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Abstract—Generally, decomposition-based evolutionary algo-

rithms in many-objective optimization (MaOEA/Ds) have widely 
used reference vectors to provide search directions and maintain 
diversity. However, their performance is highly affected by the 
matching degree on the shapes of the reference vectors and the 
Pareto front. To address this problem, this paper proposes a 
self-guided reference vector (SRV) strategy for MaOEA/Ds, 
aiming to extract reference vectors from the population using a 
modified k-means clustering method. To give a promising clus-
tering result, an angle-based density measurement strategy is 
used to initialize the centroids, which are then adjusted to get the 
final clusters, aiming to properly reflect the population’s distri-
bution. Afterwards, these centroids are extracted to get adaptive 
reference vectors for self-guiding the search process. To verify 
the effectiveness of this SRV strategy, it is embedded into three 
well-known MaOEA/Ds that originally use the fixed reference 
vectors. Moreover, a new strategy of embedding SRV into 
MaOEA/Ds is discussed when the reference vectors are adjusted 
at each generation. Simulation results validate the superiority of 
our SRV strategy, when tackling numerous many-objective 
optimization problems with regular and irregular Pareto fronts. 
 

Index Terms—Many-objective optimization, Self-guided ref-
erence vector, Evolutionary algorithm. 

I. INTRODUCTION 
ANY real-life applications often involve the optimiza-
tion problems [1] [2], some of which concern the sim-

ultaneous optimization of m (often conflicting) objectives [3] 
[4], giving rise to the so-called multi-objective optimization 
problems (MOPs) with m = 2 and 3, or many-objective opti-
mization problems (MaOPs) with m > 3, as modeled by  

1min  ( ) ( ( ),..., ( ))m
x

F x f x f x ,                     (1) 

where 1( , , )nx x x  is an n dimensional decision vector in 
the decision space , and ( )F x defines m objective functions 
in the objective space. In (1), there usually does not exist a 
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single optimal solution for all the objectives, but a set of 
trade-off solutions termed Pareto optimal set (PS), with its 
mapping into the objective space termed Pareto front (PF) [5].  

During the past two decades, multi-objective evolutionary 
algorithms (MOEAs) have become a popular and effective 
approach for solving MOPs [6]-[10]. However, when tackling 
MaOPs, there have been four main challenges for the conven-
tional MOEAs [11]-[13]: 1) the inefficiency of the Pareto 
dominance relationship; 2) the difficulty of diversity mainte-
nance; 3) the inefficiency of variation operators; and 4) the 
high computational cost required. To address the above chal-
lenges, numerous research studies have been made to design 
many-objective evolutionary algorithms (MaOEAs) [14]-[29]. 

Especially, decomposition-based MOEAs (MOEA/Ds) have 
shown a great potential [21]-[29], by using reference vectors 
(RVs) to provide search directions and maintain diversity. In 
traditional MOEA/Ds [7]-[8], a MOP is decomposed into a set 
of subproblems, each of which will be associated with an 
individual using a collaborative search [30]. However, in most 
MOEA/Ds for solving MaOPs (MaOEA/Ds), a more gener-
alized use of RVs for decomposition of MaOPs is presented, in 
which the association relation of individuals to subproblems is 
not so strict, i.e., each subproblem may be associated to none, 
one or several individuals, and vice versa [21]-[29], [31].  

Generally, two main procedures for environmental selection 
are adopted in most MaOEA/Ds [21]-[29], which will reserve 
the promising individuals based on their RVs. Assuming that 
we have N RVs, a candidate union population (marked by cP ) 
with no less than N individuals will be associated to RVs (N is 
also the population size). The first procedure (an associa-
tion-based partition process, APP) will assign each individual 
of cP to the closest RV based on a distance metric, aiming to 
divide cP  into N subsets in objective space. Please note that 
there are three cases (none, one or several individuals) in each 
subset. Then, the population’s diversity can be maintained by 
selecting individuals from different subsets, and the search 
direction of each individual will be guided by its associated 
RV. Based on the above APP result, the second procedure (an 
effective elitism selection strategy, ESS) will select N indi-
viduals from cP  as the next population, aiming to balance 
convergence and diversity for tackling MaOPs. Generally, 
most ESSs are realized by considering convergence and di-
versity simultaneously [26]-[27] or separately [28]-[29]. In 
Section II.A, more details of the two above procedures in some 
existing MaOEA/Ds will be discussed. 

As revealed by the studies in [32]-[33], most MaOEA/Ds 
can properly maintain diversity on regular MaOPs such as the 
DTLZ [34] and WFG [35] test problems, as their adopted APP 
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and ESS can perform well to track their PFs. However, they 
may confront great challenges when tackling irregular and 
complex MaOPs such as the MaF [36] and mDTLZ [37] test 
problems, as their specified RVs cannot properly match the PF 
shapes of such problems. This observation is also pointed out 
in [38]-[39] in which the authors provide evidence showing 
that the performance of MaOEA/Ds will be highly affected by 
the matching degree on the shapes of RVs and PFs. To alle-
viate this problem, some recent MaOEAs have been designed 
to adaptively adjust their used RVs [40]-[51]. A-NSGA-III [40] 
proposes the use of addition and deletion strategies, by re-
moving the non-useful RVs (i.e., they are not associated with 
any individual) and adding new RVs near to the crowded RVs 
(i.e., they are associated with a larger number of individuals). 
When generating new RVs, a (m-1) dimensional simplex of m 
points is inserted by treating the crowded RV as the centroid 
(here m is the number of objectives). At last, each individual 
will be associated to only a unique RV. To further enhance the 
adaptation capability of A-NSGA-III, A2-NSGA-III [41] uses 
a more appropriate simplex size and runs the addition strategy 
only on the RV that has been found to be crowded during the 
past τ generations (τ is set to 10 in [41]). Similarly, RVEA* [27] 
also replaces the non-useful RVs, but its addition strategy is 
much simpler by randomly generating some new unit RVs 
based on the minimum and maximum values of each objective. 
A-IM-MOEA [42] designs two replacement strategies for RVs, 
by dividing the evolutionary process into the exploration and 
the exploitation phases. A new RV is randomly generated to 
renew the most crowded RV (i.e., it is associated with the 
largest number of individuals) in the exploration phase and to 
update the least crowded RV (i.e., it is associated with the 
minimal number of individuals) in the exploitation phase. In 
g-DBEA [43], two sets of RVs are constructed, namely the 
active and inactive sets. At first, the active set will reserve N 
evenly distributed RVs. Once a RV is not associated with any 
individual over a period of τ generations (τ is a preset integer), 
it will be moved to the inactive set and then a new RV will be 
generated around the most crowded RVs in the active set. At 
the same time, RVs in the inactive set can be moved back to 
the active set once they are associated with individuals again. 
Moreover, RVs can be adaptively adjusted by searching a 
number of well-distributed local ideal points from the current 
non-dominated individuals in RPEA [44], by co-evolving the 
preferences and the candidate individuals in PICEA-g [45], by 
the guidance of an enhanced inverted generational distance 
indicator in AR-MOEA [46], by employing a self-organizing 
map in MOEA/D-SOM [47], by using an incremental support 
vector machine in CLIA [48], by running a linear interpolation 
of the non-dominated solutions in W-MOEA/D [49] and an 
equidistant interpolation in its variant [50], and by analyzing 
the geometric relationship of RVs in MOEA/D-AWA [51]. In 
MaOEA/D-2ADV [52], m boundary RVs are first generated to 
achieve fast convergence and then extended to get another N-m 
RVs by using a systematic method [17], [53]. In the evolu-
tionary process, all the non-useful RVs are removed and new 
RVs are inserted between two RVs with the maximal distance 
to their nearest RVs. In MOEA/D-AM2M [54], the individuals 

are treated as RVs, which are found by iteratively searching 
the individual with the maximal angle to the selected RVs.  

