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Abstract—Recently, a number of resource allocation strategies 

have been proposed for evolutionary algorithms to efficiently 
tackle multiobjective optimization problems (MOPs). However, 
these methods mainly allocate computational resources based on 
the convergence improvement under the decomposition-based 
framework, which may become ineffective with the increased 
number of optimization objectives. To address this problem, this 
paper suggests an immune-inspired resource allocation strategy, 

which breaks through the decomposition-based framework and 
can better balance convergence and diversity for many-objective 
optimization. In our method, the diversity distances of solutions 
are defined by the Euclidean distances of their projected points 
on the unit hyperplane. Then, based on the diversity distances, 
resource allocation is realized by using an immune cloning op-
erator to encourage exploring sparse regions of the search space. 
Moreover, to provide high-quality solutions in coordination with 
this immune cloning operator, a novel archive update mechanism 
is designed. When compared to most well-known resource allo-
cation strategies, our method is advantageous for many-objective 
optimization. The experimental results also validate the superi-
ority of our method over several state-of-the-art evolutionary 
algorithms for solving two sets of complicated MOPs having 5 to 
15 objectives. 

Index Terms—Many-objective optimization, Evolutionary al-
gorithm, Resource allocation, Immune cloning operator 

I. INTRODUCTION 
ultiobjective optimization problems (MOPs) involve the 
optimization of multiple objectives simultaneously [1]- 

[4], which can be mathematically defined by 
minimize      1( ) ( ( ),..., ( ))mF f fx x x ,   (1) 

        subject to     x ,           
where 1( , , )nx xx  is a decision vector in search space  
(n means the number of decision variables) and ( )F x defines m 
objective functions. When m is larger than three, (1) is called a 
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many-objective optimization problem (MaOP). As one single 
solution generally cannot optimize all objectives, a set of 
trade-off optimal solutions called Pareto-optimal set (PS) can 
be obtained and its mapping to the objective space is called 
Pareto-optimal front (PF) [5]. In recent decades, multiobjective 
evolutionary algorithms (MOEAs) have become very popular 
and effective for solving MOPs. Most MOEAs can be divided 
into three main categories based on the adopted population 
update mechanisms, i.e., Pareto-based MOEAs [6]-[10], 
decomposition-based MOEAs [11]-[13], and indicator-based 
MOEAs [14]-[18], which have been validated to be effective 
for solving MOPs with two or three objectives. 

However, for solving many-objective optimization prob-
lems (MaOPs), MOEAs will face the following challenges 
[19]-[20]: (1) the Pareto dominance relationship becomes 
inefficient as most solutions become nondominated, (2) di-
versity is difficult to maintain, (3) the evolutionary operators 
become inefficient, and (4) the computational cost is ex-
tremely high. In order to address the above challenges, a 
number of studies have been conducted to enhance MOEAs 
for solving MaOPs, called many-objective evolutionary algo-
rithms (MaOEAs). For Pareto-based MaOEAs, a hyperplane 
formed by the prominent solutions was designed in [21] and an 
effective fractional dominance relation was presented in [22], 
both of which can strengthen the convergence pressure toward 
the PF. For decomposition-based MaOEAs, reference vectors 
were adjusted adaptively in [23] and extracted from the pop-
ulation in [24] to dynamically track the PF shapes, and two 
new aggregation functions with distinct characteristics were 
designed in [25] to enhance the overall optimization perfor-
mance. For indicator-based MaOEAs, the inverted generalized 
distance (IGD) indicator was used in [26] to select solutions 
with better convergence and diversity, and a more efficient 
indicator (ISDE+) was designed in [27] by summarizing the 
objective values and the shift-based density estimation, which 
can better solve various kinds of MaOPs. Moreover, a new 
voting-mechanism based ensemble framework called VMEF 
was presented in [28], which combines a number of different 
solution-sorting methods to effectively tackle MaOPs.  

To the best of our knowledge, there are few studies to de-
sign resource allocation strategies (RASs) for MaOPs and 
most of the well-known RASs have been proposed for MOPs, 
which assign computational resources to individuals [29]-[34], 
evolutionary operators [35]-[36], weight vectors [37] or search 
subspaces [38]-[40]. Note that a brief review of existing RASs 
has been provided in Section II-A. Unfortunately, most ex-
isting RASs are not so effective for solving MaOPs, as they 
mainly allocate computational resources based on conver-
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gence improvement under the decomposition-based frame-
work, which is difficult to maintain a final population with 
good diversity in high-dimensional objective spaces [41]-[42]. 

To fill this research gap, this paper proposes an immune- 
inspired resource allocation strategy (IRAS) for solving 
MaOPs, which aims to improve the effectiveness and robust-
ness of RAS in high-dimensional objective spaces. Different 
from the existing traditional RASs, our proposed IRAS ar-
ranges the computation resources through an immune cloning 
operator rather than the aggregation metrics that are qualified 
under the decomposition-based framework. Specifically, 
IRAS considers the diversity distances of solutions to assign 
computational resources, which are defined as the Euclidean 
distances of their projected points on the unit hyperplane to 
estimate the diversity status. In this way, solutions with better 
diversity are cloned to be assigned computational resources, 
which are then mutated by evolutionary operators to generate 
offspring solutions for exploring sparse areas of the search 
space. Then, in order to reserve promising solutions from the 
parents and offspring, an efficient archive update mechanism 
(AUM) is designed to achieve a good trade-off between the 
diversity and convergence of the population. In summary, the 
proposed algorithm (called MaOEA/IRAS) iteratively runs 
IRAS, evolutionary operators, and AUM to solve MaOPs 
effectively. The main contributions of this paper are listed as 
follows: 

1) To improve the performance of RAS in solving MaOPs, 
an immune-inspired resource allocation strategy (IRAS) is 
designed in this paper. Different from the existing RASs that 
use the aggregation metrics under the decomposition-based 
framework, our method adopts the immune cloning operator to 
achieve a reasonable assignment of computational resources. 
As experimentally validate in Section IV, our proposed IRAS 
is more effective than the existing RASs for solving MaOPs.  

2) To reserve promising solutions for cloning, an archive 
update mechanism based on region division is designed to 
coordinate with the above IRAS, which can speed up con-
vergence and maintain diversity by using two selection rounds. 

In this study, two benchmark suites, i.e., WFG41-WFG48 
[43] and MaF1-MaF13 [44] with a variety of PF shapes, are 
used to verify our performance. The experiments show that the 
proposed IRAS is superior over the existing RASs and the 
proposed MaOEA/IRAS is advantageous than several recently 
proposed MaOEAs in solving most of benchmark problems. 

The remainder of this paper is organized as follows. Section 
II provides a short review of the existing RASs and clarifies 
our motivations. The details of MaOEA/IRAS are given in 
Section III, and the experimental results are provided in 
Section IV. Finally, our conclusions and future work are given 
in Section V. 

II. RELATED BACKGROUND AND MOTIVATIONS 

A. A Short Review of Resource Allocation Strategies 
As mentioned above, most of the existing RASs are de-

signed for solving MOPs [29]-[40]. Here, a short review of 
RASs is provided next by classifying them into two main 

categories. 
The first category of RASs assigns computational resources 

to individuals under the framework of MOEA/D [45], so that 
different individuals can obtain different resources to optimize 
their corresponding subproblems. In the original MOEA/D 
[45], all the subproblems are treated equally and are allocated 
the same quantities of computational resources. However, this 
method shows inefficiency when some decomposed subprob-
lems are more difficult to be tackled than others [29]. To 
alleviate this issue, Zhang et al. proposed a dynamic resource 
allocation (DRA) strategy for MOEA/D [29]. In this method, 
the relative improvements on the aggregation function are 
considered for allocating computational resources and the 
subproblems having more improvements will receive more 
resources, as they have high potential to be further optimized. 
Then, Zhou et al. [30] extended DRA and presented a gener-
alized resource allocation (GRA) strategy for MOEA/D. This 
approach builds the probability of improvement vector (PoI) 
for all subproblems, which is used to allocate computational 
resources by comparing PoI with random values in [0, 1]. Lin 
et al. [31] suggested a diversity-enhanced RAS to consider the 
relative improvements both in aggregation function values and 
the solution density around each subproblem using a weighted 
sum method. This approach has some advantages for solving 
MOPs with complicated PFs. Wang et al. [32] suggested a 
modified variant of DRA, which is more effective for solving 
MOPs with difficult-to-approximate PF boundaries. This 
study also verifies the importance of rational allocation of 
computational resources among different PF portions. Kang et 
al. [33] presented a collaborative resource allocation strategy 
for MOEA/D-M2M [46], termed MOEA/D-CRA. This ap-
proach dynamically assigns computational resources to sub-
problems according to their contributions and an external 
archive is employed to reserve the collaborative information 
during the search process. Wang et al. [34] proposed a new 
RAS for MOEA/D, called MOEA/D-RARS. This approach 
maintains a probability vector based on the relationship of 
subproblems to allocate computational resources. 

