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Abstract—This paper suggests a novel clustering-based evolu-

tionary algorithm for many-objective optimization problems. Its 
main idea is to classify the population into a number of clusters, 
which is expected to solve the difficulty of balancing convergence 
and diversity in high dimensional objective space. The individu-
als showing high similarities on the vector angles are gathered 
into the same cluster, such that the population’s distribution can 
be well portrayed by the clusters. To efficiently find these clusters, 
partitional clustering is first used to classify the union population 
into m main clusters based on the m axis vectors (m is the number 
of objectives), and then hierarchical clustering is further run on 
these m main clusters to get N final clusters (N is the population 
size and N > m). At last, in environmental selection, one indi-
vidual from each of N clusters closest to the axis vectors is se-
lected to maintain diversity, while one individual from each of the 
other clusters is preferred by a simple convergence indicator to 
ensure convergence. When tackling some well-known test prob-
lems with 5 to 15 objectives, extensive experiments validate the 
superiority of our algorithm over six competitive many-objective 
evolutionary algorithms, especially on problems with incomplete 
and irregular Pareto-optimal fronts. 
 

Index Terms—Many-objective optimization, Evolutionary al-
gorithm, Partitional clustering, Hierarchical clustering. 

I. INTRODUCTION 
ANY-objective optimization problems (MaOPs) con-
tain more than three objectives to be optimized simul-

taneously, which are extended from multi-objective optimiza-
tion problems (MOPs), as defined by 

minimize      1( ) ( ( ),..., ( ))mF x f x f x     (1) 
 subject to      x              

where 1( , , )nx x x  is a decision vector from the search 
space  (n is the number of decision variables), and ( )F x  
defines m objective functions. Due to the conflicts often aris-
ing in different objectives, there is no a single optimal solution, 
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but a set of trade-off solutions termed Pareto-optimal set (PS), 
whose mapping onto objective space is termed Pareto-optimal 
front (PF) [1]. During the last decades, evolutionary algorithms 
(EAs) have become a popular and effective approach to tackle 
MOPs and MaOPs [2]-[3]. 

Three main kinds of multi-objective EAs (MOEAs), i.e., 
Pareto-based MOEAs [4]-[5], decomposition-based MOEAs 
[6], and indicator-based MOEAs [7], have shown their effec-
tiveness and efficiency in tackling MOPs with two or three 
objectives. Pareto-based MOEAs use a Pareto-based ranking 
scheme to sort the population into different convergence layers, 
and then adopt a diversity maintenance strategy to enhance the 
population’s diversity. Decomposition-based MOEAs trans-
form an MOP into a number of sub-problems and then solve 
them simultaneously using a collaborative search process. 
Indicator-based MOEAs apply a single performance indicator, 
e.g., hypervolume (HV) [8], to effectively guide the evolution 
of the population. However, when dealing with MaOPs, their 
performance deteriorates significantly, mainly due to the curse 
of dimensionality [9]-[10]. Pareto-based MOEAs fail to pro-
vide sufficient selection pressure toward the PFs, as the effect 
of Pareto-based ranking becomes insignificant when handling 
a large proportion of non-dominated solutions [11]-[13]. For 
decomposition-based MOEAs, it is hard to specify a set of 
weight vectors in high dimensional objective space, and their 
performance strongly depends on the consistency to the shapes 
of weight vectors and PFs [14]-[16]. Indicator-based MOEAs 
often suffer from a high computational cost, which is more 
serious in tackling MaOPs [17]-[18]. To deal with the above 
problems, a number of many-objective evolutionary algorithms 
(MaOEAs) have been recently developed. 

On Pareto-based MOEAs, there are two main approaches to 
enhance them for solving MaOPs. The first one is to modify or 
renew the definition of the Pareto-based dominance relation, 
as is the case of fuzzy-dominance [19], corner sort [20], a new 
ensemble fitness ranking (EFR-RR) [21], -dominance [22], 
reference point-based dominance [23], or a generalized form 
of Pareto-optimality [24]. The other one tries to alleviate the 
loss of selection pressure by enhancing diversity management. 
Examples of this approach are the use of shift-based density 
estimation in SPEA2-SDE [25], the use of associated reference 
points in NSGA-III [26], or the use of a reference direc-
tion-based density estimator in SPEA/R [27]. 

For decomposition-based MOEAs, two approaches have 
been proposed for generating uniformly distributed weight 
vectors in MOEA/DD [28] and I-DBEA [29]. Moreover, 
Pareto-based dominance was combined in MOEA/DD, while 
in I-DBEA, two independent distance measures were used to 
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balance convergence and diversity, and a simple pre-emptive 
distance comparison scheme was employed for association. To 
balance convergence and diversity in the solution update 
mechanism used for MaOPs, a chain-reaction solution update 
strategy was designed in MOEA/D-CRU [30], a distance 
based updating strategy was used in MOEA/D-DU [21], two 
distinctive components (i.e., decomposition-based sorting and 
angle-based selection) were reported in MOEA/D-SAS [31], 
and a weighted sum method was employed on a local manner 
in MOEA/D-LWS [32]. Although all the above algorithms 
showed competitive performance for MaOPs, they still faced 
the same problem to specify a set of weight vectors, which 
strongly impacts their performance due to the consistency 
between the shapes of weight vectors and PFs [15]. Therefore, 
a reference vector regeneration strategy was used in RVEA [33] 
and its improved version K-RVEA [34], and an adaptive 
method of adjusting the weight vectors was designed based on 
a self-organizing map in MOEA/D-SOM [35]. 

Regarding indicator-based MOEAs, some approaches have 
been presented to compute the HV in more efficient ways [18], 
[36]-[38]. However, they are still not so efficient to tackle 
MaOPs with a large number of objectives. Other performance 
indicators (e.g., R2 [39]-[40] and the additive approximation 
[41]) and the combination of two performance indicators (e.g., 
Two_Arch2 [42] and SRA [43]) have also been reported for 
solving MaOPs. 

Moreover, there are several new MaOEAs proposed to use 
the vector angles between individuals for population update. In 
VaEA [44], the search directions extracted from the population 
were employed. Then, a maximum-vector-angle-first principle 
was used to maintain diversity, while a worse-elimination 
principle was adopted to balance convergence and diversity. In 
MaOEA-DDFC [45], the ideas of directional diversity (DD) 
and favorable convergence (FC) were presented. A mating 
selection method based on FC was used to enhance the selec-
tion pressure, while the environmental selection based on DD 
and FC was applied to balance convergence and diversity. In 
MaOEA-CSS [46], a coordinated selection strategy was re-
ported, with a new convergence measure based on distance 
and a new diversity measure based on vector angle to enhance 
performance on MaOPs. In 1by1EA [47], an efficient con-
vergence indicator was used to select individuals one by one, 
with the aim to strengthen the selection pressure. When one 
individual was chosen, its neighbors were de-emphasized to 
ensure diversity for tackling MaOPs, which was realized by an 
angle-based similarity niche method. 

To summarize, most MaOEAs were enhanced from the 
three main kinds of MOEAs and several recent MaOEAs were 
proposed with the use of vector angles to maintain diversity, as 
the vector angles between individuals are more effective than 
the Euclidean distance to measure the individuals’ distribution 
in high dimensional objective space [44]-[47]. Although these 
MaOEAs showed very competitive performance, they still met 
some difficulties when solving the more difficult MaOPs with 
incomplete and irregular PFs [13], such as the MaF test prob-
lems recently proposed in [48]. Moreover, there has been some 

previous interesting works on embedding clustering into 
MOEAs [49]-[55]. For example, clustering was embedded in 
SPEA [49] to tailor the non-dominated archive for tackling 
MOPs, while clustering was used in [50] with a modeling 
procedure to promote the population’s diversity. In [51], a 
k-means clustering method was employed to find the popula-
tion structure by partitioning the solutions into several clusters, 
in which the solutions under the same cluster were allowed to 
reproduce. Two clustering methods were applied in [52] to 
give interdependence variable analysis and control variable 
analysis when tackling MOPs. In [53] and [54], the crowd-
ing-distance based truncation procedure in NSGA-II was 
replaced by a hierarchical clustering method to cope with 
MOPs and MaOPs, respectively. Another related study was 
given in [55] to scrutinize the impact of clustering with dif-
ferent similarity metrics in di erent spaces (i.e., variable space, 
objective space, and a combination of both) when clustering 
was embedded into a multi-objective particle swarm optimi-
zation algorithm. Unlike these previous approaches, this paper 
suggests a novel MaOEA based on clustering, called 
MaOEA/C, which is more flexible to balance convergence and 
diversity in high dimensional objective space. The main nov-
elties of MaOEA/C distinguished from the previous works 
[49]-[55] are the used acute angle as the similarity metric in 
clustering and the proposed two-step clustering strategy to 
speed up its execution. In environmental selection, all the 
offspring and parents are combined and then they are finally 
classified into N clusters (N is the population size) using the 
vector angles of individuals to reflect their similarities, which 
helps to portray the population’s distribution. In more detail, 
the partitional clustering method (PCM) is first run to separate 
the union population into m main clusters (m is the number of 
objectives), using m axis vectors as m centroids. Then, the 
hierarchical clustering method (HCM) is used to classify each 
of these m clusters, aiming to efficiently get N final clusters. At 
last, the clusters closest to m axis vectors are found and one 
individual from each of them is selected to maintain diversity. 
For each of remaining clusters, one individual is chosen by a 
simple convergence indicator to ensure convergence. Moreo-
ver, when running recombination, the parent population is also 
classified to m clusters using PCM and then the mating parents 
are selected from the same cluster with a high probability to 
encourage exploitation. The performance of MaOEA/C was 
studied when tackling the well-known WFG [56] and MaF [48] 
test problems with 5 to 15 objectives. When compared to six 
competitive MaOEAs (NSGA-III [26], MOEA/D-DU [21], 
EFR-RR [21], -DEA [22], SRA [43], and VaEA [44]), 
MaOEA/C showed some advantages on most cases, especially 
on problems with incomplete and irregular PFs. 

