

 1 


 


Abstract—Surrogate-assisted evolutionary algorithms (SAEAs) 
have become very popular for tackling computationally expen-
sive multiobjective optimization problems (EMOPs), as the sur-
rogate models in SAEAs can approximate EMOPs well, thereby 
reducing the time cost of the optimization process. However, with 
the increased number of decision variables in EMOPs, the pre-
diction accuracy of surrogate models will deteriorate, which 
inevitably worsens the performance of SAEAs. To deal with this 
issue, this paper suggests an ensemble surrogate-based frame-
work for tackling EMOPs. In this framework, a global surrogate 
model is trained under the entire search space to explore the 
global area, while a number of surrogate sub-models are trained 
under different search subspaces to exploit the sub-area, so as to 
enhance the prediction accuracy and reliability. Moreover, a new 
infill sampling criterion is designed based on a set of reference 
vectors to select promising samples for training the models. To 
validate the generality and effectiveness of our framework, three 
state-of-the-art evolutionary algorithms (nondominated sorting 
genetic algorithm III (NSGA-III), multiobjective evolutionary 
algorithm based on decomposition with differential evolution 


(MOEA/D-DE) and reference vector-guided evolutionary algo-
rithm (RVEA)) are embedded, which significantly improve their 
performance for solving most of the test EMOPs adopted in this 
paper. When compared to some competitive SAEAs for solving 
EMOPs with up to 30 decision variables, the experimental results 
also validate the advantages of our approach in most cases. 
 


Index Terms—Evolutionary algorithms, multiobjective opti-
mization, ensemble surrogate, model management. 


I. INTRODUCTION 
n engineering applications, there exist some multiobjective 
optimization problems (MOPs) that require the simultane-
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ous optimization of multiple (often conflicting) objectives. As 
multiobjective evolutionary algorithms (MOEAs) can find a 
set of Pareto-optimal solutions in a single run, they become an 
effective and popular tool for tackling MOPs [1]. Based on the 
selection criteria, most MOEAs can be classified into three 
main categories [2]: Pareto-based MOEAs [3], [4], decompo-
sition-based MOEAs [5]-[6], and indicator-based MOEAs [7], 
[8]. These traditional MOEAs generally assume a sufficient 
number of function evaluations, so that the population can 
converge. However, for some MOPs modeled from practical 
applications, e.g., finite element analysis [9], computational 
fluid dynamics [10], and computational electromagnetics [11], 
the function evaluations require computationally expensive 
simulations, which consume a considerable amount of time or 
material resources. These problems are often called expensive 
MOPs (EMOPs) [12]. 


In recent years, surrogate-assisted evolutionary algorithms 
(SAEAs) have been widely used for tackling EMOPs, as they 
employ a computationally efficient surrogate model to replace 
the true expensive functions [13]. This way, the computational 
cost for evolutionary optimization in SAEAs can be signifi-
cantly reduced. Many machine learning models can be em-
ployed as surrogate models, such as Kriging [14]-[17], radial 
basis functions (RBF) [18]-[19], artificial neural networks [20], 
support vector regression models [21]-[22], polynomial re-
gression (PR) models [23], or a combination of multiple sur-
rogate models [24]-[32]. Different surrogate models have 
distinct advantages for tackling specific EMOPs [33]. After 
selecting the surrogate models, the way to update them, which 
is referred to as the surrogate management criterion or infill 
sampling criterion, is also important, e.g., the probability of 
improvement (PoI) [34], the expected improvement (ExI) [35], 
and the lower confidence bound (LCB) [36]. These methods 
select promising solutions to be evaluated by true expensive 
functions and then use them to retrain the surrogate models. 


According to the availability of new data, there are two 
kinds of SAEAs: (1) offline SAEAs, which depend on the 
existing date for optimization, and (2) online SAEAs, which 
can actively generate new data for optimization [37], [38]. 
This paper focuses only on online SAEAs that have additional 
samples for managing the surrogate models, which are more 
flexible for enhancing the optimization performance in prac-
tical cases. When designing online SAEAs, we often need to 
solve several challenges [39]. The first one is to select one 
appropriate surrogate model. In general, the surrogate model is 
chosen based on the experience of the users or engineers 
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[15]-[23], since there is little theoretical guidance available. 
The second challenge is how to use the surrogate model. The 
most conventional method is to use the surrogate model as the 
approximation of objective functions [40], and other potential 
methods include the approximation of a scalarizing function 
by converting an EMOP into a set of subproblems [41]-[43], 
the estimation of the rankings of solutions [44], the prediction 
of the hypervolume (HV) [45], and the classification of sam-
ples based on their fitness [20]. The third challenge is to select 
a specific MOEA. As different MOEAs have different ad-
vantages and limitations, one MOEA cannot always perform 
well in all EMOPs. Hence, suitable MOEAs should be selected 
based on the properties of the target EMOPs. The last chal-
lenge is to determine the termination criterion of online 
SAEAs, as the true function evaluations are very expensive. In 
spite of the above challenges, online SAEAs are still regarded 
as very promising for solving EMOPs [13]. 


In [15]-[23], the capabilities of Kriging models and other 
surrogate models to effectively approximate the objective 
functions were validated when tackling EMOPs with a small 
number of decision variables. However, the performance of 
these models will significantly deteriorate for tackling EMOPs 
with more than ten decision variables due to the poor predic-
tion accuracy. Recently, some research studies [24]-[27] have 
indicated that a number of member models can provide a more 
accurate approximation performance for tackling EMOPs, but 
their performance is still not satisfactory enough on EMOPs 
with a large number of decision variables [46], [47]. Thus, this 
paper proposes an ensemble surrogate-based framework (ESF) 
for expensive multiobjective evolutionary optimization, which 
can achieve superior approximation performance for tackling 
various EMOPs. In our ESF, one global surrogate model and a 
number of surrogate sub-models are combined to compose an 
ensemble surrogate model with improved accuracy. Moreover, 
a new infill sampling criterion is presented in this paper based 
on a set of reference vectors, which selects promising solutions 
to retrain the surrogate models. To summarize, the main con-
tributions of this paper are as follows: 
(1) A new surrogate-based framework is proposed for tack-


ling EMOPs, which trains surrogate models under dif-
ferent search spaces, while most of the existing ensemble 
models train their surrogate models in the entire search 
space [24]-[27]. One global surrogate model is trained 
under the entire search space to explore the global area, 
while a number of surrogate sub-models are trained under 
different search subspaces to exploit the sub-area. This 
way, the prediction accuracy and reliability of our 
framework are strengthened. 


(2) A new infill sampling criterion is proposed based on a set 
of weight vectors to evaluate the quality of solutions. 
Solutions whose approximate objective values are domi-
nated by truly evaluated samples will be removed to en-
sure convergence and then the remaining ones closest to a 
set of randomly selected reference vectors with good di-
versity are finally used to train the surrogate models. 


(3) Any MOEA can be easily embedded into our framework. 
As examples, three well-known MOEAs (nondominated 


sorting genetic algorithm III (NSGA-III) [3], multiobjec-
tive evolutionary algorithm based on decomposition with 
differential evolution (MOEA/D-DE) [5], and reference 
vector-guided evolutionary algorithm (RVEA) [48]) have 
been embedded into our framework. The experiments 
show that their performance is significantly improved for 
tackling most of the test EMOPs adopted in this paper, 
which confirms the effectiveness of our framework. 


The rest of this paper is organized as follows. Section II 
briefly discusses the related techniques and the motivations of 
this paper. Section III introduces the details of our framework, 
and the experimental results of the ESF with different SAEAs 
are presented in Section IV. Finally, Section V concludes the 
paper with a summary and a discussion of future work. 


II. RELATED WORK AND MOTIVATIONS 
In this section, a number of representative SAEAs for tack-


ling EMOPs are first introduced in Section II.A, where their 
strengths and limitations are summarized. Then, the motiva-
tions to design our ESF are presented in Section II.B. Please 
note that the details of EMOPs and Kriging model are given in 
Section 1 of the supplementary material due to page limita-
tions. 


A. Previous Related Work 
In recent years, a number of SAEAs have been designed for 


solving EMOPs and some of them have shown very competi-
tive performance. For example, a new MOEA/D variant with 
the Gaussian stochastic process model (MOEA/D-EGO) was 
proposed in [42] to solve EMOPs. In this approach, a Gaussian 
model is built for each subproblem based on the data obtained 
from the evolutionary search, which is then used to produce 
candidate solutions. A Kriging-assisted RVEA (K-RVEA) 
was presented in [16] for incorporating the Kriging model into 
RVEA [48] to approximate the objective values. K-RVEA 
exploits the uncertainty information from the Kriging model, 
the distribution of reference vectors, and the location of indi-
viduals, so as to balance the diversity and convergence in the 
model management, which can limit its training cost without 
sacrificing prediction accuracy. A classification-based SAEA 
(CSEA) was designed in [20] to solve EMOPs with many 
objectives, which can predict the dominance relationship 
between candidate solutions and reference solutions. CSEA 
can select promising solutions to run the true function evalua-
tions by considering both the uncertainty information given by 
the surrogate model and their dominance relationship. 


On the other hand, there are also some SAEAs suggesting to 
use multiple surrogates for tackling EMOPs, which are ex-
pected to generate more accurate approximation results. For 
example, an adaptive knowledge reuse framework was de-
signed in [25] for SAEAs to solve EMOPs, which realizes an 
efficient transfer evolutionary multiobjective optimization 
with multiproblem surrogates (TEMO-MPS). This approach 
can acquire and transfer learned models across problems using 
the idea of multiproblem surrogates, so as to promote global 
optimization in EMOPs. A Gaussian process (GP)-based 
co-sub-Pareto front surrogate augmentation strategy 
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(GCS-MOE) was suggested in [26] to solve EMOPs, which 
decomposes an EMOP into a number of subproblems and uses 
the solution of each subproblem to approximate one sub-PF. 
Then, a multitask GP model is used to exploit the correlations 
among the subproblems, such that knowledge learned from 
subproblems can be transferred across sub-PFs to better solve 
EMOPs. A heterogeneous ensemble assisted MOEA (HeE- 
MOEA) was designed in [27] by using ensembles as surro-
gates and infill criteria for model management in evolutionary 
optimization. In this approach, a heterogeneous ensemble with 
a least square support vector machine and two RBFs is con-
structed to enhance its reliability for uncertainty estimation. 
Moreover, a selected subset of decision variables and a set of 
transformed variables are used as inputs of the heterogeneous 
ensemble to further enhance its diversity. A surrogate- en-
semble assisted optimization method (SAEMO) was intro-
duced in [28] to train multiple surrogate models to assist 
MOEAs. This approach suggests a new model management 
strategy, which measures the uncertainty by considering the 
distance to the samples in decision space and the approxima-
tion variance in objective space.  


To have an overview for the SAEAs mentioned above, their 
strengths and limitations are summarized in Table A.II of the 
Supplementary Material due to page limitations. Although 
they can be applied to solve high-dimensional EMOPs with up 
to 30 dimensions, their performance is still not so satisfactory, 
which can be observed from our experimental studies in Sec-
tion IV.  


B. Motivations 
As mentioned above, various surrogate models have been 


proposed for SAEAs [14]-[32]. However, most of them are 
designed to effectively solve low-dimensional EMOPs, which 
are not so effective for EMOPs with more than ten decision 
variables. One important phenomenon we have observed in the 
experiments is that the predicted objective values of different 
solutions become extremely similar when the Kriging model is 
used for approximating high-dimensional objective functions. 