To summarize, MaOEA/Ds show promising performance 
by using fixed RVs in handling MaOPs with regular PFs and 
by adaptively tuning RVs to balance convergence and diver-
sity in tackling MaOPs with irregular PFs [48]. Different from 
the existing adjustment methods of RVs in most MaOEA/Ds 
[40]-[45], which may not track the evolutionary process as 
quickly as needed to adjust the RVs according to the individ-
uals’ distribution, this paper proposes a self-guided RV (SRV) 
strategy, aiming to extract RVs from the population to guide 
its evolutionary process. Our SRV strategy is a generalized 
production method for RVs and can be embedded into any 
MaOEA/D for further enhancing their performance, and can 
perform well on various MaOPs with regular or irregular PFs. 
Here, the three main contributions of this paper are clarified as 
follows: 

1) We propose the SRV strategy for MaOEA/Ds, by using a 
k-means clustering method modified from [55] to extract N 
RVs from the population. In order to improve the clustering 
result, an angle-based density measurement (ADM) strategy is 
designed for initialization, which obtains N original centroids 
to better represent the population’s distribution.  

2) We integrate the SRV strategy into three well-known 
MaOEA/Ds, i.e., NSGA-III [21], -DEA [23] and EFR-RR 
[22], forming three new MaOEA/Ds named as NSGA-III/S,

-DEA/S , and EFR-RR/S, respectively. Their performance on 
some MaOPs with irregular and complex PFs (i.e., the MaF 
[36] and mDTLZ [37] problems) is highly improved, which 
confirms the effectiveness of our SRV strategy. 

3) We present a new way to embed SRV into MaOEA/Ds. 
To avoid the poor convergence induced by frequently changed 
RVs at each generation, N RVs extracted by our SRV are only 
used in APP to maintain diversity, while a shared and fixed RV 
is employed in ESS to balance convergence and diversity by 
joining the ideal and nadir points. This way, a novel competi-
tive MaOEA named MaOEA/SRV is presented in this paper.  

The rest of this paper is organized as follows. Section II 
introduces the previous related work on MaOEA/Ds and the 
motivations to design SRV. Section III presents the details of 
SRV and the way of embedding SRV into some well-known 
MaOEAs. The experimental results and some discussions are 
provided in Section IV, which motivated us to present 
MaOEA/SRV. At last, our conclusions and future work are 
presented in Section V. 

II. RELATED WORK AND MOTIVATIONS 

A. Summary of Some Existing MaOEA/Ds 
MaOEA/Ds run the environmental selection, as guided by N 

RVs, which are represented by 1 2, ,..., Nr r r (N is the number of 
RVs and population size). As introduced in Section I, there are 
two procedures (APP and ESS) in this operator. An APP is 
used to divide the candidate union population cP into N subsets 
and then an ESS is adopted to select N promising individuals 
from cP as the next population. Generally, in most MaOEA/Ds 
with fixed RVs, N RVs are uniformly distributed on the unit 
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hyperplane or unit hypersphere by a systematic method [17],
[53]. Moreover, to match the used RVs, both APP and ESS are 
processed in a normalized objective space. In order to interpret
the differences of various MaOEA/Ds, a summary of some 
existing MaOEA/Ds is provided in Table I, which lists the 
adopted distance metrics (D-metrics) in APP, the selected 
candidate population cP , the normalization procedures, two 
indicators in ESS (i.e., cI and dI that are respectively used to 
reflect convergence and diversity of each individual), and the 
way to run ESS. The details of these components are respec-
tively introduced below.

1) Candidate population cP : in the traditional fast 
non-dominated sorting procedure [6], the union population U
with 2N individuals (i.e., N parents plus N offspring) is divided 
into multiple fronts according to the non-dominated ranks (i.e.,

1F , 2F , and so on). Then, a subset tS can be constructed by 
including one front each time, starting from 1F , then 2F and so 
on, until the size of tS exceeds N for the first time. Let lF be the 
last front included into tS (i.e., 1 2 ...t lS F F F ), and the 
individuals in the remainder fronts of U are all rejected by tS . 
Generally, there are two settings of cP in the existing 
MaOEA/Ds from Table I, e.g., =c tP S in [21], [23] that give 
priority to the individuals with good convergence, and =cP U
in [22], [24]-[29] that emphasize the population’s distribution.

2) Normalization in cP : in most MaOEA/Ds, normalization is 
necessary to tackle MaOPs with different scales on different 
objectives, which helps to fit the used RVs. Generally, the i-th 
objective ( )if x of a solution cx P is normalized as follows:

*

*

( )( )= i i
i nadir

i i

f x zf x
z z ,                           (2)

where *z and nadirz are respectively the ideal and nadir points, 
m is the number of objectives and 1,2,...,i m . However, in 
RVEA [27], ( )if x is only translated to the coordinate origin by 

*( )= ( ) ,i i if x f x z      (3)
Please note that *z can be easily determined by setting *

iz as the 
minimal value of ( )if x from all cx P , while the estimation of 

nadirz is very challenging as it requires the true information of 
PF [56]. There are two common approaches to estimate the 
nadir point: 1) set nadir

iz as the maximal value of ( )if x from all 
cx P [24] or all 1x F [25], [29], and 2) set nadir

iz by using the 
adaptive procedures, e.g., the calculation of the intercepts 
along each objective axis for all cx P [21] or all 1x F

[22]-[23]. Note that, for some degenerate cases like no inter-
cepts in certain directions or negative intercepts, nadir

iz is set as 
the maximal value of ( )if x from all cx P in this paper [23].

3) The distance metrics: when associating a solution cx P to 
a RV ir ( 1,2,...,i N ), there are two distance metrics used in 
most MaOEA/Ds [21]-[29]. The first metric is the perpendic-
ular distance from ( )f x in (2) to ir , termed 2 ( , ),id x r which is 
computed by

2
* 2

2 1( , ) ( ) ( , )i id x r f x z d x r ,             (4)

where *z is an ideal point and 1( , )id x r is the distance from the 
projection of ( )f x on ir to the origin point, as calculated by

* *

1 *

( ( ) ) ( )( , )
|| ||

i
i

i

f x z r zd x r
r z ,                  (5)

The second metric termed ( , )ix r is a cosine distance to 
indicate the acute angle from ( )f x to ir , as computed by

* *

* *

( ( ) ) ( )( , ) arccos
( )

i
i

i

f x z r zx r
f x z r z

(arccos ,             (6)

To clarify the meaning of 1( , )id x r , 2 ( , )id x r , and ( , )ix r , a 
simple example is provided in Fig. 1 for the 2-dimensional 
normalized objective space.

4) The elitism selection strategy (ESS): after running APP, 
each individual cx P is associated to its closest RV and cP is 
divided into N subsets 1 2, ,...,R R R

NS S S , where R
iS includes all the 

individuals associated to the i-th RV ir . For example, each 
cx P can be associated to its K closest RVs in EFR-RR [22], 

while each RV in MOEA/D-SAS [28] is associated with its L
closest individuals (here K and L are the integers preset by the 
users). ESS endeavors to select N promising individuals based 
on the subsets 1 2, ,...,R R R

NS S S from APP. In each R
iS associated to 

ir ( 1,2,...,i N ), two indicators cI and dI are designed to 

TABLE I
A SUMMARY OF SOME EXISTING MAOEA/DS

MaOEA/Ds D-Metrics cP Normalization in cP cI (Convergence) dI (Diversity) The way to run ESS
NSGA-III [21] 2 ( , )id x r in (4) = tcP S By (2), estimate nadirz with an adaptive

procedure on all cx P Non-dominated fronts 2 ( , )id x r in (4) Processing cI and dI
separately

EFR-RR [22] 2 ( , )id x r in (4) =cP U By (2), estimate nadirz with an adaptive 
procedure on all 1x F

Modified Tchebycheff
function 2 ( , )id x r in (4) Processing cI and dI

separately
-DEA [23] 2 ( , )id x r in (4) = tcP S By (2), estimate nadirz with an adaptive 

procedure on all 1x F 1( , )id x r in (5) 2 ( , )id x r in (4) Processing cI and dI
simultaneously

RPD-NSGA-II
[24] 2 ( , )id x r in (4) =cP U By (2), set nadirz as the maximal values 

of all objectives from all cx P 1( , )id x r in (5) RV-density Processing cI and dI
separately