The second category of RASs allocates computational re-
sources to evolutionary operators [35]-[36], weight vectors 
[37], [45], and search subspaces [38]-[40], rather than indi-
viduals. For example, Li et al. [35] presented a bandit-based 
adaptive operator selection method for MOEA/D. In this 
approach, the evolutionary operators with high improvement 
rates will have more probabilities to be selected to optimize the 
subproblems, i.e., the evolutionary operators with better per-
formance in the optimization process will receive more com-
putational resources. Wang et al. [36] proposed an effective 
ensemble framework (called EF_PD) with competition and 
cooperation mechanisms. The evolutionary operators run a 
competition mechanism to receive more computational re-
sources by using a decomposition-based credit assignment 
strategy, while the selection operator uses a cooperation 
mechanism to maintain superior solutions. Qi et al. [37] sug-
gested an adaptive adjustment strategy for weight vectors in 
MOEA/D. In this approach, weight vectors are adaptively 
adjusted according to the distribution of the population, which 



 3 

are allocated more in the actually sparse regions. Thus, more 
computational resources are assigned to explore these regions. 
Wang et al. [38] designed an adaptive region adjustment 
strategy (ARA) to assign more computational resources to the 
subregions with better performance. They [39] also proposed a 
dynamic allocation for preferences based on a differential 
space. With the decomposition method, a reference vector is 
used to divide an objective into several subspaces and then the 
numbers of preferences (i.e., computation resources) are allo-
cated based on the selection pressure within the subspaces. Liu 
et al. [47] suggested to adaptively allocate search efforts in 
different sub-regions according to the importance of different 
objectives. In this method, more computational resources (i.e., 
search efforts) are devoted to exploring potential promising 
sub-regions, which helps to address some challenges when 
tackling MaOPs with various PFs. Furthermore, Chen et al. 
[40] also developed an objective space partition-based method 
to adaptively allocate different resources for various subspaces 
based on their corresponding contributions, which are meas-
ured by the forward pushed distance.  

B. Motivations  
Here, the motivations of this paper are clarified from both 

theoretical and empirical analyses, as follows: 
Theoretical analysis: As reviewed in Section II-A, most of 

the existing RASs [29]-[31], [35]-[36] are designed under the 
decomposition-based framework, which can properly solve 
MOPs with two or three objectives. However, when solving 
MaOPs, they are difficult to specify a suitable set of weight 
vectors to properly match various irregular PF shapes in 
high-dimensional objective spaces. As pointed out in [48]-[49], 
the performance of decomposition-based MOEAs strongly 
depends on the fitting degree to the shapes of weight vectors 
and PFs. Thus, a number of research studies have been con-
ducted in [23]-[24], [45], [50]-[51] to enhance the perfor-
mance of decomposition-based MOEAs for solving MaOPs, 
which try to automatically adjust the weight vectors and then 
guide the evolutionary search toward different parts of PF. 
However, as pointed out in [52]-[54], these frequent changes 
of weight vectors may deteriorate the convergence speed of 
solutions. Thus, this paper would like to design a new RAS 
that breaks through the decomposition-based framework and 

can significantly improve the performance of RAS for solving 
MaOPs.  

Empirical analysis: To empirically study the performance 
of the existing RASs for solving MaOPs, three widely used 
RASs (DRA [29], GRA [30] and IRA [31]) are first embedded 
into MOEA/D-DU [55], and the three variants are called 
DU+DRA, DU+GRA and DU+IRA, respectively. All the 
parameters in these compared algorithms are set as suggested 
in their original references. Due to page limitations, the de-
tailed HV [56] results of these compared variants for solving 
the test problems used in this paper (i.e., WFG41-WFG48 [43] 
and MaF1-MaF7 [44] with 5 and 10 objectives) are provided 
in Tables A. I-A. II of the supplementary file. Moreover, the 
summary of the significance test for HV values in each com-
parison is listed in Table I, where the numbers under the 
columns “-”, “~” and “+” indicate the comparison times that 
the results of MOEA/D-DU combined with three different 
RASs are better than, statistically similar with and worse than 
that of the original MOEA/D-DU, respectively. The last row of 
Table I summarizes the results. When compared to DU+DRA, 
DU+GRA and DU+IRA in a total of 30 cases, MOEA/D-DU 
performs better in 5, 19 and 14 cases, worse in 9, 4 and 7 cases, 
and similarly in 16, 7 and 9 cases, respectively. In addition, to 
visually show the performance of these RASs, the final solu-
tions of these three variants for solving MaF1 and MaF2 with 
10 objectives are plotted in Fig. 1-(A) and Fig. 1-(B), respec-
tively. As observed from these figures, MOEA/D-DU shows 
poor diversity when solving MaF1 and MaF2 with 10 objec-
tives. However, the three variants of MOEA/D-DU combined 
with DRA, GRA and IRA also encounter the same issue of 
maintaining diversity. Thus, the existing RASs fail to improve 
the performance of MOEA/D-DU on the 10-objective MaF1 

 
(A) MaF1 problem with 10 objectives (shown with parallel coordinates) 

  
(B) MaF2 problem with 10 objectives (shown with parallel coordinates) 

Fig. 1: Final solution sets obtained by MOEA/D-DU and its three new variants combined with different RASs and the true PF for MaF1 and MaF2 problems 
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TABLE I 
SUMMARY OF SIGNIFICANCE TEST BETWEEN DU AND THREE VARIANTS 

COMBINED WITH THREE RASS (DRA, GRA AND IRA) BASED ON HV 

Compari-
sons based 

on 

Test 
problems 

DU+DRA 
vs. DU 

DU+GRA 
vs. DU 

DU+IRA 
vs. DU 

– ~ + – ~ + – ~ + 
N

o.
 (m

) 
m=5 WFG4X 0 8 0 0 4 4 0 4 4 

MaF 3 1 3 1 1 5 2 2 3 
m=10 WFG4X 3 5 0 0 1 7 0 2 6 

MaF 3 2 2 3 1 3 4 1 2 
All 9 16 5 4 7 19 7 9 14 
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and MaF2 problems, mainly because they use the relative 
improvements of aggregation function values as the metric for 
resource allocation under the decomposition-based framework,
so that few computational resources are allocated to reproduce 
solutions for exploring these regions. Moreover, these empir-
ical results also demonstrate that the existing RASs are not so 
efficient for solving MaOPs.

Based on the above theoretical and empirical analyses, the 
existing RASs under the decomposition-based framework still 
face challenges and are experimentally validated to be ineffi-
cient for solving MaOPs. Thus, this paper suggests a new 
immune-inspired resource allocation strategy (IRAS), which 
applies the immune cloning operator rather than the decom-
position-based methods to achieve a reasonable assignment of
computational resources when solving MaOPs. The details of 
our proposed method are introduced in next section.

III. THE PROPOSED ALGORITHM

In this section, the details of the proposed IRAS and the 
proposed algorithm (MaOEA/IRAS) are introduced. First, the 
main flowchart of the proposed MaOEA/IRAS is plotted in Fig. 
2 for better understanding. In the following subsections, the 
framework of MaOEA/IRAS is introduced in Section III-A.
Then, the details of IRAS are given in Section III-B, and the 
details of the proposed archive update mechanism are intro-
duced in Section III-C.

A. The Framework of MaOEA/IRAS

The pseudocode of MaOEA/IRAS is given in Algorithm 1
with the inputs: N (the population size) and MaxGen (the 
maximum number of generations). As shown in line 1, the 
population P is initialized by randomly generating N solutions 
in the decision space. Then, some parameters in 
MaOEA/IRAS are initialized in line 2 by setting Gen = 0 (the 
current number of generations), ci = 0 (the cloning number for 
the ith solution). * * * *

1 2, ,...,i mZ z z z and 1 2, ,...,i
nadir nadir nadir nadir

mZ Z Z Z
are the ideal point and nadir point of the population, respec-
tively, where m is the number of objectives. After that, the
main loop of MaOEA/IRAS starts. If the termination condition 
is not satisfied in line 3, the proposed IRAS is first run in line 4
to generate the cloned population C. The details of IRAS are
given in Algorithm 2, which will be introduced in Section 
III-B. In lines 5-6, the cloned population C will undergo two 
popular evolutionary operators, i.e., simulated binary crosso-
ver (SBX) [57] and polynomial-based mutation (PM) [58].
When selecting two parents for the SBX operator, the first one 
is randomly selected from the top of solutions with the
minimized summation of objective values (we set =20% in 
this paper and the parameter tuning of is provided in Table 
A. III of the supplementary file), while the second one is 
randomly selected from the whole population C. In line 7, all 
the offspring in C’ are combined with the parent population P
to form a union population U. Then, the archive update method
is used for U to select N solutions with promising performance, 
which can coordinate with the proposed IRAS. All the selected 
solutions are updated as the new population P for next iteration.

