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 
Abstract—The multiobjective evolutionary algorithm based on 

decomposition transforms a multiobjective optimization problem 
into a set of aggregated subproblems and then optimizes them col-
laboratively. Since these subproblems usually have different de-
grees of difficulty, resource allocation strategies have been re-
ported to enhance performance, attempting to dynamically assign 
proper amounts of computational resources for the solution of 
each of these subproblems. However, existing schemes for decom-
position-based multiobjective evolutionary algorithms fully rely 
on the relative improvement of the aggregated functions to do this. 
This paper proposes a diversity-enhanced resource allocation 
strategy for this kind of multiobjective evolutionary algorithm, de-
pending on both the relative improvement on aggregated function 
value and the solution density around each subproblem to assign 
computational resources. Thus, one subproblem surrounded with 
fewer solutions in its neighboring area and more relative improve-
ment on the aggregated function value will be allocated a higher 
probability for evolution. Our experimental results show the ad-
vantages of our proposed strategy over two popular resource allo-
cation strategies available for decomposition-based multiobjective 
evolutionary algorithms, on tackling a set of complicated bench-
mark problems. 
 

Index Terms—Decomposition, multiobjective optimization, re-
source allocation, solution density. 

I. INTRODUCTION 

ULTIOBJECTIVE optimization problems (MOPs) 
widely arise in many application fields, such as econom-

ics [1], [2] and engineering design [3], [4]. Mathematically, an 
MOP without any constraint can be modeled as follows. 

minimize      1( ) ( ( ),..., ( ))mF x f x f x     (1) 
 subject to      x              

where 1( , , )nx x x   is a decision variables vector (n is the 
number of decision variables), [ , ]n

i il u   is the decision 
space ( il  and iu  are respectively the lower and upper bounds 
for the i-th variable, [1, ]i n ), and : mF R  defines m ob-
jective functions ( mR  is the objective space). 
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Let 1 2,x x  , 1x  is said to dominate 2x , denoted by 

1 2x x , if and only if 1 2( ) ( )i if x f x  for  1, ,i m    and 

1 2( ) ( )j jf x f x  for   1, ,j m   . A solution *x   is said 
to be a Pareto-optimal or non-dominated solution when no other 
solution x  can dominate *x . The set of all Pareto-optimal 
(or non-dominated) solutions composes the Pareto-optimal set 
(PS), and its corresponding set of objective function values is 
called the Pareto-optimal front (PF) [5]. Due to the conflicts 
among the objectives, no single solution is able to optimize 
them all at the same time. Therefore, we aim for the best possi-
ble trade-offs among all the objectives. 

Multiobjective evolutionary algorithms (MOEAs) have been 
found to be an effective and efficient tool for solving MOPs [6]. 
During the last decades, many competitive MOEAs have been 
designed [7]-[19]. According to the selection criteria, most 
MOEAs can be generally classified into three categories, i.e., 
Pareto domination-based MOEAs ([7]-[10]), indicator-based 
MOEAs ([11]-[15]), and decomposition-based MOEAs ([16]- 
[19]). Particularly, since the publication of MOEA/D [16], de-
composition-based MOEAs have become a very popular evo-
lutionary framework for tackling MOPs. In this approach, an 
MOP is decomposed into a set of aggregated subproblems and 
then each subproblem is optimized on a collaborative manner. 
Its evolutionary framework has triggered a considerable amount 
of research ([20]-[26]). 

There are several primary components in MOEA/D, e.g., 
weight vector generation, neighbor selection, subproblem se-
lection, evolutionary operators and population update. These 
components are frequently studied and have been enhanced by 
many MOEA/D variants. Regarding the weight vector genera-
tion, UMOEA/D [27] and MOEA/D-UDM [28] were proposed 
to produce the weight vectors with uniform distribution and an 
arbitrary number of weight vectors can be generated to fit the 
population size. However, as pointed out in [29], the uniformly 
distributed weight vectors cannot guarantee to produce 
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solutions with a uniform distribution. Thus, an evolutionary 
search strategy using uniformly distributed directions was ac-
cordingly proposed to solve the above problem [29]. Moreover, 
to fit the geometrical information of the PF, two adaptive con-
trol strategies for generating weight vectors were designed in 
[30] and [31], where the number of weight vectors is dynami-
cally adjusted. For the neighbor selection mechanism, due to 
the significant impact of the neighborhood sizes (NSs) on 
MOEA/D, an adaptive selection strategy was presented in ENS-
MOEA/D [32] to adaptively choose the preferred value of NSs 
based on the former successful experience. This way, different 
MOPs can be better solved using certain setting of NSs. On the 
subproblem selection, this can be modeled as a resource alloca-
tion (RA) strategy to assign computational resources for the 
subproblems. A dynamic RA (DRA) strategy was designed in 
MOEA/D-DRA [33]. This approach computes a utility function 
for each subproblem based on the improvement of the aggre-
gated function values during the last evolutionary period, and 
then dynamically selects the subproblems for evolution based 
on this utility function. A generalized RA (GRA) strategy was 
further designed in MOEA/D-GRA [34]. This approach intro-
duces a probability of improvement (PoI) vector for the sub-
problems and then assigns the computational resources accord-
ing to this PoI vector. With respect to the evolutionary opera-
tors, differential evolution (DE) was introduced in MOEA/D-
DE [35] to substitute simulated binary crossover. This way, the 
exploration capability of MOEA/D-DE is significantly en-
hanced, especially in solving some complicated MOPs with 
variable dependences. Four DE search strategies were further 
merged in MOEA/D-FRRMAB [36] and a bandit-based adap-
tive operator selection strategy was designed to determine the 
application rates of different DE strategies on an online manner. 
Similarly, three DE strategies were also adopted in ADEMO/D 
[37] and four DE composite operator pools were used in 
MOEA/D-CDE [38], attempting to adaptively select the pre-
ferred DE operators according to the quality of historically 
found solutions. At last, considering the population update in 
MOEA/D, a stable matching (STM) model was reported in 
MOEA/D-STM [39] to match the subproblems and the solu-
tions. It is the first generational version of MOEA/D and it also 
constitutes the first attempt to incorporate matching theory (a 
concept from economics) into the design of MOEAs. This ap-
proach struggles to balance the convergence and the population 
diversity during the evolutionary process. More recently, an in-
ter-relationship (IR) model was built in MOEA/D-IR [40] based 
on the mutual-preferences of the subproblems and the solutions. 
Essentially, this IR model is a diversity first and convergence 
second strategy, which is different from the STM model that 
tries to maintain the balance of convergence and diversity. In 
[41], the replacement neighborhood size was also shown to be 
critical for population update, and an approach for dynamically 
adjusting this size was presented. Thus, it can spend much effort 
in maintaining the population diversity at the early stages of the 
search process and in speeding up convergence at the later 
phases of the search. Moreover, a dominance-based selection 

approach was further studied to be combined with a decompo-
sition-based approach in MOEA/DD [42]. This approach aims 
to balance the convergence and the diversity when solving 
many-objective optimization problems. A systematic approach 
was proposed to generate widely spread weight vectors for a 
high-dimensional objective space and a mating restriction 
scheme was designed to fully exploit the mating parents chosen 
from the neighboring subregions. 

This paper mainly concentrates on the subproblem selection 
scheme and designs a diversity-enhanced RA strategy for 
MOEA/D. As mentioned above, the RA strategies for MOEA/D 
have already been studied in MOEA/D-DRA and MOEA/D-
GRA; however, they are completely dependent on the relative 
improvement of aggregated function values when computing 
the utility function in MOEA/D-DRA and the PoI vector in 
MOEA/D-GRA. These approaches only exploit the conver-
gence status to allocate the computational resources for the sub-
problems. In our opinion, besides the convergence status, the 
diversity among the subproblems is also an important indicator 
to design an effective and efficient RA strategy [43]-[46]. For 
example, in some cases, the subproblems surrounded with nu-
merous solutions should not be assigned too many computa-
tional resources, even though they may show significant im-
provement rates on aggregated function values. Therefore, an 
improved (diversity-enhanced) RA (IRA) strategy is proposed 
to consider both convergence (relative improvement on aggre-
gated function values) and diversity (the solution density 
around the subproblem) of each subproblem. This approach can 
reasonably balance the convergence and the diversity for each 
subproblem when running the RA strategy. After embedding 
this IRA strategy into the framework of MOEA/D, a novel 
MOEA/D variant named MOEA/D-IRA is presented. Some 
complicated test MOPs are used to test the performance of 
MOEA/D-IRA, and the experimental results indicate that 
MOEA/D-IRA outperforms MOEA/D-DE [35], two MOEA/D 
variants with an RA strategy (MOEA/D-DRA [33] and 
MOEA/D-GRA [34]), and one recently proposed MOEA/D 
variant (MOEA/D-IR [40]). 

The rest of this paper is organized as follows. In Section II, 
we introduce some background knowledge including the de-
composition approach of MOEA/D and the two RA strategies 
used in MOEA/D-DRA and MOEA/D-GRA. The details of our 
proposed algorithm MOEA/D-IRA are described in Section III, 
where our IRA strategy is introduced. All the experimental 
studies are presented in Section IV, including the parameters 
settings of the compared algorithms, the comparison of the re-
sults of our algorithm with respect to those of several MOEA/D 
variants, and the parameter sensitivity analysis in our IRA strat-
egy. Finally, the paper is concluded in Section V with some fu-
ture research topics. 

II. BACKGROUND 

A. Decomposition approach 

In MOEA/D, a decomposition approach is used to transform 
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an MOP into a number of single-objective optimization sub-
problems and then they can be optimized collaboratively to at-
tain the entire PF. Several decomposition approaches are com-
monly applied in many MOEA/D variants, such as the weighted 
sum approach, the Tchebycheff approach and the boundary in-
tersection method [16]. In this paper, we use the Tchebycheff 
approach to construct the aggregated functions, since this 
scheme is used in many MOEA/D variants [32], [33], [36]. The 
Tchebycheff approach can be defined as follows. 

* *

1
min ( | , ) max{| ( ) | / }tch

i i ix i m
g x z f x z 

  
               (2) 

where 1 ( , ..., ) m   is the weight vector (also the direction 
vector) with 0 i  ( {1,..., })i m and 1 1m

ii   . In practice, 

i is set to a very small number (e.g., 10-6), in case =0i . 
* * *

1{ ,..., }mz z z  is the ideal point with * {m }( )in |i i xz f x   
for each 1,...,i m . For a solution *x  in PF of (1), there exists 
a weight vector   that satisfies that *x  is also the optimal so-
lution of the subproblem in (2), such that, using a set of uni-
formly distributed weight vectors, the optimal solutions for (2) 
can compose a number of Pareto-optimal solutions for (1). 

B. Resource allocation strategies for MOEA/D 

In the original MOEA/D [16], all the subproblems are treated 
equally and assigned with the same amounts of computational 
resources. This equal assignment strategy is not suitable for all 
kinds of MOPs, as the subproblems decomposed from various 
MOPs may have different difficulties. The RA strategy in 
MOEA/D can alleviate the above problem, e.g., MOEA/D- 
DRA [33] and MOEA/D-GRA [34] were designed following 
this direction. They are respectively introduced below. 
1) MOEA/D-DRA 

A dynamic RA strategy was designed in MOEA/D-DRA 
[33], which assigns the computational resources according to 
the relative improvement of the aggregated function values for 
each subproblem. In this approach, the subproblems with high 
improvement rates in the previous search phase will be allo-
cated with more computational resources, as this indicates that 
these subproblems can be easily enhanced and can be further 
optimized. Otherwise, subproblems which are found to have 
low improvement rates in the previous search phase, may be 
very hard to improve and, therefore, receive less computational 
resources. To achieve the above purpose, a utility function i  
is computed in MOEA/D-DRA for the i-th subproblem, as fol-
lows. 