To conclude, our main contributions are clarified as follows. 
1) This paper suggests a novel clustering-based evolution-

ary algorithm for tackling MaOPs. With the clustering meth-
ods, the union population is finally classified into N clusters 
and then one individual is only selected from each cluster to 
maintain convergence or diversity in environmental selection. 
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Algorithm 2 Hierarchical_Clustering (S, k ) 
1: set si S as a cluster HCM

iC and centroid HCM
ic

2:   for i := 1 to | S |   
3:      HCM

iindex C = -1, HCM
iC = , HCM

iflag C  = false 
4:      find the nearest cluster to HCM

iC by Eq. (4)  
5:      record the corresponding HCM

iindex C and HCM
iC  

6:   end for 
7:   T1 = T2 = -1, minAngle = , size = | S | 
8:   for i := 1 to | S |  
9:      if minAngle > HCM

iC HCM
iflag C ==false 

10:        minAngle = HCM
iC , T1 = i, T2 = HCM

iindex C  
11:    end if 
12: end for 
13: while size > k 
14:   1 2

HCM HCM HCM
new T TC C C and update HCM

newc by (5) 
15:   

1
HCM
Tflag C = true, 

2
HCM
TC = HCM

newC and size-- 
16:    for i := 1 to | S |  
17:       if ( HCM

iindex C ==T1 or T2) HCM
iflag C ==false 

18:           update HCM
iC and HCM

iindex C  like lines 4-5 
19:       end if 
20:    end for 
21:    update T1, T2 like lines 7-12 
22: end while 
23: delete HCM

iC whose HCM
iflag C is true  

24: return 1 2, ,...,HCM HCM HCM
kC C C   

Therefore, the trade-off of convergence and diversity in solv-
ing MaOPs is well balanced by using the clustering methods 
adopted in this paper. 

2) Two clustering approaches, i.e., PCM and HCM, are used 
in this paper. The adopted two-step clustering strategy aims to 
efficiently classify the union of parent and offspring popula-
tions into N clusters, requiring a computational cost similar to 
that of most state-of-the-art MaOEAs [44]. 

The rest of this paper is organized as follows. Section II 
introduces the related background on clustering methods. The 
details of MaOEA/C are given in Section III, and the experi-
mental results are provided in Section IV. Finally, our con-
clusions and future work are presented in Section V. 

II. RELATED BACKGROUND ON CLUSTERING METHODS 
Due to the high computational cost of HCM [57] when it is 

run on the union population, a PCM modified from K-means 
[58] is first used to divide the union population into m main 
clusters (m is the number of objectives). Then, HCM is run to 
classify each of m main clusters into k small clusters, where k = 
N/m and N is manually set as a multiple of m in this paper. 
Thus, it finally gets N clusters. At last, one individual showing 
good convergence or diversity is selected from each of these N 
clusters to form the new population. Here, the used PCM and 
HCM in this paper are respectively introduced below.  

A. Partitional Clustering Method 
Given a dataset with N individuals, PCM builds m partitions 

for the dataset and each partition represents a cluster ( N m ) 
[59]. In this paper, a classical PCM (K-means [58]) is modified 
to cluster the individuals of MaOPs and the vector angles of 
individuals are used to reflect their similarities in the objective 
space. Fixing the m axis vectors as centroids, our PCM aims to 
equally divide the input population into m clusters, which can 
be used in both the mating and the environmental selection. To 
clarify the process of PCM, its pseudo-code is given in Algo-
rithm 1 with the inputs: S as a population and m. In line 1, m 
clusters obtained by PCM as denoted by 1 2, ,...,PCM PCM PCM

mC C C
are initialized as the empty set. Then, the m axis vectors, i.e., 
(1,0,…,0), (0,1,…,0),…, (0,0,…,1), are set as centroids PCM

ic
( 1,2,..., )i m in line 2, respectively for PCM

iC . As each cluster 
is expected to include the same number of individuals, their 
cluster sizes (cs) are set to /m| S |  in line 3. For each centroid 

PCM
ic , the vector angles between it and all the individuals

Sjs ( 1,2,...,| |)Sj  are computed in line 5 by (2). 

'

' 2
1

( )
( , ) arccos

( )

i jPCM
ji

m
k jk

f s
angle c s

f s
arccos                 (2) 

where ' ( )i jf s  indicates the normalized value of the ith objec-
tive for js  using (3). 

min

max min

( )
( )= i j i

i j
i i

f s f
f s

f f
                          (3) 

where 1,2,...,i m , max
if and min

if are respectively the maxi-
mum and minimum values of the ith objective obtained by all 
the individuals in S, as it is challenging to find the exact nadir 
point [43, 44]. Especially, when the number of objectives is 
less than four, max

if  and min
if  should be found only from non- 

dominated individuals. Then, for each centroid PCM
ic  selected 

randomly in line 4, a number of cs individuals with the closest 
angles to PCM

ic  by (2) will be selected into the cluster PCM
iC  in 

line 6, which are then removed from S in line 7. Other clusters 
can be similarly obtained by running the procedures in lines 
5-7. Please note that this PCM only iterates once to get m main 
clusters, so as to reduce the computational cost. Finally, in line 
9, m clusters 1 2, ,...,PCM PCM PCM

mC C C  are returned. 

B. Hierarchical Clustering Method 
The HCM starts with each point as a cluster and then com-

bines similar clusters into one cluster [60]. In our HCM, the 
vector angles among individuals are also used to measure the 
similarities in the objective space, while average-link [61] is 
employed to define the similarity of two clusters by using the 
average of vector angles among all their individuals. As men-
tioned above, this HCM is run after the above PCM, which 
classifies each of 1 2, ,...,PCM PCM PCM

mC C C into k =N/m small clus-
ters. To clarify the process of HCM, its pseudo-code is given 
in Algorithm 2 with the inputs: S as a population and k. In line 
1, each individual Sis  is set as a cluster HCM

iC with centroid 
HCM
ic ( 1,2,...,| | )Si . Then, in lines 2-6, the minimal vector 

angle to each centroid 
HCM
ic is obtained. The vector angle 

between two centroids 
HCM
ic  and 

HCM
jc can be computed by 

(4), to define the similarity for two clusters HCM
iC and HCM

jC . 

Algorithm 1 Partitional_Clustering (S, m) 
1: initialize 1 2, ...PCM PCM PCM

mC C C  as the empty set 
2: set m axis vectors as centroids PCM

ic for PCM
iC  

3: set the cluster sizes (cs) as /| S | m  
4: for each PCM

ic selected randomly    
5:   calculate the angles of Sjs to PCM

ic by (2) 
6:   select cs individuals closest to PCM

ic  from S into PCM
iC   

7:   remove the selected cs individuals from S 
8: end for 
9: return 1 2, ...PCM PCM PCM

mC C C  
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' '

1

2 2' '

1 1

( , ) arccos

m
HCM HCM

l i l j
HCM HCM l
i j m m

HCM HCM
l i l j

l l

f c f c
angle c c

f c f c
arccos  (4) 

where ' ( )HCM
l if c  indicates the normalized value of the lth 

objective for HCM
ic  by (3). In line 3, HCM

iindex C (recording 
the index of the nearest cluster to HCM

iC ) is initialized to -1,
HCM
iC (memorizing the minimal angle to HCM

iC ) is initial-
ized to , and HCM

iflag C (indicating whether HCM
iC has been 

combined or not) is initialized to false. For lines 4-5, the 
nearest cluster to HCM

iC  is found by respectively recording its 
index and the minimal vector angle as HCM

iindex C  and 
HCM
iC . Then, in lines 7-12, two most similar clusters (i.e.,

1
HCM
TC  

2
HCM
TC ) are found and recorded, where T1 and T2 

indicate their indexes in the clusters set, while size initialized 
as | S | is the number of clusters at first. When size is larger than 
k in line 13, the procedures in lines 14-21 will be run itera-
tively. In line 14, two clusters (

1
HCM
TC  

2
HCM
TC ) are com-

bined as a new cluster HCM
newC , and then the objective values for 

its new centroid HCM
newc  are updated by  

( )iHCM
i new HCM

new

f p
f c

C
                         (5) 

where i = 1, 2, …, m, and HCM
newp C . Then, set 

1
HCM
Tflag C = 

true to indicate that 1
HCM

TC  is combined, replace 2
HCM

TC  with 
HCM
newC , and decrease size by 1 in line 15. In lines 16-20, the 

clusters HCM
iC whose nearest cluster is now 1

HCM
TC  or 2

HCM
TC  

will update its minimal angle HCM
iC  and the index of its 

nearest neighbor HCM
iindex C , by repeating the procedures in 

lines 4-5. After that, lines 7-12 are run again to find the two 
most similar clusters and record their indexes (T1 and T2), as 
shown in line 21. This iterative running of lines 13-22 will 
finally keep a set of k clusters. At last, remove the clusters 

HCM
iC which were combined and marked with HCM

iflag C  as 
true in line 23 and return the results of clustering obtained by 
HCM (i.e., 1 2, ,...,HCM HCM HCM

kC C C ) in line 24. 

III. THE PROPOSED ALGORITHM 
In this section, the proposed algorithm MaOEA/C is intro-

duced. First, using the above PCM and HCM in the environ-
mental selection is described. In this operator, the main idea is 
to divide the union of parents and offspring populations into N 
clusters. Then, one individual aiming to maintain diversity or 
convergence is selected from each cluster to compose the new 
population. At last, the complete algorithm of MaOEA/C is 
provided to show the details of other components. 

A. Environmental Selection 
In our design, the environmental selection operator follows 

the principle of diversity first and convergence second, aiming 
to select individuals with good convergence or diversity as the 
new population. The pseudo-code of our environmental se-
lection is given in Algorithm 3 with the inputs: P (the parent 
population), Q (the offspring population), N (the population 
size), and m (the number of objectives). In line 1, P and Q are 
combined to get the union population U and then P is reset to 

an empty set. After that, all the individuals of U are normalized 
by (3) in line 2, and then their convergence indicator values are 
obtained by (6) in line 3.  