In Fig. 1 and Fig. 2, the predicted objective values of 100 
individuals are plotted for approximating the 10-dimensional 
(10-D) and 20-D WFG4 problems [49]. In each figure, the 
predicted value of each individual is plotted for each objective. 
From Fig. 1, we can observe that for each objective, all the 
predicted values are clearly distinguishable. However, in Fig. 
2, the predicted values of all the individuals become nearly the 
same, making it impossible to distinguish the quality of dif-
ferent individuals in SAEAs. The above empirical results can 
be properly explained by analyzing the Kriging model pro-
vided in the Supplementary Material, from which we can find 
that the prediction of a new unknown individual xnew is sig-
nificantly correlated with the distance between xnew and the 
training samples. Thus, when there is only a small number of 
training samples in a high-dimensional decision space, all the 
new individuals will be predicted to have extremely similar 
objective values, as they are all significantly far from these 
samples.  


Based on the above discussion, it is reasonable to conclude 
that for high-dimensional EMOPs, the predicted objective 
values of different solutions will become barely distinguisha-
ble, resulting in SAEAs being less effective for searching 
promising solutions. Thus, to solve the above problem, a novel 
ensemble surrogate model is designed to provide more accu-
rate predictions for new solutions of high-dimensional EMOPs, 
which includes one global surrogate model constructed in the 
original decision space and k surrogate sub-models built in 
different low-dimensional subspaces. Moreover, a new infill 
sampling criterion is designed based on the reference vectors 
to select solutions with good convergence, which can better 
manage our ensemble surrogate model. The details of the 
above proposal will be introduced in the following section.  


 
Fig. 1 Predicted objective values for the 10-D WFG4 problem 


 
Fig. 2 Predicted objective values for the 20-D WFG4 problem 


 
Fig. 3 A flowchart for our framework 
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III. THE DETAILS OF OUR FRAMEWORK 
In this section, the details of our ESF for tackling EMOPs 


are introduced. To have an overview of the ESF, Fig. 3 illus-
trates the running of the ESF, which consists of five main 
components: initialization, true expensive evaluation, ensem-
ble surrogate construction, surrogate-assisted MOEA, and 
infill solutions selection. Please note that after the initialization, 
our ESF will enter the evolutionary loop for true expensive 
evaluation, ensemble surrogate construction, surrogate- as-
sisted MOEA, and infill solutions selection. After running out 
of the limited true function evaluations, the final nondomi-
nated solutions in the training data will be used as the output. 


To clarify the running of the ESF, its complete pseudocode 
is also provided in Algorithm 1.  
 Initialization: The initialization is run in lines 1-3. In 


line 1, a set of reference vectors V is generated by the 
normal boundary intersection (NBI) method [50], and N 
training sample points are generated by the Latin hy-
percube sampling method [51] to compose the initial 
population P. Then, an empty training database (DB) and 
the maximum number of infill solutions Nis are respec-
tively initialized in line 2 and line 3.  


 Stopping condition: After initialization, the evolution-
ary loop is run in lines 4-10 until the stopping condition 
(FE  FEmax) is met in line 4. 


 True expensive evaluation: At the beginning of the 
evolutionary loop, all the individuals of the initial popu-
lation are evaluated by true expensive functions in line 5, 
which are then added into DB in line 6. Please note that 
these solutions in DB will be used to train the surrogate 
models.  


 Ensemble surrogate construction: An ensemble sur-
rogate model Ensemble will be constructed in line 7, 
which will train one global surrogate model and k sur-
rogate sub-models.  


 Surrogate-assisted MOEA: The surrogate-assisted 
MOEA is run in line 8 to generate an offspring popula-
tion S with a prefixed number of generations, and the 
above ensemble surrogate model is used to replace the 
true expensive functions for evaluating solutions. 


 Infill solutions selection: The offspring population S will 
undergo infill solutions selection, which will identify 
several promising solutions in the search space to update 
the ensemble surrogate model in line 9, thereby guaran-
teeing the accuracy of the ensemble surrogate model. 


The details of the above ensemble surrogate construction, 
surrogate-based evolutionary optimization, and infill solutions 
selection are respectively described below. 


A. Ensemble Surrogate Construction 
In this method, the Kriging model is adopted to build our 


ensemble surrogate model due to its high efficiency and simple 
working principle. As shown in Section II.B, the performance 
of the Kriging model will deteriorate for solving EMOPs with 
more than ten decision variables, as the predicted objective 
values are extremely similar and cannot be distinguished. 
Hence, an ESF is suggested here to better approximate the 
objective values in this case.  


Fig. 4 depicts the structure of the ensemble surrogate model 
used in ESF, which includes a global Kriging model and k 
Kriging sub-models. The global Kriging model has been 
widely used in most existing SAEAs [15]-[16], which will be 
trained in the original search space using the solutions in DB, 
while the k Kriging sub-models will be trained in different 
subspaces. To clarify the running of this procedure, its pseu-
docode is provided in Algorithm 2 with the input DB. In line 1 
of Algorithm 2, the dimension of the subspaces is denoted by 
DLSM, which is obtained by multiplying a coefficient r with its 
original dimension D as follows: 


LSMD r D ,                                 (1) 
where r is a randomly generated real number in (0, 1) and the 
operation r D  keeps the integer part of r D . Then, the k 
Kriging surrogate sub-models (LSM1, …, LSMk) are trained in 
lines 2-6. Specifically, in line 3, DLSM different indexes for 
decision variables are randomly selected from [1, D] in line 3 
for the ith surrogate sub-model, and then the ith training data 
subset (DBi) is sampled from the original database DB in line 4, 
which only includes DLSM decision variables of each solution 
in DB with the indexes recorded in Dindi. Then, a surrogate 
sub-model (LSMi) is trained by DBi in line 5. In line 7, the 
global Kriging surrogate model (GSM) is trained using DB. 
Here, similar samples will be removed before training these 
surrogate models. At last, the obtained global surrogate model 
and k surrogate sub-models are used to compose an ensemble 
surrogate model adopted in the ESF. 


This ensemble surrogate model will be retrained when a 
new sample with a true evaluation is added into the database 
DB. As the ensemble model includes k+1 types of Kriging 
models, each member model should be assigned a weight to 


Algorithm 1: The General Framework 
1. Generate a set of reference vectors V and N solutions as a popu-


lation P 
2. Initialize an empty training database DB =  
3. Initialize the maximum number of infill solutions Nis = 5 
4. while FE  FEmax do 
5.    F  True-expensive-evaluation (P) 
6.    Set FE = FE + |P| and DB = DB  {P, F} 
7.    Ensemble  Ensemble-model-construction (DB) 
8.    S  Surrogate-assisted-MOEA (DB, Ensemble, gmax) 
9.    P  Infill-solutions-selection (S, V, Nis) 


10. end while 
11. Output nondominated solutions from DB 


 
Fig. 4 Structure of the ensemble surrogate in ESF 
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predict the objective value at the same time. In the initial stage 
of optimization, since the number of samples in DB is very 
limited, the Kriging model cannot provide high accuracy for 
approximating the objective values, especially for EMOPs 
with more than ten decision variables. With more truly 
evaluated samples added into DB, the performance of the 
Kriging model will be gradually improved. Thus, the weights 
of their member models should be dynamically adjusted to 
control the final output of our ensemble surrogate model. In 
this paper, the assigned weights for the k surrogate sub-models 
should be set large enough in the early stage of optimization, 
as they are more accurate when the number of trained samples 
is limited. With the increased number of evaluations, more 
samples will be added into DB, and the global surrogate model 
will become more accurate. In this case, the assigned weight 
for the global surrogate model will be gradually set as a larger 
value. Based on the above discussion, the output of the en-
semble surrogate model can be expressed as follows:  


1
1


1(1 )
k


ens i k
i


y c y c y
k


,                        (2)  


/ maxc FE FE ,                                 (3) 
where yi denotes the output of the ith surrogate sub-model (i=1, 
2,…, k), yk+1 is the output of the global surrogate model, FE is 
the number of true expensive evaluations, and FEmax is the 
maximum number of true expensive evaluations allowed. 


B. Surrogate-assisted MOEA 
After constructing the above ensemble surrogate model, our 


framework will move to the surrogate-assisted MOEA. In this 
procedure, any MOEA can be used and the candidate solutions 
produced by this MOEA are evaluated by our ensemble sur-
rogate model rather than the true expensive functions. The 
details of the surrogate-assisted MOEA are presented in Al-
gorithm 3 with the inputs: DB, Ensemble (the built ensemble 
surrogate model), gmax (the preset maximum number of gen-
erations). First, all the nondominated solutions in DB are used 
as the initial population S for the surrogate-assisted MOEA in 
line 1. Then, the generation counter is initialized in line 2, and 
the algorithm will enter into the evolutionary loop in lines 3-8. 


In line 4, an offspring population Q with the same size as S is 
generated by reproduction strategies, such as simulated binary 
crossover [52] or differential evolution [53], and polynomi-
al-based mutation [54]. The fitness values for all the offspring 
solutions in Q are evaluated in line 5 by our ensemble surro-
gate model as introduced in Section III.A, environmental 
selection is run in line 6 on the combination of S and Q to 
select the next population, and the generation counter is in-
creased by 1 in line 7. When the termination criterion (g  
gmax) is satisfied in line 3, the above evolutionary loop is ended, 
and the final population S will be used as the output.  


C. Infill Solutions Selection 
As one true function evaluation may consume much time in 


EMOPs, SAEAs aim to find a set of good approximations with 
very limited function evaluations. Our ESF is designed for 
online SAEAs, which allows additional function evaluations 
to be performed during the optimization process. Thus, an 
infill solutions selection is proposed in the ESF to select indi-
viduals to be evaluated by the true expensive functions after 
running the above surrogate-assisted MOEA. The details of 
this strategy are introduced in Algorithm 4 with the inputs: S 
(the generated population from the surrogate-assisted MOEA), 
V (a set of evenly distributed reference vectors), Nis (the 
maximum number of infill solutions). This strategy aims to 
select a number of Nis infill solutions in each generation, which 
will be evaluated by true expensive functions and then used to 
update the ensemble surrogate model. 