MOEA/D-LWS [25] ( , )ix r in (6) =cP U By (2), set nadirz as the maximal values 
of all objectives from all 1x F

Localized weighted sum 
function ( , )ix r in (6) Processing cI and dI

separately
SPEA/R [26] ( , )ix r in (6) =cP U By (2), set nadirz as the maximal values 

of all objectives from all cx P Local strength value Local density Processing cI and dI
simultaneously

RVEA [27] ( , )ix r in (6) =cP U By (3), translate each objective to the 
coordinate origin EdI(x) by (7) ( , )ix r in (6) Processing cI and dI

simultaneously
MOEA/D-SAS [28] ( , )ix r in (6) =cP U No normalization Modified Tchebycheff

function ( , )ix r in (8) Processing cI and dI
separately

ASEA [29] ( , )ix r in (6) =cP U By (2), estimate nadirz with an adaptive 
procedure on all 1x F EdI(x) by (7) ( , )ix r in (6) Processing cI and dI

separately

ri

f1

0 f2

(1,1)
x

d2(x,ri)

d1(x,ri)

Ɵ(x,ri)

Normalized PF

Fig. 1. Illustration of two distance metrics used in APP
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respectively reflect the convergence and diversity information 
for each individual x ( R

ix S ). Then, the ranking and 
selection of individuals in R

iS are run based on their cI and dI
values. Based on the processing principle, ESS can be classi-
fied into two categories. The first strategy is to process cI and

dI separately, which can be found in NSGA-III [21], 
RPD-NSGA-II [24], MOEA/D-LWS [25], ASEA [29], 
MOEA/D-SAS [28] and EFR-RR [22]. The second strategy is 
to process cI and dI simultaneously, which is used in -DEA
[23], RVEA [27] and SPEA/R [26]. In Table I, the cI based on 
the Euclidean distance from an individual x to the ideal point

*z , termed ( )EdI x , is computed by
* *

1,2,...,

( )= ( ( ) ) ( ( ) )k k k k
k m

EdI x f x z f x z ,        (7)

where ( )kf x is the normalized objective value in (2). The dI
represents the angle of two individuals ( , )x y , as computed by 

( ) ( )( , ) arccos
( ) ( )

f x f yx y
f x f y

arccos ,              (8)

More details of executing APP and ESS in these MaOEA/Ds 
can be found in Section 2 of the supplementary file.

B. Our Motivations
As summarized in Table I, MaOEA/Ds design the specific 

APPs and ESSs in their environmental selection, which can 
settle regular MaOPs well, but faces enormous challenges 
when dealing with irregular MaOPs. Their APPs often use 
uniformly distributed RVs, which also determine cI and dI in
their ESSs. Here, the final solutions obtained by NSGA-III in a 
typical run are plotted in Fig. 2 when solving the 3-objective 
inverted MaF1, partial concave MaF2, degenerated MaF6 and 
disconnected MaF7 [36], showing poor distributions mainly 
due to the mismatch of the used RVs and the target problems’ 
PF. Thus, an appropriate set of RVs plays an essential role in 
their performance when solving these irregular MaOPs. Many 
research studies [40]-[51] have pointed out that the adaptive 
adjustment of RVs is an effective way for MaOEA/Ds to 
tackle irregular MaOPs. However, most of these adjustment 
strategies introduced in Section I have been designed to re-
move the non-useful vectors and then to generate new RVs 
around the original RVs, which may also face some challenges, 
e.g., the difficulty of identifying the timing and frequency of 
RV adaptation [27] [45], the hypersensitivity of additional 
parameters [42] [51], the high computational cost required 
[47]-[48] and the limited extension to solve MaOPs with 
complex PFs [45] or constrained PFs [41] [43].

Recently, a number of MaOEAs have been proposed to use 
acute angles of individuals in their environmental selection for

tackling MaOPs, which actually treat individuals as RVs, e.g., 
VaEA [57], MaOEA-DDFC [58], 1by1EA [59], MaOEA-
CSS [60], and DDEA [61]. Naturally, instead of setting fixed 
RVs in MaOEA/Ds, the individuals selected from cP , if 
properly manipulated, can be treated as RVs [54]. However, as 
an RV should well represent its associated region in the ob-
jective space, the individuals in cP are insufficient to reflect 
the entire distribution, especially for cP with a poor quality in 
terms of distribution at the early stage of the evolutionary 
process. Similar to k-means, it is also insufficient and ineffec-
tive to complete the entire clustering process by only getting k
initial points as centroids [62], whereas the running of the 
self-adjustment process is necessary and effective to get a 
better clustering result.

To sum up, when the distribution of the current population 
is detected with a lower matching degree to the fixed RVs, a 
set of self-guided RVs extracted from the population by a 
clustering method may be more helpful in guiding the evolu-
tionary process, even when the quality of the population is 
poor for clustering. Motivated by the above discussions, this 
paper proposes a SRV strategy, trying to extract N RVs from 

cP using a modified k-means clustering method. In order to 
improve the clustering result, an ADM strategy is designed to 
initialize centroids, so that these initial centroids can properly
reflect the distribution of cP . Then, the centroids are 
self-adjusted to classify cP into N clusters. Finally, a suitable 
set of N RVs can be extracted from the N centroids. Therefore, 
there is no need to use systematic methods to generate RVs [17] 
[53] or to adjust RVs during the evolutionary process [40]-[46], 
but RVs can be extracted directly from the population to 
quickly track and guide the evolutionary process. In our pre-
vious work (MaOEA/C [63]), a two-step clustering strategy 
was used to divide the union population into N clusters.
However, its used hierarchical clustering method may induce 
high computational cost when handling extremely imbalanced 
population and its final cluster results are still not good enough 
to extract good RVs according to the experiments. Therefore, 
this paper modifies the state-of-the-art k-means method [55] to 
classify the population as N clusters, which can be more ap-
propriate to extract good RVs as introduced in the next section.

III. THE PROPOSED SRV STRATEGY

In this section, the proposed SRV strategy is introduced. 
Without using a systematic method, RVs are extracted from 
the population in SRV to self-guide the evolutionary process.
To achieve this purpose, the population is classified into a 
number of clusters using a clustering method and then an equal 
number of RVs is obtained by extracting the centroids of these 

Fig. 2 The poor distributions of final solutions obtained by NSGA-III on MaF1 with an inverted PF, MaF2 with a partial concave PF, MaF6 with a degenerated PF 
and MaF7 with a disconnected PF, mainly due to the mismatch of the adopted RVs and the above PFs. 
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clusters. Thus, a candidate union population cP for clustering 
and an effective clustering method should be needed. Gener-
ally, N RVs are used in MaOEA/Ds (N is the population size), 
i.e., N clusters are obtained from cP , which should contain at 
least N individuals. Here, we set c tP S as introduced in Sec-
tion II. A, where the outlier solutions may have been excluded 
to improve the quality of the data for clustering. A classic
k-means method is modified by setting k = N due to its popu-
larity and easy implementation when compared to other clus-
tering methods like spectral clustering [64] and agglomerative 
clustering [65], which includes two main procedures (an 
ADM-based initialization of centroids and the self-adjustment 
for centroids). Note that, k=N is a sufficiently large number of 
clusters when compared to the number of solutions in cP , 
which can alleviate the impact by the quality of the clustering 
data [55]. To illustrate how it works, the general framework of 
SRV is provided in Algorithm 1 with the inputs: cP (a candi-
date population), N (the population size), m (the number of 
objectives) and c (a parameter used in ADM). In line 1, N
initial centroids 1 2( , ,..., )Nc c c are obtained by running the 
ADM-based initialization in Algorithm 2. In line 2, the cen-
troids c= 1 2( , ,..., )Nc c c are updated by the self-adjustment 
method in Algorithm 3. At last, in lines 3-5, N RVs 

1 2( , ,..., )Nrv rv rv are extracted by mapping each ic on the unit 
hypersphere ( 1,2,...,i N ). 