'
1

( ) ( )m
i j ij

c u f u                                (6) 

where iu  is the ith individual from U and ' ( )j if u  indicates the 
normalized value of the jth objective for iu  by (3). This in-
dicator only prefers the individuals’ convergence in the same 
cluster, while the diversity is mainly maintained by the 
adopted clustering methods (PCM and HCM). In line 4, PCM 
(Algorithm 1) is first used to separate U into m main clusters 

PCM
iC ( 1,2,..., )i m , which have 2k individuals in one cluster 

(k = N/m). For each cluster PCM
iC , non-dominated sorting [4] 

is used to rank its solutions into different t convergence layers 
(i.e., F1, F2, …, Ft) in line 6, and then a solution set S is ob-
tained by selecting no less than k individuals with the better 
Pareto-based rankings, as shown in lines 7-11. Then, in line 12, 
HCM (Algorithm 2) is further applied on S to get k clusters

1 2, ,...,HCM HCM HCM
kC C C . In line 13, the cluster ( (1, ))HCM

d d kC  
closest to the cluster PCM

iC  is found based on the vector angles 
among their centroids by (4), and then the solution p closest to 
the centroid PCM

ic is selected from HCM
dC  by (2) in line 14. In 

line 15, this solution p is added into P and the cluster HCM
dC  is 

removed from 1 2, ,...,HCM HCM HCM
kC C C , as a representative 

solution p from HCM
dC  has been selected into P. For each of the 

remaining clusters (i.e., 1 2, ,...,HCM HCM HCM
kC C C excluding HCM

dC ), 
one individual with the best indicator value on convergence by 
(6) is selected into P in line 16.  

The adopted clustering methods help to maintain diversity, 
using the vector angles of individuals to estimate the similari-
ties of clusters in high dimensional objective space. To em-
phasize diversity on each objective, the solution closest to the 
centroid PCM

ic ( 1,2,..., )i m (also the axis vector) is first 
selected from 

HCM
dC  in line 14. For each of the remaining 

clusters, only one individual is chosen with the best conver-
gence indicator value as defined by (6), which aims to main-
tain convergence. An alternative method is presented in [44] to 
select the extreme solutions first and then consider the rest 
ones with good convergence, which will affect the clustering 
result and will slightly worsen the performance according to 

Algorithm 3 Environmental_Selection(P, Q, N, m) 
1:  get the union population U = P  Q, and set P =   
2:  normalize the individuals of U by (3) 
3:  get the indicator values for the individuals of U by (6)  
4:  ( 1 2, ,...,PCM PCM PCMmC C C ) = Partitional_Clustering (U, m) 
5:  for i := 1 to m  
6:     (F1, F2, …, Ft) = Non-dominated-Sorting( PCM

iC ) 
7:     set S =  and j=1 
8:      while j ≤ t   
9:          S = S  Fj  and j = j+1 
10:        if  S k   break;  //  k=N/m 
11:    end while 
12:    ( 1 2, ,...,HCM HCM HCM

kC C C ) = Hierarchical_Clustering (S, k) 
13:    find the cluster ( (1, ))HCM

d d kC  closest to PCM
iC  by (4)  

14:    find the solution p closest to PCM
ic from HCM

dC  by (2) 
15:    add p into P and remove HCM

dC from 1 2, ,...,HCM HCM HCM
kC C C  

16:    find one individual with the best convergence indicator  
         value by (6) from each of the remaining clusters into P 
17: end for 
18: output P 
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our empirical studies. Please note that although a simple and 
effective convergence indicator in (6) is used, other conver-
gence indicators in [47] can be also employed in MaOEA/C.  

In order to facilitate the understanding of our environmental 
selection, a simple example is illustrated in Fig. 1. The union 
population includes eight individuals (a, b, c, d, e, f, g, h) 
regarding the normalized bi-objective space. First, as shown in 
Fig. 1(a), PCM (Algorithm 1) is used to divide the population 
into two clusters ( 1

PCMC and 2
PCMC ) using the vector angles of 

each individual to the two centroids 1
PCMc (1, 0) and 2

PCMc  (0, 1). 
Then, the individuals a, b, c, d belong to 1

PCMC  as they are 
close to 1

PCMc  by (2), while the individuals e, f, g, h are classi-
fied into 2

PCMC  in the same manner. Second, in Fig. 1(b), 
HCM (Algorithm 2) is run on each of 1

PCMC  and 2
PCMC , 

which divides 1
PCMC  into two clusters ( 1

HCMC  and 2
HCMC ) and 

2
PCMC into two clusters ( 3

HCMC  and 4
HCMC ). Finally, 1

HCMC  has 
a and b, 2

HCMC  includes c and d, 3
HCMC  owns f, g, and h, while 

4
HCMC contains e. After that, a is selected from 1

HCMC  as it is 
closest to 1

PCMc (1, 0), and h is selected from 3
HCMC  as it is 

closest to 2
PCMc (0, 1). c is chosen from 2

HCMC  as it has the 
smallest convergence indicator value by (6) in 2

HCMC , and e is 
chosen from 4

HCMC  in the same manner. These four selected 
individuals are marked with yellow color in Fig. 1(b).  

B. The Complete Algorithm of MaOEA/C 
In the above subsection, the environmental selection of our 

algorithm has been introduced, while our evolutionary opera-
tors are simulated binary crossover (SBX) and polynomi-
al-based mutation [62] like in other MaOEAs [19]-[33], with a 
similarity-based mating selection. Here, the pseudo-code of 
the complete algorithm MaOEA/C is provided in Algorithm 4. 
In line 1, the values of m (the number of objectives), N (the 
population size), (a parameter to control the similarity-based 
mating selection) and Gmax (the pre-set maximal generations) 
are initialized. Then, an initial population P is generated 
randomly in decision space , and an offspring population Q 
is initialized as an empty set. The generation counter G is set to 
1 in line 2. In line 4, the population P is classified into m 
clusters 1 2, ,...,PCM PCM PCM

mC C C using Algorithm 1 with the 
inputs: P and m (details are provided in Section II.A). For 
each individual in cluster PCM

iC ( 1,2,...,i m ), the similari-
ty-based mating selection is run such that two parents (p1 and 
p2) are randomly selected from the same cluster PCM

iC with a 
probability of  and from the entire population with a prob-
ability of 1- , as shown in lines 7-12. Afterwards, SBX is run 
for the parents p1 and p2 to get an intermediate solution u in 

line 13 and polynomial-based mutation is further applied to u 
to get a new solution v in line 14. This offspring v is then added 
into Q in line 15. After all the offspring are generated in lines 
5-17 and collected into Q, Algorithm 3 is run in line 18 with 
the inputs: P, Q, N and m (details are provided in Section 
III.A), which selects the population for the next generation. At 
last, the offspring population Q is reset to an empty set and the 
generation counter G is increased by 1 in line 19. While G is 
smaller than Gmax, the above procedures in lines 4-19 will be 
run iteratively. Otherwise, P is the output produced in the last 
generation in line 21, as the final approximation set.  

IV. EXPERIMENTAL STUDIES 

A. Benchmark Problems and Performance Measures 
In this study, the MaF1-MaF7 test problems [48] with 

complicated PFs and the WFG1-WFG9 [56] test problems 
with different scaled objectives were used. For each problem, 
the number of objectives m was varied from 5 to 15, i.e.,

{5,8,10,13,15}m . Moreover, the number of decision varia-
bles n in MaF1-MaF7 was set by n = m+k-1, where k was set to 
10 for MaF1-MaF6 and to 20 for MaF7 as suggested in [48]. In 
WFG1-WFG9, the decision variables have k position-related 
parameters and l distance-related parameters. As recom-
mended in [43], k was set to 2 ( 1)m  and l was set to 20. 
Due to page limitations, the main characteristics of the MaF 
and WFG test problems are summarized in Table A.I of the 
supplementary file. 

The HV metric was used as our performance indicator to 
reflect the solutions’ quality in terms of both convergence and 
maximum spread for different MaOEAs [18]-[29]. Due to 
page limitations, please refer to [8], [37] for details of HV. A 
larger HV value indicates a better approximation to the true PF. 
As pointed out in [70], the reference point should be carefully 
set for MaOPs with inverted triangular PFs to compute HV. To 
allow a fair comparison, the setting of reference point in [43], 
[63], [64] was used in this paper. The objective vectors in the 
final solution sets are normalized by max max max
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Fig. 1 A simple example with bi-objective optimization to illustrate the 
environmental selection process, using PCM and HCM. 