1                                          if  0.001

(0.95 0.05 )     otherwise
0.001

i

i i
i




  
  

  

  (3) 

where i  is the relative improvement of the objective function 
value in subproblem i, which is defined as 

   
 

* *

*

| , | ,
 

| ,

tch i i tch i i
t t ti

tch i
t t

g x z g x z

g x z

 







      (4) 

where t is the current generation,   t is the updating period, and
 ( ) tchg  is the decomposition approach as introduced in (2). In 
(4), the utility function i  is updated with the period of   t
generations. i

t tx   is the solution of i-th subproblem before 

  t  generations and i
tx  is the one at current generation t. Ini-

tially, i  is set to 1, and then, if the computed value of i  is 
smaller than 0.001, it indicates that the subproblem is hard to 
be enhanced. Thus, the value of i  will be reduced in order to 
save computational resources. 

To pick a set I of subproblems for evolution, MOEA/D-DRA 
first selects m indexes of the subproblems whose objectives are 
respectively m objectives if  in order to form an initial set I, 
and then other /5N m    subproblems (N is the number of 
weight vectors) are selected into I by using 10-tournament se-
lection based on i . 
2) MOEA/D-GRA 

Following the work of MOEA/D-DRA, a generalized RA 
strategy was designed in MOEA/D-GRA [34]. In this approach, 
a PoI vector is maintained and each subproblem is uniquely as-
sociated with a PoI element. A larger value of PoI indicates a 
higher probability that the corresponding subproblem will be 
selected to be further improved. That is to say, at each genera-
tion, the subproblems are selected using the probabilities in this 
PoI vector. This way, the computational resources can be as-
signed to the subproblems with high PoI values. The PoI vector 
is updated as follows. 

1, ,
ma }x {

i
i

j N

j
p




 






        (5) 

where 1,...,i N , i  is defined in (4), and   is a small value 
to avoid the numerator or denominator to be zero. It is worth 
noting that once none of the subproblems can be further im-
proved during the previous   t  generation, i.e., max{ } 0 j 
( 1,..., )j N , this PoI vector will be re-initialized with 1ip   
for 1,...,i N , so that all the subproblems will have an equal 
probability of being selected for being evolved. 

In MOEA/D-GRA, when selecting the subproblems for evo-
lution, uniformly distributed random values in the range [0, 1] 
are generated to compare with the probabilities in the PoI vec-
tor. That is to say, if the probability ip  in the PoI vector is 
larger than the uniformly distributed random number in [0, 1], 
the corresponding subproblem i will be selected for evolution 
at this generation. During the evolution, this PoI vector is up-
dated with a period of   t  generations using (5). 

C. A short discussion of MOEA/D-DRA and MOEA/D-GRA  

The RA strategies in MOEA/D-DRA and MOEA/D-GRA 
were all designed based on the relative improvement i  of the 
aggregated function for each subproblem. The main difference 
between MOEA/D-DRA and MOEA/D-GRA is the formula to 
estimate the difficulties of the subproblems, i.e. i  used in 
MOEA/D-DRA and ip  used in MOEA/D-GRA. In MOEA/D- 
DRA, a set of subproblems is selected for evolution according 
to their utility functions i  at each generation. This kind of se-
lection in MOEA/D-DRA can also be realized in MOEA/D- 
GRA by simply setting 1ip   or 0ip  . Therefore, MOEA/D 
-GRA can be seen as an extension of MOEA/D-DRA. 

It was experimentally validated that the relative improve-
ment on the aggregated function values is an effective and effi-
cient indicator to dynamically assign the computational 
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resources for the subproblems [34]. However, the utility func-
tions used in DRA and GRA were naturally designed only de-
pending on the convergence aspect. This may lead to the case 
that some subproblems are assigned with too many computa-
tional resources when they are surrounded by numerous solu-
tions. Therefore, it is more reasonable to also consider the as-
signment of computational resources from another aspect (i.e., 
diversity), especially on some complicated problems. Thus, an 
improved (diversity-enhanced) RA strategy is designed in this 
paper, which takes into account both convergence and diversity 
of each subproblem. This way, computational resources can be 
more reasonably assigned in MOEA/D. The details of our IRA 
strategy will be described next. 

III. THE PROPOSED MOEA/D-IRA 

In this section, the details of MOEA/D-IRA are introduced. 
First, the IRA strategy is presented and then the pseudo-code of 
MOEA/D-IRA is also provided to facilitate its implementation. 

A. Diversity-enhanced resource allocation strategy 

The allocation of computational resources in MOEA/D is an 
important issue. Although MOEA/D-DRA and MOEA/D-GRA 
have already been designed to alleviate the above problem, they 
only adopt the relative improvement of aggregated function val-
ues in (4) to dynamically assign the computational resources to 
the subproblems. Essentially, these two strategies only consider 
the convergence ability and ignore the distribution of solutions 
among the subproblems. In some cases, the subproblems may 
be surrounded with numerous solutions due to an uneven distri-
bution in objective space, which often happens at the early 
stages of the search. In Fig.1, the intermediate populations ob-
tained by MOEA/D-GRA at the 10th generation are plotted 
with a population size of 300 when solving complex test prob-
lems, such as UF3 [47] and F2 [35]. As many solutions were 
located in the central area of the plots, most of them were 
evolved to further improve the subproblems in this area. This 
search behavior improves these subproblems quickly and thus 
assigns large amounts of computational resources to them using 
the GRA approach, which may significantly lower the popula-
tion diversity. For such cases, it is more reasonable to consider 
the diversity also as an essential indicator in the RA strategy. It 
is worth mentioning that our IRA strategy is composed by two 
parts; one is the convergence indicator using the relative im-
provement on aggregated function values, and the other is the 
diversity indicator based on the number of solutions around the 
subproblems. This way, the IRA strategy would like to assign 
more computational resources to the subproblems surrounded 

with less solutions, which helps to enhance these subproblems. 
On the other hand, as the improvement of subproblems under 
the framework of MOEA/D is mainly dependent on the infor-
mation of neighboring subproblems, by assigning more compu-
tational resources to the subproblems with low solution density, 
their enhancement will in turn facilitate the better solving of 
other subproblems. 

Inspired by [40], the solution density (sd) around each sub-
problem is adopted here to estimate the diversity circumstance 
of each subproblem. Some well-known MOEAs, such as 
MOEA/DD [42] and NSGA-III [48], also adopt the similar so-
lution association method to maintain population diversity. As 
shown in Fig. 2, each subregion i  is associated with the di-
rection vector i  of a subproblem i. The solution x belongs to 
the subregion i  only when the direction vector i  is closest 
to the solution among all the direction vectors based on the per-
pendicular distance in (6).  

( )
( , ) ( )

T

T

F x
d x F x

 
 


        (6) 

where ( )F x  is the normalized objective vector of x, and its 
normalized objectives ( )kf x  ( 1,2,...,k m , and m is the total 
number of objectives) of x are obtained using: 

( ) min
( )=

max min
k i k

k i
k k

f p f
f p

f f




       (7) 

where maxkf and minkf  are, respectively, the maximum and 
minimum values of the k-th objective found in the population. 
Then, the solution density isd  of subproblem i is the number of 
solutions in subregion i . For example, in Fig. 2, the direction 
vector closest to the solutions 2x , 6x  and 7x  is 3 , thus they 
belong to the subregion 3  and the solution density of sub-
problem 3 is 3, i.e., 3 3sd  . By integrating the relative im-
provement on aggregated function value and the solution den-
sity on each subproblem, our IRA strategy is defined in (8). 

     
1,2,..., 1,2,...,

 1 1
max max

i i
i

j N j N

j j

sd
p

sd


 


 

       



   

 

 (8) 

where 501.0 10    is a small value to guarantee a valid divi-
sion, i  is the relative improvement on aggregated function 
value as defined in (4), isd  is the solution density as described 
above, N is the number of direction vectors, and   is a control 
parameter to adjust the weights of the two parts. 

A selection probability ip  ( 1,...,i N ) is associated with 
each subproblem i and then the computational resources are 

 
Fig. 1 Solutions obtained by MOEA/D-GRA at the 10th generation  
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Fig. 2 The solution density of the weight vectors 
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accordingly assigned based on this probability. That is to say, 
once a randomly generated real value in [0, 1] is smaller than 

ip , the subproblem i will be selected for evolution in this gen-
eration. Based on the observation of (8), it is easy to find out 
that our IRA strategy is actually a weighted sum of the conver-
gence and diversity factors, as controlled by the parameter  . 
According to (8), the subproblem, which has been improved 
significantly over the last t  generations and has less sur-
rounding solutions, will be assigned with a higher selection 
probability for evolution in the next generation. Moreover, it is 
noted that when the parameter   is set to 1.0 in (8), our IRA 
strategy degenerates into the GRA strategy in [34]. Therefore, 
our IRA strategy is more comprehensive than the GRA strategy 
and it is an improvement of GRA, as the diversity indicator is 
further exploited for resource allocation. 

The pseudo-code of the update of the selection probability 
using our IRA strategy is given in Algorithm 1. Lines 01-03 in 
Algorithm 1 are used to initialize the solution diversity of each 
subproblem to be zero. Then, for each solution index i in line 
04, the perpendicular distances between the solution ix  and all 
the weight vectors j  ( j=1, 2,…, N) are computed in lines 05-
07. After that, in lines 08-09, the weight vector k  closest to 
the solution ix  is found and the solution density of subproblem 
k is increased by one. This way, the solution density is an inte-
ger not smaller than zero. The relative improvement i  is cal-
culated in line 10 based on the solution set S   before t  gen-
erations and the current solution set S . In line 11, the solution 
set S   is updated by the current solution set S  to compute the 
value i  for the next iteration. At last, line 14 updates the se-
lection probability vector P using both the relative improve-
ment i  and the solution density isd  as defined in (8). 