The details of the proposed archive update method are intro-
duced in Section III-C. Finally, all the solutions in the final 
population P are reported as the final approximation set when 
Gen reaches MaxGen.

B. An Immune-Inspired Resource Allocation Strategy
Unlike MOEAs, many multiobjective immune algorithms 

(MOIAs) [59]-[60] have been proposed with unique cloning
operators, which are inspired from the body immune response 
principles of natural immune system (NIS). Regarding the 
clonal selection principle in NIS, only antigen-aware cells can 
be amplified. Similar to the NIS, the principle of clonal selec-
tion in MOIAs is that only these individuals with good per-
formance will be selected as parents for cloning. In this way, 
more cloned offspring with better performance can be gener-
ated to improve the overall performance of the population. In 
order to have an easy understanding of the immune cloning 
operator, due to page limitations, its schematic diagram is 
plotted in Fig. A.1 of the supplementary file. More details of 
MOIAs please refer to our previous published survey [61]. 
Moreover, extensive empirical results in [62]-[64] demon-
strate that MOIAs can provide a high convergence speed and 
maintain the population’s diversity. Inspired by this, this paper 
attempts to combine the concept of RAS with the immune 
cloning operator. In our design, the proposed IRAS is realized
by using an immune cloning operator rather than the fitness 
values that are qualified by the decomposition-based methods. 
In this way, solutions with many clones are preferentially 
assigned with more computational resources. Here, the cloning
operator is constructed as follows:

1
,N

i i ii
C c Px x

1 i i ,
i

NN cN
i i ,ii , ,                   (2)

Initialization

Termination

Output the final 
population P

NO

YES

IRAS

Cloned Population(C)

Mutated Population(C )

Updated Population(P)

Current Population(P)

SBX+PM
A

rchive U
pdate (U

)

Fig. 2 The flowchart of the proposed MaOEA/IRAS.

Algorithm 1: The complete framework of MaOEA/IRAS
Input: N, MaxGen;
Output: the population P;
1: initialize the population P;
2 initialize Gen, ci, *

iZ and i
nadirZ ;

3: while Gen<MaxGen
4:     C=IRAS (P);//Algorithm 2
5:     C’=Crossover (C);
6:     C’=Mutation (C’);
7:     U= Union (P, C’);
8:     P= Archive Update (U)//Algorithm 3
10:     update *

iZ and i
nadirZ ;

11:     Gen=Gen+1;
12: end while
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where  indicates the cloning operator. ci is the number of 
clones for solution ix , as calculated by 

1 2
1 2

1 2
1 2

, , , ,..., ,

, , , ,..., ,

T
i i i i i i T

i T
i i i i i i T

min dst dst dst
c N

sum dst dst dst

x x x x x x

x x x x x x

(3) 
where [1, ]i N , T is the size of the neighbor set for solution

ix (T is set to 0.1 N as in [65]-[66] and more discussions on 
different settings of T are given in Section 2 of the supple-
mentary file), and 1 2

1 2, , , ,..., ,T
i i i i i i Tdst dst dstx x x x x x

denotes the T closest diversity distances [67] between ix and 
its neighbors, as computed by 

2
, ( ) ( ) [1, ], [1, ]

i

j
i j i jdst i N j T i jx x x x    

(4) 

with '

'
1

1( ) ( )
( )

i im
h ih

F
f

x x
x

,                 (5) 

where 2|| ( ) ( ) ||i jx x denotes the 2-norm of a vector. 
' ' ' '

1 2( ) ( ), ( ),..., ( ) T
i i i m iF f f fx x x x is the normalized objec-

tive vector, m is the number of objectives, and ' ( )h if x indicates 
the hth normalized objective vector for solution ix , as defined 
by:  

*
'

*

( )
( ) , [1, ]nadir

h

h h
h

h

f Z
f h m

Z Z
x

x ,                  (6) 

where *
hZ  and nadir

hZ are respectively the ideal point and the 
nadir point of the population, and m indicates the number of 
objectives. Hence, the diversity distance value for each solu-
tion ix in population P can be denoted as idis (i.e., 

1 2
1 1 2, , , ,..., ,N T

i i i i i i i i Tdis min dst dst dstx x x x x x ). 
Due to page limitations, the reasons for using the diversity 
distance instead of the traditional angle value are discussed in 
Section 3 of the supplementary file.  

The pseudocode of the proposed IRAS is given in Algo-
rithm 2 with the input: P (the current population).The diver-
sity distance between each solution and all others is calculated 
by using (4) in lines 1-3. Then, the T-closest solutions are 
selected based on the corresponding idis  values to build the 
neighbor set in line 7. Next, the number of clones for each 
solution is calculated in line 8. According to (3), more clones 
are allocated for the solutions with large idis  values. Then, the 

cloning operator is run to generate offspring based on (2) in 
line 9. Finally, an archive truncation process is performed in 
lines 12-15 to ensure that the cloned population size is equal to 
N.  

A simple example is provided in Fig. 3 to explain the di-
versity distance between each solution and others. As shown in 
Fig. 3, solutions 2x  and 6x have larger diversity distance 
values than other solutions in the population (e.g., 3x , 4x , 8x  
and 9x ). In other words, solutions 2x  and 6x are located in 
sparse regions. Hence, according to the principle of the pro-
posed IRAS, solutions 2x  and 6x are allocated more compu-
tational resources than other solutions and more offspring are 
cloned to explore the sparse regions in which they are located. 
That is, more computational resources can be allocated to 
generate more promising solutions in these sparse regions, 
which have large survival potential in the subsequent archive 
update step, thus improving the diversity of population when 
solving MaOPs in high-dimensional objective spaces.  

C. An Efficient Archive Update Mechanism 
To provide high-quality solutions for the cloning operator, 

an efficient archive update mechanism, denoted as AUM, is 
proposed in MOEA/IRAS. Algorithm 3 presents the pseu-
docode of AUM. As shown in lines 1-2, the process of subre-
gion division is run, where the objective space  is divided 
into K uniform subregions based on the diversity distance idis , 
which aims to guarantee the distribution of the population. In 
this paper, we set K= 1 /N m m , where m and N are the 
number of objectives and the population size, respectively. 
Note that the parameter tuning of K is provided in Table A. IV 
of the supplementary file. Particularly, K solutions in the union 
population U with lager diversity distances and uniform dis-
tribution are used to construct K uniform subregions. Then, an 
association procedure is performed for the remaining solutions 
in U, where each solution is associated with the closest unique 
subregion according to the diversity distance in (4).  

After the division procedure, two selection rounds are run. 
In the first round of selection, one solution with the smallest 
average diversity distance value in the kth subregion is selected, 
which is formulated as follows: 

| |

1
,

=
| |

kR l
r r lk l

r
k

dst
avgdis

R
x x

,                           (7) 

where k is the index of the kth subregion (i.e., [1, ]k K ), r and 
l are the indexes of solutions in subregion Rk ( , [1,| |]kr l R

Algorithm 2: C= IRAS (P) 
Input: the current population P; 
Output: the cloned population C; 
1: for i=1 to |P| 
2: calculate the diversity distance idis by using (4); 
3: end for 
4: for i=1 to |P| 
5: while |C|<N 
6: sort all the solutions in ascending order based on idis ; 
7: build the neighbor set for each solution; 
8: compute ci by using (3); 
9: clone each solution to generate offspring by using (2); 
10: add all the offspring to C; 
11: end while 
12: if |C|>N then 
13: recalculate the idis  for each solution in C; 
14:       delete the solution with the smallest idis from C; 
15: end if 
16: end for 

 
Fig. 3 A simple example of the diversity distance for each solution 
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and r l ). k
ravgdis is the average diversity distance value for 

the solution rx in the kth subregion, ,l
r r ldst x x indicates the 

diversity distance value between the solution rx and other 
solutions in the kth subregion calculated by using (4). In this 
way, one solution with the best representative distribution (i.e., 
with the smallest diversity distance value) in each subregion is 
selected and a total of K solutions are obtained in the first 
selection round, which aims to guarantee the population’s 
diversity. After that, the remaining N K

 
solutions with best 

convergence are selected in the second round, which is based 
on the sum of objective function values. Hence, the diversity 
and convergence of the population can be guaranteed simul-
taneously through the use of our archive update strategy. 