Algorithm 4 General Framework of MaOEA/C 
1: initialize N, m, , Gmax, P and Q 
2: G = 1 
3: while G  Gmax  
4:     ( 1 2, ,...,PCM PCM PCM

mC C C ) = Partitional_Clustering (P, m) 
5:     for i := 1 to m 
6:         for j := 1 to | |PCM

iC  
7:             generate a random number r in (0,1) 
8:             if r <  
9:                randomly select two parents (p1, p2) from PCM

iC  
10:             else 
11:                randomly select two parents (p1, p2) from P 
12:             end if 
13:             run SBX on p1and p2 to get u 
14:             run polynomial-based mutation on u to get v 
15:             add v to Q 
16:          end for 
17:     end for 
18:     P = Environmental_Selection(P, Q, N, m) 
19:     set Q as an empty set and G++ 
20: end while 
21: return P 
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where max
kf ( k  1,2,...,m ) is the maximum value of the kth 

objective in the true PF, and then the reference point was set to 
(1.0,1.0,...,1.0) . Please note that the solutions that cannot 
dominate the reference point were not included to compute HV. 
The recently proposed walking fish group algorithm [37] was 
used to compute the exact HV values for test problems with no 
more than 10 objectives and to approximate HV by the Monte 
Carlo simulation [18] with 107 sampling points for test prob-
lems having 13 and 15 objectives.  
B. Parameters Settings for the Compared Algorithms 

In this study, six competitive MaOEAs, i.e., NSGA-III [26], 
MOEA/D-DU [21], EFR-RR [21], -DEA [22], SRA [43], and 
VaEA [44], were included for performance comparison. These 
algorithms cover all the main kinds of MaOEAs in Section I. 
The source code of NSGA-III was implemented by the authors 
of -DEA, while other source codes are provided by their 
authors. All the MaOEAs were implemented using Java codes 
and run on a personal computer having an Intel (R) Core (TM) 
i7-6700 CPU, 3.40GHz (processor), and 20 GB (RAM). The 
parameters settings of the compared algorithms are listed in 
Table I, as suggested in their references. All the competitors 
used the same evolutionary operators, i.e., SBX and polyno-
mial-based mutation. pc and pm are the probabilities to run 
crossover and mutation respectively. c  and m  are respec-
tively the distribution indexes of SBX and polynomial-based 
mutation. In MOEA/D-DU, T defines the neighborhood size 
among weight vectors, and  indicates the probability to select 
parent solutions from T neighbors. K is used in MOEA/D-DU 
and EFR-RR to balance convergence and diversity, which is 
set to 5 for MOEA/D-DU and to 2 for EFR-RR. For -DEA,  
is a penalty parameter used in the dominance relation. Re-
garding SRA, cp is an inherent parameter for stochastic rank-
ing, which controls the balance of two indicators. In VaEA, 

is a threshold to decide whether the solutions are deemed to 
search from a similar direction. Moreover,  is set to 0.8 in line 
8 of Algorithm 4 for MaOEA/C. 

The settings of population size for different numbers of 
objectives are listed in Table II. For test problems with 5, 8, 10, 
13, and 15 objectives, the number of weight vectors was 
respectively set to 210, 240, 275, 182, and 240, using the 
two-layer generation method with the simplex-lattice design 
factor H in [33]. According to [20], the population size in 
NSGA-III should be set as the smallest multiple of four, which 
is slightly larger than the number of weight vectors in some 
cases. MOEA/D-DU, EFR-RR, and -DEA should use the 
same population size as NSGA-III, since they were designed 
based on NSGA-III. Thus, NSGA-III, MOEA/D-DU, EFR-RR, 

and -DEA adopted the population sizes of 210, 240, 276, 184, 
and 240 for 5-, 8-, 10-, 13-, and 15-objective problems re-
spectively. For MaOEA/C, the population size should be set as 
a multiple of m. Thus, MaOEA/C, SRA and VaEA used the 
population sizes of 210, 240, 280, 182, and 240 for 5-, 8-, 10-, 
13-, and 15-objective problems, respectively. 

All the algorithms were run 30 times independently on each 
test problem. The mean HV values and the standard deviations 
(included in bracket after the mean HV results) from 30 runs 
were collected for comparison. All the algorithms were ter-
minated when a predefined maximum number of generations 
Gmax was reached. The settings of Gmax for different numbers of 
objectives are listed in Table II. For each algorithm, the 
maximum function evaluations (MFE) can be easily deter-
mined by MFE = N Gmax. To obtain a statistically sound con-
clusion, Wilcoxon rank sum test was run with a significance 
level 0.05 , showing the statistically significant differ-
ences on the results of MaOEA/C and other competitors. In the 
following tables, the symbols “+”, “–“, and “~” indicate that 
the results of other competitors are significantly better than, 
worse than, and similar to the ones of MaOEA/C using this 
statistical test, respectively.  

C. Comparison with Six Competitive MaOEAs 
1) Comparison Results on MaF1-MaF7 
Table III provides a comparison of results in terms of HV on 

MaF1-MaF7 with 5 to 15 objectives. As observed from the 
second last row of Table III, MaOEA/C obtained the best 
results in 24 out of 35 cases, while NSGA-III, MOEA/D-DU, 

-DEA, SRA, VaEA, and EFR-RR performed respectively 
best in 6, 9, 2, 3, 4, and 4 cases, which validates the superiority 
of MaOEA/C on these MaF problems. 

MaF1 was obtained by inverting the PF shape of DTLZ1 
[65]. This way, the shape of the reference points cannot fit to 
the PF shape, and the performance of the reference point based 
MaOEAs (NSGA-III, MOEA/D-DU, EFR-RR, and -DEA) 
was worse than other MaOEAs that don’t adopt reference 
points (SRA, VaEA and MaOEA/C) in the cases of 5, 8 and 10 
objectives. However, for the cases of 13 and 15 objectives, 
NSGA-III, MOEA/D-DU, EFR-RR, and -DEA seemed more 
advantageous, as they had the smallest HV values larger than 0, 
while SRA, VaEA and MaOEA/C only showed the HV value 
as 0. This may be because  the search directions of SRA, VaEA 
and MaOEA/C as guided by the vector angle was not so ef-
fective with a small population size in very high dimensional 
objective space, while NSGA-III, MOEA/D-DU, EFR-RR, 
and -DEA could still find some solutions to approximate the 
true PF and obtained very small HV values. Anyhow, 
MaOEA/C still showed a competitive performance in MaF1, 
as it was best in the instances having 5, 8 and 10 objectives. 

TABLE I 
PARAMETERS SETTINGS OF ALL THE COMPARED ALGORITHMS 

Algorithm Parameters settings 
NSGA-III cp =1.0, mp =1/n, c =30, m =20 

MOEA/D-DU cp =1.0, mp =1/n, c =20, m =20,T =20, =0.9, K=5 
EFR-RR cp =1.0, mp =1/n, c =30, m =20, K =2 

-DEA cp =1.0, mp =1/n, c =30, m =20, =5.0 
SRA cp =1.0, mp =0.1, c =15, m =15, cp =0.5 

VaEA cp =1.0, mp =1/n, c =30, m =20, 1N= 2  
MaOEA/C cp =1.0, mp =1/n, c =30, m =20, =0.8 

TABLE II 
SETTINGS OF THE POPULATION SIZE AND EVALUATIONS 

Objectives (m) Divisions (H) Population Size Gmax Evaluations 
5 6 210 500 105000 
8 3,3 240 700 168000 

10 3,2 276/280 700 196000 
13 2,2 184/182 1000 182000 
15 2,2 240 1000 240000 
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MaF2 was obtained from DTLZ2 by raising the difficulty of 
convergence, and all the objectives of MaF2 need to be opti-
mized simultaneously in order to reach the true PF. MaOEA/C 
showed the best performance on MaF2 with all the objectives. 
Regarding MaF3, it is characterized with a convex PF and a 
large number of local PFs. Only MOEA/D-DU and SRA can 
consistently solve this problem well. Other algorithms may 
step into the local PFs, as observed from the large values of 
standard deviation. MaF4 was derived from DTLZ3 by in-
verting its PF shape, and our algorithm performed best in all 
the instances of MaF4. On MaF5 which has a highly biased 
distribution on PS and a badly scaled PF, all the algorithms 
solved it very well as their HV values were close to 1.0. Re-
garding MaF6 with a degenerate PF, MaOEA/C showed to be 
advantageous as it obtained the best results in all cases. At last, 
on MaF7 with a disconnected PF, MaOEA/C had a competi-
tive performance, as it obtained the best results in the instances 
having 13 and 15 objectives, while it was outperformed by 
SRA in the case with 5 objectives, by NSGA-III and SRA in 
the case of 8 objectives, and by NSGA-III and -DEA in the 
case of 10 objectives.  

In the last row of Table III, the one-by-one comparisons of 
MaOEA/C and other six competitors were summarized, where 
“+/–/~” indicate the numbers of test problems in which the 

competitors are respectively better than, worse than and sim-
ilar to MaOEA/C. From these comparisons, MaOEA/C was 
better than NSGA-III, MOEA/D-DU, -DEA, SRA, VaEA, 
and EFR-RR, in 24, 24, 29, 22, 26, and 28 out of 35 cases, 
respectively. Conversely, it was worse than NSGA-III, 
MOEA/D-DU, -DEA, SRA, VaEA, and EFR-RR, in 8, 7, 5, 7, 
3, and 3 cases, respectively. Therefore, it is reasonable to 
conclude that MaOEA/C showed a superior performance over 
its six competitors, in most instances of MaF1-MaF7. 

2) Comparison Results on WFG1-WFG9 
Table IV collects the HV comparison results of all the al-

gorithms on WFG1-WFG9 with 5 to 15 objectives. On these 
results, MaOEA/C also showed a superior performance, as it 
was best in about half of the test problems, i.e., in 23 out of 45 
cases. MOEA/D-DU, -DEA, SRA, VaEA, and EFR-RR were 
respectively best in 3, 3, 2, 2, and 13 cases, while NSGA-III 
was unable to perform best on any test problem. These results 
were summarized in the second last row of Table IV.  

Regarding WFG1 with a convex, mixed and biased PF, 
MaOEA/C performed best in the cases of 5 and 8 objectives, 
while -DEA was best in the case of 10 objectives and VaEA 
obtained the best results in the cases of 13 and 15 objectives. 
For WFG2 with a disconnected and mixed PF, MaOEA/C only 
gave a median performance among all the compared MaOEAs. 