B. The algorithmic framework of MOEA/D-IRA  

Based on the above IRA strategy, the algorithmic framework 
of MOEA/D-IRA is introduced. The pseudo-code of MOEA/D- 
IRA is given in Algorithm 2. Regarding the other important 
parts of the algorithm, a detailed introduction is given below. 
Initialization 

First, in line 01, an initial population 1 2, , , NS x x x ｛ ｝ is 
randomly sampled in decision space and the saved population 
S   (used for computing the relative improvement after t  gen-
erations) is initialized as S. As the exact ideal point is unknown 
in advance, an approximated point is used instead, which can 
be obtained as the minimum function value of each objective, 
i.e., * mi }( )n{ |i iz f x x S   for all  {1, , }i m  . The weight 
vectors 1 2{ , , , }N      are initialized as a set of evenly dis-
tributed vectors with the constraints 1 1m i

jj    and 0i
j   for 

all {1, , }i N  . 
Second, in line 04, in order to initialize the neighbors of 

weight vector i , the Euclidean distances between i  and 
other weight vectors are computed, and then the neighbors of 

i  are included in a set 1 2( ) { , , , }TB i i i i  , where 1 2, ,...,i i   
Ti  are the T closest weight vectors to i . Based on this proce-

dure, a neighbor rank is also obtained based on the Euclidean 
distances among the weight vectors. The closest neighbor for 
each subproblem is 1i  with the neighbor rank 1, while its far-
thest neighbor is Ti  with the neighbor rank T. Then, a proba-
bility pn is used to select the parent solutions for applying the 
DE operator, as follows. 

 min min

1
1 1

1 0.05 exp 20 0.7

ipn pn pn
i

T

 
 
    
          

(9) 

where minpn  is a minimum probability to ensure that each 

Algorithm 1 UPDATE_P ( S , S  ,  ) 

 
Input: current solution set 1 2{ , ,..., }NS x x x , previous solution set  
S   before t  generations, the weight vectors 1 2{ , ,..., }N     

 Output: selection probability vector P 
01 for i = 1 to N do 
02   0isd  ; 
03 end for 
04 for i = 0 to N do 
05   for j = 0 to N do 
06     calculate the perpendicular distance ( , ) ( , )i jd i j d x   using (6); 
07   end for 
08   find the subproblem k as: 1,...,arg min{ ( , )}j Nk d i j ; 
09   ++ksd ; 
10   calculate the relative improvement i  using (4); 
11   S S  ; 
12 end for 
13 for i = 0 to N do 
14   compute selection probability ip  for each subproblem using (8); 
15 end for 
16 return P 
 

Algorithm 2 MOEA/D-IRA 

01 
Initialize the population 1 2{ , ,..., }NS x x x , the saved population 
S S  , the weight vectors 1 2{ , ,..., }N    , the ideal point 

* 1 2{ , ,..., }Nz z z z ; 
02 set e = 0, gen = 0, A={1, 2,…, N}, 0.5ip   for each i = 1, 2,…, N; 
03 for i = 0 to N do 

04   initialize neighbor 1 2( ) { , ,..., }TB i i i i  where 1 2, ,..., Ti i i    are 
the T closet weight vectors to i ; 

05 end for 
06 for i = 0 to T do 
07   compute the neighbor selection probability ipn  using (9); 
08 end for 
09 while e < max_evaluations do 
10   for i = 0 to N do 
11     if (0,1) irand p  then 
12       if (0,1)rand   then 
13         E = B(i); 
14       else 
15         E = A; 
16       end if 
17       select two solutions 1 2,r rx x  from E based on pn; 
18       generate an offspring iv  using 1 2, ,r r ix x x  by DE; 
19       get a new solution iy  by executing polynomial mutation on iv ; 
20       evaluate the objective values of iy ; 
21       update the ideal point *z ; 
22       update the population using iy ; 
23       e = e + 1; 
24     end if 
25   end for 
26   gen = gen + 1; 
27   if mod( , ) 0gen t   then 
28      update P = UPDATE_P( S , S  , ) using Algorithm 1; 
29   end if 
30 end while 
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neighbor has the opportunity to be selected; T is the neighbor 
size; i  is the neighbor rank based on the Euclidian distance of 
weight vectors. The closer neighbors have more chance to be 
selected using (9), as shown in line 07. Fig. 3 illustrates the dy-
namic change of probability pn with different neighbor ranks. 
It shows that the closer neighbors have higher opportunity to 
participate in the DE evolution than the farther neighbors. 
Reproduction 

Reproduction is an important component to generate an off-
spring population. There are a lot of reproduction operators, 
such as SBX [5] and DE [49], [50]. In lines 18-19 of Algorithm 
2, the DE operator and polynomial-based mutation [3] are used 
to generate new solutions, as shown in (10)-(12). The main pro-
cess of this operation is introduced below. 

At first, a subproblem i is selected for evolution according 
to the selection probability  ip . If this subproblem i is selected 
for evolution, the candidate set E for selecting parent solutions 
is set to the neighbor set B(i) or the entire population based on 
the parameter  . Then, in line 17, when a solution is randomly 
selected from the candidate set E, a random real-value is further 
produced to check if it is larger than the probability p n  in (9). 
If yes, this solution is selected as the parent solution for apply-
ing the DE operator. Only the parents in the neighborhood have 
to be selected with a probability p n , while the parents from 
the entire population are all selected randomly for the sake of 
keeping diversity. With two selected parent solutions and the 
solution for current subproblem i, the DE operator is run to gen-
erate a new solution 1 , ,i i i

nv v v ｛ ｝, as follows. 
1 2( )      if    or  

                               otherwise

i r r
j j j randi

j i
j

x F x x rand CR
v

j j

x

      


  (10) 

where CR and F are two control parameters of the DE operator, 
rand is a random real number uniformly sampled from [0,1], 

randj  is a random integer uniformly selected from [1, n], 1rx  
and 2rx  are two selected solutions from E. After that, polyno-
mial-based mutation is further implemented on iv  to obtain the 
offspring solution iy , as follows. 

                              

( ) 

oth

     

erw

if  

ise

i

i j j j j m

j i
j

v u l ran
y

d

v

p  


 



      (11) 

with 

 

 

1/( 1)1

1/ ( 1)1

2 1 2 1           if  0.5 

  

1 2 2 2     otherwise1

j j

j j

j

j

j

j j

u

v

v
r r r

u l

l
r r

u l









             
   
            

 (12) 

where {1, , }j n  , r is a random real number uniformly sam-
pled from [0,1],   is the distribution index, mp  is the mutation 
probability, jl  and ju  are respectively the lower and upper 
bounds of the j-th decision variable. 
Updating 

After generating a new solution, the population should be 
updated by using a replacement strategy to discard the inferior 
old solution and keep the good new one. In MOEA/D [16] and 
some variants [33], [35], several solutions in the neighbors or 
the entire population can be replaced by the new one. In line 22 
of Algorithm 2, the new solution only replaces the solution of 
the matched subproblem based on its relative improvement. By 
calculating the improvement of this solution to each subprob-
lem, the one with the largest improvement rate will be replaced. 
Compared to the random replacement strategy [16], this strat-
egy is particularly effective when the subproblem that can be 
greatly improved by the new solution is not in its neighbor set 
[34]. On the other hand, in line 28, the selection probability P 
of each subproblem is updated within a period of t  genera-
tions by using Algorithm 1. 

IV. EXPERIMENTS 

In this section, the relevant experimental design for perfor-
mance analysis of the proposed algorithm is provided. The test 
problems, parameters settings and performance measures used 
in our experiments are introduced first. Then, the comparison 
of results of our proposed MOEA/D-IRA with respect to four 
competitive MOEA/D variants (i.e., MOEA/D-DE, MOEA/D- 
IR, MOEA/D-DRA, and MOEA/D-GRA) are provided. More-
over, the contributions of two components (the IRA strategy 
and the mating parent selection strategy using (9)) are experi-
mentally studied in MOEA/D-IRA, and two existing RA strat-
egies (DRA and GRA) are used to compare the IRA strategy, 
under the framework of MOEA/D-IRA. At last, the impact of 
the parameters settings in our algorithm is analyzed and a sug-
gestion for setting the parameter values is also provided based 
on the experiments. 

A. Test problems and parameters settings 

In our experiments, 19 unconstrained test MOPs were used 
to assess the performance of our proposed algorithm, including 
10 UF instances (UF1-UF10) from the CEC2009 MOEA com-
petition [47] and 9 F instances [35], which were widely used to 
test the comprehensive performance of several MOEA/D vari-
ants [33], [34], [36], [39], [40]. The test instances adopted in 
this paper have different features and their PS shapes are very 
complicated. It is noted that UF1-UF7, F1-F5 and F7-F9 are bi-
objective problems, while UF8-UF10 and F6 are three-objec-
tive problems. The number of decision variables is set to 30 for 

 
Fig. 3 The dynamic change of selection probability pn  

with different neighbor ranks. 
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F1-F5, F9 and all UF test problems, and is set to 10 for F6-F8. 
The parameters in all the compared algorithms are set as 

follows. 
MOEA/D-DE: the neighborhood size T = 20, the probability 

to select the neighbors as the candidate set for evolution
 0.9  , and the updated size 2rn  . The other parameters 
are set the same as in [35]. 

MOEA/D-DRA: the neighborhood size T = 0.1N (N is the 
number of weight vectors), the probability to select the neigh-
bors as the candidate set for evolution  0.9  , and the up-
dated size 0.01rn N . The other parameters are set the same as 
in [33]. 

MOEA/D-IR: the neighborhood size T = 20, and the proba-
bility to select the neighbors as the candidate set for evolution 
 0.9  . The other parameters are set the same as in [40]. 

MOEA/D-GRA: the neighborhood size T = 20, the proba-
bility to select the neighbors as the candidate set for evolution 
 0.8  , and the updating period  20t  . The other parame-
ters are set the same as in [34]. 

MOEA/D-IRA: the neighborhood size T = 20, the probabil-
ity to select the neighbors as the candidate set for evolution 
 0.8  , the updating period  20t  , the weight parameter
 0.98   in (8), the minimum selection probability in (9) 

minpn  0.05 . 
The population size N was set to 300 for all bi-objective test 

MOPs and to 600 for all three-objective test MOPs. The 
adopted weight vectors can be downloaded from the website of 
Dr. Ke Li (http://www.cs.bham.ac.uk/~likw/publications.html). 
The maximum allowable number of function evaluations was 
set to 150000 for F1-F5 and F7-F9, and to 300000 for F6 and 
UF1-UF10. All the compared algorithms performed 51 inde-
pendent runs on each test problem. 

B. Performance measures 

In this paper, in order to provide a comprehensive assess-
ment on the performance for the compared MOEA/D variants, 
two widely used performance measures, i.e., inverted genera-
tional distance (IGD) [51] and Hypervolume (HV) [52], were 
adopted. They can simultaneously measure the convergence 
and the population diversity of the obtained approximation set. 
When calculating IGD, 1000 points were uniformly sampled 
from the true PF for the bi-objective test problems, while 10000 
points were sampled for the three-objective ones. A lower value 
of IGD indicates that the obtained set is closer to the true PF 
and more uniformly distributed along the true PF. Regarding 
the computation of HV, it is more appropriate to set the refer-
ence point slightly larger than the worst value of each objective 
on the true PF, so that the convergence and the diversity of the 
approximation set can be well balanced [52]. Thus, the refer-
ence point was set to (2.0,2.0)T  for bi-objective UF and F in-
stances, and set to (2.0,2.0,2.0)T  for the three-objective in-
stances. A larger value of HV indicates a better quality of P for 
approximating the entire true PF. 

