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Abstract 
One aspect that is often disregarded in the current research on evolutionary multiobjective 
optimization is the fact that the solution of a multiobjective optimization problem involves not only 
the search itself, but also a decision making process. Most current approaches concentrate on 
adapting an evolutionary algorithm to generate the Pareto frontier. In this work, we present a new 
idea to incorporate preferences into a Multi-Objective Evolutionary Algorithm (MOEA). We 
introduce a binary fuzzy preference relation that expresses the degree of truth of the predicate “x is 
at least as good as y”. On this basis, a strict preference relation with a reasonably high degree of 
credibility can be established on any population. An alternative x is not strictly outranked if and 
only if there does not exist an alternative y which is strictly preferred to x. It is easy to prove that 
the best solution is not strictly outranked. For validating our proposed approach, we used the 
Nondominated Sorting Genetic Algorithm II (NSGA-II), but replacing Pareto dominance by the 
above non-outranked concept. So, we search for the non-strictly outranked frontier that is a  subset 
of the Pareto frontier. In several instances of a nine-objective knapsack problem our proposal 
clearly outperforms the standard NSGA-II, achieving non-outranked solutions which are in an 
obviously privileged zone of the Pareto frontier. 
Key Words: multicriteria optimization; evolutionary algorithms; fuzzy preferences; outranking 
relations. 
 
1. Introduction 
 
In real-world optimization problems, the decision-maker (DM) is usually concerned with several 
criteria which determine the quality of solutions. Often, constraints in mathematical programming 
problems are not actually mandatory; instead, such restrictions are expressing an important desire, a 
significant DM aspiration level about certain system properties. Therefore, most optimization 
problems can be represented from a multiple objective perspective. 
As a consequence of the conflicting nature of the criteria, it is not possible to obtain a single 
optimum, and, consequently, the ideal solution of a multiobjective problem (MOP) cannot be 
reached. Hence, to solve a MOP means to find the best compromise solution according to the DM’s 
particular system of preferences (value system). It is easy to prove that the best compromise is a 
non-dominated solution (i.e., a member of the Pareto optimal set). Most operations research 
methods for MOPs can be classified into the following categories [1]: 
 

1. Techniques which perform an a priori articulation of the DM’s preferences; 
2. Interactive methods, which perform a progressive articulation of the DM’ preferences; 
3. Generating techniques, which perform an a posteriori articulation of the DM’s preferences 

(search before making decisions). 
 

Since David Schaffer’s seminal work (cf.[2]), Multi-Objective Evolutionary Algorithms (MOEAs) 
have become a very popular search engine for solving multiobjective programming problems. 
MOEAs are very attractive to solve MOPs because they deal simultaneously with a set of possible 



solutions (the MOEA’s population) which allows them to obtain an approximation of the Pareto 
frontier in a single algorithm’s run. Thus, by using MOEAs the DM and/or the decision analyst does 
not need to perform a set of separate single-objective optimizations as normally required when 
using operations research methods. Additionally, MOEAs are more robust regarding the shape or 
continuity of the Pareto front, whereas these two issues are a real concern for classical optimization 
methods (cf.[3]). However, one aspect that is often disregarded in the MOEAs literature is the fact 
that the solution of a problem involves not only the search process, but also (and normally, more 
important) the decision making process. Most current approaches in the evolutionary multiobjective 
optimization literature concentrate on adapting an evolutionary algorithm to generate an 
approximation of the Pareto optimal set. Nevertheless, finding this set does not solve the problem. 
The DM still has to choose the best compromise solution out of that set. This is not a very difficult 
task when dealing with problems having 2 or 3 objectives. However, as the number of criteria 
increases, two important difficulties arise: 
 

a) The algorithm’s capacity to find this Pareto frontier quickly degrades; 
b) It becomes harder, or even impossible for the DM to establish valid judgments in order to 

compare solutions with several conflicting criteria. 
 

Here, we propose a combined approach, with an a priori articulation of preferences followed by a 
generating process of a specific (i.e., desirable) zone of the Pareto frontier. Using a fuzzy 
outranking relation, a strict preference relation in the sense of [4] can be established in any 
population. Our proposal is based on finding a subset of the Pareto frontier composed of solutions 
for which no other solutions exist which are preferred to the first ones. This non-outranked concept 
will be used instead of dominance when performing the evolutionary search. 
 