As shown in lines 8-12 of Algorithm 3, K solutions with the 
smallest average diversity distance value in each correspond-
ing subregion are selected in the first selection round. For the 
chive update process will continue until the new population P 
is full. Specially, when the number of solutions that are needed 
to be selected is larger than the number of subregions (i.e., 
Remains>K), the solutions are sequentially selected from each 
subregion according to their corresponding sum of the objec-
tive function values in lines 14-20. Otherwise, the remaining 
solutions with the smallest sum of objective function values 
are selected from |Remains| random subregions in line 22. 
Thus, MaOEA/IRAS adopts a diversity first and convergence 

second principle [68]-[69] to perform the environmental 
selection, which gives priority to preserve the individual with 
the best representative distribution in each subregion. 

To facilitate the understanding of the proposed archive up-
date strategy, a simple example is given in Fig. 4 that shows 
the archive update process in a normalized bi-objective space. 
First, the objective space is divided uniformly into five sub-
regions (e.g., R1, R2, R3, R4, and R5) in Fig. 4(a), which is based 
on the diversity distance of each solution to others. After that, 
the first selection round is performed in Fig. 4(b), where the 
five solutions (marked as the blue circles: 1x , 4x , 8x , 10x , and

14x ) with the smallest average diversity distances k
ravgdis

calculated by (7) are selected and added to construct the new 
population P from the union population U to ensure a rea-
sonable population distribution. It should be noted that the 
diversity distance for the boundary solutions is set to half of 
the minimum diversity distance. Then, the second selection 
round in the archive update is performed in Figs. 4(c)-(d). In 
Fig. 4(c), 5x , 7x , 9x and 13x are selected in turn (marked by 
the green circles) because their aggregated objective values are 
smallest in the corresponding subregions. When |Remains|>K, 
the last few solutions will be selected from |Remains| random 
subregions. As shown in Fig. 4(d), the last solution is selected 
from subregion R4 (i.e., 11x  marked with the purple circle) 
when P is not full. Finally, 1x , 4x , 8x , 10x , 14x  with the best 
representative distribution and 5x , 7x , 9x , 13x  with the best 
convergence in each subregion are added into the archive after 
the process of archive update. 

IV. EXPERIMENTAL STUDIES 

A. Benchmark Problems and Quality Indicators 
1) Benchmark Problems: 

In our experimental studies, fifteen benchmark problems 
were used to assess the performance of the proposed algorithm 
MaOEA/IRAS, including WFG41-WFG48 [43] and MaF1- 
MaF13 [44] with a variety of PF shapes. These adopted test 
problems have different PFs, which can be used to effectively 
assess the performance of different MOEAs. WFG42, WFG44 
and MaF3 have convex PFs, while WFG41, WFG43 and 
MaF5 have concave PFs. Particularly, WFG44 has a strong 
convex PF, and WFG43 has an extremely concave PF. 
Moreover, both MaF1 and MaF4 have inverted PFs, MaF6 
shows a degenerated PF, WFG46 has a regular linear PF, 
MaF7 and MaF11 have disconnected PFs, MaF8 and MaF9 

 
Fig. 4: The process of the proposed archive update mechanism (AUM) with (a) region division process; (b) the selected solutions with the best representative distri-

bution in each subregion; (c)-(d) the selected solutions with the best convergence in each subregion. 
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Algorithm 3: P= Archive Update (U) 
Input: the union population U; 
Output: the new population P; 
1: //The process of subregion division 
2: divide the objective space into K subregions based on the diversity 

distance idis ; 
3: for k= 1 to K 
4: for r= 1 to | Rk | 
5: calculate the k

ravgdis  using (7); 
6: end for 
7: end for 
8: //Frist round of selection in archive update 
9: for k= 1 to K  
10: select the solution with the smallest k

ravgdis  in Rk; 
11: add the selected solution to P and remove it from Rk; 
12: end for 
13: //Second round of selection in archive update 
14: Remains=N-K; 
15: if Remains > K 
16: for k= 1 to K 
17:        select the solution with the smallest sum value of objectives in Rk; 
18:        add the selected solution to P and remove it from Rk; 
19: Remains=Remains-1; 
20: end for 
21: else 
22: select the remaining solutions from |Remains| random subregions. 
23: end if 
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have linear and degenerate PFs, MaF12 and MaF13 have 
concave PFs. The PFs for the remaining problems (i.e., 
WFG45, WFG47 and WFG48, MaF10) are mixed and com-
plicated. Thus, these adopted problems can be used to validate 
the robustness of MaOEAs for solving MaOPs with different 
PFs. 

The number of objectives m ranges from 5 to 15 in our ex-
perimental comparison, where {5,8,10,13,15}m . In addi-
tion, as suggested in [44], the number of decision variables n in 
MaF1-MaF7 was set based on n = m+k-1, where k was set to 
10 for MaF1-MaF6 and to 20 for MaF7, n was set to 2 for 
MaF8 and MaF9 and to 5 for MaF13. For MaF10-MaF12 and 
WFG41-WFG48, the decision variables consist of k posi-
tion-related parameters and l distance-related parameters. As 
introduced in [43], k was set to 2 ( 1)m , and l was set to 20. 
2) Quality Indicator: 

Regarding the quality indicator for the final solutions ob-
tained by MOEAs, the hypervolume (HV) indicator [56] was 
used in our experimental studies to assess both convergence 
and spread. HV is the hypervolume of the space between the 
nondominated solutions and a reference point. A larger HV 
value indicates a good approximation to the true PF. Note that 
solutions dominated by the reference point are not included in 
the calculation of the HV, and the setting of the reference point 
is crucial for the calculation of the HV. In this study, to have a 
fair comparison, the reference point for computing the HV is 
set as suggested in [70], in which the objective values of the 
final solutions are all normalized first by using 

1 21.1 ( , ,..., )nadir nadir nadir
mZ Z Z , where nadir

hZ indicates the h-th 
nadir point of the true PF ( 1,h m ), and then the reference 
points are set to (1.0, 1.0, …, 1.0). Notably, to avoid the situ-
ation that the HV values obtained by the compared algorithms 
are very small and close to zero, the reference points are set as 
(2.0, 2.0, …, 2.0) for MaF1 with more than 10 objectives (i.e., 

{10,13,15}m ). Moreover, a Monte Carlo simulation meth-
ods [71] with 107 sampling points is adopted to approximately 
calculate the HV values when the test problems have more 
than 8 objectives (i.e., {8,10,13,15}m ). 
B. Parameter Settings for the Compared Algorithms 

In our experimental studies, to verify the effectiveness of 
the proposed IRAS in high-dimensional objective spaces, 
three well-known RASs, including DRA [29], GRA [30], and 
IRA [31], are compared with the proposed IRAS. Then, to 
further verify the advantages of the proposed MaOEA/IRAS, 
six competitive MaOEAs are also included for comparison, 
including RVEAiGNG [72], PeEA [73], MOEA/AD [74], 
MaOEA/IGD [21], MaPSO [75] and hpaEA [26]. Note that all 
the compared MaOEAs were independently run with 30 times 
for each test problem on a personal computer with an Intel (R) 
Core (TM) i7-6700 CPU, 3.40 GHz (processor), and 20 GB 
(RAM).  

Regarding the evolutionary operators, SBX [57] and PM [58] 
were used for all the compared MaOEAs, except for MaPSO 
that adopted the PSO search strategy. pc and pm are the prob-
abilities of crossover and mutation, respectively. c  and m  
are the distribution indexes of SBX and PM, respectively. 
Other experimental parameters were configured with the same 

values as in the corresponding references. These values are 
summarized in Table A. V of the supplementary file.  

The population sizes for different numbers of objectives are 
summarized in Table A. VI of the supplementary file. For test 
problems with 5, 8, 10, 13 and 15 objectives, the number of 
weight vectors were set to 210, 240, 275, 182 and 240, re-
spectively, by using the two-layer generation method with the 
simplex-lattice design factor H, as suggested in [76]. All the 
algorithms are terminated when the preset maximum number 
of generations Gmax is reached. The settings of Gmax for dif-
ferent numbers of objectives are also listed in Table A. VI. For 
each algorithm, the maximum function evaluations (MFE) can 
be easily determined by MFE = N Gmax. 