To clarify the implementation of SRV and its use, the details 
of the ADM-based initialization of centroids (Algorithm 2) 
and the self-adjustment method for centroids (Algorithm 3) 
are introduced in Section II.A and Section II.B, respectively. 
At last, the embedding of the SRV strategy into MaOEA/Ds is 
described in Section III. C. 

A. ADM-based Initialization of Centroids
In k-means, two important factors (the value of k and the 

selection of initial centroids) will highly affect the final clus-
tering result [62]. As k is set to N in SRV, the initialization of 
centroids becomes important. For example, as shown in Fig. 3 
with k=2, there are seven individuals 1 2 7, ,...,x x x . One case is 
shown in Fig. 3(a) in which two initial centroids are selected as 

1x and 2x , and the clustering result will produce one cluster 
with three individuals 1 3 6( , , )x x x and another cluster with four 
individuals 2 4 5 7( , , , )x x x x , with their centroids marked in red 
color. For another case in Fig. 3(b) with two initial centroids

4x and 7x , two clusters 1 2 3 4( , , , )x x x x and 5 6 7( , , )x x x can be 
obtained in the same manner. Obviously, the selection of
initial centroids has a significant impact on the final clustering 
result. Therefore, to enhance the clustering result, an ADM 
strategy is designed for initializing centroids in SRV.

As pointed out in [66], centroids should be selected based 
on two assumptions: 1) they are surrounded by neighbors with 
lower local densities and 2) they have a relatively large dis-

tance from any point with a higher local density. Following the 
two assumptions, our ADM strategy endeavors to find out N
initial centroids. Two quantities for each individual cx P , i.e., 
the local density ( )x (i.e., an angle-based crowding degree of 
x) and the separation distance ( )x (i.e., the angle between x to 
the individual with a higher local density), are considered in 
ADM. Thus, each individual cx P is firstly normalized by (2), 
and then ( )x is computed by (9), where (0, / 2]c is a 
cutoff angle value used to control the local density.

      

2( , )

( )                      

. .   ,  and ( , )

c

c

y x

y P

c c

x e

s t y P y x y x
,              (9)

Another quantity ( )x is considered by computing the min-
imum angle from x to any other solution y in cP with a higher 
local density, as calculated by 

: ( ) ( )
( ) min ( , )

cy P y x
x x y ,                    (10)

Specially, for an individual cx P with the highest local den-
sity, its separation distance is set as ( )= /2x . In [66], the 
two above quantities are considered simultaneously to avoid 
interference from noise data. However, in our ADM strategy, 
only the separation distance is considered as all individuals in 

cP have to be involved in the evolutionary process.
To clarify this initialization process, Algorithm 2 is pro-

vided to show the process of ADM-based initialization in SRV, 
with the inputs: cP , N, m and c (a cutoff angle). In line 1, all
individuals in cP are normalized by (2) in order to provide
individuals with normalized objectives. Then, the local density

( )x and separation distance ( )x of each individual cx P are 
computed in line 2 and line 3, respectively. In line 4, for each

cx P , a flag ( ( )flag x ) indicating whether it is a centroid is 
initialized to be false. In order to reserve boundary information, 
m extreme individuals (1) (2) ( ), ,...,e e e mx x x are firstly selected as m
initial centroids ( 1 2, ,..., mc c c ) in lines 5-8, by resetting their 
flags as true in line 7. Here, the individual with the minimal 

(a) (b)

x3

x1 x2

x6 x7

x4
x5

x1 x2

x3 x4
x5

x6 x7

Fig. 3 The influence of different initial centroids in k-means.

Algorithm 1 SRV ( cP , N, m, c )
1: 1 2( , ,..., )Nc c c = Initialization_ADM ( cP , N, m, c )
2: 1 2( , ,..., )Nc c c = Self-guided_Adjustment ( cP , N, m, c)
3: for i := 1 to N
4:    get irv by mapping ic on the unit hypersphere 
5: end for
6: return 1 2( , ,..., )Nrv rv rv
Algorithm 2 Initialization_ADM ( cP , N, m, c )
1: normalize all individuals of cP by (2)
2: compute ( )x of each individual cx P by (9) with c

3: compute ( )x of each individual cx P with (10)
4: set flag( x ) = false for each cx P
5: for i := 1 to m
6:    find the nearest individual ( )e ix to the ith axis ie by (11)
7:    set ( )i e ic x and flag( ( )e ix ) = true
8: end for
9: sort all individuals with a descending order by ( )x
10:set j = 1 and i = m+1
11:while i N
12:   if flag( jx ) = false
13:      set =i jc x and i++
14:   end if
15:   j++
16:end while
17:return 1 2, ,..., Nc c c
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angle to the ith axis vector ie , 1,2,...,i m , is selected as the 
ith extreme individual ( )e ix , where ( )e ix can be computed by

( ) arg min ( , )
c

e i i
x P

x x e ,                    (11)

where m axis vectors are (1, 0,…, 0), (0, 1, 0,…, 0),…, (0,.., 0, 
1), respectively, and ( , )ix e can be computed by (6). Next, all 
individuals are sorted on a descending order by only consid-
ering their separation distances in line 9. Finally, the rest N-m
individuals with the higher separation distances are preferen-
tially selected as the centroids in lines 10-16 and the output of 
this algorithm is N initial centroids 1 2, ,..., Nc c c . Obviously, 
these initial centroids obtained by the ADM-based initializa-
tion can more properly reflect the distribution of cP .

B. Self-Adjustment method for Centroids
The pseudo-code of the self-adjustment method for cen-

troids in SRV is given in Algorithm 3 with the inputs: cP , N, m,
and c= 1 2( , ,..., )Nc c c (a set of N initial centroids from Algo-
rithm 2). In line 1, N clusters 1 2( , ,..., )NC C C are initialized as 
empty sets, and each individual cx P will be assigned a clus-
ter label (termed cl(x) and initialized as 0) at first, which 
indicates the cluster it belongs to. For example, cl(x) = j means 
that x belongs to the jth cluster. Thus, in lines 3-4, each indi-
vidual cx P will find its nearest centroid TC by considering 
all the angles ( , )jx c from x to jc in (8), as follows:

{ : argmin ( , ), 1,2,..., }jT j x c j N .           (12)
Then, x is included into cluster TC and we set its cluster 

label cl(x) = T in line 5. Next, in lines 7-21, the self-adjustment 
method is used to generate N new centroids 1 2( , ,..., )Nc c c . Let 
t count the iteration number of the self-adjustment and let flag
denote whether all N clusters have reached a stable state (i.e.,
the cluster label cl(x) keeps unchanged for each individual

cx P ). In line 8, t = 0 and flag = false are set at first. When t is 
smaller than 2m (this condition aims to control the complexity 
of adjustment) and flag = false in line 8, the procedures in lines 
9-20 will be run iteratively. To maintain boundary information, 
the first m extreme centroids are kept by directly clearing m
clusters 1( ,..., )mC C in line 9, while the remaining centroids are 
adjusted in lines 10-12 by (13)-(14), where 1,...,i m N ,

1,2,...,j m , and * ( )jf x indicates the mapping value of ( )jf x
on the unit hypersphere, and ( )EdI x can be calculated in (7).

* ( )
( )

| |
i

j
x Si

j i

f x
f c

S
,                             (13)

* ( )= ( )/ ( )j jf x f x EdI x ,                           (14)
Figure 4 shows the centroid update by (13)-(14), in which 

x1* and x2* respectively indicate the projections of x1 and x2 by 
(14) on the unit hypersphere, and c* is their centroid by (13).
In addition, the counter l, initialized as 0 for each iteration in 
line 9, is used to mark the number of individuals whose cluster 
label is changed. Then, cluster iC is set to be empty after 
centroid ic has been updated in line 11. N new clusters 

1 2( , ,..., )NC C C are obtained in lines 13-18 by reassigning 
each individual cx P to its nearest centroid (line 14), followed 
by updating its cluster label cl(x) in lines 15-17. If the cluster 
label cl(x) of an individual cx P is changed to a new label T
as determined in lines 3-4, set cl(x)=T and the counter l is 
increased by 1 in line 16. However, if there is no individual

cx P whose cluster label is changed (i.e., l is still 0), 
flag=true is set in line 19. After finishing the procedures in 
lines 9-19, t is increased by 1 in line 20 if ! 0l , and the 
algorithm will go back to check the termination conditions in 
line 8. If it is terminated, this algorithm will output N centroids 

1 2( , ,..., )Nc c c that can properly represent the distribution of cP . 
As introduced in Algorithm 1 of SRV, N self-guided RVs 

1 2( , ,..., )Nrv rv rv are obtained by mapping each centroid ic
onto the unit hypersphere by

= ( )/ ( )i i i
j jrv f c EdI c ,                         (15)

where 1,...,i N and 1,2,...,j m .