The remainder of this paper is organized as follows. An outranking model of multicriteria 
preferences is outlined in Section 2, and on this basis the proposed dominance generalization is 
detailed in Section 3. Our algorithmic proposal is discussed in Section 4 and illustrated by some 
computer experiments in Section 5. Finally, we draw brief concluding remarks in Section 6. 
 
2. An Outranking Model of Preferences 
 
Let G be the set of objective functions of a multicriteria optimization problem  and O its objective 
space. An element x ∈ O is a vector (x1, … xn ), where xi is the i-th objective value. Let us suppose 
that for each criterion j there is a relational system of preferences (Pj,I j) (preference, indifference) 
which is complete on the domain of the j-th criterion (Gj). That is, ∀(xj, yj ) ∈ Gj x Gj one and only 
one of the following statements is true: 

- xj Pj yj  
- yj Pj xj                                                                                      (1) 
- xj I j yj  
 

Formulation (1) allows indifference thresholds in order to model some kind of imprecise one-
dimensional preferences. It should be noticed that the relational system of preferences given by (1) 
is more general than the usual formulations which consider only true criteria (that is, xj ≠ yj implies 
non-indifference). Without loss of generality, in the following we suppose that xj Pj yj ⇒ xj > yj . 
 
Let us establish the following central premise: For each (x,y) ∈ O×O , the DM and the decision 
analyst (working together) are able to create a fuzzy predicate modeling the degree of truth of the 
statement “x is at least as good as y from the DM’s point of view”. 



Amongst different ways to create that predicate, we shall describe below an outranking approach 
based on ELECTRE methods: 
 
A proposition xSy (“x outranks y”) (“ x seems at least as good as y”) holds if and only if the 
coalition of criteria in agreement with this proposition is strong enough and there is no important 
coalition discordant with it (cf.[5]). It can be expressed by the following logical equivalence 
(cf.[6]): 

                                      xSy  ⇔ C(x,y) ∧∼ D(x,y)                                                           (2) 
where: 
 
 C(x,y) is the predicate about the strength of the concordance coalition;  
 D(x,y) is the predicate about the strength of the discordance coalition; 
∧ and ∼ are logical connectives for conjunction and negation, respectively. 
Let c(x,y) and d(x,y) denote the degree of truth of the predicates C(x,y) and D(x,y). From (2), the 
degree of truth of xSy can be calculated as in the ELECTRE-III method: 

                                            σ(x,y) =  c(x,y). N(d(x,y))                                                     (3) 
  
where N(d(x,y)) denotes the degree of truth of the non-discordance predicate. 
As in the earlier versions of the ELECTRE methods, we shall take 

                                           c(x,y)=  ∑ wj                                                                                                      (4) 
                                                                    j∈Cx,y 

 
where Cx,y= {j ∈G such that xjPjyj ∨ xjI jyj }; w’s denote “weights” (w1 + w2 + ... + wn = 1) and ∨   is 
the symbol for disjunction.                  
 
Let Dx,y= {j ∈G such that yjPjxj } be the discordance coalition with xSy. The intensity of 
discordance is measured in comparison with a veto threshold vj, which is the maximum difference 
yj-xj compatible with σ(x,y)>0. Following Mousseau and Dias ([7]), we shall use here a 
simplification of the original formulation of the discordance indices in the ELECTRE-III method 
which is given by: 

                                             N(d(x,y)) = min [1 – dj(x,y) ]                                           (5) 
j∈ Dx,y 

                                                           
                                                                      1    iff   ∇j ≥ vj   
                                           dj(x,y) =        (∇j - uj)/ (vj – uj)       iff  uj <  ∇j < vj                       (6)  
                                                                       0      iff  ∇j ≤ uj  
 
 
 
where ∇j = yj-xj   and uj is a discordance threshold (see Figure 1). 
 