C. Performance comparisons with other MOEA/D variants 

In this subsection, the performance of MOEA/D-IRA is 
compared to four MOEA/D variants, i.e., MOEA/D-DE [35], 
MOEA/D-DRA [33], MOEA/D-GRA [34], and MOEA/D-IR 
[40] which is based on the framework of MOEA/D-DRA. Ta-
bles I and II respectively provide the results of all the algorithms 
on UF and F instances after performing 51 independent runs, 
regarding IGD and HV. The best mean result for each problem 
is highlighted in boldface with gray background. In order to 
have a statistically sound conclusion, Wilcoxon’s rank sum test 
with a 5% significance level was conducted to compare the sig-
nificance of difference between the results obtained by 
MOEA/D-IRA and the other algorithms. In Tables I and II, ‘-’, 
‘+’ and ‘~’ respectively denote that the results obtained by the 

TABLE I 
PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING IGD VALUES ON UF AND F TEST INSTANCES 

Test In-
stance 

MOEA/D-DE MOEA/D-IR MOEA/D-DRA MOEA/D-GRA MOEA/D-IRA 

UF1 1.92E-03(1.77E-04)(-) 2.08E-03(2.04E-04)(-) 
2.96E-03(5.92E-

04)(-) 
1.79E-03(1.10E-04)(-) 

1.57E-03(6.67E-
05) 

UF2 6.54E-03(1.91E-03)(-) 5.17E-03(1.80E-03)(-) 
7.57E-03(2.29E-

03)(-) 
4.44E-03(1.91E-03)(-) 

2.66E-03(4.36E-
04) 

UF3 1.08E-02(1.21E-02)(-) 5.52E-03(4.45E-03)(-) 
3.48E-02(3.68E-

02)(-) 
2.94E-03(1.96E-

03)(+) 
3.28E-03(1.76E-
03) 

UF4 6.14E-02(3.98E-03)(-) 5.82E-02(3.62E-03)(-) 
6.29E-02(4.95E-

03)(-) 
5.45E-02(3.59E-

03)(~) 
5.35E-02(3.33E-
03) 

UF5 3.00E-01(8.87E-02)(-) 2.83E-01(5.90E-02)(-) 
3.27E-01(1.00E-

01)(-) 
2.40E-01(7.57E-

02)(~) 
2.27E-01(4.20E-
02) 

UF6 2.46E-01(2.21E-01)(-) 1.51E-01(9.20E-02)(-) 
2.60E-01(2.22E-

01)(-) 
1.56E-01(1.66E-01)(-) 

8.01E-02(3.00E-
02) 

UF7 2.64E-03(4.22E-04)(-) 3.11E-03(2.41E-03)(-) 
3.95E-03(4.00E-

03)(-) 
2.07E-03(1.38E-04)(-) 

1.71E-03(1.10E-
04) 

UF8 5.98E-02(7.12E-03)(-) 
3.98E-02(1.04E-

02)(+) 
5.65E-02(1.60E-

02)(-) 
6.33E-02(1.21E-02)(-) 

4.86E-02(1.51E-
02) 

UF9 5.78E-02(3.71E-02)(-) 5.31E-02(4.52E-02)(-) 
1.02E-01(5.31E-

02)(-) 
4.10E-02(3.44E-02)(-) 

3.22E-02(2.37E-
02) 

UF10 4.77E-01(5.06E-02)(-) 4.68E-01(7.24E-02)(-) 
4.25E-01(8.69E-

02)(-) 
5.67E-01(7.83E-02)(-) 

3.69E-01(5.71E-
02) 

F1 1.36E-03(2.83E-05)(-) 1.38E-03(2.18E-05)(-) 
1.80E-03(1.58E-

04)(-) 
1.36E-03(3.19E-05)(-) 

1.34E-03(1.93E-
05) 
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corresponding algorithm are worse than, better than or similar 
to those of MOEA/D-IRA. 

As observed from Table I, MOEA/D-IRA is found to be ad-
vantageous when compared to its competitors with respect to 
IGD. Among the 19 test instances, MOEA/D-IRA is able to per-
form best on 16 test problems, while the other compared algo-
rithms could only obtain the best results on at most 2 test prob-
lems. The comparisons of MOEA/D-IRA with other algorithms 
are summarized in the last row of Table I, where “-/~/+” gives 
the total number of test problems in which MOEA/D-IRA per-
forms better than, similarly to, and worse than the correspond-
ing algorithm. Considering the comparisons with MOEA/D-
DE, MOEA/D-IR and MOEA/D-DRA, MOEA/D- IRA has 
shown an absolute advantage, as it outperforms them on at least 
17 test problems; whereas, MOEA/D-IRA only performs worse 
than MOEA/D-IR on UF8 and F8, and worse than MOEA/D-
DE on F8, as revealed by the Wilcoxon’s rank sum test. When 
compared to MOEA/D-GRA, MOEA/D-IRA performs better 
on 14 test problems and obtains statistically similar results on 3 
test problems as indicated by Wilcoxon’s rank sum test, and it 
is outperformed only on UF3 and F8.  

Therefore, when considering all the test problems adopted, 
it is reasonable to draw a conclusion that our algorithm presents 
a superior performance over MOEA/D-DE, MOEA/D-IR, 
MOEA/D-DRA, and MOEA/D-GRA with respect to IGD. Such 
advantages of MOEA/D-IRA are mainly brought by the IRA 
strategy combined with the convergence and diversity indica-
tors in (8). 

Table II further lists the experimental results of all the com-
pared algorithms with respect to HV. As observed from Table 
II, similar conclusions are drawn. First, MOEA/D-IRA outper-
forms others as it performs best on most of the test problems 
adopted. MOEA/D-IRA obtains the best results on 15 out of 19 
test problems, while MOEA/D-IR and MOEA/D- GRA only 
achieve the best results on 2 test problems. Second, MOEA/D-

IRA performs better on most cases when respectively compared 
to MOEA/D-DE, MOEA/D-IR, MOEA/D- DRA, and 
MOEA/D-GRA. Only MOEA/D-GRA outperforms MOEA/D-
IRA on UF3 and F8, while the other competitors cannot surpass 
MOEA/D-IRA on any test problem. Besides that, MOEA/D-
IRA obtains statistically similar results to MOEA/D-DE on F8, 
to MOEA/D-IR on UF8 and F1, to MOEA/D-DRA on F7, and 
to MOEA/D-GRA on UF4. As summarized in the last row of 
Table II, our algorithm performs better than or similarly to 
MOEA/D-DE, MOEA/D-IR, MOEA/D-DRA, and MOEA/D-
GRA on 19, 19, 19, and 17 out of 19 test problems. Therefore, 
it is further confirmed by using HV that our algorithm shows 
advantages when tackling the UF and F test problems.  

In order to have a deeper understanding about the perfor-
mance of our algorithm, Figs. 4-6 provide the plots of the ap-
proximation set obtained by MOEA/D-DE, MOEA/D-IR, 
MOEA/D-DRA, MOEA/D-GRA, and MOEA/D-IRA on UF2, 
UF9 and F5 respectively, in which the true PFs are also illus-
trated for comparison. These plotted solutions were obtained 
from one run with the median IGD value from 51 runs. As ob-
served from Fig. 4, MOEA/D-DE, MOEA/D-IR, MOEA/D- 
DRA, and MOEA/D-GRA fail to find a set of uniformly dis-
tributed solutions to cover the entire true PF of UF2, as they 
miss some Pareto-optimal solutions at one end of the true PF. 
MOEA/D-IRA performs much better as it smoothly covers the 
entire true PF of UF2. Regarding UF9 in Fig. 5, the approxima-
tion set obtained by MOEA/D-IRA can also evenly approxi-
mate the true PF, while MOEA/D-DE, MOEA/D-IR, 
MOEA/D-DRA and MOEA/D-GRA find some extreme solu-
tions far away from the true PF. In Fig. 6, MOEA/D-IRA also 
provides more evenly distributed solutions, while the other 
competitors fail to find some Pareto-optimal solutions on some 
parts of the true PF. From these observations, it is clear that the 
final solution sets found by MOEA/D-IRA are closer to the true 
PFs and are more uniformly distributed along the true PFs when 

TABLE II 
PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING HV VALUES ON UF AND F TEST INSTANCES 

Test Instance MOEA/D-DE MOEA/D-IR MOEA/D-DRA MOEA/D-GRA MOEA/D-IRA 
UF1 3.6563(2.99E-03)(-) 3.6540(3.54E-03)(-) 3.6517(5.90E-03)(-) 3.6590(1.31E-03)(-) 3.6614 (9.98E-04) 
UF2 3.6434(1.57E-02)(-) 3.6438(2.06E-02)(-) 3.6406(1.27E-02)(-) 3.6461(1.76E-02)(-) 3.6580 (5.04E-03) 
UF3 3.6216(6.52E-02)(-) 3.6535(1.35E-02)(-) 3.5348(1.50E-01)(-) 3.6611(3.38E-03)(+) 3.6577 (8.63E-03) 
UF4 3.1491(1.80E-02)(-) 3.0984(8.73E-02)(-) 3.1360(2.52E-02)(-) 3.1766(1.48E-02)(~) 3.1793 (1.48E-02) 
UF5 2.6191(2.30E-01)(-) 2.5578(3.23E-01)(-) 2.4826(2.48E-01)(-) 2.9125(1.71E-01)(-) 2.9594 (1.31E-01) 
UF6 2.8021(3.82E-01)(-) 2.8103(3.47E-01)(-) 2.7303(3.94E-01)(-) 2.9943(3.55E-01)(-) 3.1647 (7.15E-02) 
UF7 3.4832(8.32E-03)(-) 3.4768(3.31E-02)(-) 3.4759(4.38E-02)(-) 3.4911(3.26E-03)(-) 3.4946 (2.07E-03) 
UF8 7.3175(1.92E-02)(-) 7.3857(2.65E-02)(~) 7.3415(2.42E-02)(-) 7.3362(1.86E-02)(-) 7.3806 (2.60E-02) 
UF9 7.5037(1.58E-01)(-) 7.6110(2.10E-01)(-) 7.3680(2.44E-01)(-) 7.6495(1.53E-01)(-) 7.7207 (1.05E-01) 

UF10 3.4414(2.34E-01)(-) 3.5588(4.96E-01)(-) 3.6822(3.26E-01)(-) 3.5668(3.35E-01)(-) 4.6251 (3.84E-01) 
F1 3.6634(3.85E-04)(-) 3.6638(2.64E-04)(~) 3.6611(1.57E-03)(-) 3.6636(3.82E-04)(-) 3.6638 (2.96E-04) 
F2 3.6455(1.02E-02)(-) 3.6459(9.69E-03)(-) 3.6356(5.85E-02)(-) 3.6536(3.56E-03)(-) 3.6589 (1.39E-03) 
F3 3.6202(6.97E-02)(-) 3.6482(1.99E-02)(-) 3.5735(1.39E-01)(-) 3.6537(9.48E-03)(-) 3.6591 (8.71E-03) 
F4 3.6533(7.38E-03)(-) 3.6602(1.14E-03)(-) 3.6451(4.78E-02)(-) 3.6593(1.65E-03)(-) 3.6614 (1.01E-03) 
F5 3.6273(4.29E-02)(-) 3.6312(2.46E-02)(-) 3.6243(4.98E-02)(-) 3.6396(1.76E-02)(-) 3.6541 (4.89E-03) 
F6 7.4221(2.37E-03)(-) 7.4432(9.92E-04)(-) 7.4226(2.71E-03)(-) 7.4255(1.49E-03)(-) 7.4452 (5.03E-04) 
F7 3.6187(4.72E-02)(-) 3.6431(8.05E-03)(-) 3.6468(7.41E-03)(~) 3.6458(7.20E-03)(-) 3.6496 (7.78E-03) 
F8 3.4354(8.49E-02)(~) 3.1821(2.29E-01)(-) 3.3456(1.17E-01)(-) 3.5267(5.32E-02)(+) 3.4319 (7.72E-02) 
F9 3.3133(1.18E-02)(-) 3.3134(2.03E-02)(-) 3.3148(8.07E-03)(-) 3.3239(1.45E-03)(-) 3.3265 (1.22E-03) 

Total 18-/1~ 17-/2~ 18-/1~ 16-/1~/2+  
+, - and ~ denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-IRA respec-

tively by Wilcoxon’s rank sum test with  0.05  . 
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compared to the other competitors. Moreover, to provide an 
overview of the evolutionary progress for all the competitors, 
their convergence curves regarding the mean IGD values on all 
the UF problems are provided in Fig. S.1 of the supplementary 
file. This information is not included in the paper due to page 
limitations. From these plots, MOEA/D-IRA outperforms the 
competitors on most cases, and is able to gradually reduce the 
IGD values and get closer to the true PF on most of UF prob-
lems as the search progresses.  
 To further study the performance of MOEA/D-IRA under a 
limited computational load, one more experiment was con-
ducted with 20% of maximum function evaluations (i.e., 30000 
for F1-F5 and F7-F9, and to 60000 for F6 and UF1-UF10) for 
all the compared algorithms. Due to page limitations, the IGD 
and HV results are provided in Tables S.I and S.II of the sup-
plementary file. As the final solutions in this case do not fully 
converge to the true PFs, the advantages of MOEA/D-IRA over 
the other competitors are not so obvious as shown in Tables I 
and II. This is because all the subproblems still have the poten-
tial to be further enhanced and an equal-probability selection 
for them can also improve their aggregated function values. 
However, our IRA approach still works effectively under this 
limited computational load, as it performs better than all the 
competitors from the one-by-one comparisons shown in the last 
row of Tables S.I and S.II. 