As shown in Algorithm 4, in lines 1-2, some duplicate so-
lutions and solutions dominated by DB are removed from S, 
and the population P is initialized as an empty set. If there are 
fewer than Nis solutions in S, they are directly added into P for 
true function evaluation in line 4. Otherwise, for the sake of 
strengthening diversity, Nis reference vectors are randomly 
selected from V, which compose a reference vector set W in 
line 6, and then the individual having the minimal acute angle 
value to each reference vector in W is selected as the infill 
solutions, as shown in lines 7-13. Here, the acute angle value is 
reflected by ,cos i j , as follows: 


,cos i j
i j


i


s w
s


,                                  (4) 


where si  S to wj  W. Please note that if the approximate 
objective values of these infill solutions using our ensemble 
surrogate model are dominated by the truly evaluated samples 


Algorithm 2: Ensemble-model-construction (DB) 
1. Calculate the dimension of surrogate sub-models DLSM = r  D 
2. for i = 1 to k do 
3.    Randomly select DLSM decision variables from the variable 


vector as Dindi 
4.    DBi = DB(:, Dindi) 
5.    Construct a surrogate sub-model LSMi using DBi 
6. end for 
7. Construct a global surrogate model GSM using DB  
8. Ensemble  {GSM, LSM1, …, LSMk} 
9. Output the ensemble surrogate model Ensemble 


Algorithm 4: Infill-solutions-selection (S, V, Nis) 
1. Remove duplicate solutions and solutions dominated by DB from S 
2. Initialize an empty set P =  
3. if |S|  Nis 
4.    P = S 
5. else 
6.    Randomly select Nis reference vectors from V as a reference vector set 
7.    Calculate the angles of si  S to wj  W by (4) 
8.    for j = 1 : |W| do 
9.       Select one solution s closest to wj 


10.       if s is different from any point in P 
11.          P = P  s 
12.       end if 
13.    end for 
14. end if 
15. Output P 


Algorithm 3: Surrogate-assisted-MOEA (DB, Ensemble, gmax) 
1. S  Nondominated solutions in DB 
2. Set generation counter g = 0 
3. while g  gmax 
4.    Q  Offspring-reproduction(S) 
5.    Evaluate solutions in Q by Ensemble from Algorithm 2 
6.    S  Environmental-selection(S Q) 
7.    g = g + 1 
8. end while 
9. Output S 
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in DB, they won’t be truly evaluated to avoid meaningless 
function evaluations. Only the remaining solutions with po-
tentially good convergence are evaluated by true expensive 
function to retrain our ensemble surrogate model. At each 
generation, the Nis reference vectors used in (5) are different, 
as they are randomly selected from the uniformly distributed 
set W, which also guarantees the diversity of the selected infill 
solutions from DB. 


IV. EXPERIMENTAL STUDIES 


A. Test Problems and Performance Indicator 
In our numerical experiments, four sets of well-studied test 


suites are used, namely, DTLZ1 to DTLZ7 [55], WFG1 to 
WFG9 [49], UF1 to UF9 [56], and MaF1 to MaF7 [57], where 
UF1 to UF7 are two-objective problems and other test cases 
are three-objective problems. Due to page limitations, the 
main features of the DTLZ, WFG, UF, and MaF test suites are 
summarized in Table A.III of the Supplementary Material. 


This paper uses inverted generational distance (IGD) [58] to 
give an overall assessment of the compared algorithms. Let P* 
be a set of evenly distributed points along the PF in the objec-
tive space. Let S be an approximate set obtained by the 
MOEAs to the PF; then, IGD is defined as the average distance 
from P* to S, as follows: 


**
*


( , )
( , )


| |


dist
IGD x P


x S
S P


P
,                        (5) 


where dist(x, S) represents the minimum Euclidean distance 
between x and the points in S, and |P*| indicates the size of P*. 
If P* is large enough to represent the PF very well, IGD(S, P*) 
can measure both the diversity and convergence of S in a sense. 
To have a low IGD(S, P*) value, the set S must be very close to 
the PF and cannot miss any part of the PF. 


B. Results of Embedding Three MOEAs into the ESF 
Here, to evaluate the effectiveness of the ESF, three com-


petitive MOEAs (NSGA-III [3], MOEA/D-DE [5], and RVEA 
[48]) are embedded into the ESF, forming three new SAEAs 
(ESF-NSGA-III, ESF-MOEA/D-DE, and ESF-RVEA) for 
solving the adopted test EMOPs. Thus, three comparisons of 
ESF-NSGA-III versus NSGA-III, ESF-MOEA/D-DE versus 
MOEA/D-DE, and ESF-RVEA versus RVEA are conducted 
for solving DTLZ1-DTLZ7, WFG1-WFG9, UF1-UF9, and 
MaF1-MaF7 with 10, 20, and 30 decision variables. In all our 
experimental studies, the initial population size and the 
maximum number of true expensive evaluations are set as 
11 D-1 and 11 D+120, respectively (D is the dimensionality 
of the problems), which are suggested in [27]. The number of 
surrogate sub-models k in all variants with ESF is set to 2. 
Other parameters are set the same as suggested in their original 
references [3], [5], [48]. Some parameters in our framework, 
e.g., the number of surrogate sub-models and the dimension of 
surrogate sub-models in Algorithm 2, are tuned by using the 
trial-and-error method. All the experiments are run on a per-
sonal computer equipped with an Intel(R) Core (TM) i7-7700 
CPU, 3.60 GHz (processor), and 24.0 GB (RAM). In order to  


 


TABLE I 
SUMMARY OF THE SIGNIFICANCE TEST OF THREE COMPARISONS  


Problem ESF-NSGA-III 
vs. NSGA-III 


ESF-MOEA/D-DE 
vs. MOEA/D-DE 


ESF-RVEA 
vs. RVEA 


DTLZ and WFG 
(D = 10, 20, 30) 


Better 44 40 45 
Worse 0 2 0 
Similar 4 6 3 


UF and MaF 
(D = 10, 20, 30) 


Better 47 39 44 
Worse 0 5 1 
Similar 1 4 3 


 
TABLE II 


SUMMARY OF COMPARISON OF ESF-RVEA WITH DIFFERENT k VALUES 
ESF-RVEA (k = 2) vs. k = 0 k = 1 k = 3 k = 4 k = 5 
DTLZ, WFG, 
UF, and MaF 


(D = 20) 


Better 20 20 5 8 10 
Worse 2 2 7 3 2 
Similar 10 10 20 21 20 


Best 6 2 2 11 6 5 
 
reproduce our experiments, the source code of ESF can be 
downloaded in https://github.com/Xunfeng-Wu/ESF-EMOO. 


The detailed IGD results of all three comparisons are pre-
sented in Table A.IV and Table A.V of the Supplementary 
Material. To ensure statistically sound conclusions, Wilcoxon 
rank-sum tests with a significance level of 0.05 are run, which 
indicate statistically significant differences on the IGD results. 
Here, Table I provides a summary of the significance test on 
the IGD results for all the test problems with D = 10, 20, 30, 
where “Better”, “Worse” and “Similar” respectively indicate 
the number of test problems in which the performance of the 
variants using ESF is better than, worse than, and similar to 
that of the original algorithms.  


As observed from the summary on all the DTLZ and WFG 
test problems, 44, 40, and 45 out of 48 cases show the supe-
riority of ESF-NSGA-III over NSGA-III, ESF-MOEA/D-DE 
over MOEA/D-DE, and ESF-RVEA over RVEA, respectively. 
The superiority of MOEA/D-DE over ESF-MOEA/D-DE is 
only found in 2 cases. Both NSGA-III and RVEA cannot 
perform better than ESF-NSGA-III and ESF-RVEA in all 
cases, respectively. For the summary on all UF and MaF test 
problems, ESF-NSGA-III, ESF-MOEA/D-DE, and 
ESF-RVEA outperform their original algorithms in 47, 39, and 
44 out of 48 cases, respectively, while they are only outper-
formed by their original algorithms in 0, 5, and 1 cases, re-
spectively. Therefore, it is reasonable to conclude that the 
embedding of these MOEAs into the ESF can bring significant 
improvements to their ability to tackle EMOPs. 


In order to provide more details, as observed from the IGD 
results in Table A.IV and Table A.V for all test problems with 
different numbers of decision variables, the performance of 
ESF-NSGA-III can be obviously enhanced in most of the test 
problems with all the considered dimensions, except for 
DTLZ1, DTLZ3, WFG3, and MaF3. ESF-MOEA/D-DE is 
significantly better than MOEA/D-DE on DTLZ6, DTLZ7, 
MaF1, MaF2, MaF7, and all the WFG and UF test problems. 
ESF-RVEA achieves remarkable improvement over RVEA on 
all the adopted test problems except for MaF3 and MaF5.  


C. Impact of Parameter k in ESF  
To study the impact of parameter k (the number of surrogate 


sub-models in the ensemble surrogate model), some experi-
ments are run in this subsection. Using the parameters settings 
in Section IV.B, ESF-RVEA with different k values from {0, 1, 
2, 3, 4, 5} are experimentally compared. Due to page limita-
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tions, the IGD results on all the DTLZ, WFG, UF, and MaF 
test problems with 20 decision variables are given in Table 
A.VI of the Supplementary Material. Table II summarizes the 
final comparison of results of ESF-RVEA with different k 
values based on their IGD results, where “Better”, “Worse” 
and “Similar” respectively indicate the number of test prob-
lems in which the performance of ESF-RVEA using k = 2 is 
better than, worse than, and similar to that of ESF-RVEA with 
other k values, while “Best” indicates the number of test 
problems in which the corresponding algorithm performs best. 


As observed from Table II, ESF-RVEA using k = 2 has 
statistically similar IGD results with respect to those using k = 
3, k = 4 and k = 5 on 20, 21, and 20 out of 32 cases, respec-
tively. It seems that ESF-RVEA is not too sensitive to the 
setting of k when changing from 2 to 5. However, ESF-RVEA 
with k = 2 obtains significantly better or statistically similar 
IGD results than those with k = 0 and k = 1 on both 27 out of 32 
cases. Setting k = 0 means that no sub-model is employed and 
only a global Kriging model is used; thus, the performance of 
ESF-RVEA with k = 0 will significantly deteriorate. To visu-


ally explain this phenomenon, the predicted objective values 
obtained by one global Kriging and our ensemble surrogate are 
plotted in Fig. A.1 due to page limitations, when solving the 
20-D WFG4, DTLZ6, UF2, and MaF1 problems. The pre-
dicted objective values by one global Kriging are nearly the 
same as analyzed in Section II.B, while our ensemble surro-
gate can predict more accurate and diversified objective values, 
which can well explain the better performance of our ensemble 
surrogate for solving these 20-D EMOPs. After exploiting 
information on the low-dimensional subspaces that are ex-
tracted from the original decision space, Kriging sub-models 
constructed in different low-dimensional subspaces can be 
used to compose our ensemble surrogate model. The pairwise 
comparison results in Table II also indicate that using only one 
sub-model in the ensemble surrogate is still not enough to 
effectively capture information in low-dimensional subspaces.  