In practical situations the decision-maker supported by a potential decision-analyst should assess 
the set of model´s parameters which are needed to evaluate σ. This is not an easy task, since 
decision-makers usually have difficulties in specifying outranking parameters and require an intense 
support by a decision analyst. To facilitate this process, the pair DM-decision analyst can use the 
preference disaggregation-analysis (PDA) paradigm (cf. [8]), which has received an increasing 
interest from the multicriteria decision support community. PDA infers the model’s parameters 
from holistic judgments provided by the DM. Those judgments may be obtained from different 



sources (past decisions, decisions made for a limited set of fictitious objects (actions), or decisions 
taken for a subset of the objects under consideration for which the DM can easily make a judgment 
[9]). In the framework of outranking methods PDA has been recently approached by [10-12]. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Partial discordance relation dj(x,y) 
 
3. An Outranking-Based Dominance Generalization 
 
The λ-cut σ(x,y) ≥λ defines a crisp outranking relation xSy. Credible outranking statements are 
obtained with λ= 0.75 (strong outranking), and even with λ==0.67 (weak outranking) (cf. [13]). σ 
(x,y) >≈ 0.5 is identified as a doubtful outranking, and σ (x,y) < 0.5 means a definitive no 
outranking. 
According to Roy (cf.[4]): 
 
xSy ∧ ∼ySx ⇔ σ(x,y) ≥λ ∧ σ(y,x) < λ ⇒ a presumed preference favoring x. 
 
Following [14], we assume the existence of a threshold β>0 such that if σ(x,y) ≥λ and also σ (y,x) ≤ 
(σ(x,y)-β), then there is an asymmetric preference relation favoring x what will be denoted by 
xP(λ,β)y . It can be agreed that for some values of λ and β, the conditions defining P(λ,β) are good 
arguments for justifying a strict preference relation in the sense proposed by Roy ([4]). β may be a 
function of (σ(x,y), σ(y,x)). In the following we consider that P(λ,β) has been defined on O. 
Amongst different ways of defining a reasonable strict preference relation we suggest the following: 
 
xP(λ,β)y if one of the following propositions is held: 
 

i. x dominates y 
ii.  σ(x,y) ≥ 0.67 ∧ σ(y,x) < 0.5 
iii.  σ(x,y) ≥ 0.67 ∧ (0.5 ≤ σ (y,x) < 0.67) ∧ (σ(x,y) - σ(y,x))≥δ 

 
δ is a strictly outranking parameter whose value might depend on the number of criteria (cf. ([15]). 
By consistency of ii and iii, δ should be greater than (0.67 – 0.5) = 0.17.  
 
Definition 1.  x strictly outranks y iff xP(λ,β)y. 

yj 

dj(x,y) 

xj + vj xj + uj 

1 



 
Definition 2: Let A be a subset of O. If there does not exist y∈ A such that yP(λ,β)x, we say that x is 
a non-strictly outranked solution in A. 
 
Theorem 1: The set of non-outranked solutions in O is a subset of the Pareto frontier. 
Proof: 
If the set of non-outranked solutions in O is empty, it is a proper subset of the Pareto frontier. 
Otherwise, we should prove that  

a  is a non-strictly outranked solution in O ⇒ a  is a Pareto  solution. 
The proof is very simple. Suppose that a is dominated by b∈ O. By definition of P(λ,β) we have 
bP(λ,β)a. Hence, b strictly outranks a in contradiction with the hypothesis.  
 
The reciprocal of Theorem 1 is false. a may be a Pareto solution while being  strictly outranked by 
b simultaneously. It suffices to find b such that bP(λ,β)a by satisfying ii or iii. In such cases, 
according to Theorem 1, the set of non-outranked solutions is a proper subset of the Pareto frontier. 
 
Definition 3: P(λ,β) is said to be free of inconsistencies iff there are no cycles of that relation in O. 
 
Definition 4: P(λ,β) is said to be minimally free of inconsistencies iff there does exist at least one 
non-strictly outranked solution in O. 
 
Definition 5: For an element x ∈ O,  the strictly outranking set is defined as So = {y ∈O such that 
yP(λ,β)x}. The cardinal of this set is denoted by card (So). This is an integer function depending on 
x. 
 
Definition 6: The weakness of x in a set A is W = card {y ∈A such that σ (y,x) > σ(x,y) ∧ σ (y,x) ≥ 
0.5}. 
 
Definition 7: The strength of x in a set A is St = card {y ∈A such that σ (x,y) > σ(y,x) ∧ σ (y,x) ≥ 
0.5}. 
 