C. Comparisons with Different RA strategies 
To verify the superiority of IRAS over three conventional 

RASs (i.e., DRA [29], GRA [30] and IRA [31]), experimental 
comparisons were conducted. Please note that MaOEA/IRAS 
uses an efficient archive update mechanism (AUM), which is 
different from the archive update strategies in DRA, GRA and 
IRA. Hence, for a fair comparison of different RASs, the 
proposed AUM was also embedded into DRA, GRA and IRA, 
yielding three new variants called DRA+AUM, GRA+AUM 
and IRA+AUM, respectively. To unify the format, the pro-
posed IRAS, which includes IRAS and AUM, was abbreviated 
as IRAS+AUM. Due to page limitations, the effectiveness of 
our proposed AUM has been validated based on the experi-
mental results summarized in Table A. VII and Table A. VIII 
of the supplementary file. Note that the symbols in the tables 
“-”, “~” and “+” indicate our proposed method is better than, 
statistically similar with and worse than the compared algo-
rithm, respectively, based on the Wilcoxon rank sum test with 
a 0.05 significant level. 

1) Comparison Results based on WFG41-WFG48 
Table A. IX of the supplementary file provides a comparison 

of results in terms of the HV for WFG41-WFG48 with 5 to 15 
objectives (m=5, 8, 10, 13, and 15). Some conclusions can be 
drawn from the HV results listed in Table A. IX. As summa-
rized in the second-to-last row of the table, IRAS+AUM 
shows an obvious superiority over the other methods, because 
it obtains the best results in 39 out of 40 cases, and the com-
petitors that use other RASs (DRA, GRA and IRA) obtain the 
best results in 0, 0 and 1 out of 40 cases. The main difference 
between the compared algorithms is the applied RASs. Hence, 
the obvious advantages of the proposed IRAS in solving 
WFG4X with many objectives are verified based on the HV 
results listed in Table A. IX. Furthermore, from the 
one-by-one comparisons in the last row of Table A. IX of the 
supplementary file, IRAS+AUM also performs better than 
DRA+AUM, GRA+AUM and IRA+AUM in 40, 40 and 39 
out of 40 cases, respectively, and only shows a slight disad-
vantage when compared with IRA+AUM for WFG43 with 13 
objectives. In particular, DRA, GRA and IRA assign compu-
tational resources according to the relative improvement of the 
aggregated function value, which showed difficulty to main-
tain diversity in solving MaOPs. Whereas, the proposed IRAS 
allocates computational resources by using the diversity dis-
tance to enhance diversity, which is beneficial for solving 
MaOPs. Thus, the superior performance of IRAS+AUM here 
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TABLE II 
SUMMARY OF SIGNIFICANCE TEST BETWEEN IRAS+AUM AND THREE 

RASS (DRA, GRA AND IRA) COMBINED WITH AUM ON HV 
Comparisons 

based on 
IRAS+AUM vs.  

DRA+AUM 
IRAS+AUM vs.  

GRA+AUM 
IRAS+AUM vs.  

IRA+AUM 
– ~ + p-value – ~ + p-value – ~ + p-value 

Te
st

 P
ro

bl
em

s 

WFG41 5 0 0 0.0500 5 0 0 0.0071 5 0 0 0.0071 
WFG42 5 0 0 0.0048 5 0 0 0.0022 5 0 0 0.1416 
WFG43 5 0 0 0.1416 5 0 0 0.0071 4 0 1 0.0275 
WFG44 5 0 0 0.0071 5 0 0 0.0071 5 0 0 0.0500 
WFG45 5 0 0 0.0199 5 0 0 0.0048 5 0 0 0.0274 
WFG46 5 0 0 0.0500 5 0 0 0.0143 5 0 0 0.0033 
WFG47 5 0 0 0.0500 5 0 0 0.0014 5 0 0 0.0276 
WFG48 5 0 0 0.0015 5 0 0 0.0101 5 0 0 0.1113 
MaF1 5 0 0 0.0374 4 1 0 0.0373 5 0 0 0.0015 
MaF2 5 0 0 0.0022 5 0 0 0.0101 5 0 0 0.0864 
MaF3 4 1 0 0.1779 3 1 1 0.1779 1 1 3 0.4624 
MaF4 5 0 0 0.0500 5 0 0 0.0006 5 0 0 0.0500 
MaF5 5 0 0 0.0015 5 0 0 0.0033 5 0 0 0.2206 
MaF6 5 0 0 0.0143 5 0 0 0.0275 5 0 0 0.0071 
MaF7 4 0 1 0.0048 3 1 1 0.1113 2 0 3 0.3272 
MaF8 4 0 1 0.0864 4 0 1 0.2206 4 0 1 0.1416 
MaF9 4 0 1 0.0500 5 0 0 0.0071 5 0 0 0.0071 

MaF10 5 0 0 0.0373 5 0 0 0.0143 5 0 0 0.0048 
MaF11 1 1 3 0.4624 1 1 3 0.4624 1 1 3 0.4624 
MaF12 5 0 0 0.0071 5 0 0 0.0662 5 0 0 0.0048 
MaF13 4 1 0 0.0864 5 0 0 0.0071 3 1 1 0.3272 

N
o.

 (m
) 

m=5 18 1 2 0.0001 18 1 2 0.0000 17 2 2 0.0162 
m=8 20 1 0 0.0284 19 2 0 0.0000 18 1 2 0.0005 
m=10 19 1 1 0.0000 18 1 2 0.0001 18 0 3 0.0162 
m=13 19 0 2 0.0000 20 0 1 0.0000 18 0 3 0.0477 
m=15 20 0 1 0.0000 20 0 1 0.0011 19 0 2 0.0019 

All 96 3 6 0.0000 95 4 8 0.0000 90 3 12 0.0000 

further validates the effectiveness of the proposed IRAS, 
which can improve the ability to maintain diversity in a 
high-dimensional objective space. 

2) Comparison Results based on MaF1-MaF13 
Table A. X of the supplementary file gives a comparison of 

results for all the considered algorithms in terms of HV on 
MaF1-MaF13 with 5 to 15 objectives (m=5, 8, 10, 13, and 15). 
As indicated in the second-to-last row of Table A. X of the 
supplementary file, IRAS+AUM shows superior performance 
when compared to other methods, as it yields the best results in 
48 out of 65 cases, while DRA+AUM, GRA+AUM and 
IRA+AUM only have the best results in 6, 0 and 11 out of 65 
cases, respectively. From the last row of Table A. X, 
IRAS+AUM performs better than DRA+AUM, GRA+AUM 
and IRA+AUM in 53, 53 and 48 out of 65 cases, respectively, 
while it is only outperformed in 8, 8 and 12 out of 65 cases. 
Therefore, it is reasonable to conclude that IRAS+AUM 
showed superior performance over its three competitors that 
use traditional RASs in solving most of the MaF1-MaF13 
problems.  

3) Further Discussion and Analysis of the Overall Per-
formance of Compared RASs 

Table II summarizes the significance test results based on 
the HV for each comparison. To ensure a statistically sound 
conclusion, the Wilcoxon rank sum test with a 0.05 signifi-
cance level and the Wilcoxon signed-rank test from the plat-
form KEEL [77] were used, where the results display statis-
tically significant differences on the HV. Moreover, an as-
ymptotic p-value obtained based on the Wilcoxon signed-rank 
test and the KEEL tool is shown in the column “p-value”. It 
should be noted that a p-value close to zero indicates that there 
are significant differences among the compared algorithms 
based on the HV results. 

Regarding the results summarized in Table II for various test 
problems ranging from 5 to 15 objectives, some conclusions 
can be drawn. When considering all the WFG4X test problems, 
the proposed IRAS+AUM shows an absolute superiority over 
the other algorithms. IRAS+AUM obtains all the best results 
for the WFG4X test problems with various objectives except 
for WFG43 with 13 objectives. Considering the PF shape of 
WFG4X, WFG43 has a strong concave PF while WFG44 has 
an extremely convex PF. Thus, the advantages of IRAS+AUM 
on WFG43 and WFG44 have validated the effectiveness of the 
proposed IRAS for solving such problems with extremely 
convex/concave PFs. WFG47 and WFG48 both have discon-
nected and concave PFs. The superiority of IRAS+AUM over 
other methods on WFG47 and WFG48 is mainly due to the 
running of the proposed IRAS that uses the diversity distance 
to assign computational resources, while other RASs use the 
relative improvement of the aggregated function values based 
on a set of uniform weight vectors, which has some drawbacks 
in solving problems with disconnected PFs [42], [46].  