C. Embedding SRV into MaOEA/Ds
As discussed in Section II, one of the most important fac-

tors affecting the performance of MaOEA/Ds is the used RVs.
In this section, we show some examples in which we embed 
SRV into three well-known MaOEA/Ds (NSGA-III [21], 

-DEA [23], and EFR-RR [22]), which will help these 
MaOEA/Ds to tackle complicated MaOPs with irregular PFs. 
Without changing other procedures in these MaOEA/Ds, their 
original N uniformly distributed RVs 1 2( , ,..., )Nr r r are 
replaced by N RVs 1 2( , ,..., )Nrv rv rv from SRV, forming three 
new algorithms (i.e., NSGA-III/S, -DEA/S , and EFR-RR/S). 
In addition, the cutoff angle c in SRV is designed as an 
adaptive quantity, which is increased linearly with the evolu-
tionary process, and its minimum value min

c is determined by 
getting the minimum angle between two neighboring RVs
among N original RVs 1 2( , ,..., )Nr r r , as follows:

Algorithm 3 Self-guided Adjustment ( cP , N, m, c)
1: N empty clusters 1 2( , ,..., )NC C C and cl(i) = 0 of cx P
2: for each cx P
3:    assign x to the centroid Tc , which satisfies:
4:    { : argmin ( , ), 1,2,..., }jT j x c j N
5:    add x into cluster TC and set cl(x) = T
6: end for
7: set t = 0, and flag = false
8: while t 2m && flag=false
9:    set = , 1,2,...,jC j m and set l = 0
10:   for i:=m+1 to N
11:      adjust centroid ic based on (13), and set =iC
12:   end for
13:   for each cx P
14:      assign x to Tc like lines 3-4 and add it to TC
15:      if cl(x) != T
16:         set cl(x) = T and l++
17:      end if
18:   end for
19:   set flag=true if l=0
20:   t++
21:end while
22:return 1 2( , ,..., )Nc c c

x1

x2

x1*

x2*

(0,1)

(1,0)

f2

f10

Unit Hypersphere

c*

Fig. 4 An example of the centroid update by (13)-(14)
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min

1,2,...,

1,2,...,

min ( , )

. .  { : arg min ( , )}

i u
c

i N

i j

j N

r r

s t u j r r
,                 (16) 

where ( , )i jr r computes the angle of ir and jr . The maximum 
value of c  is /2 , thus c  is adaptively set to 

min min

max

( ) ( 1)
2 2

c c
c

G
G ,                   (17) 

where G is the generation counter and Gmax is a predefined 
maximum number of generations. At the initial stages of the 
evolutionary process, a small value of c  is used to measure 
the local densities of individuals in ADM, as the early popu-
lation shows a poor distribution. At a later stage, the popula-
tion tends to converge and a nearly global density is consid-
ered in ADM by assigning a relatively larger value for c . 
Thus, the adaptive c can properly control the generation of N 
initial centroids in Algorithm 2 and N more suitable adaptive 
RVs can be obtained in Algorithm 1. 

To clarify the embedding process of SRV, the whole pro-
cess of NSGA-III/S, -DEA/S  and EFR-RR/S is illustrated in 
Fig. 5, which embeds our SRV strategy (marked in red color) 
into the original procedures of NSGA-III, -DEA  and 
EFR-RR (as identified by the green color). In Fig. 5, with the 
generation counter (i.e., G), P(G), Q(G) and r(G) represent the 
parent population, the offspring population and the set of RVs 
at the G-th generation, respectively; N and m are the 
population size and number of objectives, respectively. At first, 
G is initialized as 1, while P(G) and r(G) are initialized by N 
randomly generated individuals 1 2, ,..., Nx x x and N uniformly 
distributed RVs 1 2, ,..., Nr r r , respectively. Then, Q(G) with N 
offspring can be obtained by running variation operators (i.e., 
simulated binary crossover (SBX) and polynomial-based 
mutation [6]) on P(G), followed by combining P(G) and Q(G) 
as a union population U(G) (i.e., U(G)=P(G)+Q(G)). Then, the 
candidate population cP  can be obtained by the strategies 
introduced in Section II. A (Here, c tP S in both NSGA-III 
and -DEA , while ( )cP U G  in EFR-RR). Meanwhile, with 
the initial value of min 2c computed by (16), the cutoff angle 

c  used in SRV is updated by (17), while P(G) and Q(G) are 

reset as empty sets. Then, based on c  and cP , r(G) is updated 
as N self-guided RVs generated from Algorithm 1. Finally, 
the environmental seletion by running APP and ESS in a 
MaOEA/D (i.e., NSGA-III, -DEA or EFR-RR) can be 
guided by these N self-guided RVs to produce the next 
population P(G+1) from cP . Therefore, without using the 
SRV strategy as marked by the red color, the environmental 
selection of NSGA-III, -DEA and EFR-RR is always guided 
by N initial RVs 1 2( , ,..., )Nr r r at each generation. However, in 
NSGA-III/S, -DEA/S and EFR-RR/S, their environmental 
selection is directed by N self-guided RVs extracted from the 
population by Algorithm 1, which is more able to track the 
evolutionary process and fit the PF shape. Please note that this 
embedding process of SRV in Fig. 5 can also be applied to 
other MaOEA/Ds [24]-[29]. 

IV. EXPERIMENTAL STUDIES 

A. Benchmark Problems and Performance Indicator 
In this study, the MaF1-MaF13 test problems [36] with ir-

regular PFs and the mDTLZ1-mDTLZ4 [37] test problems 
with hardly-dominated boundaries in PFs were used. For each 
problem, the number of objectives m was varied from 3 to 10, 
i.e., {3,4,5,7,10}m . The number of decision variables n was 
set by n = m+k-1 for MaF1-MaF7 (here, k was set to 10 for 
MaF1-MaF6 and to 20 for MaF7 as suggested in [36]). n was 
set to 2 for MaF8 and MaF9 and to 5 for MaF13. Especially, 
the decision variables have k position-related parameters and l 
distance-related parameters for MaF10-MaF12 (here, k was set 
to 2 ( 1)m  and l was set to 20 as recommended in [63]). For 
mDTLZ1-mDTLZ4, n was set by n = 2m+k-1 and k=5 was 
used in [37]. Due to page limitations, the main characteristics 
of the MaF and mDTLZ test problems are summarized in 
Table A.I of the supplementary file.  

The hypervolume (HV) and inverted generation distance 
(IGD) [67] were considered as our performance indicators in 
this paper. These two indicators assesse both convergence and 
maximum spread of the final solution set. A larger HV value 
indicates a better approximation to the true PF, while IGD is 
the opposite. Here, the recently proposed walking fish group 
method [68] was used to compute the exact HV values for all 
test problems, where a reference point z that is dominated by 
all points of the true PF should be carefully set for MaOPs. To 
ensure a fair comparison, the z in our experiments was set as 
suggested in [57], [63], which normalize all the objective 
values in the final solution sets by using1.1 nadz  (here nadz is 
the nadir point of the true PF) and we set the z as 
(1.0,1.0,...,1.0) . When computing IGD, a set of reference 
points uniformly sampled from the true PF was required. Here, 
20,000 reference points were sampled for all the test problems. 
Due to page limitations, please refer to [67] and [68] for details 
on how to compute HV and IGD. 