It can be proved that the best alternatives in a set should be found among those in which card (So) is 
minimal (cf. [14]). Suppose that P(λ,β) is minimally free of inconsistencies Hence, the best 
compromise solution of the multiobjective optimization problem should be a non-strictly outranked 
solution in O. When every solution is strictly outranked by another one, the best compromise 
should be found among the set of x with minimum cardinal of So. 
 
4. Adapting the NSGA-II to Work with Non-strictly Outranked Classes 
 
We shall extend the Non-dominated Sorting Genetic Algorithm II (cf. [17]) working with non-
strictly outranked individuals instead of non-dominated ones. The “filtering” process is similar, but 
extracting non-strictly outranked individuals which form classes with the same value of card (So ). 
The first front may have card(So ) ≠ 0 when P(λ,β) is not minimally free of inconsistencies. 
 
Unlike typical MOEAs, we are not interested in obtaining a uniform distribution of solutions 
representing the Pareto frontier. Therefore, instead of the NSGA-II’s crowding distance (or another 
density estimator), we propose to use the above weakness measure. That is, when two individual 
with equal card(So ) are compared (in binary tournaments or deciding who will be included into the 



new generation), the least weak will be preferred. This adapted algorithm will be called the Non-
Outranked-Sorting Genetic Algorithm (NOSGA), whose pseudocode is shown below: 
 
 
PROCEDURE NOSGA (K, Number_of_Generations) 
Initialize Population P 
Generate random population with size K 
Evaluate objective values 
Evaluate σ on P×P 
For each x ∈ P, calculate card (So); calculate the weakness of x in P 
Generate fronts of equal values of card (So ) 
Assign to these fronts a rank (level) based on card (So ) 
Generate Child Population Q with size K 
            Perform Binary Tournament Selection 
            Perform Recombination and mutation 
FOR I = 1 to Number_of_Generations  DO 
         Assign P’ = P ∪ Q 
         Evaluate σ on P’×P’ 
         FOR each parent and child in P’ DO 
               Calculate card (So); calculate its weakness in P’ 
               Assign rank (level) based on card (So ) 
               Loop (inside) by adding solutions to the 
               next generation until K individuals have been found 
        End FOR 
        Replace P by the K individuals found 
        Generate Child Population Q with size K 
                 Perform Binary Tournament Selection 
                 Perform Recombination and mutation 
End FOR 
End PROCEDURE 
 
This pseudocode was adapted from the NSGA-II procedures shown in [16, 17]. As in the NSGA-II 
method, the rank assigned to each individual is the fitness criterion.  The main differences are: i) the 
use of σ in NOSGA; ii) the sorting based on Pareto dominance is replaced by a sorting based on 
strict outranking; and iii) the use of weakness instead of a density estimator.  
 
NOSGA’s selective pressure depends on σ  values on the current population. Note that when no 
veto condition is held, σ(x,y) is determined by the strength of the concordance coalition; its value is 
obtained from a “weighted-proportion”, in which the total amount of criteria is not relevant. 
Therefore, σ is weakly influenced by the dimension of the objective space, which could be an 
important advantage in problems with more than a few objective functions. Since in NOSGA the 
information about objective space is aggregated in the fuzzy outranking relation, such a relative 
independence should make NOSGA very robust with respect to an increasing number of objective 
functions.  
 
5. Some Computer Experiments 
 
In order to validate the proposal presented in this paper, we have performed two tests, both using 
nine-objective knapsack problems. The first one is a controlled experiment in which both the true 



Pareto frontier and the true non-strictly outranked set are known. The second one is a more realistic 
problem in which the best sets are unknown. 
 
Let us consider a decision making situation in which the DM is choosing among  L different social 
policies (projects) each with a direct social impact. This is measured by using a nine-component 
vector (N1, N2,…. N9). Ni = nkj, the number of people belonging to the  
k-th social category which receive the j-th level benefit from that policy or project. In those 
examples k= 1, 2, 3 correspond to (Extreme Poverty, Poverty, Middle), and j = 1, 2, 3 to (High 
Impact, Middle Impact, Low Impact). N1, N2, N3 correspond to extreme poverty people; N7, N8, N9 

concern middle class. 
 