When considering all the MaF test problems, the proposed 
IRAS displays some advantages when compared to other 
traditional RASs (DRA, GRA and IRA). Considering MaF4 
with an irregular PF, which was derived from DTLZ3 by 
inverting the PF shape, IRAS+AUM obtains all the best results 
for the MaF4 test problem on all the objectives adopted in this 
paper. Hence, the superiority of IRAS+AUM for MaF4 con-
firms the advantages of the proposed IRAS in solving some 

problems with irregular PFs. However, the decomposi-
tion-based RASs failed, because it is hard to specify a set of 
weight vectors that can highly fit to the PF with various ir-
regular shapes. Remarkably, for MaF3 with a multimodal PF, 
IRA+AUM shows superior performance over the other 
methods in the cases of 10, 13, and 15 objectives. When 
dealing with MaF11 that has a scaled disconnected PF, our 
method is slightly inferior to other competitors.  

Furthermore, as observed from the comparisons in the last 
row of Table II, IRAS+AUM is superior to DRA+AUM, 
GRA+AUM and IRA+AUM in 96, 95 and 90 out of 105 cases, 
respectively, and it is inferior to DRA+AUM, GRA+AUM and 
IRA+AUM in 6, 8 and 12 out of 105 cases, respectively. 
Furthermore, all the p-values for all the comparisons are close 
to zero. Hence, it is reasonable to conclude that the proposed 
IRAS is more efficient for solving MaOPs with different 
numbers of objectives than the traditional RASs mentioned 
above.  

To have an intuitive observation of the assignment process 
of the computational resources, Figs. A.2-A.5 of the supple-
mentary file provide the dynamic change of resources in the 
proposed IRAS during the whole evolutionary process, where 
the ordinate indicates the number of cloning resources for each 
individual, the abscissa represents twenty different solutions 
and Gen means the current generation. As we can learn from 
these figures, different computational resources are allocated 
for different solutions adaptively at different generations.  

D. Comparison with Six Competitive MaOEAs 
In this section, six competitors with promising performance, 

including RVEAiGNG [72], PeEA [73], MOEA/AD [74], 
MaOEA/IGD [21], MaPSO [75] and hpaEA [26], are adopted 
for performance comparisons. It should be pointed out that the 
proposed MaOEA/IRAS was implemented under the jMetal 
framework [78]. MOEA/AD and MaPSO were also 
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implemented under the JMetal framework, while others were 
implemented in the PlatEMO framework [79].  

1) Comparison Results on WFG41-WFG48 
Table III provides comparison results in terms of HV for 

WFG41-WFG48 with 5 to 15 objectives. Some conclusions 
can be drawn from the HV results listed in Table III. As 
summarized in the second-to-last row of Table III, 
MaOEA/IRAS yielded the best results in 17 out of 40 cases, 
and these compared algorithms, i.e., RVEAiGNG, PeEA, 
MOEA/AD, MaOEA/IGD, MaPSO and hpaEA, obtained the 
best results in 3, 13, 7, 0, 0 and 0 out of 40 cases, respectively. 
From the one-by-one comparisons in the last row of Table III, 
MaOEA/IRAS performed better than RVEAiGNG, PeEA, 
MOEA/AD, MaOEA/IGD, MaPSO and hpaEA in 22, 22, 23, 
34, 37 and 30 out of 40 cases, respectively, while it was out-
performed by them in 13, 15, 11, 0, 0 and 3 out of 40 cases, 
respectively. 

To visually show their comparisons, some final solution sets 
with the 15th best HV values from all 30 runs are plotted in 
Figs. A.6-A.10 of the supplementary file, which show the 
solution’s distributions for different problems with various 
objectives in a high-dimensional objective space. Some con-

clusions can be easily drawn from these figures. Regarding 
different test problems with various objectives, all the final 
solution sets obtained by the proposed MaOEA/IRAS are 
distributed evenly in these representative problems with dif-
ferent kinds of PFs. The final solution sets obtained by other 
methods yield relatively poor distributions. Hence, the effec-
tiveness of MaOEA/IRAS in solving WFG4X test problems 
with different numbers of objectives is further validated.  

2) Comparison Results on MaF1-MaF13 
Due to page limitations, Table A. XI of the supplementary 

file summarizes a comparison of the results of all the algo-
rithms considered in terms of the HV for MaF1-MaF13 with 5, 
8, 10, 13, and 15 objectives. The results summarized in the 
second-to-last row of Table A. XI indicate that MaOEA/IRAS 
displayed superior performance when compared with the other 
methods, and it yielded the best results in 26 out of 65 cases; 
the other six compared algorithms obtained the best results in 
15, 6, 4, 1, 4 and 9 out of 65 cases. From the one-by-one 
comparisons in the last row of Table A. XI, MaOEA/IRAS 
performed better than RVEAiGNG, PeEA, MOEA/AD, 
MaOEA/IGD, MaPSO and hpaEA in 37, 39, 32, 54, 41 and 38 
out of 65 cases, respectively, while being outperformed by 
these algorithms in 26, 19, 21, 5, 15 and 21 out of 65 cases. 

TABLE III 
COMPARISON OF RESULTS OF MaOEA/IRAS AND SIX COMPETITIVE MAOEAS ON WFG41-WFG48 USING HV 

Problem m RVEAiGNG PeEA MOEA/AD MaOEA/IGD MaPSO hpaEA MaOEA/IRAS 

WFG41 

5 7.62e-01(1.85e-02)- 7.49e-01(4.90e-03)- 8.01e-01(2.88e-03)- 0.00e+00(0.00e+00)- 6.49e-01(1.48e-02)- 0.00e+00(0.00e+00)- 8.02e-01(5.12e-03) 
8 8.61e-01(1.41e-02)- 8.60e-01(8.06e-03)- 8.23e-01(1.87e-02)- 1.07e-01(1.09e-06)- 7.23e-01(1.01e-02)- 6.85e-01(5.69e-02)- 9.24e-01(2.57e-02) 

10 9.20e-01(9.10e-03)- 9.06e-01(7.03e-03)- 9.27e-01(3.20e-03)- 1.32e-01(8.23e-02)- 7.44e-01(1.57e-02)- 7.21e-01(3.68e-02)- 9.39e-01(1.42e-02) 
13 9.04e-01(1.62e-02)+ 9.07e-01(2.07e-02)+ 7.70e-01(1.20e-02)- 1.71e-01(1.08e-03)- 7.39e-01(2.01e-02)- 6.31e-01(2.99e-02)- 8.73e-01(1.56e-02) 
15 9.21e-01(1.18e-02)- 9.41e-01(1.63e-02)+ 7.64e-01(4.51e-02)- 1.46e-01(8.23e-02)- 7.79e-01(1.16e-02)- 6.24e-01(5.70e-02)- 9.21e-01(1.88e-02) 

WFG42 

5 9.80e-01(7.79e-03)- 9.75e-01(4.21e-03)- 9.94e-01(1.50e-03)+ 0.00e+00(0.00e+00)- 8.89e-01(7.82e-03)- 0.00e+00(0.00e+00)- 9.86e-01(3.25e-03) 
8 9.88e-01(1.50e-03)~ 9.90e-01(2.26e-03)- 9.98e-01(8.76e-04)+ 9.91e-01(4.84e-03)~ 8.96e-01(3.85e-03)- 9.85e-01(2.29e-03)~ 9.93e-01(3.53e-03) 

10 9.84e-01(2.43e-03)~ 9.95e-01(1.36e-03)- 9.97e-01(8.58e-04)+ 9.92e-01(3.79e-03)~ 9.05e-01(1.15e-02)- 9.92e-01(2.04e-03)- 9.96e-01(2.80e-03) 
13 9.88e-01(5.53e-03)- 9.93e-01(1.27e-03)~ 9.81e-01(5.18e-03)- 9.71e-01(1.25e-02)- 9.01e-01(1.58e-02)- 9.85e-01(3.08e-03)- 9.92e-01(3.17e-03) 
15 9.90e-01(5.47e-03)- 6.03e-01(1.48e-01)- 9.36e-01(1.45e-02)- 9.76e-01(1.11e-02)- 8.90e-01(1.07e-02)- 9.93e-01(1.44e-03)- 9.96e-01(3.22e-03) 

WFG43 

5 2.89e-01(2.55e-02)- 4.84e-01(1.24e-02)- 5.36e-01(7.18e-03)+ 0.00e+00(0.00e+00)- 3.16e-01(1.95e-02)- 0.00e+00(0.00e+00)- 4.94e-01(2.03e-02) 
8 1.38e-01(3.65e-02)- 6.35e-01(7.96e-03)+ 4.38e-01(1.61e-02)- 1.15e-01(8.01e-02)- 3.86e-01(4.93e-02)- 3.63e-01(4.44e-02)- 5.19e-01(1.72e-02) 