The above comparisons clearly show us that MOEA/D-IRA 
is a more effective algorithm to solve some complicated test 
problems when compared to MOEA/D-DE, MOEA/D-IR, 
MOEA/D-DRA and MOEA/D-GRA. The outstanding perfor-
mance of MOEA/D-IRA is mainly due to the utilization of a 
diversity-enhanced RA strategy, which helps to assign the com-
putational resources more reasonably by considering both con-
vergence and diversity for each subproblem.  

D. Comparisons with different MOEA/D-IRA variants 

In order to analyze the contributions of the two components 
(i.e., the IRA strategy and the mating parent selection strategy) 
proposed in MOEA/D-IRA, two variants of MOEA/D-IRA 
(i.e., Variant-I and Variant-II) are used for performance com-
parison. Variant-I is implemented by removing the mating par-
ent selection strategy from MOEA/D-IRA and only uses the 
original random selection of the mating parents. Variant-II is 
designed by removing the IRA strategy from MOEA/D-IRA 
and all the subproblems are equally evolved in one generation. 
All the mean IGD and HV results of Variant-I, Variant-II and 
MOEA/D-IRA from 51 runs are respectively listed in Table III. 

From the IGD results in Table III, it is clear that MOEA/D- 
IRA shows a superior performance when compared to both Var-
iant-I and Variant-II. Most of the best IGD values are obtained 
by MOEA/D-IRA. Variant-I is best on 4 test problems, while 
Variant-II cannot perform best on any test problem. These 

  
Fig. 4 Comparison of approximation sets on UF2 

 
Fig. 5 Comparison of approximation sets on UF9 

  
Fig. 6 Comparison of approximation sets on F5 
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results indicate that the two strategies are all effective to en-
hance the performance of MOEA/D-IRA on most of the test 
problems adopted. More specifically, MOEA/D-IRA outper-
forms Variant-I and Variant-II on 10 and 16 out of 19 test prob-
lems, respectively. The Wilcoxon’s rank sum test also shows 
that MOEA/D-IRA performs similarly to Variant-I and Variant-
II on 7 and 3 test problems, respectively. Only Variant-I is able 
to outperform MOEA/D-IRA on 2 test problems (i.e., UF3 and 
F6). Therefore, the effectiveness of the two above strategies is 
validated using IGD. 

Regarding the HV results in Table III, MOEA/D-IRA per-
forms best on 13 out of 19 test problems, while Variant-I is best 
on the rest 6 test problems. As revealed by the Wilcoxon’s rank 
sum test, MOEA/D-IRA obtains statistically similar results to 

Variant-I and Variant-II on 9 and 3 test problems, and outper-
forms Variant-I and Variant-II on 8 and 16 test problems, re-
spectively. That is to say, MOEA/D-IRA performs better than 
or similarly to Variant-I and Variant-II on 17 and 19 out of 19 
test problems. Thus, the two proposed strategies still show their 
usefulness using HV, as they improve performance on about 
half of the test problems, but only deteriorates it on 2 test prob-
lems. Therefore, the advantage of using these two strategies in 
MOEA/D-IRA is further confirmed by HV. 

E. Comparisons of different RA strategies 

To further analyze the advantages of different RA strategies, 
such as DRA, GRA and IRA, some experiments were con-
ducted here. MOEA/D-IRA has a different evolutionary 

TABLE III 
PERFORMANCE COMPARISON OF DIFFERENT MOEA/D-IRA VARIANTS USING IGD AND HV VALUES ON UF AND F TEST INSTANCES 

 IGD HV 
Instance Variant-I Variant-II MOEA/D-IRA Variant-I Variant-II MOEA/D-IRA 

UF1 1.71E-03(1.03E-04) (-) 1.60E-03(8.27E-05) (-) 1.57E-03(6.67E-05) 3.6608(8.35E-04) (-) 3.6612(7.95E-04) (~) 3.6614 (9.98E-04) 
UF2 3.44E-03(6.81E-04) (-) 5.26E-03(1.40E-03) (-) 2.66E-03(4.36E-04) 3.6547(7.35E-03) (-) 3.6504(9.94E-03) (-) 3.6580 (5.04E-03) 
UF3 2.55E-03(1.47E-03) (+) 5.78E-03(4.13E-03) (-) 3.28E-03(1.76E-03) 3.6603(6.58E-03) (+) 3.6548(8.70E-03) (-) 3.6577 (8.63E-03) 
UF4 5.51E-02(3.30E-03) (-) 5.44E-02(3.98E-03) (~) 5.35E-02(3.33E-03) 3.1773(1.39E-02) (~) 3.1783(1.49E-02) (~) 3.1793 (1.48E-02) 
UF5 2.32E-01(2.87E-02) (~) 2.75E-01(7.15E-02) (-) 2.27E-01(4.20E-02) 2.9600(9.04E-02) (~) 2.7862(1.72E-01) (-) 2.9594 (1.31E-01) 
UF6 1.17E-01(1.36E-01) (~) 8.26E-02(4.14E-02) (~) 8.01E-02(3.00E-02) 3.0889(2.91E-01) (~) 3.1578(1.27E-01) (~) 3.1647 (7.15E-02) 
UF7 1.91E-03(1.14E-04) (-) 1.88E-03(1.21E-04) (-) 1.71E-03(1.10E-04) 3.4936(2.61E-03) (-) 3.4939(1.99E-03) (-) 3.4946 (2.07E-03) 
UF8 5.47E-02(2.03E-02) (~) 5.89E-02(1.35E-02) (-) 4.86E-02(1.51E-02) 7.3677(3.58E-02) (~) 7.3509(2.37E-02) (-) 7.3806 (2.60E-02) 
UF9 4.98E-02(4.97E-02) (~) 4.76E-02(3.50E-02) (-) 3.22E-02(2.37E-02) 7.6435(2.13E-01) (~) 7.6291(1.51E-01) (-) 7.7207 (1.05E-01) 

UF10 4.70E-01(8.87E-02) (-) 4.56E-01(8.82E-02) (-) 3.69E-01(5.71E-02) 4.0771(5.35E-01) (-) 3.9939(4.56E-01) (-) 4.6251 (3.84E-01) 
F1 1.34E-03(2.47E-05) (~) 1.36E-03(2.57E-05) (-) 1.34E-03(1.93E-05) 3.6638(3.66E-04) (~) 3.6636(3.20E-04) (-) 3.6638 (2.96E-04) 
F2 2.36E-03(1.51E-04) (-) 2.48E-03(3.70E-04) (-) 2.08E-03(1.18E-04) 3.6577(1.25E-03) (-) 3.6576(1.88E-03) (-) 3.6589 (1.39E-03) 
F3 2.19E-03(2.38E-04) (-) 2.59E-03(8.31E-04) (-) 1.99E-03(4.81E-04) 3.6593(3.64E-03) (+) 3.6585(5.96E-03) (-) 3.6591 (8.71E-03) 
F4 2.01E-03(1.23E-04) (-) 3.59E-03(1.60E-03) (-) 1.80E-03(8.15E-05) 3.6608(1.05E-03) (-) 3.6551(7.80E-03) (-) 3.6614 (1.01E-03) 
F5 5.75E-03(9.28E-04) (-) 9.72E-03(2.54E-03) (-) 4.97E-03(1.22E-03) 3.6512(8.00E-03) (-) 3.6430(9.79E-03) (-) 3.6541 (4.89E-03) 
F6 2.19E-02(1.92E-04) (+) 2.20E-02(1.83E-04) (~) 2.20E-02(2.30E-04) 7.4453(4.31E-04) (~) 7.4450(4.81E-04) (-) 7.4452 (5.03E-04) 
F7 1.73E-03(2.09E-04) (~) 7.97E-03(1.17E-02) (-) 1.81E-03(2.47E-04) 3.6502(6.94E-03) (~) 3.5782(1.01E-01) (-) 3.6496 (7.78E-03) 
F8 8.27E-02(5.08E-02) (~) 1.25E-01(3.74E-02) (-) 9.83E-02(4.31E-02) 3.4591(8.18E-02) (~) 3.3740(7.14E-02) (-) 3.4319 (7.72E-02) 
F9 2.28E-03(1.45E-04) (-) 6.40E-03(1.30E-02) (-) 1.99E-03(1.56E-04) 3.3259(9.24E-04) (-) 3.3178(2.64E-02) (-) 3.3265 (1.22E-03) 

Total 10-/7~/2+ 16-/3~  8-/9~/2+ 16-/3~  
   +, - and ~ denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-IRA respectively by 

Wilcoxon’s rank sum test with  0.05  . 

TABLE IV 
PERFORMANCE COMPARISON OF DIFFERENT RA STRATEGIES USING IGD AND HV VALUES ON UF AND F TEST INSTANCES  

 IGD HV 
Instance DRA-I GRA-I MOEA/D-IRA DRA-I GRA-I MOEA/D-IRA 

UF1 1.86E-03(1.49E-04 )(-) 1.56E-03(6.94E-05) (~) 1.57E-03(6.67E-05) 3.6585(2.19E-03)(-) 3.6615(7.87E-04) (~) 3.6614 (9.98E-04) 
UF2 3.69E-03(2.13E-03) (-) 2.82E-03(5.57E-04) (~) 2.66E-03(4.36E-04) 3.6527(1.29E-02)(~) 3.6579(4.65E-03) (~) 3.6580 (5.04E-03) 
UF3 9.52E-03(9.09E-03)(-) 4.08E-03(2.73E-03) (~) 3.28E-03(1.76E-03) 3.6309(4.73E-02)(-) 3.6561(1.14E-02) (~) 3.6577 (8.63E-03) 
UF4 5.72E-02(4.24E-03) (-) 5.40E-02(3.11E-03) (~) 5.35E-02(3.33E-03) 3.1660(1.76E-02)(-) 3.1798(1.38E-02) (~) 3.1793 (1.48E-02) 
UF5 3.06E-01(1.23E-01) (-) 2.47E-01(7.56E-02) (~) 2.27E-01(4.20E-02) 2.5662(3.02E-01)(-) 2.9216(1.78E-01) (~) 2.9594 (1.31E-01) 
UF6 2.30E-01(1.56E-01)(-) 1.10E-01(1.02E-01) (~) 8.01E-02(3.00E-02) 2.7593(3.07E-01)(-) 3.0964(2.11E-01) (-) 3.1647 (7.15E-02) 
UF7 2.79E-03(2.61E-03)(-) 1.75E-03(1.09E-04) (-) 1.71E-03(1.10E-04) 3.4819(3.42E-02)(-) 3.4938(2.60E-03) (~) 3.4946 (2.07E-03) 
UF8 4.60E-02(7.93E-03)(~) 7.26E-02(1.54E-02) (-) 4.86E-02(1.51E-02) 7.3755(1.45E-02)(-) 7.3331(1.91E-02) (-) 7.3806 (2.60E-02) 
UF9 1.06E-01(5.21E-02)(-) 4.57E-02(3.90E-02) (-) 3.22E-02(2.37E-02) 7.3550(2.37E-01)(-) 7.6419(1.66E-01) (-) 7.7207 (1.05E-01) 
UF10 4.06E-01(6.68E-02)(-) 4.67E-01(8.26E-02) (-) 3.69E-01(5.71E-02) 3.6915(5.38E-01)(-) 3.9574(4.56E-01) (-) 4.6251 (3.84E-01) 