Moreover, their average running times (in seconds: s) from 
30 runs are provided in Table A.VII of the Supplementary 
Material due to page limitations. The running time of 
ESF-RVEA will be highly increased with the number of 


TABLE III 
COMPARISON OF ESF-RVEA WITH THREE COMPETITIVE ALGORITHMS ON THE DTLZ AND WFG TEST PROBLEMS 


Problem M D MOEADEGO CSEA KRVEA ESF-RVEA 


WFG1 
3 10 2.2096e+0 (8.12e-2) - 1.9012e+0 (1.03e-1) = 1.8715e+0 (1.52e-1) = 1.8969e+0 (1.14e-1) 
3 20 2.2595e+0 (5.13e-2) - 1.8653e+0 (1.11e-1) = 1.9154e+0 (1.41e-1) = 1.9180e+0 (1.34e-1) 
3 30 2.2102e+0 (5.37e-2) - 1.8357e+0 (9.20e-2) = 2.0391e+0 (1.54e-1) - 1.8918e+0 (1.31e-1) 


WFG2 
3 10 7.3253e-1 (5.11e-2) - 6.3425e-1 (8.13e-2) - 4.7208e-1 (4.77e-2) - 4.1092e-1 (6.92e-2) 
3 20 8.2115e-1 (7.07e-2) - 6.9103e-1 (4.33e-2) - 6.4857e-1 (4.59e-2) - 5.5683e-1 (5.30e-2) 
3 30 7.9521e-1 (5.53e-2) - 6.7734e-1 (3.63e-2) = 7.2626e-1 (3.06e-2) - 6.6353e-1 (3.26e-2) 


WFG3 
3 10 6.4219e-1 (3.23e-2) - 5.3710e-1 (4.81e-2) - 4.8030e-1 (5.68e-2) - 4.1545e-1 (6.93e-2) 
3 20 6.7566e-1 (2.69e-2) - 6.7603e-1 (2.18e-2) - 6.6656e-1 (3.06e-2) - 5.8340e-1 (5.15e-2) 
3 30 6.5069e-1 (2.22e-2) + 7.1985e-1 (2.02e-2) - 7.0974e-1 (2.28e-2) - 6.8703e-1 (2.36e-2) 


WFG4 
3 10 5.9668e-1 (3.77e-2) - 4.8781e-1 (3.53e-2) - 4.9023e-1 (2.28e-2) - 4.6838e-1 (3.22e-2) 
3 20 5.7035e-1 (3.49e-2) - 5.1747e-1 (2.56e-2) - 5.1092e-1 (1.40e-2) - 4.9165e-1 (1.73e-2) 
3 30 5.8112e-1 (4.58e-2) - 5.2168e-1 (2.04e-2) - 5.2011e-1 (1.92e-2) - 5.0290e-1 (1.45e-2) 


WFG5 
3 10 6.1371e-1 (4.35e-2) - 6.0581e-1 (3.03e-2) - 4.8252e-1 (5.28e-2) = 4.7142e-1 (4.96e-2) 
3 20 6.5444e-1 (3.95e-2) - 6.6042e-1 (2.47e-2) - 5.9721e-1 (2.36e-2) = 5.8536e-1 (4.61e-2) 
3 30 7.1948e-1 (2.31e-2) - 6.7227e-1 (1.89e-2) = 6.6755e-1 (1.92e-2) = 6.6428e-1 (2.18e-2) 


WFG6 
3 10 8.3326e-1 (5.28e-2) - 7.4787e-1 (3.95e-2) - 7.7005e-1 (3.50e-2) - 7.0174e-1 (5.40e-2) 
3 20 9.0592e-1 (5.82e-2) - 8.2740e-1 (2.00e-2) - 8.3107e-1 (1.88e-2) - 7.9811e-1 (2.80e-2) 
3 30 8.8022e-1 (3.85e-2) - 8.4863e-1 (2.55e-2) = 8.5984e-1 (1.08e-2) - 8.3507e-1 (1.49e-2) 


WFG7 
3 10 6.8092e-1 (2.60e-2) - 6.2651e-1 (4.10e-2) - 6.3650e-1 (2.97e-2) - 5.9057e-1 (3.91e-2) 
3 20 6.7410e-1 (1.78e-2) - 6.6076e-1 (2.14e-2) - 6.5610e-1 (2.05e-2) - 6.2804e-1 (2.50e-2) 
3 30 6.6880e-1 (1.25e-2) - 6.6410e-1 (1.85e-2) - 6.6097e-1 (9.44e-3) - 6.4408e-1 (1.31e-2) 


WFG8 
3 10 8.7123e-1 (2.55e-2) - 7.8145e-1 (4.18e-2) - 7.5785e-1 (3.32e-2) - 6.4641e-1 (4.02e-2) 
3 20 8.1724e-1 (1.44e-2) - 7.7783e-1 (3.12e-2) - 7.1260e-1 (2.06e-2) - 6.5669e-1 (2.60e-2) 
3 30 8.0869e-1 (2.05e-2) - 7.5291e-1 (1.97e-2) - 7.1620e-1 (1.86e-2) - 6.8163e-1 (2.28e-2) 


WFG9 
3 10 8.0904e-1 (5.80e-2) - 7.0577e-1 (6.65e-2) = 7.2568e-1 (6.38e-2) = 7.2375e-1 (9.32e-2) 
3 20 8.8078e-1 (4.68e-2) - 8.2519e-1 (4.77e-2) - 8.5691e-1 (3.87e-2) - 7.9755e-1 (5.12e-2) 
3 30 9.1645e-1 (4.28e-2) - 8.7109e-1 (4.19e-2) = 8.8436e-1 (3.50e-2) - 8.5267e-1 (3.65e-2) 


DTLZ1 
3 10 9.3945e+1 (2.08e+1) = 7.2993e+1 (2.01e+1) + 9.2572e+1 (2.50e+1) = 9.5635e+1 (2.57e+1) 
3 20 2.8346e+2 (7.10e+1) + 2.7031e+2 (3.56e+1) + 3.2056e+2 (3.28e+1) = 3.0916e+2 (5.10e+1) 
3 30 5.9812e+2 (9.87e+1) - 5.1746e+2 (6.13e+1) + 5.7724e+2 (5.49e+1) = 5.6578e+2 (5.28e+1) 


DTLZ2 
3 10 3.4234e-1 (2.82e-2) - 2.5911e-1 (2.94e-2) - 1.5747e-1 (2.32e-2) - 1.2522e-1 (2.01e-2) 
3 20 6.3969e-1 (6.39e-2) - 6.1130e-1 (7.10e-2) - 5.8391e-1 (7.29e-2) - 3.7523e-1 (5.43e-2) 
3 30 7.9886e-1 (9.67e-2) = 1.0436e+0 (1.39e-1) - 1.1155e+0 (1.42e-1) - 8.0800e-1 (1.26e-1) 


DTLZ3 
3 10 2.3071e+2 (4.48e+1) = 1.9245e+2 (5.42e+1) + 2.4851e+2 (6.07e+1) = 2.4419e+2 (5.51e+1) 
3 20 6.9018e+2 (2.12e+2) + 7.9731e+2 (1.08e+2) + 9.9337e+2 (1.18e+2) - 8.6241e+2 (1.02e+2) 
3 30 1.3314e+3 (4.18e+2) + 1.5342e+3 (1.14e+2) + 1.7653e+3 (1.43e+2) - 1.6467e+3 (1.61e+2) 


DTLZ4 
3 10 6.2963e-1 (4.98e-2) - 5.2100e-1 (1.28e-1) = 3.9444e-1 (9.58e-2) + 4.5916e-1 (1.25e-1) 
3 20 1.1629e+0 (9.81e-2) - 7.2133e-1 (1.10e-1) + 9.5826e-1 (1.44e-1) - 8.2261e-1 (1.65e-1) 
3 30 1.6645e+0 (2.06e-1) - 1.1112e+0 (1.63e-1) + 1.6841e+0 (1.59e-1) - 1.3225e+0 (2.04e-1) 


DTLZ5 
3 10 2.6198e-1 (3.01e-2) - 1.4470e-1 (3.85e-2) - 1.0889e-1 (2.75e-2) - 4.6751e-2 (1.35e-2) 
3 20 5.4535e-1 (8.11e-2) - 5.7556e-1 (9.85e-2) - 4.8721e-1 (7.51e-2) - 2.6170e-1 (7.81e-2) 
3 30 7.1932e-1 (9.29e-2) = 1.0525e+0 (1.02e-1) - 1.0150e+0 (1.50e-1) - 6.8732e-1 (1.36e-1) 


DTLZ6 
3 10 2.2506e+0 (6.26e-1) + 5.5350e+0 (4.36e-1) - 3.3660e+0 (3.51e-1) + 3.9463e+0 (5.77e-1) 
3 20 7.6919e+0 (1.78e+0) + 1.4648e+1 (6.61e-1) - 1.1324e+1 (8.65e-1) = 1.1258e+1 (8.60e-1) 
3 30 1.6182e+1 (3.02e+0) + 2.3248e+1 (6.49e-1) - 2.0946e+1 (7.86e-1) - 2.0286e+1 (1.05e+0) 


DTLZ7 
3 10 3.3034e-1 (1.13e-1) = 2.1261e+0 (7.37e-1) - 2.2164e-1 (7.42e-2) + 3.6177e-1 (2.00e-1) 
3 20 4.3352e+0 (2.14e+0) - 5.0067e+0 (1.00e+0) - 5.9988e-1 (4.24e-1) = 4.6737e-1 (1.98e-1) 
3 30 7.3391e+0 (1.46e+0) - 6.0387e+0 (8.67e-1) - 4.3108e+0 (3.52e+0) - 8.5037e-1 (3.30e-1) 


+/-/= 7/36/5 8/31/9 3/33/12 -- 
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surrogate sub-models. This is because training one Kriging 
model is very time consuming. Thus, k = 2 is suggested for the 
proposed ESF when considering both the performance and 
time cost for solving all the given EMOPs. 


D. Comparisons with Three Competitive SAEAs 
To validate the advantage of ESF, three competitive SAEAs 


(MOEA/D-EGO [42], CSEA [20], and K-RVEA [16]) are also 
included for comparison in this subsection. Here, ESF-RVEA 
is selected as our representative algorithm due to its superior 
performance in Section IV.B. All the compared algorithms are 
implemented in PlatEMO [59] and their parameters are set as 
suggested in their corresponding references [42], [20], [16]. 
The initial population size and the maximum number of true 
expensive evaluations are set the same in Section IV.B, while 
the settings of other parameters for these compared algorithms 
are also introduced in Section 2 of the Supplementary Material 
due to page limitations. 


Please note that in the following Tables III-IV, the best re-
sult is highlighted for each test case. Moreover, to obtain a 
statistically sound conclusion, Wilcoxon rank-sum tests are 
run with a significance level 0.05 , showing the statisti-
cally significant difference on the results of ESF-RVEA and 
other algorithms. The symbols ‘+’, ‘-’, and ‘=’ in Tables III-IV 


indicate that the results of other algorithms are significantly 
better than, worse than, and similar to those of ESF-RVEA, 
respectively, using this statistical test.  


(1) Comparison Results on the DTLZ and WFG Problems 
 Here, the performances of all the algorithms are compared 
on all the DTLZ and WFG test problems. Their IGD values 
under 30 independent runs on the DTLZ and WFG test prob-
lems are given in Table III. As observed from Table III, 
ESF-RVEA performs significantly better than MOEA/D-EGO, 
CSEA, and K-RVEA in 36/48  75%, 31/48  65%, and 33/48 


 69% of the DTLZ and WFG test problems, respectively. The 
smallest and largest percentages are 65% and 75%, respec-
tively. On the other hand, the largest percentage of the test 
problems in which ESF-RVEA is significantly worse than the 
peer algorithms is found in the pairwise comparison of 
ESF-RVEA and MOEA/D-EGO (only 8/48  17%). On these 
IGD results, ESF-RVEA achieves the best results on 29 cases, 
followed by CSEA (performing best on 9 cases). Therefore, it 
is reasonable to conclude that our ESF-RVEA performs best in 
most cases of the DTLZ and WFG test problems. 