B. Parameters Settings for the Compared Algorithms 
In our experiments, SRV was embedded into three compet-

itive MaOEA/Ds, i.e., NSGA-III [21], EFR-RR [22], -DEA 
[23] for performance verification. Moreover, four competitive 
MaOEA/Ds adaptively adjusting RVs (MOEA/D-AWA [51], 

Initialize: N, m, G=1
P(G)={x1,x2, ,xN}
r(G)={r1,r2, ,rN} 
Ɵc(G)=Ɵmin by (16)

Get Q(G) by running variation 
operators on parents from P(G)

U(G)=P(G)+Q(G)

Get Pc

c

G<GmaxOutput P(G+1)

Update r(G) with SRV

Update Ɵc(G) by (17)

Run APP and ESS of a MaOEA/D 
based on these RVs to get P(G+1)

N self-guided RVs

No

P(G)=Q(G)=Ø 

G=G+1

Yes

P(G)

 
Fig. 5 Process of embedding SRV into MaOEA/RVs 
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A-NSGA-III [40], RVEA* [27], and AR-MOEA [46]), one 
promising MaOEA treating individuals as RVs (VaEA [57]), 
and one recently proposed MaOEA based on clustering 
(MaOEA/C [63]) were also included for comparison. The 
parameters settings of these MaOEAs are provided in Table A. 
II of the supplementary file, as suggested in their references. 
All the compared MaOEAs use the same evolutionary opera-
tors, i.e., SBX and polynomial-based mutation [21].  

The settings of population size for different numbers of 
objectives are listed in Table A. III of the supplementary file. 
For test problems with 3, 4, 5, 7 and 10 objectives, the numbers 
of RVs were respectively set to 153, 165, 210, 238 and 275, 
using the two-layer generation method with the simplex-lattice 
design factor H in [27]. According to [63], the population size 
in MaOEA/C should be set as a multiple of m. Thus, its pop-
ulation sizes were set to 153, 164, 210, 238, and 280, respec-
tively for 3-, 4-, 5-, 7-, and 10-objective test problems. For 
other compared MaOEAs, their population sizes were set the 
same with the number of RVs. All the compared MaOEAs1 
were run 30 times independently on each test problem. The 
mean HV values and their standard deviations (included in 
brackets after the mean HV results) in 30 runs were collected 
for comparison. All the compared MaOEAs were terminated 
when a predefined maximum number of generations Gmax was 
reached. The values of Gmax were set to 600, 700, 800, 900, and 
1000, respectively for 3-, 4-, 5-, 7-, and 10-objective test 
problems. Their maximum function evaluations (MFE) can be 
easily obtained by computing MFE = N Gmax. 

C. Results of embedding SRV into Three MaOEA/Ds 
Here, SRV was embedded into three competitive MaOEA/ 

Ds (NSGA-III [21], EFR-RR [22], -DEA [23]), forming three 
enhanced algorithms (NSGA-III/S, EFR-RR/S and -DEA/S). 
Thus, three comparisons of NSGA-III/S vs NSGA-III, 

-DEA/S vs -DEA, and EFR-RR/S vs EFR-RR are made on 
MaF1-MaF13 and mDTLZ1-mDTLZ14 with 3 , 4, 5, 7 and 10 
objectives. Due to page limitations, the detailed HV results of 
all the compared algorithms are presented in Table A. IV of the 
supplementary file, on tackling all the adopted test problems. 
Furthermore, the summary of significance test on HV for each 
comparison is given in Table II. To ensure a statistically sound 
conclusion, Wilcoxon rank sum test with a 0.05 significance 
level and Wilcoxon signed ranks test from the KEEL tool [69] 
were run, showing statistically significant differences on the 
HV results. In Table II, the numbers under the columns “+”, 
“–”, and “~” indicate the comparison times that the results of 
the enhanced MaOEA (NSGA-III/S, EFR-RR/S, or -DEA/S) 
are respectively better than, worse than, and similar to the 
original MaOEA (NSGA-III, EFR-RR or -DEA) on tackling 
each problem with different objectives. Moreover, an 

                                                           
1 The codes of NSGA-III, EFR-RR and -DEA are downloaded from 

http://www.cs.bham.ac.uk/~xin/papers/TEVC2016FebManyEAs.zip. 
The codes of MOEA/D-AWA, A-NSGA-III, RVEA*and AR-MOEA are 

downloaded from https://github.com/BIMK/PlatEMO. 
The codes of VaEA are downloaded from https://www.researchgate.net/ 

profile/Xiang_Yi9/publications. 
The codes of MaOEA/C and the SRV proposed in this paper are down-

loaded from https://github.com/songbai-liu/ManyobjectiveOptimization. 

asymptotic p-value obtained by Wilcoxon signed ranks test on 
the KEEL tool is also provided in the column “p-value”, where 
a p-value closer to 0 means that there are more significant 
differences on the HV results. 

Regarding the summary in Table II for various test problems 
with different objectives, it is clear that the perfomance of 
NSGA-III/S can be obviously enhanced on MaF1, MaF4, 
MaF6, MaF8-MaF10, MaF13 and mDTLZ2-mDTLZ4 with all 
considered objectives. Similarly, -DEA/S is significantly 
better than -DEA on MaF1, MaF4, MaF6, MaF8, MaF13 and 
mDTLZ2-mDTLZ4, and EFR-RR/S also achieves remarkable 
improvement over EFR-RR on MaF1-MaF4, MaF6-MaF8, 
MaF13, and mDTLZ1-mDTLZ4. From these results, it is 
reasonable to conclude that the embedding of SRV into these 
MaOEA/Ds can highly improve their performance in solving 
MaOPs with irregular PFs, such as MaF1, MaF4 and mDTLZ1 
-mDTLZ4 with inverted PFs, MaF6, MaF8-MaF9 and MaF13 
with degenerated PFs, and MaF7 with disconnected PF. 
However, for MaOPs with regular PFs, like MaF5 and MaF12 
with concave PFs, the effect is not obvious or even becomes 
poor. It is worth noting that MaF2 is modified from DTLZ2 
[34] by increasing the difficulty of convergence, and the 
performance of SRV on this problem becomes poor when it is 
embedded into NSGA-III and -DEA.  

As observed from the comparisons in the last row of Table 
II, the numbers of comparisons that show the superiority of 
NSGA-III/S over NSGA-III, -DEA/S over -DEA, and 
EFR-RR/S over EFR-RR, are respectively 54, 49, and 56 out 
of a total of 85 comparisons, while the numbers of compari-
sons showing the superiority of NSGA-III over NSGA-III/S, 

-DEA over -DEA/S, and EFR-RR over EFR-RR/S, are only 
19, 25 and 12, respectively. Moreover, the p-values for their 
comparisons are all nearly close to 0 on all 85 comparisons. 
Therefore, it is reasonable to conclude that the embedding of 
SRV into NSGA-III, -DEA and EFR-RR can bring signifi-
cant improvements on these MaOPs with different objectives.  

TABLE II 
SUMMARY OF SIGNIFICANCE TEST BETWEEN THREE MAOEA/RVS AND 

THEIR ENHANCED VERSIONS WITH SRV ON HV 
Comparisons 

based on 
NSGA-III/S vs.  

NSGA-III 
-DEA/S vs.  

-DEA  
EFR-RR/S vs.  