F1 1.47E-03(3.32E-05)(-) 1.35E-03(2.41E-05) (~) 1.34E-03(1.93E-05) 3.6637(3.32E-04)(~) 3.6639(2.50E-04) (~) 3.6638 (2.96E-04) 
F2 3.57E-03(5.41E-03)(-) 9.92E-03(1.45E-02) (-) 2.08E-03(1.18E-04) 3.6486(3.21E-02)(-) 3.6280(6.34E-02) (-) 3.6589 (1.39E-03) 
F3 3.80E-03(4.40E-03)(-) 4.33E-03(9.45E-03) (-) 1.99E-03(4.81E-04) 3.6488(3.04E-02)(-) 3.6502(4.30E-02) (-) 3.6591 (8.71E-03) 
F4 1.92E-03(1.35E-04)(-) 2.41E-03(1.09E-04) (-) 1.80E-03(8.15E-05) 3.6602(1.50E-03)(-) 3.6586(1.25E-03) (-) 3.6614 (1.01E-03) 
F5 1.03E-02(1.24E-02)(-) 1.26E-02(4.07E-03) (-) 4.97E-03(1.22E-03) 3.6252(5.64E-02)(-) 3.6364(1.99E-02) (-) 3.6541 (4.89E-03) 
F6 2.81E-02(5.24E-04)(-) 2.90E-02(6.51E-04) (-) 2.20E-02(2.30E-04) 7.4272(1.89E-03)(-) 7.4246(1.66E-03) (-) 7.4452 (5.03E-04) 
F7 2.20E-03(4.56E-04)(-) 1.93E-03(3.67E-04) (~) 1.81E-03(2.47E-04) 3.6400(9.17E-03)(-) 3.6464(1.13E-02) (~) 3.6496 (7.78E-03) 
F8 7.78E-02(5.86E-02)(+) 1.11E-01(4.77E-02) (~) 9.83E-02(4.31E-02) 3.3934(1.50E-01)(~) 3.4037(7.94E-02) (~) 3.4319 (7.72E-02) 
F9 2.86E-03(5.79E-04)(-) 3.47E-03(1.77E-03) (-) 1.99E-03(1.56E-04) 3.3226(2.67E-03)(-) 3.3230(5.44E-03) (-) 3.3265 (1.22E-03) 

Total 17-/1~/1+ 10-/9~  16-/3~ 10-/9~  
+, - and ~ denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-IRA respectively by 

Wilcoxon’s rank sum test with  0.05  . 
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behavior with respect to MOEA/D-DRA and MOEA/D-GRA, 
i.e., the mating parent selection when running DE. So, in order 
to have a fair comparison of these different RA strategies, DRA 
and GRA are also embedded into MOEA/D-IRA to substitute 
our IRA strategy, making two new variants as denoted by DRA-
I and GRA-I. It is noted that, except for the RA strategy, DRA-
I and GRA-I share the same evolutionary procedures as 
MOEA/D-IRA. 

Table IV presents the comparison of results of DRA-I, GRA-
I and MOEA/D-IRA using IGD and HV. Regarding the IGD 
results in Table IV, it is clear that MOEA/D-IRA also presents 
a superior performance over DRA-I and GRA-I. MOEA/D-IRA 
achieves most of the best IGD values, while DRA-I performs 
best on UF8 and F8, and GRA-I only obtains the best perfor-
mance on UF1. This also indicates that our IRA strategy is more 
effective than GRA and DRA, to enhance MOEA/D on tackling 
most of the test MOPs adopted. More specifically, MOEA/D-
IRA outperforms DRA-I and GRA-I on 17 and 10 out of 19 test 
problems, respectively. The Wilcoxon’s rank sum test also in-
dicates that MOEA/D-IRA performs similarly to GRA-I and 
DRA-I on 1 and 9 test problems, respectively. DRA-I only beats 
MOEA/D-IRA on F8. Therefore, the superior performance of 
IRA over DRA and GRA is justified using IGD. As the only 
difference of IRA from GRA and DRA is the extra diversity 
indicator, this validates the statement that the combination of 
convergence and diversity indicators in the RA strategy can be 
more reasonable to assign the computational resources to the 
subproblems.  

Based on the HV results in Table IV, MOEA/D-IRA per-
forms best on 16 out of 19 test problems. GRA-I is best on 3 
test problems, while DRA-I cannot perform best on any test 
problem. As revealed by the Wilcoxon’s rank sum test, 
MOEA/D-IRA obtains statistically similar results to DRA-I and 
GRA-I on 3 and 9 test problems, and outperforms DRA-I and 
GRA-I on 16 and 10 test problems, respectively. That is to say, 
MOEA/D- IRA performs better than or similarly to both DRA-
I and GRA-I on all the 19 test problems. Thus, the proposed 
IRA strategy is shown to be very effective as it improves per-
formance on about half of the test problems, but does not dete-
riorates on any test problem. Therefore, the advantage of our 
proposed IRA is also confirmed by HV. 

F. Parameter sensitivity analysis of our IRA strategy 

In the proposed IRA strategy, the selection of parameter   
will significantly affect the performance of MOEA/D-IRA, as 
it is an important factor to control the weights of the conver-
gence indicator (i.e., the relative improvement of each subprob-
lem) and the diversity indicator (i.e., the solution density around 
each subproblem) when computing the selection probability of 
each subproblem. An appropriate setting of   can properly 
balance the convergence and the diversity, which benefits the 
performance enhancement of our algorithm. 

To study the impact of parameter   in MOEA/D-IRA, we 
adopted different   values (i.e., 0.7, 0.8, 0.9, 0.95, 0.98 and 
1.0) for performance comparison. Since the convergence 

indicator is still the main contributor to distinguish the difficul-
ties of the subproblems while the diversity indicator is only 
used as a complement for enhancement, the values of   were 
set to start from 0.7. The other parameters of MOEA/D-IRA 
were set the same as mentioned in Section IV.A. For each value 
of  , 19 test problems were independently run 51 times. Due 
to page limitations, only the boxplots of the IGD values ob-
tained by six   values on some typical test problems, such as 
UF7, UF8, UF10, F1, F4 and F5, are provided in Fig. 7. 

As observed from Fig. 7, it is found that MOEA/D-IRA is 
sensitive to the setting of  . Generally, the performance of 
MOEA/D-IRA with a large   value is superior to that with a 
small   value. The IGD values are generally reduced when the 
values of  ( 1.0)    are increased. Particularly, when the 
value of   is set to 1.0 (i.e., removing the diversity indicator), 
the optimization performance would obviously deteriorate, as 
its IGD value becomes larger when compared to that obtained 
by a large value of   less than 1.0 (e.g., 0.98 and 0.95). To 
visually show their performance, Figs. 8-9 respectively plot the 
final solutions obtained by MOEA/D-IRA with different values 
of  , in solving F5 and UF8. It is noted that these plotted so-
lutions were obtained from one run with the median IGD value 
from 51 runs. On F5, only MOEA/D-IRA with =0.98  can 
fully approach the true PF, while MOEA/D-IRA with other val-
ues of   may miss some parts of the true PF. Regarding UF8, 
MOEA/D-IRA with different   values may fail to approach 
some regions of the true PF, as UF8 is more difficult and has 
three optimization objectives. However, based on the observa-
tion of the plots, MOEA/D-IRA with =0.98  covers more re-
gions of the true PF on UF8. This also indicates that the diver-
sity indicator plays an important role in MOEA/D-IRA as a sup-
plement for the convergence indicator. Based on the compari-
sons of MOEA/D-IRA with different values of  , it is found 
that a value in the range (0.9, 1.0) is more appropriate for setting 
  in MOEA/D-IRA. This value makes the diversity indicator 
work effectively in most cases without having a significant neg-
ative effect on convergence, so as to properly keep the balance 
between convergence and diversity. 

Fig. 7 Parameter sensitivity studies of   
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G. More discussions of our IRA strategy 

Due to page limitations, further discussions of our IRA 
strategy are provided in the supplementary file of this paper, in 
order to study the effectiveness of our IRA strategy on a gener-
ational version of MOEA/D (i.e., MOEA/D-STM [39]) and on 
solving other types of test problems (i.e., MOP test problems 
[19]). 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes a diversity-enhanced RA strategy for 
decomposition-based MOEAs. The convergence indicator, i.e., 
the relative improvement of aggregated function value, is still 
the main factor in our IRA strategy, while the diversity indica-
tor, i.e., the solutions density around each subproblem, is used 
as a complement to make the resource assignment more reason-
able. This way, more computational resources will be assigned 
to search the sparse area and the subproblems around this region 
will be enhanced. Such enhancement will also help to improve 
the neighboring subproblems as MOEA/D is essentially a co-
evolutionary framework. Based on the combination of the two 
above indicators, the proposed IRA strategy can properly bal-
ance the convergence and the diversity. After assessed on 19 
complicated test MOPs, our algorithm shows advantages over 
four competitive MOEA/D variants, i.e., MOEA/D-DE, 
MOEA/D-IR, MOEA/D-DRA and MOEA/D- GRA, on solving 
most of the test problems adopted. 

Different subproblems decomposed from MOPs may em-
phasize convergence or diversity when allocating the computa-
tional resources. In our future work, an adaptive RA strategy 
will be further studied for MOEA/D algorithms, without setting 
any extra parameters. On the other hand, some adaptive control 
approaches will also be studied in MOEA/D-IRA, such as the 
multiple evolutionary operators that dynamically allocate the 
computational resources to the preferred operator. 
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Fig S.1. Convergence curves regarding the mean IGD values on all the UF problems 
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TABLE S.I 

PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING IGD VALUES UNDER A LIMITED COMPUTATIONAL LOAD 
Test Instance MOEA/D-DE MOEA/D-IR MOEA/D-DRA MOEA/D-GRA MOEA/D-IRA 

UF1 2.95E-02(1.02E-02) (-) 2.51E-02(1.18E-02) (-) 2.25E-02(6.49E-03) (-) 1.14E-02(3.72E-03) (~) 1.30E-02(5.67E-03) 
UF2 2.08E-02(1.35E-02) (-) 1.68E-02(2.86E-03) (-) 2.78E-02(2.30E-02) (-) 1.68E-02(3.33E-03) (-) 1.45E-02(4.50E-03) 
UF3 8.73E-02(3.91E-02) (-) 7.44E-02(1.72E-02) (-) 8.73E-02(3.20E-02) (-) 5.11E-02(2.68E-02) (~) 5.08E-02(2.87E-02) 
UF4 7.58E-02(7.50E-03) (-) 7.07E-02(7.46E-03) (-) 7.93E-02(6.03E-03) (-) 6.83E-02(6.88E-03) (~) 6.51E-02(5.68E-03) 
UF5 7.61E-01(1.27E-01) (-) 7.97E-01(1.30E-01) (-) 7.09E-01(1.33E-01) (-) 6.43E-01(1.19E-01) (-) 5.34E-01(8.98E-02) 
UF6 2.13E-01(1.26E-01) (-) 2.18E-01(9.39E-02) (-) 2.73E-01(1.98E-01) (-) 2.36E-01(9.54E-02) (-) 1.59E-01(8.61E-02) 
UF7 1.66E-02(6.64E-03) (-) 1.38E-02(3.42E-03) (-) 1.37E-02(5.05E-03) (-) 8.28E-03(8.61E-04) (-) 6.74E-03(7.32E-04) 
UF8 1.16E-01(2.18E-02) (-) 8.25E-02(7.14E-03) (+) 8.98E-02(1.25E-02) (+) 1.02E-01(9.35E-03) (-) 9.63E-02(5.68E-03) 
UF9 1.18E-01(3.13E-02) (-) 1.06E-01(3.43E-02) (~) 1.43E-01(3.26E-02) (-) 1.16E-01(4.37E-02) (~) 9.58E-02(3.84E-02) 
UF10 1.26E+00(2.12E-01) (+) 9.88E-01(1.68E-01) (+) 8.12E-01(1.08E-01) (+) 2.39E+00(2.37E-01) (-) 2.09E+00(2.27E-01) 