TABLE III 
COMPARISON OF RESULTS OF MaOEA/C AND SIX COMPETITIVE MAOEAS ON MAF1-MAF7 USING HV  

Problem m NSGA-III MOEA/D-DU -DEA SRA VaEA EFR-RR MaOEA/C 

MaF1 

5 7.550E–03(5.78E–04)– 2.940E–03(4.66E–05)– 5.608E–03(2.22E–04)– 1.056E–02(1.24E–04)– 1.107E–02(1.79E–04)– 3.718E–03(6.09E–04)– 1.287E-02(1.09E-04) 
8 2.677E–05(1.27E–06)– 4.127E–06(1.29E–06)– 2.945E–05(1.27E–06)– 1.612E–05(8.68E–07)– 2.703E–05(1.31E–06)– 1.445E–05(4.40E–06)– 4.127E-05(1.34E-06) 

10 4.256E–07(1.57E–08)– 3.547E–08(1.28E–08)– 3.213E–07(4.90E–08)– 1.710E–07(8.04E–09)– 3.597E–07(2.07E–08)– 1.843E–07(3.78E–08)– 5.646E-07(2.80E-08) 
13 4.128E–10(3.61E–11)+ 1.592E–11(4.89E–12)+ 4.363E–10(8.29E–11)+ 0.000E+00(0.00E+00)~ 0.000E+00(0.00E+00)~ 1.208E–10(5.68E–11)+ 0.000E+00(0.00E+00) 
15 4.714E–12(8.02E–13)+ 1.300E–13(2.58E–14)+ 5.707E–12(1.03E–12)+ 0.000E+00(0.00E+00)~ 0.000E+00(0.00E+00)~ 1.342E–12(5.26E–13)+ 0.000E+00(0.00E+00) 

MaF2 

5 2.438E–01(2.16E–03)– 2.420E–01(1.11E–03)– 2.340E–01(3.56E–03)– 2.526E–01(1.16E–03)– 2.357E–01(3.60E–03)– 2.277E–01(3.43E–03)– 2.609E-01(9.24E-04) 
8 2.046E–01(5.42E–03)– 1.957E–01(1.76E–03)– 1.768E–01(1.10E–02)– 2.255E–01(1.93E–03)– 2.023E–01(5.33E–03)– 1.862E–01(4.57E–03)– 2.406E-01(2.62E-03) 

10 2.131E–01(3.60E–03)– 1.914E–01(1.72E–03)– 1.949E–01(9.50E–03)– 2.136E–01(2.18E–03)– 2.010E–01(7.53E–03)– 1.952E–01(5.44E–03)– 2.436E-01(2.52E-03) 
13 1.420E–01(6.99E–03)– 1.339E–01(3.40E–03)– 1.340E–01(1.42E–02)– 1.898E–01(4.65E–03)– 1.890E–01(5.30E–03)– 1.159E–01(1.30E–02)– 2.306E-01(5.22E-03) 
15 1.325E–01(9.24E–03)– 1.369E–01(2.92E–03)– 1.248E–01(1.54E–02)– 1.941E–01(3.67E–03)– 1.902E–01(5.13E–03)– 1.021E–01(1.51E–02)– 2.324E-01(5.90E-03) 

MaF3 

5 9.254E–01(2.52E–01)– 9.993E–01(5.59E–05)+ 9.912E–01(2.46E–03)+ 9.932E–01(2.59E–03)+ 9.967E–01(1.20E–03)+ 0.000E+00(0.00E+00)– 9.857E-01(4.31E-03) 
8 9.954E–01(1.18E–02)+ 1.000E+00(6.76E–07)+ 9.914E–01(5.86E–03)+ 9.983E–01(1.08E–03)+ 9.330E–01(2.54E–01)– 6.687E–01(4.13E–01)– 9.896E-01(9.54E-03) 

10 9.220E–01(2.53E–01)– 1.000E+00(5.06E–09)+ 9.902E–01(4.67E–03)~ 9.994E–01(4.40E–04)+ 5.624E–01(4.97E–01)– 1.695E–01(2.70E–01)– 9.919E-01(7.00E-03) 
13 4.786E–01(4.90E–01)– 9.999E–01(2.02E–04)+ 8.463E–01(1.96E–01)– 9.996E–01(3.57E–04)+ 7.274E–01(3.70E–01)– 8.842E–01(2.10E–01)– 9.211E-01(9.94E-02) 
15 4.877E–01(4.49E–01)– 9.999E–01(1.35E–04)+ 7.220E–01(2.83E–01)– 9.998E–01(1.92E–04)+ 7.354E–01(3.95E–01)– 6.536E–01(2.44E–01)– 9.387E-01(1.86E-02) 

MaF4 

5 8.132E–02(6.15E–03)– 1.421E–04(7.76E–04)– 7.196E–02(9.07E–03)– 8.776E–02(7.31E–03)– 1.162E–01(3.89E–03)– 8.277E–03(1.30E–02)– 1.171E-01(8.09E-03) 
8 2.159E–03(3.07E–04)– 0.000E+00(0.00E+00)– 1.418E–03(5.27E–04)– 2.368E–04(6.10E–05)– 2.356E–03(2.69E–04)– 2.522E–03(3.39E–04)– 5.181E-03(4.35E-04) 

10 2.329E–04(2.48E–05)– 0.000E+00(0.00E+00)– 2.282E–04(2.25E–05)– 1.815E–06(7.59E–07)– 1.383E–04(1.68E–05)– 2.441E–04(4.19E–05)– 4.716E-04(3.56E-05) 
13 3.120E–06(2.89E–07)– 0.000E+00(0.00E+00)– 2.359E–06(2.76E–07)– 7.230E–10(4.80E–10)– 2.037E–06(4.77E–07)– 3.590E–06(8.94E–07)– 4.134E-06(8.55E-07) 
15 2.024E–07(1.46E–08)– 0.000E+00(0.00E+00)– 1.420E–07(1.60E–08)– 7.233E–12(3.76E–12)– 8.160E–08(6.47E–08)– 2.749E–07(4.55E–08)– 2.751E-07(5.24E-08) 

MaF5 

5 9.998E–01(4.45E–06)~ 9.993E–01(6.24E–06)– 9.967E–01(9.71E–04)– 9.950E–01(2.41E–03)– 9.996E–01(2.78E–05)~ 9.997E–01(1.29E–05)~ 9.993E-01(2.35E-04) 
8 1.000E+00(4.15E–07)~ 1.000E+00(7.08E–07)~ 9.923E–01(1.03E–03)– 9.980E–01(1.56E–03)– 1.000E+00(1.92E–06)~ 1.000E+00(1.59E–07)~ 1.000E+00(1.46E-05) 

10 1.000E+00(1.90E–08)+ 1.000E+00(1.77E–07)~ 9.891E–01(8.84E–04)– 9.989E–01(1.50E–03)– 9.994E–01(3.11E–03)– 1.000E+00(6.62E–07)~ 1.000E+00(4.41E-06) 
13 1.000E+00(0.00E+00)+ 1.000E+00(2.54E–07)~ 9.970E–01(8.78E–04)– 9.999E–01(1.07E–04)~ 1.000E+00(5.86E–14)+ 1.000E+00(2.58E–07)~ 1.000E+00(5.15E-06) 
15 1.000E+00(0.00E+00)+ 1.000E+00(1.83E–07)~ 9.983E–01(5.09E–04)– 1.000E+00(3.13E–05)~ 1.000E+00(9.73E–16)+ 1.000E+00(1.24E–16)+ 1.000E+00(1.43E-06) 

MaF6 

5 1.235E–01(2.23E–03)– 1.200E–01(2.95E–04)– 1.176E–01(2.70E–03)– 1.294E–01(1.15E–04)~ 1.300E–01(5.37E–05)~ 0.000E+00(0.00E+00)– 1.300E-01(1.97E-04) 
8 1.048E–01(8.30E–04)– 9.985E–02(1.77E–04)– 8.230E–02(3.63E–02)– 1.061E–01(4.24E–05)~ 9.779E–02(2.80E–02)– 0.000E+00(0.00E+00)– 1.063E-01(2.12E-04) 

10 1.241E–02(2.38E–02)– 9.409E–02(2.76E–04)– 1.947E–02(2.80E–02)– 9.533E–02(1.86E–02)– 5.190E–02(4.20E–02)– 0.000E+00(0.00E+00)– 1.008E-01(1.89E-04) 
13 1.471E–02(2.27E–02)– 9.406E–02(2.06E–04)– 6.825E–02(1.73E–02)– 8.074E–03(1.47E–02)– 8.360E–02(7.58E–03)– 1.551E–03(7.23E–03)– 9.647E-02(9.78E-04) 
15 1.653E–03(7.34E–03)– 9.286E–02(1.79E–04)– 5.325E–02(2.73E–02)– 3.194E–03(7.65E–03)– 7.740E–02(8.48E–03)– 8.723E–04(3.79E–03)– 9.447E-02(1.22E-03) 

MaF7 

5 3.055E–01(2.55E–03)~ 1.246E–01(5.95E–02)– 2.776E–01(9.50E–03)– 3.241E–01(1.52E–03)+ 3.025E–01(2.78E–03)~ 1.699E–01(1.66E–02)– 3.053E-01(4.06E-03) 
8 2.581E–01(2.59E–03)+ 2.629E–03(1.16E–02)– 2.187E–01(2.79E–02)– 2.670E–01(5.67E–03)+ 2.240E–01(4.17E–03)– 2.159E–01(1.41E–02)– 2.404E-01(4.19E-03) 

10 2.349E–01(3.53E–03)+ 6.613E–05(6.98E–05)– 2.241E–01(1.77E–02)+ 1.942E–01(1.59E–02)– 1.814E–01(1.05E–02)– 1.389E–01(1.40E–02)– 2.006E-01(1.07E-02) 
13 1.332E–01(7.81E–02)– 1.243E–02(1.97E–02)– 1.249E–01(1.61E–02)– 9.387E–02(2.55E–02)– 1.384E–01(2.79E–03)– 1.436E–01(2.47E–02)– 1.715E-01(1.25E-02) 
15 1.048E–01(6.35E–02)– 6.431E–03(1.24E–02)– 1.167E–01(1.74E–02)– 7.881E–02(2.35E–02)– 1.306E–01(2.49E–03)– 1.277E–01(1.77E–02)– 1.595E-01(1.20E-02) 

best/all 6/35 9/35 2/35 3/35 4/35 4/35 24/35 
+/–/~ 8/24/3 7/24/4 5/29/1 7/22/6 3/26/6 3/28/4 – – 
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MOEA/D-DU and SRA performed best in the cases of 10 
objectives and 13 objectives, respectively, while EFR-RR was 
best in all the other cases. Concerning WFG3 with linear and 
unimodal PF, MaOEA/C performed best in all cases. For 
WFG4-WFG8 with concave PFs, MaOEA/C showed a supe-
rior performance over its competitors, as it performed best in 
more than half of all cases. Regarding WFG9 with a mul-
ti-modal and deceptive PF, MaOEA/C only obtained the best 
result in the case with 15 objectives, while SRA and -DEA 
were respectively best in the cases of 5 and 10 objectives. 
EFR-RR showed the best performance in all the other cases.  