Let us denote by Ni

m the value of Ni associated to the m-th project. Let C be a portfolio (a subset of 
the L projects which receives financial support). The value of Ni for the whole portfolio is Ni (C) = 
z1 Ni

1 + …. + zL Ni
L where zj = 1 if the j-th project is supported and zj = 0, otherwise. The aim of 

this decision problem is to choose the “best” portfolio satisfying some budget constraints. More 
formally: 

                                                    Maximize (N1(C), N2(C),…. N9(C))                                        (7) 
                                                            C ∈ RF 
 
where RF is a feasible region determined by budget constraints. 
 
We use binary encoding; a ‘1’ in the individual j-th allele means that the j-th project belongs to this 
particular portfolio. Other parameters of the evolutionary search are: crossover probability = 1; 
mutation probability = 0.02; population size = 100. 
 
Preference model parameters: 
 
A) The weights; they express the importance of the different objectives. In these experiments, the 
weights were assessed by a decision-maker following the interpretation of weights as “votes”, 
which is typical of ELECTRE methods (cf. [13]). The assessed values were: (23, 14, 11, 14, 11, 7, 
9, 7, 4). 
 
B) Indifference thresholds; usually, those thresholds are used to model some sources of imprecision 
or uncertainty; here, they were calculated as a measure of the error evaluating each objective. 
 
C) Veto thresholds; they are settled as 0.5*(Max fi - Min fi ) as in some applications of ELECTRE 
methods (cf. [13, 18]); operations Max and Min act on a population. 
 
D) The strict outranking parameter δ was settled as 0.2. 
 
5.1 The Control Test 
The information about 20 candidate projects is shown in Table 1. The different values are given in 
thousands. Budget constraints are imposed by the class of project (educational, health, etc.), 
geographic region and to the whole portfolio. The total available budget was set as Total_budget= 
500 million dollars. The constraints by class and region are given by: 
0.3 Total_budget  ≤ Budget_Class 1 ≤ 0.4 Total_budget 
0.25 Total_budget  ≤ Budget_Class 2 ≤ 0.35 Total_budget 
0.2 Total_budget  ≤ Budget_Class 3 ≤ 0.3 Total_budget                                                          (8) 
0.4 Total_budget  ≤ Budget_Region 1 ≤ 0.6 Total_budget 



0.4 Total_budget  ≤ Budget_Region 2 ≤ 0.6 Total_budget 
 
 

 
Table 1: Applicant projects 

 
Project N1 N2 N3 N4 N5 N6 N7 N8 N9 Support needed Class Region 

1 0 0 45 0 15 0 0 18 0  50,000  3 1 

2 0 25 0 15 0 0 54 0 0  49,500  1 1 

3 0 35 0 0 15 0 0 48 0  49,000  2 1 

4 25 0 0 7.5 0 0 0 0 54  48,500  2 1 

5 0 25 0 7.5 0 0 0 0 48  48,000  2 2 

6 45 0 0 4.5 0 0 0 18 0  47,500  3 2 

7 0 0 35 0 4.5 0 0 0 48  47,000  2 2 

8 5 0 0 0 4.5 0 54 0 0  46,500  1 2 

9 15 0 0 4.5 0 0 12 0 0  46,000  3 1 

10 0 0 5 0 13.5 0 36 0 0  45,500  3 2 

11 0 0 15 15 0 0 30 0 0  45,000  1 2 

12 0 0 35 1.5 0 0 0 36 0  44,500  3 2 

13 0 0 15 0 3 0 24 0 0  44,000  3 1 

14 40 0 0 0 1.5 0 0 0 24  43,500  3 1 

15 0 0 20 0 0 3 0 0 12  43,000  1 2 

16 0 40 0 0 15 0 0 42 0  42,500  2 2 

17 45 0 0 0 4.5 0 48 0 0  42,000  2 1 

18 0 0 30 0 0 4.5 0 0 24  41,500  3 2 

19 10 0 0 0 0 3 60 0 0  41,000  2 1 

20 0 10 0 15 0 0 30 0 0  40,500  1 2 

 
In this problem the set of feasible portfolios was exhaustively explored by performing an 
enumerative search. This set contains 1,635 non-dominated solutions and only six non-strictly 
outranked ones. These are shown in Table 2. 
 