F1 3.22E-03(3.77E-04) (-) 3.72E-03(4.58E-04) (-) 2.64E-03(1.65E-04) (+) 2.97E-03(3.57E-04) (~) 2.80E-03(3.08E-04) 
F2 6.18E-02(2.02E-02) (-) 6.45E-02(1.14E-02) (-) 6.98E-02(3.22E-02) (-) 5.15E-02(7.32E-03) (~) 5.12E-02(1.26E-02) 
F3 4.94E-02(2.32E-02) (-) 2.87E-02(4.54E-03) (~) 5.17E-02(3.39E-02) (-) 2.98E-02(7.30E-03) (~) 2.79E-02(7.48E-03) 
F4 3.04E-02(8.86E-03) (-) 2.31E-02(3.43E-03) (-) 3.44E-02(7.91E-03) (-) 2.47E-02(7.98E-03) (-) 2.00E-02(3.71E-03) 
F5 2.77E-02(6.34E-03) (~) 2.61E-02(3.86E-03) (~) 3.49E-02(1.63E-02) (-) 2.79E-02(2.54E-03) (-) 2.44E-02(3.46E-03) 
F6 4.75E-02(7.56E-03) (-) 2.64E-02(6.58E-04) (~) 4.05E-02(4.34E-03) (-) 4.41E-02(6.04E-03) (-) 2.63E-02(9.77E-04) 
F7 2.86E-01(1.27E-01) (-) 1.32E-01(8.77E-02) (+) 2.43E-01(1.34E-01) (~) 2.41E-01(8.25E-02) (-) 1.96E-01(5.30E-02) 
F8 2.29E-01(4.38E-02) (~) 1.59E-01(3.08E-02) (+) 2.11E-01(4.77E-02) (~) 2.93E-01(5.29E-02) (-) 2.19E-01(4.29E-02) 
F9 6.44E-02(1.72E-02) (-) 6.68E-02(2.50E-02) (~) 8.52E-02(3.32E-02) (-) 5.59E-02(2.92E-02) (+) 6.34E-02(2.99E-02) 

Total 16-/2~/1+ 10-/5~/4+ 14-/2~/3+ 11-/7~/1+  
+, - and ~ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-

IRA respectively by Wilcoxon’s rank sum test with  0.05  . 

 

 

 

 

 
TABLE S.II 

PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING HV VALUES UNDER A LIMITED COMPUTATIONAL LOAD 
Test Instance MOEA/D-DE MOEA/D-IR MOEA/D-DRA MOEA/D-GRA MOEA/D-IRA 

UF1 3.5786 (5.50E-02) (-) 3.5821 (6.86E-02) (-) 3.5977 (3.01E-02) (-) 3.6371 (6.57E-03) (~) 3.6354(9.69E-03) 
UF2 3.5926 (5.01E-02) (-) 3.6045 (3.25E-02) (-) 3.5682 (8.86E-02) (-) 3.6205 (2.70E-02) (-) 3.6333(1.13E-02) 
UF3 3.3592 (1.76E-01) (-) 3.4103 (7.76E-02) (-) 3.3279 (1.69E-01) (-) 3.5433 (7.81E-02) (~) 3.5134(1.10E-01) 
UF4 3.1086 (2.48E-02) (-) 3.0655 (9.38E-02) (-) 3.1114 (2.11E-02) (-) 3.1425 (1.96E-02) (~) 3.1481(2.15E-02) 
UF5 1.4113 (2.83E-01) (-) 1.3219 (2.83E-01) (-) 1.4929 (2.73E-01) (-) 1.7530 (2.85E-01) (-) 2.0225(2.85E-01) 
UF6 2.8328 (2.92E-01) (-) 2.7139 (3.06E-01) (-) 2.6588 (4.33E-01) (-) 2.8203 (2.34E-01) (-) 3.0017(1.90E-01) 
UF7 3.4372 (5.58E-02) (-) 3.4421 (3.78E-02) (-) 3.4370 (5.60E-02) (-) 3.4772 (4.71E-03) (-) 3.4801(5.00E-03) 
UF8 6.8779 (2.31E-01) (-) 7.1936 (9.71E-02) (-) 7.1321 (1.13E-01) (-) 7.2267 (3.15E-02) (-) 7.2716(1.29E-02) 
UF9 7.1365 (1.15E-01) (-) 7.2744 (1.56E-01) (-) 7.1081 (1.25E-01) (-) 7.2523 (2.04E-01) (-) 7.3768(1.72E-01) 

UF10 0.9822 (3.80E-01) (+) 1.5330 (4.62E-01) (+) 1.9838 (3.12E-01) (+) 0.0003 (1.48E-03) (-) 0.0320(9.18E-02) 
F1 3.6579 (1.54E-03) (-) 3.6539 (3.10E-03) (-) 3.6599 (8.24E-04) (+) 3.6583 (1.28E-03) (~) 3.6589(1.24E-03) 
F2 3.4870 (7.17E-02) (-) 3.3786 (2.99E-01) (-) 3.4576 (1.04E-01) (-) 3.5563 (1.79E-02) (~) 3.5556(3.44E-02) 
F3 3.4728 (1.10E-01) (-) 3.5808 (4.66E-02) (-) 3.4720 (1.21E-01) (-) 3.5838 (5.94E-02) (~) 3.5907(6.06E-02) 
F4 3.5108 (6.08E-02) (-) 3.6027 (2.49E-02) (-) 3.4869 (5.21E-02) (-) 3.6078 (2.07E-02) (-) 3.6228(1.19E-02) 
F5 3.5777 (4.91E-02) (-) 3.5727 (4.29E-02) (-) 3.5396 (8.11E-02) (-) 3.5991 (2.64E-02) (-) 3.6123(2.36E-02) 
F6 7.3750 (1.63E-02) (-) 7.4335 (1.76E-03) (-) 7.3974 (8.23E-03) (-) 7.3800 (1.74E-02) (-) 7.4344(1.69E-03) 
F7 2.7941 (4.80E-01) (-) 3.1756 (3.09E-01) (~) 2.8978 (4.68E-01) (-) 3.0011 (3.15E-01) (-) 3.1932(1.51E-01) 
F8 3.0784 (9.59E-02) (-) 2.8857 (2.06E-01) (-) 3.1694 (1.06E-01) (~) 2.9752 (1.42E-01) (-) 3.1674(8.09E-02) 
F9 3.1383 (6.59E-02) (-) 2.9893 (2.29E-01) (-) 3.0861 (9.88E-02) (-) 3.2073 (6.48E-02) (~) 3.1949(6.02E-02) 

Total 18-/1+ 17-/1~/1+ 16-/1~/2+ 12-/7~  
+, - and ~ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-

IRA respectively by Wilcoxon’s rank sum test with  0.05  . 
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TABLE S.III 
PERFORMANCE COMPARISON OF MOEA/D-STM AND MOEA/D-STM-IRA USING IGD AND HV VALUES 

 IGD HV 

Test Instance MOEA/D-STM MOEA/D-STM-IRA MOEA/D-STM MOEA/D-STM-IRA 
UF1 1.88E-03(1.26E-04) (-) 1.60E-03(6.52E-05) 3.6588 (1.51E-03) (-) 3.6597 (1.14E-03) 
UF2 4.56E-03(1.84E-03) (-) 3.08E-03(1.05E-03) 3.6479 (1.25E-02) (~) 3.6494 (1.46E-02) 
UF3 5.21E-03(7.47E-03) (~) 3.96E-03(3.33E-03) 3.6512 (3.91E-02) (~) 3.6570 (1.84E-02) 
UF4 5.60E-02(3.77E-03) (-) 5.25E-02(2.89E-03) 3.1628 (2.24E-02) (-) 3.1783 (1.31E-02) 
UF5 2.45E-01(4.92E-02) (-) 2.28E-01(2.63E-02) 2.8772 (1.59E-01) (~) 2.9571 (7.69E-02) 
UF6 1.30E-01(1.04E-01) (~) 9.78E-02(4.51E-02) 3.0442 (2.30E-01) (~) 3.1235 (9.87E-02) 
UF7 1.96E-03(3.67E-04) (-) 1.72E-03(9.01E-05) 3.4919 (3.47E-03) (-) 3.4934 (2.03E-03) 
UF8 3.14E-02(2.41E-03) (+) 3.87E-02(8.93E-03) 7.4084 (4.60E-03) (+) 7.3943 (1.65E-02) 
UF9 3.46E-02(3.02E-02) (-) 2.81E-02(1.53E-03) 7.7086 (1.34E-01) (-) 7.7352 (8.65E-03) 
UF10 5.19E-01(7.43E-02) (-) 4.19E-01(7.11E-02) 3.5831 (4.68E-01) (-) 4.0855 (3.51E-01) 

F1 1.38E-03(2.91E-05) (-) 1.35E-03(2.23E-05) 3.6637 (4.70E-04) (+) 3.6635 (4.15E-04) 
F2 2.65E-03(2.54E-04) (-) 2.10E-03(1.10E-04) 3.6514 (7.38E-03) (-) 3.6562 (2.55E-03) 
F3 2.22E-03(2.43E-04) (-) 2.10E-03(9.93E-04) 3.6579 (4.39E-03) (~) 3.6567 (1.25E-02) 
F4 2.05E-03(3.69E-04) (-) 1.80E-03(7.95E-05) 3.6603 (1.13E-03) (-) 3.6612 (7.06E-04) 
F5 7.93E-03(2.67E-03) (-) 4.45E-03(6.73E-04) 3.6432 (1.12E-02) (-) 3.6510 (1.05E-02) 
F6 2.20E-02(1.98E-04) (~) 2.21E-02(1.76E-04) 7.4440 (8.88E-04) (~) 7.4437 (6.54E-04) 
F7 2.66E-03(1.49E-03) (-) 1.89E-03(2.45E-04) 3.6299 (2.22E-02) (-) 3.6452 (8.00E-03) 
F8 7.11E-02(5.94E-02) (-) 2.90E-02(2.07E-02) 3.4398 (8.34E-02) (-) 3.5334 (4.88E-02) 
F9 2.73E-03(4.16E-04) (-) 2.04E-03(1.49E-04) 3.3187 (4.54E-03) (-) 3.3249 (2.17E-03) 

MOP1 3.47E-01(4.74E-02) (-) 3.01E-01(7.96E-02) 3.1052 (8.58E-02) (-) 3.1931 (1.48E-01) 
MOP2 3.10E-01(7.02E-02) (-) 2.55E-01(7.05E-02) 3.0276 (4.72E-02) (-) 3.0561 (5.25E-02) 
MOP3 1.46E-01(4.67E-02) (-) 1.19E-01(5.08E-02) 3.0551 (4.93E-02) (-) 3.0833 (5.48E-02) 
MOP4 3.13E-01(1.75E-02) (~) 2.98E-01(3.34E-02) 3.1425 (1.46E-02) (~) 3.1484 (2.39E-02) 
MOP5 3.15E-01(1.12E-02) (~) 3.16E-01(1.01E-02) 2.7414 (1.23E-01) (~) 2.7390 (1.30E-01) 
MOP6 3.04E-01(1.80E-07) (~) 3.04E-01(1.75E-07) 7.4957 (9.71E-07) (+) 7.4957 (1.17E-06) 
MOP7 3.51E-01(2.87E-07) (+) 3.51E-01(8.03E-08) 7.2112 (8.05E-07) (+) 7.2111 (9.98E-07) 
Total 18-/6~/2+  14-/8~/4+  

+, - and ~ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to 
MOEA/D-STM-IRA respectively by Wilcoxon’s rank sum test with  0.05  . 