From the one-by-one comparisons in the last row of Table 
IV, MaOEA/C performed better than NSGA-III, MOEA/D-DU, 

-DEA, SRA, VaEA and EFR-RR in 43, 35, 37, 37, 39, and 31 
out of 45 cases, respectively, while it was only outperformed 
by NSGA-III, MOEA/D-DU, -DEA, SRA, VaEA and 
EFR-RR in 2, 8, 5, 4, 4, and 10 cases, respectively. Thus, 
MaOEA/C was found to present a superior performance over 
its six competitors, in most instances of WFG1-WFG9.  
3) A Further Discussion and Analysis on MaOEA/C 

To further study the evolutionary behavior of all the com-
pared MaOEAs, Fig. A.1 plots their evolutionary curves in the 
supplementary file due to page limitations, using the average 
HV values in all the 10-objective MaF and WFG test problems. 
The average HV values were recorded at an interval of 20 
generations. The subfigures in Fig. A.1 confirm the advantages 

TABLE IV 
COMPARISON OF RESULTS OF MaOEA/C AND SIX COMPETITIVE MOEAS ON WFG1-WFG9 USING HV 

Problem m NSGA-III MOEA/D-DU -DEA SRA VaEA EFR-RR MaOEA/C 

WFG1 

5 3.643E-01(2.96E-02)– 5.951E-01(3.25E-02)– 5.391E-01(2.72E-02)– 4.917E-01(2.20E-02)– 3.411E-01(3.21E-02)– 3.590E-01(2.04E-02)– 6.416E-01(1.58E-02)
8 4.353E-01(4.05E-02)– 5.636E-01(2.84E-02)– 7.711E-01(2.12E-02)– 6.126E-01(2.26E-02)– 5.694E-01(2.70E-02)– 6.206E-01(7.83E-02)– 7.782E-01(8.24E-03)

10 6.531E-01(4.01E-02)– 5.676E-01(3.78E-02)– 8.547E-01(9.43E-03)+ 6.466E-01(1.95E-02)– 7.106E-01(3.14E-02)– 7.607E-01(3.39E-02)– 8.233E-01(1.29E-02) 
13 8.425E-01(2.50E-02)– 8.580E-01(3.15E-02)+ 8.696E-01(2.02E-02)+ 7.686E-01(2.14E-02)– 8.715E-01(1.20E-02)+ 7.653E-01(4.47E-02)– 8.450E-01(9.98E-03) 
15 8.610E-01(1.75E-02)+ 8.526E-01(2.45E-02)~ 8.652E-01(1.04E-02)+ 7.691E-01(2.30E-02)– 8.679E-01(7.93E-03)+ 7.590E-01(5.18E-02)– 8.527E-01(1.25E-02) 

WFG2 

5 9.576E-01(5.23E-02)– 9.746E-01(5.34E-02)+ 9.482E-01(6.54E-02)– 9.725E-01(3.19E-03)+ 9.651E-01(3.11E-02)~ 9.861E-01(2.36E-03)+ 9.664E-01(4.35E-02) 
8 9.323E-01(7.84E-02)– 9.841E-01(3.23E-02)+ 8.963E-01(8.51E-02)– 9.764E-01(3.16E-02)~ 9.683E-01(4.38E-02)– 9.952E-01(1.36E-03)+ 9.731E-01(6.03E-02) 

10 9.599E-01(5.99E-02)– 9.971E-01(1.05E-03)+ 9.076E-01(8.50E-02)– 9.798E-01(3.22E-02)~ 9.836E-01(3.39E-03)~ 9.601E-01(5.82E-02)– 9.818E-01(3.23E-02) 
13 9.394E-01(7.37E-02)– 9.536E-01(5.82E-02)~ 7.821E-01(6.05E-02)– 9.755E-01(4.45E-02)+ 9.693E-01(5.38E-02)+ 9.521E-01(7.06E-02)~ 9.520E-01(7.96E-02) 
15 9.362E-01(7.62E-02)– 9.791E-01(9.16E-03)+ 7.897E-01(5.10E-02)– 9.841E-01(3.23E-02)+ 9.803E-01(5.41E-02)+ 9.844E-01(3.28E-02)+ 9.695E-01(5.80E-02) 

WFG3 

5 6.164E-01(7.72E-03)– 6.231E-01(7.88E-03)– 6.329E-01(7.32E-03)– 6.245E-01(5.38E-03)– 5.666E-01(1.34E-02)– 5.903E-01(8.18E-03)– 6.382E-01(6.52E-03)
8 5.938E-01(1.48E-02)– 4.795E-01(1.14E-02)– 5.722E-01(3.07E-02)– 6.020E-01(1.33E-02)– 5.759E-01(1.51E-02)– 6.161E-01(9.11E-03)– 6.593E-01(4.26E-03)

10 6.216E-01(2.75E-02)– 4.522E-01(8.20E-03)– 6.053E-01(1.97E-02)– 5.898E-01(1.44E-02)– 5.393E-01(3.53E-02)– 6.081E-01(1.55E-02)– 6.684E-01(6.14E-03)
13 6.222E-01(2.80E-02)– 4.177E-01(1.40E-02)– 5.746E-01(2.54E-02)– 5.545E-01(1.90E-02)– 5.675E-01(4.30E-02)– 5.485E-01(2.55E-02)– 6.610E-01(6.41E-03)
15 6.455E-01(1.86E-02)– 4.194E-01(1.40E-02)– 5.896E-01(2.69E-02)– 5.582E-01(1.84E-02)– 5.753E-01(4.52E-02)– 5.640E-01(1.98E-02)– 6.729E-01(5.40E-03)

WFG4 

5 7.441E-01(6.46E-03)– 7.620E-01(7.38E-03)+ 7.525E-01(4.61E-03)– 7.165E-01(4.58E-03)– 7.034E-01(6.37E-03)– 7.379E-01(5.01E-03)– 7.556E-01(5.06E-03) 
8 7.675E-01(1.74E-02)– 8.513E-01(9.31E-03)– 7.931E-01(1.47E-02)– 7.701E-01(8.35E-03)– 8.043E-01(1.17E-02)– 8.975E-01(5.42E-03)~ 8.957E-01(5.49E-03) 

10 8.523E-01(9.95E-03)– 9.149E-01(5.64E-03)– 8.696E-01(9.14E-03)– 7.836E-01(1.04E-02)– 8.158E-01(1.00E-02)– 8.419E-01(1.16E-02)– 9.258E-01(5.83E-03)
13 7.386E-01(2.56E-02)– 7.793E-01(1.93E-02)– 8.074E-01(1.83E-02)– 7.507E-01(1.42E-02)– 8.201E-01(1.66E-02)– 8.858E-01(2.73E-02)– 9.054E-01(1.40E-02)
15 7.483E-01(3.08E-02)– 7.986E-01(2.10E-02)– 8.298E-01(1.58E-02)– 7.607E-01(1.59E-02)– 8.133E-01(1.39E-02)– 8.481E-01(2.59E-02)– 9.291E-01(9.10E-03)

WFG5 

5 7.249E-01(2.45E-03)– 7.280E-01(3.98E-03)+ 7.277E-01(2.89E-03)~ 6.943E-01(4.26E-03)– 6.905E-01(6.20E-03)– 7.336E-01(5.42E-03)+ 7.269E-01(4.26E-03) 
8 7.847E-01(6.55E-03)– 8.181E-01(3.16E-03)– 7.897E-01(5.73E-03)– 7.512E-01(7.74E-03)– 7.908E-01(8.06E-03)– 8.588E-01(4.99E-03)+ 8.398E-01(5.06E-03) 

10 8.494E-01(4.15E-03)– 8.716E-01(3.09E-03)– 8.534E-01(3.59E-03)– 7.650E-01(8.58E-03)– 8.050E-01(7.65E-03)– 8.103E-01(7.11E-03)– 8.806E-01(3.75E-03)
13 7.598E-01(2.09E-02)– 7.286E-01(1.49E-02)– 8.181E-01(1.18E-02)– 7.540E-01(1.84E-02)– 8.186E-01(8.60E-03)– 8.488E-01(1.00E-02)– 8.517E-01(1.75E-02)
15 7.527E-01(2.67E-02)– 7.543E-01(1.19E-02)– 8.101E-01(1.39E-02)– 7.718E-01(1.94E-02)– 8.181E-01(7.66E-03)– 8.555E-01(7.80E-03)– 8.660E-01(6.38E-03)

WFG6 

5 7.331E-01(6.32E-03)+ 7.017E-01(1.18E-02)– 7.379E-01(6.50E-03)+ 6.768E-01(9.52E-03)– 6.925E-01(7.33E-03)– 7.349E-01(7.37E-03)– 7.302E-01(6.88E-03) 
8 8.106E-01(1.01E-02)– 7.847E-01(1.14E-02)– 8.142E-01(8.97E-03)– 7.181E-01(1.30E-02)– 8.187E-01(1.21E-02)– 8.682E-01(8.18E-03)+ 8.450E-01(9.33E-03) 