For DTLZ1 and DTLZ3, due to their multifrontal land-
scapes, all the compared algorithms are unable to find a set of 
well-converged final solutions using a small number of func-


 
Fig. 5 Convergence profiles of all the compared algorithms on the DTLZ and WFG test problems with D = 20 
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tion evaluations. ESF-RVEA outperforms only K-RVEA on 
the 20-D and 30-D DTLZ3 and MOEA/D-EGO on the 30-D 
DTLZ1. CSEA is the best algorithm for solving DTLZ1 and 
DTLZ3, as it achieves the best results on all the cases of 
DTLZ1 and the 10-D DTLZ3. On DTLZ2 and DTLZ4, 
ESF-RVEA performs better than or similarly to MOEA/D- 
EGO, CSEA, and K-RVEA on DTLZ2 but it is outperformed 
by CSEA and K-RVEA on the 20-D and 30-D DTLZ4 and the 
10-D DTLZ4, respectively. ESF-RVEA achieves the best 
results on the 10-D and 20-D DTLZ2, while CSEA is the best 
at handling the 20-D and 30-D DTLZ4. Regarding DTLZ5 and 
DTLZ6, due to their degenerate PFs, all the compared algo-
rithms have difficulties to approximate the true PF. As ob-
served from the IGD results in Table III, ESF-RVEA obtains 
the best results on all the cases of DTLZ5, while MOEA/D- 
EGO performs best on all the cases of DTLZ6. As DTLZ7 is a 
discontinuous problem, all the algorithms encounter the chal-
lenge of maintaining diversity. ESF-RVEA shows some ad-
vantages on this problem, as it is only defeated by K-RVEA on 
the 10-D DTLZ7. 


From the IGD results of Table III, we can observe that for 
WFG1 with a convex and biased PF, although ESF-RVEA 
fails to perform best in any case, it achieves better or similar 
performance in most of the pairwise comparisons. Regarding 
WFG2 with a mixed and disconnected PF, ESF-RVEA shows 
the best performance for all the numbers of dimensions, while 
only CSEA can show a similar performance in the 30-D case 
of WFG2. To solve WFG3 with a linear and unimodal PF, 
ESF-RVEA performs best in most cases and is outperformed 
only by MOEA/D-EGO in its 30-D case. Concerning WFG4 to 
WFG8 with concave PFs, ESF-RVEA shows superior per-
formance over other compared algorithms, as it performs best 
in most cases. For WFG9 with a deceptive and multimodal PF, 
ESF-RVEA also shows advantages and only CSEA is able to 
obtain a similar IGD value to ESF-RVEA.  


To examine the convergence speed of the four algorithms, 
their mean IGD values versus the function evaluation numbers 
over 30 independent runs are plotted in Fig. 5, where the 
DTLZ and WFG problems with 20 decision variables are used 
as representative cases. It can be observed from Fig. 5 that the 


TABLE IV 
COMPARISON OF ESF-RVEA WITH THREE COMPETITIVE ALGORITHMS ON THE UF AND MAF TEST SUITES 


Problem M D MOEA/D-EGO CSEA K-RVEA ESF-RVEA 


UF1 
2 10 2.7278e-1 (7.48e-2) - 3.4553e-1 (1.32e-1) - 1.5031e-1 (5.50e-2) = 1.4202e-1 (5.50e-2) 
2 20 7.4861e-1 (1.89e-1) - 7.8035e-1 (1.72e-1) - 2.9151e-1 (9.55e-2) - 2.0461e-1 (5.04e-2) 
2 30 1.0508e+0 (1.66e-1) - 9.9889e-1 (1.12e-1) - 5.7897e-1 (2.22e-1) - 2.7109e-1 (6.59e-2) 


UF2 
2 10 2.1482e-1 (3.50e-2) - 2.3913e-1 (5.41e-2) - 9.5903e-2 (3.33e-2) - 7.6867e-2 (1.28e-2) 
2 20 3.4161e-1 (5.31e-2) - 3.7459e-1 (5.40e-2) - 1.4438e-1 (1.85e-2) = 1.3606e-1 (3.49e-2) 
2 30 4.4161e-1 (6.13e-2) - 4.5033e-1 (5.13e-2) - 2.0171e-1 (2.45e-2) - 1.8464e-1 (3.74e-2) 


UF3 
2 10 1.0510e+0 (1.08e-1) - 1.2396e+0 (1.69e-1) - 9.7852e-1 (7.77e-2) - 7.8337e-1 (2.25e-1) 
2 20 8.5519e-1 (7.04e-2) - 9.5419e-1 (9.89e-2) - 6.3997e-1 (3.37e-2) = 6.4006e-1 (2.90e-2) 
2 30 7.4706e-1 (4.92e-2) - 8.9654e-1 (8.99e-2) - 5.4058e-1 (3.01e-2) - 4.8766e-1 (1.97e-2) 


UF4 
2 10 1.1615e-1 (8.89e-3) - 1.3747e-1 (8.51e-3) - 1.1363e-1 (7.97e-3) - 1.0678e-1 (1.29e-2) 
2 20 1.3703e-1 (8.00e-3) + 1.6318e-1 (5.62e-3) - 1.5547e-1 (8.38e-3) - 1.4254e-1 (1.05e-2) 
2 30 1.5434e-1 (6.40e-3) + 1.7338e-1 (5.41e-3) - 1.7386e-1 (2.30e-3) - 1.6633e-1 (4.90e-3) 


UF5 
2 10 2.8402e+0 (5.66e-1) - 2.5795e+0 (5.96e-1) - 1.7329e+0 (7.82e-1) = 1.8017e+0 (6.52e-1) 
2 20 4.1771e+0 (4.02e-1) - 3.6890e+0 (5.04e-1) - 3.0166e+0 (6.68e-1) = 2.6316e+0 (7.60e-1) 
2 30 4.9329e+0 (2.59e-1) - 4.3849e+0 (3.91e-1) - 3.7921e+0 (7.50e-1) - 3.3433e+0 (5.16e-1) 


UF6 
2 10 1.9530e+0 (3.93e-1) - 2.5298e+0 (7.33e-1) - 1.2546e+0 (2.11e-1) = 1.2708e+0 (2.24e-1) 
2 20 3.2389e+0 (7.89e-1) - 3.3705e+0 (7.38e-1) - 1.1435e+0 (5.17e-1) - 8.3002e-1 (1.46e-1) 
2 30 4.3114e+0 (8.35e-1) - 4.2604e+0 (1.02e+0) - 1.5144e+0 (3.87e-1) - 9.8571e-1 (4.55e-1) 


UF7 
2 10 3.6686e-1 (8.77e-2) - 4.3823e-1 (1.06e-1) - 2.9954e-1 (1.12e-1) = 2.5111e-1 (1.18e-1) 
2 20 7.8611e-1 (1.79e-1) - 7.0659e-1 (1.74e-1) - 4.4981e-1 (1.85e-1) = 3.8462e-1 (1.41e-1) 
2 30 1.0375e+0 (1.91e-1) - 9.1260e-1 (1.87e-1) - 5.7598e-1 (1.36e-1) - 4.5890e-1 (1.00e-1) 


UF8 
3 10 5.2245e-1 (1.12e-1) - 7.9704e-1 (2.84e-1) - 3.2743e-1 (4.03e-2) = 3.1099e-1 (4.34e-2) 
3 20 9.9878e-1 (1.88e-1) - 1.4455e+0 (2.91e-1) - 4.5222e-1 (6.53e-2) - 3.7932e-1 (6.59e-2) 
3 30 1.4706e+0 (3.36e-1) - 1.7279e+0 (2.48e-1) - 6.7635e-1 (4.39e-1) - 4.5022e-1 (1.04e-1) 


UF9 
3 10 5.3379e-1 (9.64e-2) - 8.8003e-1 (2.68e-1) - 2.9674e-1 (6.01e-2) + 3.8474e-1 (6.86e-2) 
3 20 1.0213e+0 (1.76e-1) - 1.3969e+0 (2.27e-1) - 4.3197e-1 (6.93e-2) = 4.3117e-1 (6.96e-2) 
3 30 1.7001e+0 (4.14e-1) - 1.9671e+0 (2.80e-1) - 5.4669e-1 (7.93e-2) - 4.5595e-1 (4.74e-2) 


MaF1 
3 10 3.3513e-1 (4.13e-2) - 2.0524e-1 (3.41e-2) - 7.4349e-2 (5.08e-3) + 8.5563e-2 (8.72e-3) 
3 20 6.4422e-1 (8.19e-2) - 6.1646e-1 (8.91e-2) - 2.6381e-1 (7.49e-2) - 1.8684e-1 (3.72e-2) 
3 30 9.1125e-1 (1.28e-1) - 1.1184e+0 (1.24e-1) - 8.2419e-1 (1.38e-1) - 5.0775e-1 (8.80e-2) 


MaF2 
3 10 5.6373e-2 (1.69e-3) - 5.4802e-2 (1.91e-3) - 4.0740e-2 (1.17e-3) + 4.2768e-2 (2.44e-3) 
3 20 8.7882e-2 (3.46e-3) - 8.6074e-2 (4.94e-3) - 7.1628e-2 (5.09e-3) - 6.1732e-2 (4.95e-3) 
3 30 1.1982e-1 (5.52e-3) - 1.2893e-1 (6.04e-3) - 1.2046e-1 (4.43e-3) - 1.0605e-1 (9.89e-3) 


MaF3 
3 10 3.2616e+5 (1.69e+5) = 3.4237e+5 (3.23e+5) = 4.3343e+5 (2.39e+5) = 3.1825e+5 (1.68e+5) 
3 20 2.4977e+6 (7.93e+5) = 2.3430e+6 (9.53e+5) = 2.7370e+6 (6.81e+5) - 2.4029e+6 (8.64e+5) 
3 30 7.1189e+6 (1.97e+6) = 6.4106e+6 (1.25e+6) = 6.3241e+6 (1.22e+6) = 6.4728e+6 (1.63e+6) 


MaF4 
3 10 9.6107e+2 (2.80e+2) = 7.7849e+2 (1.88e+2) = 8.9087e+2 (2.96e+2) = 9.1464e+2 (2.72e+2) 
3 20 3.5512e+3 (5.08e+2) - 2.7228e+3 (4.90e+2) = 3.0626e+3 (5.06e+2) = 2.9352e+3 (5.12e+2) 
3 30 6.2049e+3 (7.44e+2) - 5.0310e+3 (6.07e+2) + 5.8491e+3 (3.98e+2) - 5.3658e+3 (4.72e+2) 


MaF5 
3 10 2.5552e+0 (3.01e-1) - 2.1602e+0 (4.90e-1) = 1.8068e+0 (3.66e-1) = 1.8608e+0 (5.27e-1) 
3 20 4.6053e+0 (5.98e-1) - 3.0733e+0 (5.92e-1) = 3.8649e+0 (4.94e-1) - 3.2897e+0 (7.05e-1) 
3 30 6.3719e+0 (8.38e-1) - 4.5042e+0 (5.97e-1) = 6.2925e+0 (8.12e-1) - 4.8174e+0 (7.40e-1) 


MaF6 
3 10 6.0626e+0 (2.13e+0) - 8.6929e+0 (2.95e+0) - 1.1787e+0 (5.10e-1) - 6.2066e-1 (3.60e-1) 
3 20 2.4714e+1 (8.11e+0) - 4.0783e+1 (8.63e+0) - 2.0515e+1 (7.16e+0) - 1.4100e+1 (4.43e+0) 
3 30 4.3649e+1 (1.17e+1) = 8.2726e+1 (1.04e+1) - 6.8562e+1 (1.20e+1) - 3.8403e+1 (8.72e+0) 


MaF7 
3 10 3.0561e-1 (8.23e-2) = 2.4410e+0 (8.86e-1) - 1.9475e-1 (6.75e-2) + 4.5442e-1 (3.09e-1) 
3 20 4.3622e+0 (1.63e+0) - 4.6561e+0 (1.05e+0) - 7.6811e-1 (1.47e+0) = 3.7486e-1 (1.43e-1) 
3 30 7.7243e+0 (1.38e+0) - 5.7454e+0 (9.30e-1) - 4.2723e+0 (3.45e+0) - 8.3953e-1 (2.36e-1) 


+/-/= 2/40/6 1/39/8 4/28/16 -- 







 10 


convergence curve of the mean IGD values achieved by 
ESF-RVEA shows the fastest convergence speed in most test 
cases, including DTLZ2, DTLZ5, DTLZ7, and WFG1-WFG9. 
Even for DTLZ4 and DTLZ6, ESF-RVEA still obtains the 
second lowest mean IGD values. The promising convergence 
speed of ESF-RVEA is mainly attributed to the use of ESF to 
accurately approximate objective functions. 


