G1

(
PTi,t,s , P̃Ww,t,s

)
= Pmin

Ti
− PTi,t,s

i ∈ NT , t ∈ T, s ∈ n (B.18)

G2

(
PTi,t,s , P̃Ww,t,s

)
= PTi,t,s − Pmax

Ti
i ∈ NT , t ∈ T, s ∈ n (B.19)

G3

(
PTi,t,s

, P̃Ww,t,s

)
= 0− P̃Ww,t,s

w ∈ NW , t ∈ T s ∈ NS (B.20)

G4

(
PTi,t,s

, P̃Ww,t,s

)
= P̃Ww,t,s

− PRw
(B.21)
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Fig. C.14: NSR of NSGA-II, MODE and MOPSO for the hydro-thermal DEED problems

G5

(
PTi,t,s

, P̃Ww,t,s

)
=

{
URi −

(
PTi,t,s

− PTi,t−1,s

)
if Pi,(t−1),s > Pmin

i

UR1
i −

(
PTi,t,s − PTi,t−1,s

)
otherwise

(B.22)

G6

(
PTi,t,s , P̃Ww,t,s

)
=

{(
PTi,t−1,s

− PTi,t,s

)
−DRi if Pi,(t−1),s > Pmin

i(
PTi,t−1,s

− PTi,t,s

)
−DR0

i otherwise
(B.23)

G7

(
PTi,t,s , P̃Ww,t,s

)
=
∣∣∣[T oni,(t−1),s − T onmini

]
×
[
UTi,(t−1),s

− UTi,t,s

]∣∣∣ (B.24)

G8

(
PTi,t,s , P̃Ww,t,s

)
=
∣∣∣[T offi,(t−1),s − T

off
mini

]
×
[
UTi,t,s − UTi,(t−1),s

]∣∣∣
All the above constraints for the wind-thermal DEED problem are discussed in
subsection 3.3.

Appendix C. Illustrative Performance of Algorithm

In this subsection, the performances each algorithm in MMBA are shown in
Figs. C.14, C.15 and C.16, for hydro-thermal, wind-thermal and solar-thermal
DEED, respectively.
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Fig. C.15: NSR of NSGA-II, MODE and MOPSO for the wind-thermal DEED problems
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Fig. C.16: NSR of NSGA-II, MODE and MOPSO for the solar-thermal DEED problems
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