10 8.737E-01(7.46E-03)– 8.547E-01(1.00E-02)– 8.769E-01(7.78E-03)– 7.234E-01(1.37E-02)– 8.331E-01(8.48E-03)– 8.389E-01(9.72E-03)– 8.825E-01(7.64E-03)
13 8.676E-01(1.43E-02)– 7.366E-01(1.44E-02)– 8.714E-01(1.10E-02)– 7.158E-01(3.58E-02)– 8.511E-01(1.38E-02)– 8.841E-01(8.24E-03)+ 8.814E-01(1.19E-03) 
15 8.670E-01(1.19E-02)– 7.687E-01(1.61E-02)– 8.776E-01(1.07E-02)– 7.385E-01(3.12E-02)– 8.542E-01(8.93E-03)– 8.969E-01(9.29E-03)~ 8.958E-01(1.00E-03) 

WFG7 

5 7.775E-01(2.94E-03)– 7.671E-01(6.39E-03)– 7.893E-01(2.71E-03)~ 7.390E-01(3.73E-03)– 7.406E-01(5.88E-03)– 7.924E-01(1.83E-03)+ 7.852E-01(2.41E-03) 
8 8.264E-01(1.55E-02)– 8.605E-01(7.00E-03)– 8.488E-01(8.55E-03)– 8.030E-01(1.07E-02)– 8.714E-01(6.32E-03)– 9.147E-01(1.79E-03)~ 9.147E-01(2.69E-03)

10 9.104E-01(5.55E-03)– 9.308E-01(2.48E-03)– 9.187E-01(3.99E-03)– 8.145E-01(7.50E-03)– 8.885E-01(7.35E-03)– 9.021E-01(9.21E-03)– 9.549E-01(1.74E-03)
13 8.481E-01(2.00E-02)– 7.757E-01(2.05E-02)– 8.595E-01(1.70E-02)– 7.554E-01(1.39E-02)– 8.996E-01(9.90E-03)– 9.341E-01(8.27E-03)– 9.486E-01(1.73E-02)
15 8.449E-01(2.65E-02)– 7.912E-01(2.30E-02)– 8.959E-01(1.41E-02)– 7.661E-01(1.45E-02)– 9.025E-01(6.82E-03)– 9.336E-01(8.94E-03)– 9.602E-01(1.26E-02)

WFG8 

5 6.528E-01(4.89E-03)– 6.767E-01(6.53E-03)+ 6.574E-01(4.63E-03)~ 6.156E-01(5.29E-03)– 5.896E-01(8.08E-03)– 6.332E-01(4.71E-03)– 6.561E-01(3.67E-03) 
8 6.549E-01(1.85E-02)– 7.474E-01(2.46E-02)– 6.580E-01(1.90E-02)– 6.569E-01(1.14E-02)– 6.285E-01(1.15E-02)– 7.599E-01(6.88E-03)– 7.712E-01(1.01E-02)

10 7.713E-01(1.42E-02)– 8.308E-01(2.15E-02)– 7.764E-01(1.23E-02)– 6.595E-01(1.44E-02)– 6.271E-01(3.34E-02)– 7.142E-01(1.84E-02)– 8.435E-01(1.01E-02)
13 6.182E-01(1.00E-01)– 6.789E-01(4.71E-02)– 7.579E-01(4.63E-02)– 6.169E-01(2.53E-02)– 7.212E-01(2.60E-02)– 8.072E-01(1.28E-02)– 8.736E-01(4.87E-03)
15 7.377E-01(1.10E-01)– 7.300E-01(5.42E-02)– 8.384E-01(2.11E-02)– 6.302E-01(2.19E-02)– 7.705E-01(2.98E-02)– 8.411E-01(1.23E-02)– 9.083E-01(5.86E-03)

WFG9 

5 6.546E-01(1.48E-02)– 6.563E-01(2.32E-02)– 6.648E-01(1.77E-02)– 6.754E-01(2.07E-02)+ 6.346E-01(5.36E-03)– 6.438E-01(7.99E-03)– 6.668E-01(2.57E-02) 
8 6.632E-01(2.84E-02)– 7.265E-01(2.13E-02)– 7.040E-01(2.72E-02)– 7.359E-01(2.00E-02)~ 6.980E-01(1.71E-02)– 7.667E-01(2.89E-02)+ 7.349E-01(2.47E-02) 

10 7.264E-01(1.23E-02)– 7.322E-01(2.96E-02)– 7.507E-01(2.67E-02)+ 7.438E-01(1.65E-02)~ 6.990E-01(1.20E-02)– 7.382E-01(2.41E-02)– 7.449E-01(2.69E-02) 
13 6.680E-01(4.01E-02)– 5.799E-01(5.04E-02)– 6.911E-01(2.25E-02)– 7.191E-01(1.77E-02)– 6.761E-01(1.88E-02)– 7.495E-01(2.74E-02)+ 7.400E-01(3.90E-02) 
15 6.980E-01(3.00E-02)– 5.776E-01(5.79E-02)– 7.172E-01(2.25E-02)– 7.330E-01(2.24E-02)– 6.802E-01(1.85E-02)– 7.501E-01(2.31E-02)– 7.535E-01(4.08E-02)

Best/All 0/45 3/45 3/45 2/45 2/45 13/45 23/45 
+/–/~ 2/43/0 8/35/2 5/37/3 4/37/4 4/39/2 10/31/4 – – 
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of MaOEA/C in providing a strong selection pressure towards 
the true PFs for problems with concave PFs, such as MaF2, 
MaF4, and WFG4-WFG9. However, our algorithm showed a 
slightly poor performance for problems with convex PFs, such 
as MaF3, MaF5, and WFG1-WFG2. Moreover, in problems 
with linear, degenerate or disconnected PFs, such as MaF1, 
MaF6, MaF7 and WFG3, MaOEA/C obtained a very promis-
ing performance.  

Based on the above summary of comparisons, MaOEA/C 
performed better in problems with concave, degenerate or 
disconnected PFs, but was worse in problems with convex PFs. 
This phenomenon is mainly induced by the use of the vector 
angle to distinguish the similarities of individuals in the clus-
ters using PCM and HCM. For problems with convex PFs, the 
vector angle seems not so fair to reflect the similarities of the 
individuals near the boundaries. To justify the above statement, 

three cases to compute the vector angles are provided in Fig. 2 
with six individuals, respectively for problems with convex, 
concave and linear PFs. In Fig. 2(a) with a convex PF, angle1 
and angle3 are much smaller than angle2. That is to say, the 
vector angles of two boundary individuals are much smaller 
than that of two intermediate individuals, even though they 
show a similarly good distribution on the PF. However, in Figs. 
2(b) and 2(c) respectively with concave and linear PFs, the 
vector angle is very fair to estimate the distributions, regard-
less of the boundary individuals or the intermediate individu-
als. Therefore, the slightly worse performance of MaOEA/C in 
problems with convex PFs can be properly explained. On the 
other hand, for problems with degenerate, inverted or dis-
connected PFs, such as MaF1, MaF4, MaF6, MaF7 and WFG3, 
the reference point based MaOEAs (NSGA-III, MOEA/D-DU, 

-DEA, and EFR-RR) performed relatively poorly, since the 
pre-set reference points cannot properly match their PFs [13]. 
To visually show and support the above discussion results, 
some final solution sets with the median HV values from 30 
runs were plotted in Figs. 3-4, respectively for WFG3 with a 
particularly irregular PF [67] in the cases of 3 objectives to 
better visualize the performance and of 10 objectives to show 
the solutions’ distribution in high dimensional objective space. 
Due to page limitations, Figs. A.2 to A.9 are further provided 
in the supplementary file, respectively for MaF1 with an 

 
Fig. 3 The final solution sets achieved by seven MaOEAs and the true PF on 3-objective WFG3 problem 

 
Fig. 4 The final solution sets achieved by seven MaOEAs and the true PF on 10-objective WFG3 problem, shown by parallel coordinates 
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Fig. 2 The illustration of the angle between the boundary solutions and the 
intermediate solutions for the (a) convex (b) concave (c) linear PFs in the 
normalized bi-objective space 
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inverted PF, MaF5 with a badly scaled convex PF, MaF6 with 
a degenerated PF, and MaF7 with a disconnected PF in the 
cases of 3 objectives and of 10 objectives. It is worth noting 
that the same parameters settings from Section IV.B were used 
in these experiments, except that the population size was set to 
120 and the maximum number of generations was set to 400 
for the 3-objective problems.  

Moreover, to quantify how well each algorithm performs 
overall, Friedman’s test from the software tool KEEL [68] was 
used to rank the compared algorithms in all the test problems. 
Fig. 5 summarizes the average performance rank for different 
number of objectives in (a) and different test problems in (b). It 
is noted that the ranks of MaOEA/C are connected by a red line 
to easily observe the values. In Fig. 5(a), our algorithm showed 
obvious advantages on all the test problems with different 
numbers of objectives. It can also be confirmed from Fig. 5(b) 
that our algorithm achieved median performance in four test 
problems (MaF3, MaF5, WFG1 and WFG6) and the best 
performance in the other cases. Using Friedman’s test, Fig. 6 
further provides the average performance ranks in all the 80 
test problems, which shows that the average performance rank 
(2.094) of MaOEA/C is much smaller than that of other 
competitors and thus confirms the superiority of MaOEA/C 
over other competitors when considering all the test problems. 
In addition, to show the significant differences of results 
among these compared algorithms, p-values obtained from 
Bonferroni-Dunn’s and Holm’s post hoc procedure in the 
software tool KEEL are listed in Table A.II of the supple-
mentary file due to page limitations, where a p-value closer to 

0 means the more significant differences on the results. In 
Table A.II, most p-values are very close to 0, indicating that 
MaOEA/C had a better performance with statistical signifi-
cance when compared to its competitors.  