To visually show the optimization performance, Fig. A.2 
plots the final nondominated solutions obtained by each algo-
rithm with the median IGD values over 30 independent runs on 
several representative 20-D DTLZ and WFG problems in the 
Supplementary Material due to page limitations. Fig. A.2 
shows that the final solutions of DTLZ7 obtained by all the 
compared algorithms do not have good convergence to the true 
PF, while ESF-RVEA is able to achieve a better approxima-
tion than the other algorithms. For WFG2, which is plotted in 
Fig. A.2, the final solutions obtained by all the algorithms have 
good convergence but cannot evenly spread over the whole PF. 
However, the final solutions obtained by ESF-RVEA show a 
better diversity than the other algorithms. When solving 
WFG4 in Fig. A.2, ESF-RVEA also outperforms MOEA/D- 
EGO, CSEA, and K-RVEA in terms of both the convergence 
and diversity according to their final solutions.  


(2) Comparison Results on the UF and MaF Problems 
The performances of all the algorithms are also compared 


on all the UF and MaF test problems. The IGD mean values 
under 30 independent runs on the UF and MaF test problems 
with 10 to 30 decision variables are provided in Table IV.  


As observed from Table IV, ESF-RVEA also performs best 
in most cases (32 out of 48 cases), while MOEA/D-EGO, 
CSEA, and K-RVEA perform best in 2, 6, and 8 cases, re-
spectively. Considering the pairwise comparison, ESF-RVEA 
significantly performs better than MOEA/D-EGO, CSEA, and 
K-RVEA in 40, 39, and 28 out of 48 cases, respectively, 
whereas it is worse than MOEA/D-EGO, CSEA, and K-RVEA 
in 2, 1, and 4 cases, respectively. K-RVEA is the most com-
petitive algorithm to ESF-RVEA, as it can obtain statistically 
similar results in 16 cases. To be more specific, for the UF test 
problems, ESF-RVEA is outperformed by K-RVEA on the 
10-D UF6 and UF9, and by MOEA/D-EGO on the 30-D UF4, 
while K-RVEA is slightly better than ESF-RVEA on the 20-D 
UF3. CSEA performs worse than ESF-RVEA on all the UF 
test cases. Considering the MaF test suite, ESF-RVEA 
achieves superior performance in most cases, including the 
20-D and 30-D MaF1, the 10-D MaF3, and all the cases of 
MaF2, MaF6, MaF7. MOEA/D-EGO obtains statistically 


 


 
Fig. 6 Convergence profiles of all the compared algorithms on the UF and MaF test suites with D = 20 







 11 


similar IGD results with ESF-RVEA on only the 10-D and 
20-D MaF3, the 10-D MaF4, the 30-D MaF6, and the 10-D 
MaF7. K-RVEA only achieves significantly better IGD result 
on the 10-D MaF7.  


To further study the performance of ESF-RVEA, the con-
vergence profiles of all the compared algorithms are depicted 
in Fig. 6 for the UF and MaF cases with 20 decision variables. 
It should be noted that all the IGD values in Fig. 6 are calcu-
lated using all the current solutions that have been truly eval-
uated. From these profiles, it can be observed that ESF-RVEA 
outperforms MOEA/D-EGO, CSEA, and K-RVEA in most 
cases. More specifically, except for UF2, UF3, UF9, and 
MaF4, ESF-RVEA is the best algorithm, as it is able to achieve 
the smallest mean IGD results. ESF-RVEA achieves a signif-
icantly better performance on UF1, UF4, UF7-UF8, MaF1- 
MaF3, and MaF5-MaF6, while it shows a competitive per-
formance on UF2-UF3, UF6, UF9, MaF4, and MaF7 accord-
ing to its convergence trends in Fig. 6. 


In addition, the final nondominated solutions achieved by 
each compared algorithm are also plotted in Fig. A.3 of the 
Supplementary Material due to page limitations, when solving 
UF1, UF4, UF7, MaF1, and MaF6 with 20 decision variables 
in the run associated with the median IGD value. As observed 
from Fig. A.3, only K-RVEA and ESF-RVEA are capable of 
performing well in approximating the true PF, while the final 
solutions yielded by MOEA/D-EGO and CSEA are far from 
the true PFs of UF1 and UF7. For UF4, ESF-RVEA obtains 
the final solutions with better convergence, while other com-
pared algorithms show a poor approximation performance. On 
MaF1, the final solutions of ESF-RVEA show the best diver-
sity. With respect to MaF6, which is a hard problem to tackle, 
all the algorithms can only search poorly converged solutions 
with very large values in the three-objective objective space. 
Nevertheless, ESF-RVEA still performs better in terms of the 
convergence towards the PF. 


E. More Discussions 
1) Comparisons with Ensemble-based SAEAs 


In recent years, there have been several ensemble-based 
SAEAs designed for tackling EMOPs [25]-[28], but our en-
semble model is composed by one global surrogate model and 
a number of k surrogate sub-models, which is different from 
these previous ensemble strategies. In this subsection, four 
ensemble-based SAEAs, i.e., TEMO-MPS [25], GCS-MOE 
[26], HeE-MOEA [27], and SAEMO [28], are included for 
performance comparison with ESF-RVEA for solving all the 
adopted test problems. Due to page limitations, their IGD 
results are provided in Table A.VIII of the Supplementary 
Material. Table IV summarizes their pairwise comparison 
results based on the IGD results in Table A.VIII. 


As observed from Table IV, ESF-RVEA shows advantages 
for tackling the 20-D UF, MaF, DTLZ, and WFG test prob-
lems. To be specific, the performance of ESF-RVEA is better 
than that of TEMO-MPS, GCS-MOE, HeE-MOEA and 
SAEMO in 20, 31, 24, and 21 out of 32 cases, respectively, 
while TEMO-MPS, GCS-MOE, HeE-MOEA, and SAEMO 
significantly outperform ESF-RVEA in only 4, 1, 2, and 3 


 


TABLE V 
SUMMARY OF COMPARISON OF ESF-RVEA AND FIVE SAEAS 


ESF-RVEA vs. TEMO-MPS GCS-MOE HeE-MOEA SAEMO ESF-RVEA-I 
DTLZ, WFG, 
UF, and MaF 


(D = 20) 


Better 20 31 24 21 21 
Worse 4 1 2 3 1 
Similar 8 0 6 8 10 


Best 18 4 0 3 4 3 
 


TABLE VI 
SUMMARY OF COMPARISON OF ESF-RVEA WITH DIFFERENT c VALUES 


ESF-RVEA vs. c = 0.2  c = 0.4 c = 0.6 c = 0.8 c = rand 
DTLZ, WFG, 
UF, and MaF 


(D = 20) 


Better 23 22 20 17 23 
Worse 1 1 1 2 1 
Similar 8 9 11 13 8 


Best 18 2 3 4 4 1 
 
cases, respectively. Therefore, the advantages of our ensemble 
model over other existing ensemble models are validated. 
2) Effectiveness of the Global Surrogate Model 


In order to study the contribution of the global surrogate 
model, more experiments are run to compare ESF-RVEA with 
its variant without using the global surrogate model (called 
ESF-RVEA-I). Due to page limitations, their IGD results are 
provided in Table A.VIII of the Supplementary Material. 
Table V summarizes their pairwise comparison results. It can 
be observed from Table V that ESF-RVEA shows distinct 
advantages when solving the 20-D cases of all the UF, MaF, 
DTLZ, and WFG test problems. ESF-RVEA performs signif-
icantly better than or similarly to ESF-RVEA-I in 31 out of 32 
instances, while ESF-RVEA-I only performs better in the 20-D 
MaF3. Therefore, the global surrogate model is validated to 
have a significant contribution to the performance of the ESF. 
3) Effectiveness of the Adaptive Approach 


To further verify the effectiveness of our adaptive approach 
applied to change the weights of each member model in (2), 
four variants of ESF-RVEA with different fixed values for the 
weight factor c are realized to replace the adaptive approach in 
ESF-RVEA. For the sake of simplicity, these ESF-RVEA 
variants are defined by the fixed values of c, i.e., c = 0.2, 0.4, 
0.6, and 0.8. Additionally, a variant by setting c to a random 
variable from 0 to 1, called c = rand, is also included for this 
comparison. To ensure a fair comparison, other components of 
these variants are kept the same as in the original ESF-RVEA. 


Due to page limitations, Table A.IX of the Supplementary 
Material provides the IGD results yielded by ESF-RVEA and 
the five variants with different c values from {0.2, 0.4, 0.6, 0.8} 
and a random value of c over 30 independent runs for solving 
all the 20-D DTLZ, WFG, UF and MaF test problems. Table 
VI summarizes the pairwise comparison results of ESF- 
RVEA with the five variants. As observed from Table VI, our 
adaptive approach used in ESF-RVEA is reasonable and more 
effective than the variants, as it achieves the best IGD results 
in more than half of the cases, i.e., in 18 out of 32 cases. The 
five variants using a constant c value obtain the best IGD 
results on the remaining 14 cases. Specifically, the five variants 
with different c values (0.2, 0.4, 0.6, 0.8, and c = rand) obtain 
the best results on 2, 3, 4, 4, and 1 cases, respectively. As 
observed from Table VI, for all 32 cases, ESF-RVEA performs 
better than or similarly to the c = 0.2, c = 0.4, c = 0.6 and c = 
rand variants on 31 cases and the c = 0.8 variant on 30 cases. 
Thus, the effectiveness of the adaptive approach for 
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TABLE VII 
SUMMARY OF COMPARISON OF ESF-RVEA WITH DIFFERENT INFILL SOLU-


TIONS SELECTION STRATEGIES AND SURROGATE MODELS 
ESF-RVEA vs. ExI LCB PoI RBF PR 


DTLZ, WFG, 
UF, and MaF 


(D = 20) 


Better 22 23 25 18 29 
Worse 1 1 1 7 1 
Similar 9 8 6 7 2 


Best 19 1 2 0 9 1 
 


TABLE VIII 
SUMMARY OF COMPARISON OF ESF-RVEA WITH DIFFERENT Nis VALUES 


ESF-RVEA (Nis = 5) vs. Nis = 1 Nis = 3 Nis = 7 Nis = 9 
DTLZ, WFG, 
UF, and MaF 


(D = 20) 


Better 0 1 3 8 
Worse 6 3 0 0 
Similar 26 28 29 24 


Best 2 24 3 0 3 
 
updating the weights in the proposed ESF is validated by these 
experiments. 
4) Effectiveness of the Infill Solutions Selection 


To further verify the effectiveness of our infill solutions 
selection introduced in Section III.C, three popular infill solu-
tions selection strategies (ExI [35], LCB [36] and PoI [34]) are 
embedded into ESF-RVEA, giving its three variants identified 
as ExI, LCB and PoI in this paper for the sake of simplicity.  