EFR-RR 
+ – ~ p-value + – ~ p-value + – ~ p-value 

Te
st

 P
ro

bl
em

s 

MaF1 5 0 0 0.030971 5 0 0 0.030971 5 0 0 0.030971 
MaF2 0 4 1 1.000000 0 5 0 1.000000 4 0 1 0.055748 
MaF3 1 1 3 0.787406 0 3 2 0.957384 3 1 1 0.077353 
MaF4 5 0 0 0.030971 5 0 0 0.030971 5 0 0 0.030971 
MaF5 0 5 0 1.000000 0 5 0 1.000000 0 5 0 1.000000 
MaF6 5 0 0 0.030971 4 1 0 0.077353 4 1 0 0.077353 
MaF7 1 2 2 0.787406 2 1 2 0.787406 5 0 0 0.030971 
MaF8 5 0 0 0.030971 5 0 0 0.030971 4 1 0 0.077353 
MaF9 4 1 0 0.059385 3 1 1 0.589639 1 4 0 0.957384 

MaF10 5 0 0 0.030971 2 1 2 0.589639 0 5 0 1.000000 
MaF11 1 1 3 0.787406 2 2 1 0.787406 0 3 2 0.957384 
MaF12 2 3 0 0.957384 1 2 2 0.957384 2 1 2 0.589639 
MaF13 4 0 1 0.055748 5 0 0 0.030971 4 0 1 0.055748 

mDTLZ1 3 2 0 0.787406 1 3 1 1.000000 5 0 0 0.030971 
mDTLZ2 4 0 1 0.030971 5 0 0 0.030971 5 0 0 0.030971 
mDTLZ3 4 0 1 0.030971 4 1 0 0.077353 5 0 0 0.030971 
mDTLZ4 5 0 0 0.030971 5 0 0 0.030971 4 1 0 0.077353 

N
o.

 (m
) 

m=3 10 3 4 0.021797 10 6 1 0.740367 10 4 3 0.075641 
m=4 12 2 3 0.008027 10 3 4 0.030257 11 4 2 0.050021 
m=5 11 4 2 0.040889 11 3 3 0.021797 13 4 0 0.012279 
m=7 10 5 2 0.294907 9 5 3 0.320174 12 5 0 0.079002 
m=10 11 5 1 0.089487 9 8 0 0.999077 10 5 2 0.300436 

All 54 19 12 0.042814 49 25 11 0.097011 56 12 7 0.040159 
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D. Further Studies on Embedding SRV into MaOEA/Ds 
As discussed in Section IV.C, the embedding of SRV into 

NSGA-III, -DEA and EFR-RR can obviously improve their 
performance in solving irregular MaOPs, but it may perform 
worse on regular MaOPs. This is reasonable as the original 
fixed RVs have already fitted the PF shapes of regular MaOPs, 
and the frequent change of RVs in MaOEA/Ds may affect their 
convergence, which also introduces an extra computational 
cost [43] [51]. In addition, the quality of the data (i.e., the 
distribution of Pc) for clustering in SRV may also impact the 
efficiency on guiding the evolution by the extracted RVs.  In 
most MaOEAs with adaptive adjustment of RVs, there are two 
common strategies to alleviate this problem. The first strategy 
evolves the population as guided by N fixed RVs during a 
period of previous generations to get a population with relative 
high quality (good convergence and distribution), and then 
triggers the adaptive adjustment of RVs at the following 
generations to generate N new RVs [45] [51]. The second 
strategy runs the adaptive adjustment of RVs at a periodic 
interval of generations [41], [42], [43], [54]. In this section, the 
performance of these two strategies of embedding SRV into 
MaOEA/Ds is studied below. 

1) Triggering SRV after maxG generations 
Here, the three above MaOEAs enhanced with SRV (i.e., 

NSGA-III/S, -DEA/S and EFR-RR/S) were also investigated, 
by further using a parameter to control the running of SRV. 
Let’s assume that G is the counter of generations and maxG  is 
the maximum number of generations. When maxG G , their 
evolutionary processes are all guided by the pre-set N 
uniformly distributed RVs 1 2( , ,..., )Nr r r , where [0,1]  
and N is the number of RVs and the population size. When 

maxG G , the pre-set RVs 1 2( , ,..., )Nr r r  will be replaced 
by the self-guided RVs 1 2( , ,..., )Nrv rv rv  from SRV. Seven 
values of , i.e., = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0, are 
included to study the impacts of SRV that is triggered after 

maxG  generations in each of these enhanced MaOEAs. 
Please note that the comparison results of = 0.0 (i.e., the 
original MaOEAs) and = 1.0 (i.e., the above enhanced 
MaOEAs) have been discussed in Section IV. C, which vali-
date the effectiveness of SRV. In this experiment, all the test 
problems (i.e., MaF1-MaF13 and mDTLZ1-mDTLZ4 with 3, 
4, 5 and 10 objectives) were used. To clearly quantify how 
well each of these enhanced MaOEAs performs under differ-
ent values of , Friedman’s test from the KEEL tool [69] was 
used, which will give the rank of each algorithm under dif-
ferent values of  on all 68 test cases. In Table III, their 
Friedman’s average performance ranks are provided for each 
algorithm under different values of . It is difficult to find a 
regular trend for the ranks’ change in each of NSGA-III/S, 

-DEA/S and EFR-RR/S, as they all experience the rise and 
the decline on seven ranks. For example, -DEA/S obtains a 
rank as 4.133 at =0.0 , and gradually gets better at =0.3  
with a rank as 3.816, but it becomes worse at =0.5 with a 
rank as 4.032. However, -DEA/S gets the best rank with 
3.613 at =0.7 and then gets the worst rank with 4.426 at 

=1.0 . For NSGA-III/S, it obtains the best rank with 2.937 at 
=0.0 and gets the worst rank with 5.031 at =0.9 . Mean-

while, EFR-RR obtains the best rank with 3.369 at =0.5  and 
gets the worst rank with 5.463 at =1.0 . Therefore, it is hard 
to determine which value of  is optimal for embedding SRV 
into these MaOEA/Ds. 

2) Triggering SRV at every interval of  generations  
Here, the three above MaOEAs enhanced with SRV (i.e., 

NSGA-III/S, -DEA/S and EFR-RR/S) were also studied, by 
updating their RVs at a regular interval of generations. This 
strategy aims to reduce the computational cost and avoids 
affecting the convergence speed due to the frequent change of 
RVs. In this experiment, a parameter  is used to control the 
interval of generations. By this way, SRV is triggered at every 
interval of generations to obtain N self-guided RVs 
( 1 2, ,..., Nrv rv rv ) in NSGA-III/S, -DEA/S and EFR-RR/S. 
Six typical values of  (i.e., 1, 10, 30, 50, 80 and 100) are 
chosen to study the impact of . Similarly, Friedman’s test 
from the KEEL tool [69] was adopted, which will give the rank 
for each algorithm under different values of on all 68 test 
cases. Thus, each of NSGA-III/S, -DEA/S and EFR-RR/S 
has six average performance ranks, which are reported in 
Table IV. Obviously, NSGA-III/S, -DEA/S and EFR-RR/S 
all show the best rank at =1 , obtaining the best performance 
ranks as 1.437, 1.813 and 2.621, respectively, which are much 
smaller than those of their ranks with other  values. More-
over, they all perform worst at = 30, obtaining the worst 
performance ranks as 4.227, 4.239 and 4.189, respectively for 
NSGA-III/S, -DEA /S, and EFR-RR/S. Besides that, there is 
no clear trend for the impact of  in these MaOEA/Ds, as the 
ranks of EFR-RR/S and -DEA/S get better from = 30 to =
80, and then become worse at = 100, while the ranks of 
NSGA-III/S become better from = 30 to = 100. 

Although the setting of = 50 has been used in many other 
MaOEAs [52] [54], our experimental results suggest that = 1 
is the best choice of embedding SRV into these MaOEA/Ds. 
However, as reflected by the results in Section IV. C, the 
convergence speed still may be affected due to the frequent 
change of RVs when = 1 is adopted. 