At the review process of our paper, a number of competitive 
MaOEAs were published and thus more experimental studies 
were conducted by comparing MaOEA/C with four recently 
proposed MaOEAs, i.e., SPEA/R [27], MOEA/D-LWS [32], 
RVEA [33] and 1by1EA [47]. The parameters of these com-
pared MaOEAs were set according to their references, while 
other experimental settings are the same as given in Section 
IV.B. Due to page limitations, their HV comparison results on 
tackling the WFG and MaF test problems with 5, 10, and 15 
objectives are given in Table A.III of the supplementary file. 
From Table A.III, MaOEA/C showed a superior performance 
on most cases, as it was best on 27 out of 45 cases, while 
SPEA/R, MOEA/D-LWS, RVEA, and 1by1EA were respec-
tively best on 8, 3, 4, and 6 cases. Moreover, two engineering 
problems from [26], [44] (Crashworthiness design of vehicles 
and modified Car design of side-impact) were used to validate 
the effectiveness of MaOEA/C on coping with real-life 
MaOPs, which are provided in Table A.IV and Section 2 of the 
supplementary file due to page limitations. 

Overall, the superior performances of MaOEA/C on various 
test MaOPs and real-life MaOPs are validated. As introduced 
in Section III, its advantages are mainly brought by the used 
clustering methods (PCM and HCM) to maintain diversity and 
the convergence indicator in (6) to ensure convergence.  

D. More Discussions about the Clustering-based MaOEAs 
1) Comparison Results on Different Clustering Methods 
Here, in order to verify the efficiency of our two-step clus-

tering strategy, two MaOEA/C variants were designed by only 
embedding a single clustering method, i.e., the HCM-based 
MaOEA (MaOEA/C-H) and the density clustering method 
(DCM) [69] based MaOEA (MaOEA/C-D). MaOEA/C-H and 
MaOEA/C-D respectively used HCM and DCM to classify the 
union population into N clusters in their environmental selec-
tion mechanism. Due to page limitations, the details of DCM 
are provided in Section 3 of the supplementary file. To have a 
fair comparison, other components of MaOEA/C-H and 

     
(a)                                                                                                                (b) 

Fig. 5 (a) Average performance rank over all test problems with different number of objectives. (b) Average performance rank in terms of all objective 
dimensions for different test problems, namely MaF1-MaF7 (M1-M7) and WFG1-WFG9 (W1-W9) 

 
Fig. 6 Average ranking of Friedman’s test for the compared MaOEAs 

2.094 

3.888 4.125 4.381 4.400 4.493 4.619 
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MaOEA/C-D were kept the same as in the original MaOEA/C, 
also running 30 times with the same settings in Tables I and II.  

The detailed HV results are listed in Tables A.V-A.VI of the 
supplementary file. Here, Table V provides a summary of the 
significance test on the HV results for all the MaF and WFG 
test problems with m = 5, 10, 15, where “Better”, “Worse” and 
“Similar” respectively indicate the number of test problems in 
which the performance of MaOEA/C is better than, worse than, 
and similar to that of its competitors. Fig. 7 further shows their 
average running times (in seconds: s) in all the test problems 
with 10 objectives. When compared to MaOEA/C-D in Table 
V, MaOEA/C was better in more than half of the test problems 
adopted, which confirms that the adopted clustering methods 
(PCM and HCM) are more effective for tackling MaOPs. Also, 
Fig. 7 shows the superiority of MaOEA/C over MaOEA/C-D 
regarding the running time. When compared to MaOEA/C-H 
in Table V, MaOEA/C obtained statistically similar results in 8 
instances of the MaF problems and in 11 instances of the WFG 
problems. Moreover, MaOEA/C was slightly better than 
MaOEA/C-H in the MaF test problems, but slightly worse than 
MaOEA/C-H in the WFG test problems. These comparisons 
indicate that even the use of a single clustering method such as 
HCM adopted in the environmental selection mechanism is 
effective to maintain the population’s diversity, so as to pro-
vide an overall competitive performance. However, when 
considering the running times in Fig. 7, MaOEA/C has a much 
lower computational complexity, mainly due to the use of a 
two-step clustering strategy (PCM and HCM). 

To summarize, when considering the performance and 
computational complexity of clustering-based MaOEAs, it is 
advisable to run a two-step clustering strategy (PCM and HCM) 
in our algorithm. 

2) Computational Complexity Analysis of MaOEA/C  
The computational complexity of MaOEA/C in one genera-

tion is mainly dominated by the environmental selection that is 
described in Algorithm 3. Algorithm 3 requires a time com-
plexity of ( )O mN  (m is the number of objectives and N is the 
population size) to obtain the union population U in line 1, to 
normalize each solution of U in line 2 and to get the conver-
gence indicator value for each solution of U in line 3. In line 4, 
it needs a time complexity of ( )2O m N  to run Algorithm 1. In 
the loop for each main cluster PCM

iC  in lines 6-23, the time 
complexity is mainly determined by the non-dominated sort-
ing procedure in line 7 and the procedures of Algorithm 2 in 
line 12. As it requires a time complexity of 2( log )mO N k  [64] 
to run the non-dominated sorting for 2k individuals (k = N/m) 
in line 7 and an approximate time complexity of 3 2( )O m k  to 

run Algorithm 2 in line 12, the overall worst time complexity 
of MaOEA/C is 2 3 2max{ ( log ), ( )}mO N k O m k  (k = N/m) in one 
generation, i.e., 2O mN , which shows comparable time 
complexities with most MaOEAs [44].  

To evaluate the actual runtime of all the compared MaOEAs, 
their average running times (in seconds: s) from 30 runs are 
plotted in Fig. 8, for all the MaF and WFG test problems with 
10 objectives. Obviously, in Fig. 8, MOEA/D-DU showed the 
fastest speed due to the use of a simple decomposition 
framework, while SRA had the slowest speed due to the sort-
ing of two performance indicators. Although the two cluster-
ing methods (PCM and HCM) were used in MaOEA/C, it was 
still faster than NSGA-III and mostly similar to VaEA. -DEA 
and EFR-RR also seemed faster than MaOEA/C. Therefore, 
the adopted clustering methods will not significantly slow 
down the running time of MaOEA/C, but shows a comparable 
performance in their actual running times.  

E. More Discussions about the Similarity-based Mating 
Selection and the Convergence Indicators 

Here, in order to study the impact of  (the probability to 
select the parents in the same cluster) in the mating selection 
mechanism, Table VI gives average rank of Friedman’s test 
for MaOEA/C with different  values from {0.0, 0.2, 0.5, 0.8, 
1.0}, while the details of their HV results are provided in 
Tables A.VII-A.VIII of the supplementary file due to page 
limitations. From Table VI, it is confirmed that =0.8  in our 
setting is reasonable and more effective, as it obtained the 
overall best performance when considering all the test prob-

TABLE V 
SUMMARY OF THE SIGNIFICANCE TEST BETWEEN MAOEA/C AND OTHER 

TWO CLUSTERING-BASED MAOEAS 
MaOEA/C               vs. MaOEA/C-H  MaOEA/C-D 

 On MaF Problems 
(m=5,10,15) 

Better 7 11 
Worse 6 3 
Similar 8 7 

On WFG Problems 
(m=5,10,15) 

Better 6 18 
Worse 10 6 
Similar 11 3 

 
Fig. 7 The average running times of three clustering-based MaOEAs on 
MaF1-MaF7 (M1-M7) and WFG1-WFG9 (W1-W9) with 10 objectives  

 
Fig. 8 The average running times of the selected seven MaOEAs on 
MaF1-MaF7 (M1-M7) and WFG1-WFG9 (W1-W9) with 10 objectives 
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lems adopted. Similarly, in [27], it was claimed that a proper 
similarity-based mating selection can benefit reproduction to 
enhance performance of MaOEAs.  

Moreover, to study the impact of the convergence indicator 
in our algorithm, four indicators, i.e., the Euclidean distance to 
an ideal point (EdI) [47], the Euclidean distance to the Nadir 
point (EdN) [47], the Chebyshev distance to the ideal point 
(CdI) [47], and the modified achievement scalarizing function 
(ASF) [46], were used in MaOEA/C to compare with the 
indicator in (6). Table VII gives the summary of the signifi-
cance test for MaOEA/C with different convergence indicators, 
while the details of their HV results are provided in Tables 
A.IX-A.X of the supplementary file due to page limitations. 
As observed from Table VII, MaOEA/C with different con-
vergence indicators performed competitively on most of MaF 
test problems, while the indicator in (6) showed some ad-
vantages on most of the WFG test problems. Thus, the use of 
(6) as our convergence indicator in MaOEA/C is reasonable 
and more effective. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, a novel clustering-based evolutionary algo-

rithm was presented for MaOPs, i.e., MaOEA/C. This algo-
rithm mainly relies on the use of clustering methods (PCM and 
HCM) to classify N clusters, which helps to portray the pop-
ulation’s distribution. Then, one individual from each of the 
clusters that are respectively close to the m axis vector is 
selected to maintain diversity, while one individual from each 
of the remaining clusters is chosen using a convergence indi-
cator. This way, diversity and convergence can be properly 
balanced in MaOEA/C. Moreover, in the mating selection 
mechanism, the parent population is also divided into m clus-
ters using PCM and then the parents for applying recombina-
tion are selected from the same cluster with a high probability, 
aiming to encourage exploitation. When compared to six 
competitive MaOEAs (NSGA-III, MOEA/D-DU, EFR-RR, 

-DEA, SRA, and VaEA), MaOEA/C showed its superiority, 
especially in some problems with incomplete and irregular PFs. 
Moreover, the experiments validated the effectiveness and 
efficiency of the two-step clustering strategy in MaOEA/C, 
which has a comparable time complexity with most of the 
compared MaOEAs, even though the execution of two clus-

tering methods is often costly. At last, the effect of parameter 
 in mating selection and the effectiveness of other conver-

gence indicators in environmental selection were also exper-
imentally studied in this paper. 

In our future work, the use of vector angles to reflect the 
similarities of individuals will be further studied, with the aim 
of alleviating the difficulty in tackling problems with convex 
PFs. Moreover, the application of MaOEA/C to some real-life 
problems will be conducted as part of our future work. 
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