 
 
 

TABLE S.IV 
PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING IGD VALUES ON MOP TEST INSTANCES 

Test Instance MOEA/D-DE-PBI MOEA/D-IR-PBI MOEA/D-DRA-PBI MOEA/D-GRA-PBI MOEA/D-IRA-PBI 
MOP1 7.28E-01(8.76E-02) (-) 3.45E-02(3.02E-03) (-) 7.23E-01(8.23E-02) (-) 6.79E-01(1.66E-01) (-) 2.27E-02(1.61E-03) 
MOP2 2.51E-01(4.02E-02) (-) 7.18E-02(6.36E-02) (-) 2.45E-01(2.47E-02) (-) 2.40E-01(2.26E-02) (-) 5.12E-02(8.20E-02) 
MOP3 1.78E-02(2.67E-02) (-) 9.72E-03(1.39E-02) (-) 2.00E-02(2.59E-02) (-) 8.68E-03(1.45E-02) (~) 6.56E-03(4.30E-03) 
MOP4 6.47E-01(1.04E-02) (-) 6.15E-02(5.64E-02) (~) 6.38E-01(1.20E-02) (-) 6.36E-01(7.01E-02) (-) 4.40E-02(5.96E-02) 
MOP5 3.20E-01(0.00E+00) (-) 4.59E-02(9.46E-03) (-) 3.20E-01(1.03E-17) (-) 3.20E-01(0.00E+00) (-) 2.00E-02(1.28E-03) 
MOP6 3.15E-01(3.11E-02) (-) 5.84E-02(3.93E-03) (-) 3.09E-01(1.86E-02) (-) 3.05E-01(3.46E-06) (-) 4.81E-02(1.99E-03) 
MOP7 4.39E-01(2.51E-02) (-) 1.97E-01(3.68E-02) (-) 4.41E-01(2.05E-02) (-) 4.14E-01(1.56E-02) (-) 7.58E-02(2.52E-03) 
Total 7- 7- 6-/1~ 6-/1~  

+, - and ~ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-IRA-PBI re-
spectively by Wilcoxon’s rank sum test with  0.05  . 

 

 
TABLE S.V 

PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING HV VALUES ON MOP TEST INSTANCES 
Test Instance MOEA/D-DE-PBI MOEA/D-IR-PBI MOEA/D-DRA-PBI MOEA/D-GRA-PBI MOEA/D-IRA-PBI 

MOP1 2.1497 (1.07E-01) (-) 3.5528 (4.70E-02) (-) 2.1536 (1.04E-01) (-) 2.2228 (2.67E-01) (-) 3.6157 (2.49E-03) 
MOP2 3.0177 (5.44E-02) (-) 2.9607 (3.03E-01) (-) 3.0195 (4.86E-02) (-) 3.0285 (4.22E-02) (-) 3.1157 (3.23E-01) 
MOP3 3.1555 (7.19E-02) (~) 3.1739 (3.33E-02) (-) 3.1499 (6.21E-02) (-) 3.1799 (3.70E-02) (~) 3.1855 (2.28E-02) 
MOP4 2.2254 (3.61E-02) (-) 3.0160 (1.79E-01) (~) 2.2511 (3.56E-02) (-) 2.2389 (1.39E-01) (-) 3.0931 (1.70E-01) 
MOP5 2.5607 (0.00E+00) (-) 3.5241 (6.43E-02) (-) 2.5607 (0.00E+00) (-) 2.5607 (0.00E+00) (-) 3.6246 (2.96E-03) 
MOP6 7.3550 (1.49E-01) (-) 7.6835 (3.84E-02) (-) 7.3864 (9.40E-02) (-) 7.4033 (1.19E-03) (-) 7.7574 (1.10E-02) 
MOP7 7.0309 (3.21E-02) (-) 7.2716 (3.68E-02) (-) 7.0246 (2.55E-02) (-) 7.0673 (2.55E-02) (-) 7.3563 (4.10E-03) 
Total 6-/1~ 6-/1~ 7- 6-/1~  

+, - and ~ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to MOEA/D-IRA-PBI 
respectively by Wilcoxon’s rank sum test with  0.05  . 
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2. More Discussions of our IRA strategy 

1) Study of effectiveness of IRA in MOEA/D-STM 

To further study the effectiveness of our proposed IRA strat-
egy in other competitive MOEA/D variants, here it is embedded 
into a generational version of MOEA/D (i.e., MOEA/D-STM 
[1]). It is noted that the IRA strategy is used to replace the dy-
namic resource allocation strategy [2] adopted in MOEA/D-
STM and this new algorithm is named MOEA/D-STM-IRA. 
The UF [3], F [4], and MOP [5] test instances were used to as-
sess  their performance. All the parameters in MOEA/D-STM 
were set as suggested in [1] and the related parameters in IRA 
were set as:  0.98   and minpn  0.05 . The maximum num-
ber of function evaluations was set to 300000 and all the simu-
lations on each test problem were run 51 times. 

Table S.III provides the IGD and HV results of MOEA/D-
STM and MOEA/D-STM-IRA on all the test instances. It is ob-
vious that the IRA strategy is effective to further enhance the 
performance of MOEA/D-STM on most of the test problems 
adopted. When considering the IGD results, our IRA strategy 
enhances MOEA/D-STM on 18 test problems and only deteri-
orates on 2 test problems. The HV results also confirm the ef-
fectiveness of the IRA strategy as it enhances MOEA/D-STM 
on 14 test problems and only deteriorates on 4 test problems. 
These enhancements on MOEA/D-STM-IRA are mainly 
brought by the cooperation of the stable matching model (STM) 
and IRA. The STM approach is effective to match the solutions 
with the subproblems, while our IRA strategy further helps to 
select the potential subproblems to be evolved. These two ap-
proaches can work effectively and cooperatively to enhance the 
MOEA/D algorithm [4]. 

It is also noted that, for most of the UF and F test problems, 
MOEA/D-STM and MOEA/D-STM-IRA can closely approach 
the true Pareto-optimal front, as most of the IGD values are un-
der an accuracy level of 10-3. However, on MOP test problems, 
their IGD values are only under an accuracy level of 10-1, which 
indicates that both of them actually perform poorly on this kind 
of test problems. This is mainly due to the mathematical fea-
tures of the MOP test problems that require more diversity on 
the population. The STM method tries to simultaneously bal-
ance the convergence and the diversity, which would easily get 
trapped in a local optimal region, as pointed out in [6]. Although 
our IRA strategy helps to improve the performance of 
MOEA/D-STM on these problems, it still cannot jump out of 
the local optimal area. 

Based on the above analysis, it is reasonable to conclude that 
our IRA strategy is also effective to enhance the performance 
of MOEA/D-STM in solving most of the test problems adopted.  

2) Study of different MOEA/D variants on MOP test problems 

As pointed out in [6], the mathematical features of MOP test 
problems require the algorithm to put more emphasis on the di-
versity issue during selection. Thus, the new solution generated 
in MOEA/D-IRA only replaces the solution of the matched sub-
problem among its two nearest subproblems in line 22 of Algo-
rithm 2 and the one with the largest improvement rate will be 
replaced. All the compared MOEA/D variants, such as 
MOEA/D-DE [4], MOEA/D-IR [6], MOEA/D-DRA [2], 

MOEA/D-GRA [7], and MOEA/D-IRA, use penalty-based 
boundary intersection (PBI) [8] as the aggregation function, as 
it is easy to control the balance of convergence and diversity, 
which may suit to solve the MOP test problems. These com-
pared MOEA/D variants are respectively denoted by MOEA/D-
DE-PBI, MOEA/D-IR-PBI, MOEA/D-DRA-PBI, MOEA/D-
GRA-PBI, and MOEA/D-IRA-PBI in the following discus-
sions. The penalty factor   in PBI was set to 1.0 for the MOP 
test problems. The population size was set to 100 for MOP1-
MOP5 and to 300 for MOP6-MOP7. The maximum number of 
function evaluations was set to 300000 for all the MOP test 
problems and the rest of the parameters in each algorithm were 
set the same as introduced in Section IV.A. All the simulations 
on each test problem were run 51 times. 

Tables S.IV and S.V respectively provide the IGD and HV 
results of all the compared algorithms on MOP test instances. 
From these results, it is evident that MOEA/D-IRA-PBI per-
forms best on all the MOP test problems. MOEA/D-DE-PBI, 
MOEA/D-DRA-PBI and MOEA/D-GRA-PBI perform poorly 
on these test problems, by observing that their IGD values are 
mostly under an accuracy level of 10-1. This is because their 
population update strategies only emphasize convergence and 
ignore the diversity issue, which let them get easily trapped in 
a local optimal region. MOEA/D-IR-PBI gives a much better 
performance and is able to extend the approximate Pareto-opti-
mal front, as its selection mechanism is a diversity first and con-
vergence second strategy. In this way, MOEA/D-IR- PBI puts 
more emphasis on the diversity aspect when updating the solu-
tions for the matched subproblems. On the other hand, 
MOEA/D-IRA-PBI shows the obvious advantages on the MOP 
test problems, whereas MOEA/D-STM-IRA performs poorly 
on these test problems in Table S.III. By comparing the differ-
ences in their algorithmic design, it is clear that the superior 
performance of MOEA/D-IRA-PBI is mainly brought by the 
parent replacement strategy, as this approach only considers to 
replace the solutions among the two nearest subproblems and 
thus helps to maintain the population diversity. Therefore, the 
effectiveness of the proposed algorithm is also confirmed in 
solving the MOP test problems.  

Moreover, based on the experimental results in Tables I-II 
and S.IV-S.V, it is found that, when solving different types of 
test problems, the performance of MOEA/D-IRA will be sig-
nificantly affected by the range of the parent replacement strat-
egy in MOEA/D-IRA. Regarding the UF and F test problems, 
the emphasis on the convergence aspect is preferred and the ap-
proach to replace the parent among all the subproblems based 
on the improvement rate can speed up the convergence and ob-
tain promising results for this kind of test problems. However, 
when tackling the MOP test problems, the range of parent re-
placement should be reduced in order to maintain the popula-
tion diversity. Otherwise, all the solutions may be guided to-
ward and trapped into a local optimal region, as shown in Table 
S-III (most of the IGD values for the MOP test problems are 
under an accuracy level of 10-1). However, the study of the par-
ent replacement strategy is not the key topic in this paper and 
the experimental studies have validated the effectiveness of the 
IRA strategy under different parent replacement strategies. In 
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our future work, an adaptive selection of the parent replacement 
strategy for different kinds of test problems will be further stud-
ied. 
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