10 1.21e-01(3.94e-02)- 6.83e-01(1.63e-02)+ 4.55e-01(3.32e-02)~ 9.90e-02(5.00e-05)- 4.85e-01(3.74e-02)~ 3.74e-01(2.50e-02)- 5.45e-01(2.72e-02) 
13 7.30e-01(8.19e-03)+ 6.80e-01(3.64e-02)+ 4.38e-01(2.15e-02)~ 1.15e-01(1.33e-04)- 4.13e-01(3.88e-02)~ 2.91e-01(2.75e-02)- 4.92e-01(6.20e-02) 
15 7.10e-01(3.41e-02)+ 7.77e-01(2.67e-02)+ 3.42e-01(2.63e-02)- 1.24e-01(8.24e-02)- 4.70e-01(5.43e-02)~ 3.11e-01(2.92e-02)- 5.51e-01(2.85e-02) 

WFG44 

5 9.68e-01(1.15e-02)- 9.95e-01(1.28e-03)~ 9.94e-01(1.01e-03)~ 0.00e+00(0.00e+00)- 9.11e-01(1.63e-02)- 0.00e+00(0.00e+00)- 9.95e-01(2.10e-03) 
8 9.91e-01(2.38e-03)~ 9.97e-01(8.85e-04)- 1.00e+00(9.54e-05)+ 9.96e-01(3.11e-03)~ 9.23e-01(1.04e-02)- 9.93e-01(7.73e-04)- 9.98e-01(5.03e-04) 

10 9.91e-01(5.41e-03)- 9.97e-01(1.46e-03)~ 1.00e+00(9.91e-05)+ 9.90e-01(8.45e-03)- 9.40e-01(5.78e-03)- 9.97e-01(6.88e-04)- 9.99e-01(6.90e-04) 
13 9.90e-01(4.11e-03)- 9.96e-01(1.34e-03)- 9.98e-01(2.04e-02)~ 9.86e-01(5.29e-03)- 9.19e-01(9.73e-03)- 9.95e-01(1.07e-03)~ 9.98e-01(1.45e-03) 
15 9.98e-01(4.58e-04)- 7.96e-01(1.38e-01)- 9.91e-01(4.59e-03)~ 9.88e-01(1.46e-02)- 9.33e-01(6.25e-03)- 9.96e-01(1.55e-03)~ 9.99e-01(4.56e-04) 

WFG45 

5 8.41e-01(2.08e-03)- 8.27e-01(3.64e-03)- 8.50e-01(1.34e-03)- 9.89e-02(1.93e-04)- 7.03e-01(1.31e-02)- 8.00e-01(3.23e-02)- 8.57e-01(1.82e-03) 
8 9.03e-01(7.68e-03)- 9.16e-01(6.12e-03)- 8.58e-01(1.74e-02)- 1.15e-01(8.01e-02)- 7.32e-01(9.01e-03)- 7.57e-01(2.33e-02)- 9.46e-01(4.62e-03) 

10 9.31e-01(8.14e-03)~ 9.41e-01(3.46e-03)- 9.45e-01(3.68e-03)- 1.32e-01(8.25e-02)- 7.42e-01(1.25e-02)- 7.57e-01(3.27e-02)- 9.49e-01(9.21e-03) 
13 9.10e-01(8.25e-03)+ 9.49e-01(7.10e-03)+ 8.28e-01(1.10e-02)- 1.54e-01(8.13e-02)- 7.13e-01(1.33e-02)- 6.45e-01(3.25e-02)- 9.07e-01(2.59e-02) 
15 9.30e-01(1.27e-02)- 9.65e-01(9.75e-03)+ 7.36e-01(6.29e-02)- 2.08e-01(7.49e-02)- 7.14e-01(1.90e-02)- 7.20e-01(4.77e-02)- 9.44e-01(1.37e-02) 

WFG46 

5 9.51e-01(7.00e-03)+ 9.67e-01(1.06e-03)+ 9.65e-01(2.15e-03)+ 4.85e-01(1.46e-01)- 8.23e-01(4.39e-03)- 9.51e-01(7.74e-03)+ 9.44e-01(1.02e-02) 
8 9.73e-01(8.76e-03)+ 9.88e-01(5.37e-03)+ 9.79e-01(2.78e-03)+ 3.43e-01(3.20e-01)- 8.40e-01(7.30e-03)- 9.16e-01(1.99e-02)~ 9.50e-01(7.61e-03) 

10 9.71e-01(9.64e-03)+ 9.95e-01(2.52e-03)+ 9.64e-01(5.47e-03)+ 3.86e-01(2.63e-01)- 8.15e-01(3.18e-02)- 9.35e-01(1.00e-02)~ 9.57e-01(1.12e-02) 
13 9.62e-01(9.55e-03)+ 9.94e-01(2.62e-03)+ 9.15e-01(6.56e-03)- 1.57e-01(8.06e-02)- 8.00e-01(1.48e-02)- 8.71e-01(1.57e-02)~ 9.22e-01(1.45e-02) 
15 9.71e-01(8.31e-03)+ 9.99e-01(3.01e-04)+ 8.13e-01(3.54e-02)- 1.57e-01(1.56e-01)- 7.98e-01(3.01e-02)- 9.07e-01(1.61e-02)- 9.55e-01(1.07e-02) 

WFG47 

5 8.22e-01(1.31e-02)- 8.35e-01(1.97e-03)- 8.54e-01(4.40e-03)- 4.40e-01(1.23e-01)- 7.15e-01(5.16e-03)- 7.91e-01(1.40e-02)- 8.58e-01(3.78e-03) 
8 9.11e-01(1.33e-02)~ 9.20e-01(3.61e-03)- 8.70e-01(1.49e-02)- 4.62e-01(1.56e-01)- 7.61e-01(1.73e-02)- 7.59e-01(4.57e-02)- 9.46e-01(1.63e-02) 

10 9.38e-01(1.52e-03)- 9.43e-01(3.97e-03)- 9.04e-01(2.82e-02)~ 4.11e-01(1.25e-01)- 7.80e-01(2.17e-02)- 7.76e-01(3.74e-02)- 9.47e-01(8.59e-03) 
13 9.50e-01(4.37e-03)+ 9.40e-01(1.15e-02)+ 6.94e-01(7.11e-02)- 1.44e-01(8.29e-02)- 7.58e-01(1.78e-02)- 6.78e-01(3.00e-02)- 9.07e-01(2.65e-02) 
15 9.57e-01(3.64e-03)+ 9.71e-01(2.86e-03)+ 6.79e-01(1.42e-02)- 1.78e-01(1.72e-01)- 7.78e-01(3.06e-02)- 7.18e-01(5.05e-02)- 9.42e-01(2.70e-02) 

WFG48 

5 9.81e-01(3.28e-03)+ 9.78e-01(3.17e-03)- 9.92e-01(1.25e-03)+ 9.00e-01(2.41e-02)- 8.84e-01(4.80e-03)- 9.88e-01(1.62e-03)+ 9.79e-01(4.03e-03) 
8 9.87e-01(2.66e-03)- 9.90e-01(2.55e-03)- 9.97e-01(1.06e-03)+ 9.84e-01(5.06e-03)~ 8.71e-01(3.36e-03)- 9.84e-01(3.19e-03)~ 9.91e-01(5.35e-03) 

10 9.90e-01(4.32e-03)- 9.90e-01(1.94e-03)- 9.97e-01(5.82e-04)+ 9.85e-01(7.13e-03)~ 9.00e-01(1.25e-02)- 9.92e-01(1.34e-03)- 9.92e-01(1.43e-02) 
13 9.89e-01(5.66e-03)+ 9.75e-01(9.96e-03)- 9.79e-01(5.28e-03)- 9.77e-01(4.36e-03)~ 9.01e-01(1.02e-02)- 9.86e-01(4.50e-03)+ 9.85e-01(2.03e-02) 
15 9.90e-01(1.70e-03)- 9.06e-01(5.14e-02)- 9.56e-01(8.38e-03)- 9.76e-01(6.91e-03)- 8.80e-01(5.61e-03)- 9.87e-01(5.21e-03)- 9.91e-01(4.20e-03) 

Best/All 3/40 13/40 7/40 0/40 0/40 0/40 17/40  
–/~/+ 22-/5~/13+  22-/3~/15+  23-/6~/11+  34-/6~/0+  37-/3~/0+  30-/7~/3+  – –  
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To visually show their comparisons, some final solution sets 
with the 15th best HV values from all 30 runs are plotted in 
Figs. A.11-A.15 of the supplementary file. We can see in these 
figures that the proposed MaOEA/IRAS can obtain the final 
solution sets with better distributions than those obtained by
the other methods. In other words, the proposed 
MaOEA/IRAS exhibits effective performance in solving the 
MaF test problems with various objectives. Hence, the supe-
riority of MaOEA/IRAS over the other methods is further 
validated in solving the MaF problems.