Table 2: Non strictly outranked portfolios 
 

Portfolio N1 N2 N3 N4 N5 N6 N7 N8 N9 

1 145 110 60 49.5 55.5 3 276 126 24 

2 140 110 80 49.5 51 6 222 126 36 

3 170 75 60 57 40.5 3 276 78 78 

4 140 75 80 61.5 34.5 6 234 78 66 

5 165 75 80 57 36 6 222 78 90 

6 185 75 15 61.5 25.5 3 288 60 78 

 
A single run of the standard NSGA-II (Population size = 100, mutation probability = 0.02, 
crossover probability = 1) found 93 non-dominated solutions. All are strictly outranked. 
Additionally, a single run of the NOSGA found in the first front the six solutions is pointed-out in 



Table 2. This experiment was replicated in several random instances with similar results, which are 
pointed-out in Table 3. 
 

 
 

Table 3: Results of a control experiment (nine objectives) 
 

Instance 
Enumerative Search NSGA II NOSGA 

NO ND NO ND NO ND 

1 6 1635 3 93 6 6 

2 1 2038 1 99 1 6 

3 4 1145 0 91 4 4 

 
 
In Table 3, “NO” and “ND” are associated to non-strictly outranked and non-dominated solutions, 
respectively. Column NO (ND) below NSGA-II contains the number of individuals which are 
actually non-strictly outranked (non-dominated) solutions, and which were found in the first rank of 
such algorithm.  Besides, column NO (ND) below NOSGA contains the number of non-strictly 
outranked (non-dominated) solutions which were found in the first rank of our algorithmic 
proposal. By comparing the different columns of Table 3, it should be noticed that the NSGA-II 
approaches the true Pareto front, but fails in finding most of the non-strictly outranked solutions. 
NOSGA finds the true non-strictly outranked set. 
 
A similar control problem was performed to test the influence of the number of objectives. We used 
the same information about projects shown in Table 1 but considering only four objective functions 
(objectives 4, 6, 7, 9 in Problem 7). The criterion weights were updated by using the normalization 
condition. The budget constraints were imposed as in the above example. Some results are 
presented in Table 4. 

 
Table 4: Results of a control experiment (four objectives) 

Instance 
Enumerative Search NSGA II NOSGA 

NO ND NO ND NO ND 

1 10 276 0 65 7 7 

2 3 136 3 97 3 3 

3 12 65 7 53 8 8 

 
 
The NSGA-II shows good results in Instances 2 and 3, but is always outperformed by NOSGA. 
Comparing Tables 3  and 4, it seems that the NSGA-II results are degraded with nine objectives. 
Contrarily, NOSGA performs even better in the more complex problem.  
 
 
5.2 A more realistic example 
Secondly, we solved again Problem 7, but now with 100 applicant projects characterized by the 
same nine-objectives set as in the previous example. In a similar way, the feasible region was 
determined by the total budget and requirements by class of project and geographic region. The 
total budget was set as 2.5 billion dollars, and the other constraints were imposed as in (8). The 
(known) non-outranked front of one random instance of this problem is shown in Table 5. The 



objective values are given in thousands. Weakness, strength and net flow score were calculated on 
the final parent-offspring population after 500 generations. Weakness and strength are given by 
Definitions 6-7. The outranking net flow score was calculated as in [19]. 
 

Table 5: Some results in a real size problem 
 

Portfolio N1 N2 N3 N4 N5 N6 N7 N8 N9 W St NFS 
1 550 950 550 825 1020 660 942 840 564 42 108 16.72 