Due to page limitations, their IGD results are provided in 
Table A.X of the Supplementary Material for solving all the 
20-D DTLZ, WFG, UF and MaF problems. Table VII sum-
marizes the pairwise comparison results of ESF-RVEA with 
ExI, LCB and PoI. As observed from Table VII, our infill 
solutions selection in ESF-RVEA shows superior performance 
in most cases, as it is better than ExI, LCB, and PoI in 22, 23, 
and 25 out of 32 cases, respectively, while ExI, LCB, and PoI 
are better than our method in only 1 case. As ExI is originally 
designed for solving expensive single-objective optimization 
problems, while ESF-RVEA does not use any strategy to 
decompose EMOPs, it performs not so well in ESF-RVEA. 
Thus, the proposed infill solutions selection is more effective 
as validated by these experiments.  
5) Advantages of Using Kriging in ESF 


To further study the advantages of using Kriging in ESF, 
two popular surrogate models used in SAESs (RBF [18] and 
PR [23]) are embedded into ESF for performance comparison, 
giving its two variants marked as RBF and PR in this paper for 
the sake of simplicity.  


Due to page limitations, their IGD results are provided in 
Table A.X of the Supplementary Material for solving all the 
20-D DTLZ, WFG, UF and MaF problems. Table VII sum-
marizes the pairwise comparison results of ESF-RVEA with 
RBF and PR. As observed from Table VII, ESF-RVEA with 
Kriging performs better than PBF and PR in 18 and 29 out of 
32 cases, respectively, while it is underperformed by RBF and 
PR in 7 and 1 cases, respectively. Therefore, the advantages of 
using Kriging in ESF are confirmed by these experiments.  
6) Sensitivity Analysis of Parameter Nis in ESF 


To further analyze the impact of the maximum number (Nis) 
of selected infill solutions in ESF, ESF-RVEA using different 
values of Nis (i.e., Nis = 1, 3, 5, 7, and 9) are compared when 
solving 20-D UF, MaF, WFG, and DTLZ test suites. Due to 
page limitations, their IGD comparison results are provided in 
Table A.XI of the Supplementary Material and Table VIII 


summarizes their pairwise comparison results. From Table 
VIII, the overall performance of ESF-RVEA is not so sensitive 
to the setting of Nis on 20-D UF, MaF, WFG, and DTLZ test 
suites, as ESF-RVEA with Nis = 5 performs similarly to that 
with Nis =1, 3, 7, and 9, on 26, 28, 29, and 24 out of total 32 
problems, respectively. Moreover, it is observed that a smaller 
value of Nis will generally have a slightly better overall per-
formance. This is reasonable as a small number of infill solu-
tions used in each generation of Algorithm 1 will lead to more 
running of surrogate-assisted-MOEA, which will find a more 
promising approximation to the PF. However, a smaller value 
of Nis will also result in a significantly increased computational 
cost, as the times of training surrogates will be increased 
significantly. Thus, in this paper, the value of Nis is fixed as 5 
to balance the performance and computational cost. 


V. CONCLUSIONS AND FUTURE WORK 
The selection of surrogate models is important for enhanc-


ing the performance of an SAEA. Although existing surrogate 
models have been shown to be particularly competitive on 
low-dimensional EMOPs, they will face challenges for solving 
EMOPs with more than ten dimensions. To solve this problem, 
this paper suggests a novel ESF for expensive multiobjective 
evolutionary optimization. In this framework, a novel and 
effective ensemble surrogate is designed to approximate the 
expensive objective values, which include one global Kriging 
model trained under the entire search space and k Kriging 
sub-models trained under different low-dimensional subspaces. 
Moreover, a new infill selection criterion is proposed based on 
a set of reference vectors to select promising solutions for 
updating this ensemble surrogate model. 


The performance of our framework has been verified by 
solving four scalable test suites (DTLZ, WFG, UF, and MaF) 
when three representative MOEAs (NSGA-III, MOEA/D-DE, 
RVEA) are embedded into our framework. The experimental 
results have validated the effectiveness of our framework. 
Moreover, ESF-RVEA performs significantly better than three 
competitive SAEAs (MOEA/D-EGO, CSEA, and K-RVEA) 
and four ensemble-based SAEAs (TEMO-MPS, GCS-MOE, 
SAEMO, and HeE-MOEA) in most cases. Also, the parameter 
sensitivity analysis on the number of surrogate sub-models and 
the maximum number of selected infill solutions are also 
experimentally studied in this paper. 


Our ensemble surrogate based framework works well on the 
used test EMOPs with up to 30 dimensions, as it can provide 
more accurate and diversified predicted objective values. Its 
performance on the EMOPs with more than 30 dimensions 
will be further studied in the future work. Moreover, as 
benchmarks may not sufficiently represent the features of 
practical applications, the performance of ESF for tackling 
some real-world EMOPS will be also studied in the future 
work. 


REFERENCES 
[1] K. Deb, “Multi-objective optimization using evolutionary algorithms [M],” 


John Wiley & Sons, 2001. 
[2] H. R. Maier, S. Razavi, Z.  Kapelan, L. S.  Matott, J. Kasprzyk, and B. A. 


Tolson, “Introductory overview: Optimization using evolutionary algo-







 13 


rithms and other metaheuristics,” Environmental Modelling & Soft-
ware, vol. 114, pp. 195-213, 2019. 


[3] K. Deb and H. Jain, “An evolutionary many-objective optimization 
algorithm using reference-point-based nondominated sorting approach, 
part I: solving problems with box constraints,” IEEE Transactions on 
Evolutionary Computation, vol. 18, no. 4, pp. 577-601, 2013. 


[4] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength 
Pareto evolutionary algorithm,” TIK-report, vol. 103, pp. 95–100, 2001. 


[5] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated Pareto sets, MOEA/D and NSGA-II,” IEEE Transactions on 
Evolutionary Computation, vol. 13, no. 2, pp. 284-302, 2008. 


[6] H. L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective 
optimization problem into a number of simple multiobjective subprob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp. 
450–455, Jun. 2014. 


[7] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective 
search,” in International Conference on Parallel Problem Solving from 
Nature, Birmingham, U.K., pp. 832–842, 2004. 


[8] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective 
selection based on dominated hypervolume,” European Journal of Oper-
ational Research, vol. 181, no. 3, pp. 1653–1669, 2007. 


[9] S. Koziel and A. Bekasiewicz, “Rapid simulation-driven multiobjective 
design optimization of decomposable compact microwave passives,” 
IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, 
pp. 2454–2461, Aug. 2016. 


[10] D. Guo, T. Chai, J. Ding, and Y. Jin, “Small data driven evolutionary 
multi-objective optimization of fused magnesium furnaces,” in 2016 
IEEE Symposium Series on Computational Intelligence, Athens, Greece, 
Dec. 2016, pp. 1–8. 


[11] H. Wang, J. Doherty, and Y. Jin, “Hierarchical surrogate-assisted evolu-
tionary multi-scenario airfoil shape optimization,” in 2016 IEEE Sympo-
sium Series on Computational Intelligence, 2018, pp. 1–8. 


[12] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances 
and future challenges,” Swarm and Evolutionary Computation, vol. 1, no. 
2, pp. 61-70, 2011. 


[13] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven 
evolutionary optimization: An overview and case studies,” IEEE Trans-
actions on Evolutionary Computation, vol. 23, no. 3, pp. 442–458, Jun. 
2019. 


[14] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining 
global and local surrogate models to accelerate evolutionary optimization,” 
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), vol. 37, no. 1, pp. 66-76, 2006. 


[15] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surro-
gateassisted evolutionary computation,” IEEE Transactions on Evolu-
tionary Computation, vol. 14, no. 3, pp. 329–355, Jun. 2010. 


[16] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A surro-
gate-assisted reference vector guided evolutionary algorithm for compu-
tationally expensive many-objective optimization,” IEEE Transactions on 
Evolutionary Computation, vol. 22, no. 1, pp. 129–142, Feb. 2018. 


[17] T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary 
optimization of large problems,” In High-Performance Simulation-Based 
Optimization, pp. 165-187, 2020. 


[18] A. Isaacs, T. Ray, and W. Smith, “An evolutionary algorithm with 
spatially distributed surrogates for multiobjective optimization,” in Aus-
tralian Conference on Artificial Life. Springer, pp. 257–268, 2007. 


[19] S. Z. Martínez and C. A. C. Coello, “MOEA/D assisted by RBF networks 
for expensive multi-objective optimization problems,” in Proceedings of 
the 15th Annual Conference on Genetic and Evolutionary Computation, 
Amsterdam, The Netherlands, pp. 1405–1412, 2013. 


[20] L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A classifica-
tion-based surrogate-assisted evolutionary algorithm for expensive 
many-objective optimization,” IEEE Transactions on Evolutionary 
Computation, vol. 23 no. 1, pp. 74-88, 2018. 


[21] W. Kong, T. Chai, S. Yang, and J. Ding, “A hybrid evolutionary multi-
objective optimization strategy for the dynamic power supply problem in 
magnesia grain manufacturing,” Applied Soft Computing, vol. 13, no. 5, 
pp. 2960–2969, 2013. 


[22] M. Herrera, A. Guglielmetti, M. Xiao, and R. F. Coelho, “Metamodelas-
sisted optimization based on multiple kernel regression for mixed varia-
bles,” Structural and Multidisciplinary Optimization, vol. 49, no. 6, pp. 
979–991, 2014. 


[23] Y. Lian and M.-S. Liou, “Multiobjective optimization using coupled 
response surface model and evolutionary algorithm,” AIAA Journal, vol. 
43, no. 6, pp. 1316–1325, 2005. 


[24] A. Rosales-Pérez, C. A. C. Coello, J. A. Gonzalez, C. A. Reyes-Garcia, 
and H. J. Escalante, “A hybrid surrogate-based approach for evolutionary 
multi-objective optimization,” in IEEE Congress on Evolutionary Com-
putation, Cancún, Mexico, pp. 2548–2555, 2013. 


[25] A. T. W. Min, Y. S. Ong, A. Gupta, and C. K. Goh, “Multiproblem 
surrogates: Transfer evolutionary multiobjective optimization of compu-
tationally expensive problems,” IEEE Transactions on Evolutionary 
Computation, vol. 23, no. 1, pp. 15-28, 2017. 


[26] J. Luo, A. Gupta, Y. S. Ong, and Z. Wang, “Evolutionary optimization of 
expensive multiobjective problems with co-sub-Pareto front Gaussian 
process surrogates,” IEEE Transactions on Cybernetics, vol. 49, no. 5, pp. 
1708-1721, 2018. 


[27] D, Guo, Y. Jin, J. Ding, and T. Chai, “Heterogeneous ensemble-based 
infill criterion for evolutionary multiobjective optimization of expensive 
problems,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 
1012-1025, 2018. 