3) Further Discussion and Analysis of the Overall Per-
formance of the Compared Algorithms.

Furthermore, to verify how well each compared algorithm 
performs overall, the Friedman’s test using the software KEEL 
was applied to rank all the compared algorithms in all cases.

Fig. 5 summarizes the average performance rank for dif-
ferent numbers of objectives. It should be noted that the ranks 
of the proposed MaOEA/IRAS are connected by a red line. 
The last column in Fig. 5 provides the average performance 
ranks in all the test cases. The average performance rank score
of MaOEA/IRAS in all the test problems with all objectives is 
2.6714, followed by those of RVEAiGNG (3.1333), 
MOEA/AD (3.219), PeEA (3.6238), hpaEA (4.3475), MaPSO 
(4.8095) and MaOEA/IGD (6.1952). Hence, MaOEA/IRAS 
shows superiority over other methods, as its average perfor-
mance rank score is smaller for all the test problems.

Fig. 6 provides the average performance rank scores for 
different problems (WFG41-WFG48 and MaF1-MaF13), and
the ranks of MaOEA/IRAS are connected by a red line to 
easily observe the values. Some conclusions can be drawn 
from Fig. 6. When considering the WFG4X test problems, 
MaOEA/IRAS shows an obvious advantage over other 
methods in most cases except for WFG46, as the average 
performance rank score of MaOEA/IRAS is larger than those 
of PeEA and RVEAiGNG. When considering the MaF test 
problems, our MaOEA/IRAS can obtain the best ranks for
most adopted cases. Moreover, MaOEA/IRAS shows com-
petitive performance on solving all MaF problems except for 
MaF3 with a convex PF, MaF7 with a disconnected PF, and 
MaF11 with a scaled disconnected PF. Particularly, RVE-
AiGNG shows the best performance for MaF3 and MaF11,
and MaPSO obtains the best result for MaF7. The inferior
performance of MaOEA/IRAS on tackling these three prob-

lems are mainly because the PFs of these problems are easy
to cover and approximate. In the case of sufficient computa-
tional resources, our proposed IRAS may not have obvious 
superiority in solving such problems, as other competitors 
without RAS can also obtain good results. 

In summary, the superiority of MaOEA/IRAS over its 
competitors when solving most of the test problems adopted in 
the experiments is verified according to the average perfor-
mance ranks shown in Fig. 5 and Fig. 6. Furthermore, Table A. 
XII of the supplementary file provides the comparison results 
of all the compared algorithms on solving 5-objective MaF and 
WFG4X test problems based on the IGD values [80], which 
further validates the favorable performance of MaOEA/IRAS.

E. The Effectiveness of IRAS in Solving the Car-Side-Impact 
Problem

The performance of the proposed MaOEA/IRAS on solving
a real-world engineering optimization problem is further 
studied in this section. The Car-Side-Impact [81] problem with 
three conflicting objectives and ten constraints is adopted here. 
As introduced in [81], the main purpose for optimizing this 
problem is to minimize the weight of a car, the general force 
experienced by a passenger and the average velocity at which 
the vehicle strikes a pillar. More details about the 
Car-Side-Impact problem can be read in [81].

It should be noted that the true PF is unknown in advance. 
Thus, the reference PF is obtained from all the compared 
algorithms. First, all the compared algorithms are run to op-
timize the Car-Side-Impact problem 30 times over 1000 gen-
erations. Then, 300 nondominated solutions obtained by each 
algorithm are selected to construct the reference PF, which is
displayed in Fig. A.16 of the supplementary file.

In our experimental comparisons, the population size N and 
the maximum number of generations Gmax are set as 120 and 
600, respectively, for the Car-Side-Impact problem. Fig. A.17
of the supplementary file plots the final solution set of each 
compared algorithm. Our proposed IRAS displays advantages 
in maintaining the population’s diversity when compared to 
traditional RASs (i.e., DRA, GRA and IRA), because the final 
solutions obtained by IRAS can cover the reference PF more 
evenly and closely than those of other methods. In contrast, the 
competitors that use traditional RASs have some problems in 
maintaining diversity as most of their solutions are gathered at 
the boundary rather than distributed uniformly. Hence, the 

Fig. 5: Average performance rank over all test problems with different numbers
of objectives

Fig. 6: Average performance rank in terms of all the objective dimensions for 
all test problems
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superiority of IRAS over traditional RASs in solving the 
Car-Side-Impact problem further validates the ability of IRAS
on diversity maintenance when solving MaOPs.

F. Computational Complexity Analysis of MaOEA/IRAS 
The process of MaOEA/IRAS was given in Algorithm 1, 

which mainly includes three main procedures, i.e., the pro-
posed IRAS process, the evolutionary process and the archive 
update process. Here, the computational complexities for these 
three main components of MaOEA/IRAS are analyzed as
follows. First, the population P with N solutions is used to 
perform the IRAS process, which requires a time complexity 
of 2mN , where m is the number of objectives and N 
indicates the population size. After that, two evolutionary 
operators, including SBX and PM, are performed on the 
cloned population C with N solutions, which needs a time 
complexity of mN . The archive update process is run on 
the union population with 2N solutions, which requires a total 
time complexity of | || |m U K . As introduced above, | |U
and | |K are, respectively, equal to 2N and 1 /N m m . 
Hence, the total complexity for the archive update process is 
also 2mN . Therefore, the overall worst time complexity of 
the proposed MaOEA/IRAS is 2mN in one generation. 
Moreover, the space complexity of MaOEA/IRAS is N .

In order to evaluate the actual runtime of MaOEA/IRAS, the 
average running times of all the compared algorithms (in 
seconds: s) from 30 independent runs are plotted in Fig. 7, for 
MaF1-MaF13 and WFG41-WFG48 with 5 objectives. Obvi-
ously, PeEA showed the lowest speed, because the on-line PF 
shape estimation method and the adaptive scalarizing function 
adopted in PeEA are very time-consuming, followed by 
REVAiGNG and MaPSO. Our proposed MaOEA/IRAS had 
the similar executing efficiency with MOEA/AD and hpaEA. 
Finally, MaOEA/IGD showed the fastest speed as it was 
implemented in a simple framework. Therefore, we can con-
clude that our proposed MaOEA/IRAS not only can address 
various MaOPs effectively, but also has acceptable execution 
times.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an immune-inspired resource allocation 
strategy (IRAS) is proposed for solving MaOPs; this approach
enhances the ability of RASs to maintain diversity in a 
high-dimensional objective space. According to the principles 
of the proposed IRAS, the solutions with large diversity dis-
tances will have more clones than other solutions, which 
reflects the assignment of computational resources to sparse 
regions. Thus, the diversity of the population can be main-
tained. Moreover, to provide high-quality solutions for the 
cloning operator, an efficient archive update mechanism 
(AUM) with two selection rounds is designed, where the 
distribution of the population is guaranteed in the first round 
and the convergence pressure is strengthened during the sec-
ond round. Hence, a good balance between the diversity and 
the convergence is achieved by using AUM. When compared 
to three well-known RASs, including DRA, GRA and IRA,
and six competitive algorithms, including RVEAiGNG, PeEA,
MOEA/AD, MaOEA/IGD, MaPSO and hpaEA, the proposed 
MaOEA/IRAS showed some advantages, especially in some 
test problems with irregular and convex PFs. Moreover, when 
solving the practical Car-Side-Impact problem, the proposed 
IRAS also performed better than other traditional RASs.

Although our proposed IRAS has shown an obvious im-
provement for solving MaOPs when compared to most tradi-
tional RASs, the ability of IRAS for tackling MaOPs with 
extremely convex/concave PFs needs to be further studied. In 
addition, the performance of IRAS for solving large-scale 
MOPs (e.g., MaF14-MaF15 [44]) that involve a large number 
of decision variables also deserves further study. Hence, in our
future work, the proposed IRAS will be further studied to 
enhance its performance for solving MaOPs with extremely 
convex/concave PFs or large-scale decision variables. More-
over, MaOEA/IRAS will be also extended to tackle more
real-world engineering problems in our future work.
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