2 555 880 580 975 1035 630 888 798 648 45 105 9.25 

3 550 930 550 885 1020 645 936 846 564 45 103 12.14 

4 550 1015 490 855 1005 690 882 876 558 59 91 4.85 

5 550 935 545 825 975 720 930 858 564 61 89 6.09 

6 550 960 530 1080 900 630 888 768 642 65 85 7.42 

7 550 1030 490 855 990 690 870 912 558 69 81 -2.29 
             
Ideal 560 1,230 700 1,350 1,410 840 1,008 1,200 834    

Nadir 55 370 80 375 375 120 216 276 162    

 
W.- Weakness ; St.- Strength; NFS.- Net Flow Score 

 
The best solutions seem to be 1, 2 and 3. It is obvious that those solutions are concentrated in a 
relatively small region of the objective function space. This experiment was replicated in other four 
random instances, with similar results. Coded in TURBO C++ 3.0,  the average run time was 2.5 
minutes on a laptop computer with a 1.67 GHz processor, 2 GB RAM and a 120GB hard disk. By 
using the standard NSGA-II, an approximation to the Pareto front was obtained for the same 
instances. In fact, the ideal and nadir points in Table 3 were found by the NSGA-II. In the 
following, NOk and NDk will denote the known  non-strictly outranked and non-dominated sets, 
respectively, for the k-th instance. Let U be NOk ∪ NDk . Let NOU and NDU be the non-strictly 
outranked set and the non-dominated set in U, respectively.  A comparison between NOk and NDk 
was performed in such five random instances with the results shown in Tables 6, 7 and 8: 
 
 

Table 6: Mean Values in U 
 

Set Weakness Strength 
Net Flow 

Score 

NO1 3.7 71.3 39.4 

ND1 20.9 18.8 -2.8 

NO2 2.0 91.2 55.9 

ND2 34.4 37.3 -2.8 

NO3 3.8 93.6 56.9 

ND3 36.7 36.1 -4.6 

NO4 3.9 86.4 58.7 

ND4 32.6 30.8 -5.3 

NO5 2.0 88 65.7 

ND5 34.0 34.4 -3.3 

 



After calculating σ(x,y) on U, a ranking of this set considering weakness, strength and net flow was 
performed. In every test instance the solutions belonging to NOk are the best in U. As shown in 
Table 6, the mean value of weakness, strength, and net flow scores taken on NOk are clearly better 
than the corresponding mean values on NDk . 
 

Table 7: Robustness of NOk  
Instance Card(NOk) Card(NOU) Card(NOk ∩ NOU) Card(NOk ∩ NDU) 

1 7 7 7 7 
2 5 6 5 5 
3 8 8 8 8 
4 9 9 9 9 
5 5 5 5 5 

 
From Table 7, it should be noticed that 
1. Each x ∈ NOk is not dominated in U; 
2. Each x ∈ NOk remains as non-strictly outranked in U; 
3. Only one non-strictly outranked solution is added by NDk (in the second instance). 
 
  

Table 8: Robustness of NDk  
Instance Card(NDk) Card(NOU) Card(NDk ∩ NOU) Card(NDk ∩ NDU) 

1 100 7 0 65 
2 100 6 1 89 
3 100 8 0 84 
4 100 9 0 80 
5 100 5 0 82 

 
Additional remarks: 
 

4. In four instances, no x ∈ NDk is member of NOU ; we can conclude that the NSGA-II does 
not find the non-strictly outranked set. So, it is not possible to guarantee that the best 
compromise solution is obtained by this algorithm. 

5. 11-35% of the solutions belonging to NDk are actually dominated by some element of  NOk. 
 
From the above remarks, it can be concluded that (accepting σ(x,y) as a good model of the 
outranking statement degree of truth), NOk is a preference privileged zone in the objective function 
space. The best front found by NSGA-II (although may be representative of the Pareto frontier) 
may not contain the best compromise solutions. In fact, unlike NOSGA, the best front found by 
NSGA-II  is not representative of the non-outranked set. 

 
 
6. Conclusions 
 
The proposed dominance generalization by using the degree of credibility of an outranking 
statement helps to find a subset of the Pareto frontier which contains the best compromise solution.  
 
Our proposal (NOSGA) is basically a derivation from the standard NSGA-II  in which we replace 
dominance by its outranking-based generalization. In several instances of different examples, 



NOSGA clearly outperforms the NSGA-II, achieving non-outranked solutions which are in an 
obvious privileged zone of the Pareto frontier. Those solutions are few, concentrated, and very 
satisfactory. A good compromise can be easily detected on the non-outranked front. Additionally, 
as the overall multiobjective performance is aggregated in σ(x,y), NOSGA seems to be  weakly 
dependent on the number of objective functions. This should be confirmed by more extensive 
experimentation.  
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