[28] Y. Zhao, C. Sun, J. Zeng, Y. Tan, and G. Zhang, “A surrogate-ensemble 
assisted expensive many-objective optimization,” Knowledge-Based 
Systems, 2021. 


[29] N. Liu, J. S. Pan, C. Sun, and S. C. Chu, “An efficient surrogate-assisted 
quasi-affine transformation evolutionary algorithm for expensive opti-
mization problems,” Knowledge-Based Systems, no. 209, 2020. 


[30] K. S. Bhattacharjee, A. Isaacs, and T. Ray, “Multi-objective optimization 
using an evolutionary algorithm embedded with multiple spatially dis-
tributed surrogates,” In MULTI-OBJECTIVE OPTIMIZATION: Tech-
niques and Application in Chemical Engineering, pp. 135-155, 2017. 


[31] Y. Wang, D. Q. Yin, S. Yang, and G. Sun, “Global and local surro-
gate-assisted differential evolution for expensive constrained optimization 
problems with inequality constraints,” IEEE Transactions on Cybernetics, 
vol. 49, no. 5, pp. 1642-1656, 2018. 


[32] X. Lu, T. Sun, and K. Tang, “Evolutionary optimization with hierarchical 
surrogates,” Swarm and Evolutionary Computation, vol. 47, pp. 21-32, 
2019. 


[33] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of surro-
gates,” Structural and Multidisciplinary Optimization, vol. 33, no. 3, pp. 
199–216, 2006. 


[34] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks, “Single-and 
multiobjective evolutionary optimization assisted by Gaussian random 
field metamodels,” IEEE Transactions on Evolutionary Computation, vol. 
10, no. 4, pp. 421–439, Aug. 2006. 


[35] N. Namura, K. Shimoyama, and S. Obayashi, “Expected improvement of 
penalty-based boundary intersection for expensive multiobjective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 
6, pp. 898-913, 2017. 


[36] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, “An adaptive Bayesian 
approach to surrogate-assisted evolutionary multi-objective optimization,” 
Information Sciences, vol. 519, pp. 317-331, 2020. 


[37] H. Wang, Y. Jin, and J. O. Janson, “Data-driven surrogate-assisted 
multi-objective evolutionary optimization of a trauma system,” IEEE 
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 939–952, 
Dec. 2016. 


[38] C. Yang, J. Ding, Y. Jin, and T. Chai, “Offline Data-Driven Multiobjec-
tive Optimization: Knowledge Transfer Between Surrogates and Genera-
tion of Final Solutions,” IEEE Transactions on Evolutionary Computation, 
vol. 24, no. 3, pp.  409-423, 2019. 


[39] J. Stork, M. Friese, M. Zaefferer, T. Bartz-Beielstein, A. Fischbach, B. 
Breiderhoff, and T. Tušar, T, “Open issues in surrogate-assisted optimi-
zation,” In High-Performance Simulation-Based Optimization, pp. 
225-244, 2020. 


[40] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on 
handling computationally expensive multiobjective optimization prob-
lems with evolutionary algorithms,” Soft Computing, vol. 23, no. 9, pp. 
3137-3166, 2019. 


[41] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE 
Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50–66, Feb. 
2006. 


[42] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective 
optimization by MOEA/D with Gaussian process model,” IEEE Trans-







 14 


actions on Evolutionary Computation, vol. 14, no. 3, pp. 456–474, Jun. 
2010. 


[43] M. Tabatabaei, M. Hartikainen, K. Sindhya, J. Hakanen, and K. Miettinen, 
“An interactive surrogate-based method for computationally expensive 
multiobjective optimisation,” Journal of the Operational Research Society, 
vol. 70 no. 6, pp. 898-914, 2019. 


[44] I. Loshchilov, M. Schoenauer, and M. Sebag, “Dominance-based Pare-
to-surrogate for multi-objective optimization,” in Asia-Pacific Confer-
ence on Simulated Evolution and Learning, Kanpur, India, pp. 230–239, 
2010. 


[45] A. A. M. Rahat, R. M. Everson, and J. E. Fieldsend, “Alternative infill 
strategies for expensive multi-objective optimisation,” in Proceedings of 
the Genetic and Evolutionary Computation Conference, Berlin, Germany, 
pp. 873–880, 2017. 


[46] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on 
handling computationally expensive multiobjective optimization prob-
lems with evolutionary algorithms,” Soft Computing, vol. 23, no. 9, pp. 
3137-3166, 2019. 


[47] K. Deb, P. C. Roy, and R. Hussein, “Surrogate Modeling Approaches for 
Multiobjective Optimization: Methods, Taxonomy, and Results,” 
Mathematical and Computational Applications, vol. 26, no. 1, pp. 5, 2021. 


[48] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector 
guided evolutionary algorithm for many-objective optimization,” IEEE 
Transactions on Evolutionary Computation, vol. 20, no. 5, pp. 773–791, 
Oct. 2016. 


[49] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multi-
objective test problems and a scalable test problem toolkit,” IEEE 
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506, 
Oct. 2006. 


[50] I. Das, and J. E. Dennis, “Normal Boundary Intersection: A New Method 
for Generating Pareto Optimal Points in Nonlinear Multicriteria Optimi-
zation Problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 
631-657, 1998. 


[51] M. D. Mckay, R. J. Beckman, and W. J. Conover, “A comparison of three 
methods for selecting values of input variables in the analysis of output 
from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61, 2000. 


[52] K. Deb, and R. B. Agrawal, “Simulated binary crossover for continuous 
search space,” Complex Systems, vol. 9, no. 2, pp. 115-148, 1995. 


[53] R. Storn and K. Price, “Differential evolution—A simple and efficient 
heuristic for global optimization over continuous spaces,” Journal of 
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. 


[54] K. Deb and M. Goyal, “A combined genetic adaptive search (geneas) for 
engineering design,” Computer Science and Informatics, vol. 26, pp. 30–
45, 1996.s 


[55] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multiobjective 
optimization test problems,” in IEEE Congress on Evolutionary Compu-
tation, vol. 1. Honolulu, HI, USA, pp. 825–830, 2002. 


[56] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari, 
“Multiobjective optimization test instances for the CEC 2009 special 
session and competition,” 2008. 


[57] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, X. Yao, “A 
benchmark test suite for evolutionary many-objective optimization,” 
Complex and Intelligent Systems, vol. 3, no. 1, pp. 67-81, 2017. 


[58] C. A. C. Coello and M. R. Sierra, “A study of the parallelization of a 
coevolutionary multi-objective evolutionary algorithm,” in Mexican In-
ternational Conference on Artificial Intelligence. Springer, 2004, pp. 688–
697. 


[59] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB 
platform for evolutionary multi-objective optimization,” IEEE Computa-
tional Intelligence Magazine, vol. 12, no. 4, pp. 73–87, Nov. 2017. 


 
 
 
 
 
 
 
 
 
 
 
 


 
Qiuzhen Lin (Member, IEEE) received the B.S. degree 
from Zhaoqing University, Zhaoqing, China, in 2007, 
the M.S. degree from Shenzhen University, Shenzhen, 
China, in 2010, and the Ph.D. degree from the De-
partment of Electronic Engineering, City University of 
Hong Kong, Hong Kong, in 2014. 


He is currently an Associate Professor with the 
College of Computer Science and Software Engineer-
ing, Shenzhen University. He has published over 60 


research papers since 2008. His current research interests include artificial 
immune system, multiobjective optimization, and dynamic system. 
 
 


Xunfeng Wu received the B.S. degree from Shaoguan 
University, Shaoguan, China, in 2018 and the M.S. 
degree from Shenzhen University, Shenzhen, China, in 
2021. 


He is currently pursuing the Ph.D. degree in the 
College of Computer Science and Software Engineering, 
Shenzhen University, Shenzhen, China. His current 
research interests are in evolutionary computation, 
multi-objective optimization, and data-driven optimi-


zation. 
 
 


 
Lijia Ma received the B.S. degree in communication 
engineering from Hunan Normal University, Changsha, 
China, and the Ph.D. degree in electronic science and 
technology from Xidian University, Xi'an, China, in 
2010 and 2015, respectively. 


From 2015 to 2016, he was a Postdoctoral Fellow 
with Hong Kong Baptist University, Hong Kong, and 
with Nanyang Technological University, Singapore, 


from 2016 to 2017. He is an assistant professor at the College of Computer and 
Software Engineering of Shenzhen University. His research interests mainly 
include evolutionary computation, machine learning and complex networks.  
 
 


Jianqiang Li (Member, IEEE) received the B.S. and 
Ph.D. degrees in automation from the South China 
University of Technology, Guangzhou, China, in 2003 
and 2008, respectively. 


He is a Professor with the College of Computer and 
Software Engineering, Shenzhen University, Shenzhen, 
China. He led a project of the National Natural Science 
Foundation, and a project of the Natural Science Foun-
dation of Guangdong Province, China. His major re-


search interests include embedded systems and Internet of Things. 
 
 


Maoguo Gong (Senior Member, IEEE) received the B.S. 
and Ph.D. degrees in electronic science and technology 
from Xidian University, Xi’an, China, in 2003 and 2009, 
respectively.  


Since 2006, he has been a Teacher with Xidian Uni-
versity. In 2008 and 2010, he was promoted as an 
Associate Professor and a Full Professor, respectively, 
both with exceptive admission. His current research 
interests include computational intelligence with appli-


cations to optimization, learning, data mining, and image understanding. 
Dr. Gong was a recipient of the Prestigious National Program for the sup-


port of Top-Notch Young Professionals from the Central Organization 
Department of China, the Excellent Young Scientist Foundation from the 
National Natural Science Foundation of China, and the New Century Excel-
lent Talent in University from the Ministry of Education of China. He is the 
Vice Chair of the IEEE Computational Intelligence Society Task Force on 
Memetic Computing, an Executive Committee Member of the Chinese 
Association for Artificial Intelligence, and a Senior Member of the Chinese 
Computer Federation. He is also an Associate Editor of the IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION. 
 
 
 







 15 


Carlos A. Coello Coello (Fellow, IEEE) received the 
Ph.D. degree in computer science from Tulane Uni-
versity, New Orleans, LA, USA, in 1996. 


He is a Professor (CINVESTAV-3F Researcher) 
with the Department of Computer Science of CIN-
VESTAV-IPN, Mexico City, Mexico. He has authored 
and coauthored over 450 technical papers and book 
chapters. He has also coauthored the book Evolutionary 
Algorithms for Solving Multi-Objective Problems 


(Second Edition, Springer, 2007). His publications currently report over 57 
600 citations in Google Scholar (his H-index is 95). His research interests 
include evolutionary multiobjective optimization and constraint-handling 
techniques for evolutionary algorithms. 


Dr. Coello Coello was a recipient of the 2007 National Research Award 
from the Mexican Academy of Sciences in the area of Exact Sciences, the 
2013 IEEE Kiyo Tomiyasu Award, and the 2012 National Medal of Science 
and Arts in the area of Physical, Mathematical and Natural Sciences. He is 
currently the Editor-in-Chief of the IEEE TRANSACTIONS ON EVOLUTIONARY 
COMPUTATION. He is a member of the Association for Computing Machinery 
and the Mexican Academy of Science. 
 
 
 
 