E. A new strategy of embedding SRV into MaOEA/Ds 
As pointed out in [27] and [43], it is difficult to identify the 

timing and frequency to adapt RVs in MaOEA/Ds, which is 
discussed in Section IV. D to show that these challenges also 
exist for our SRV strategy. In this subsection, a new strategy of 

TABLE III 
- BASED AVERAGE PERFORMANCE RANKS OF THREE MaOEA/RVS 

NSGA-III/S -DEA/S  EFR-RR/S 
= 0.0 2.937 = 0.0 4.133 = 0.0 3.675 
= 0.1 3.094 = 0.1 4.125 = 0.1 3.712 
= 0.3 3.438 = 0.3 3.816 = 0.3 3.943 
= 0.5 4.406 = 0.5 4.032 = 0.5 3.369 
= 0.7 4.269 = 0.7 3.613 = 0.7 3.687 
= 0.9 5.031 = 0.9 3.882 = 0.9 4.151 
= 1.0 4.825 = 1.0 4.426 = 1.0 5.463 

TABLE IV 
- BASED AVERAGE PERFORMANCE RANKS OF THREE MaOEA/RVS 

NSGA-III/S -DEA/S  EFR-RR/S 
= 1 1.437 = 1 1.813 = 1 2.621 

= 10 2.953 = 10 3.372 = 10 3.188 
= 30 4.227 = 30 4.239 = 30 4.189 
= 50 4.211 = 50 3.879 = 50 3.783 
= 80 4.195 = 80 3.708 = 80 3.313 
= 100 3.977 = 100 3.989 = 100 3.906 
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embedding SRV into MaOEA/Ds is proposed to balance 
convergence and diversity for tackling MaOPs, forming a new 
algorithm named MaOEA/SRV. In MaOEA/SRV, its APP is 
run based on N self-guided RVs from our SRV strategy, which 
are selected from different subsets to maintain diversity, while 
its ESS only considers the convergence information ( cI ) for 
all individuals in the same subset, aiming to accelerate the 
convergence speed. Furthermore, all individuals in these N 
subsets share the same RV ( *r ) to compute their cI  values. 
Here, *r is a fixed RV connecting the ideal point and the nadir 
point in the normalized objective space. This way, MaOEA/ 
SRV performs well in maintaining the balance of convergence 
and diversity when tackling different MaOPs. 

The pseudo-code of MaOEA/SRV is given in Algorithm 4. 
In line 1, an initialization process is run to get the values of N 
(the population size), m (the number of objectives), and Gmax 
(the maximum number of generations). An initial population P 
is randomly generated with N individuals, an offspring popu-
lation Q is set as an empty set, and the generation counter G is 
set to 1. While G Gmax, the evolutionary loop in lines 3-19 is 
run. In line 3, N new individuals in Q are generated by running 
the variation operators (SBX and polynomial-based mutation) 
on P. In line 4, P and Q are combined to get the union popu-
lation U, P is reset as an empty set, and then a temporary 
population tS  is obtained by reserving no less than N indi-
viduals with the best non-dominated ranks [6] from U. After 
that, we set the candidate population c tP S  and normalize all 
individuals of cP  by (2) in line 5. Next, c  is computed by (17) 
in line 6 and our SRV strategy (Algorithm 1) is run in line 7 
(details are provided in Section III. B), which gets N RVs. In 
line 8, N subsets 1 2, ,...,RV RV RV

NS S S  are obtained by associating 
each individual cx P  to its closest RV using the distance 
metric in (6). The shared RV *r is obtained in line 9 by joining 
the ideal point and the nadir point. For each RV

ix S  
( 1,...,i N ), *

1( , )d x r  in (5) is used as its cI  indicator, as 
computed in lines 11-13. Then, in line 14, all individuals of 

RV
iS  are sorted based on their cI  values, which gives an cI  

rank for each individual, and then all individuals of 
1 2, ,...,RV RV RV

NS S S  can be further divided into multiple L subsets 

( 1 2, ,...,c c cI I I
LS S S ) based on their cI  ranks. Thereafter, as shown 

in lines 17-18, all individuals in 1 2 1...c c cI I I
lS S S  are first 

added into P, while N-|P| individuals in the last subset cI
lS  are 

randomly selected into P. At last, Q is reset as an empty set and 
the counter G is increased by 1 in line 19. If G is still smaller 
than Gmax, the above procedures in lines 3-19 will be run 
iteratively. Otherwise, P is the output produced in the last 
generation in line 21, as the final approximation set. 

Table V provides the HV results of four MaOEAs with SRV 
on three concave problems, i.e., MaF2, MaF5 and MaF12 with 
3 to 10 objectives. From the results in Table V, it is observed 
that the performance of MaOEA/SRV were improved signif-
icantly when compared to NSGA-III/S, EFR-RR/S and 

-DEA/S. In order to further study the performance of 
MaOEA/SRV, six competitive MaOEAs (MOEA/D-AWA 
[51], A-NSGA-III [40], RVEA* [27], AR-MOEA [46], VaEA 
[57] and MaOEA/C [63]) were also included for comparison. 

Table A.V and Table A.VI in the supplementary file re-
spectively list their HV and IGD comparison results on 
MaF1-MaF13 with 3 to 10 objectives. As observed from these 
results, MaOEA/SRV also shows a superior performance, as it 
is best in about half of the comparisons, i.e., in 29 out of 65 HV 
cases and 28 out of 65 IGD cases, while MOEA/D-AWA, 
A-NSGA-III, RVEA*, AR-MOEA, VaEA and MaOEA/C are 
respectively best in 3, 2, 2, 11, 4, 14 HV cases and best in 6, 0, 
4, 9, 12, 6 IGD cases. From the one-by-one comparisons in the 
last row of Table A.V and Table A.VI, MaOEA/SRV performs 
better than MOEA/D-AWA, A-NSGA-III, RVEA*, AR- 
MOEA, VaEA and MaOEA/C in 54, 53, 53, 40, 39, 34 out of 
65 HV cases and in 44, 50, 48, 35, 29, 37 out of 65 IGD cases, 
respectively, while it is only outperformed by them in 6, 8, 9, 
18, 13, 13 HV cases and in 15, 11, 12, 22, 22, 13 IGD cases, 
respectively. Thus, MaOEA/SRV is validated to present a 
superior performance over these six competitors in most cases. 

To visually show and support the above discussion results, 
some final solution sets with the 15th better HV values from 30 
runs are plotted in Figs.A1-A6 of the supplementary file, 
respectively for 3-objective MaF7 with a disconnected PF to 
have a better visualization, for 4-objective MaF8 with a de-
generated PF, for 5-objective MaF4 with an inverted PF, for 
7-objective MaF2 with a concave PF, and for 10-objective 
MaF6 with a degenerated PF, which show the solutions’ 
distribution for different test problems with various objectives 
in the high dimensional objective space. Obviously, all the 
final solution sets obtained by MaOEA/SRV are distributed 
evenly on these five representative problems with different 

Algorithm 4 Framework of MaOEA/SRV 
1: initialize: N, m, Gmax, Q , G=1, P={ 1 2, ,..., Nx x x }, min

c  
2: while G  Gmax 
3: perform SBX and PM on P to get Q with N individuals 
4: U = P+Q to get tS by non-dominated sort and set P  
5: set c tP S and normalize all individuals of cP by (2) 
6: update c by (17) 
7: get N RVs 1 2( , ,..., )Nrv rv rv = SRV ( cP , N, m, c ) 
8: get N subsets 1 2, ,...,RV RV RV

NS S S by each cx P  associated with 
the closest RV in 1 2( , ,..., )Nrv rv rv by ( , )ix rv of (6) 

9: get *r by jointing the ideal point and the nadir point 
10: for i:=1 to N 
11:        for each RV

ix S  
12:            compute *

1( , )d x r by (5) to as the cI  value of x  
13:        end for 
14:        sort individuals of RV

iS by their cI values to give a rank 
15: end for 
16: all cx P are divided into multiple subsets: 1 2, ,...,c c cI I I

LS S S  
17: set P= 1 2 1+ +...+c c cI I I

lS S S , where l L , | |<P N , | + |cI
lP S N  

18: add N-|P| solutions (randomly selected from cI
lS ) into P 

19: G = G+1 and Q  
20: end while 
21: return P 

TABLE V 
HV RESULTS OF FOUR MAOEAS WITH SRV ON CONCAVE PROBLEMS  
Problem m NSGA-III/S -DEA/S EFR-RR/S MaOEA/SRV 

MaF2 
3 2.439E-01 2.380E-01 2.425E-01 2.509E-01 
5 2.122E-01 2.180E-01 2.411E-01 2.542E-01 
7 1.786E-01 1.886E-01 2.269E-01 2.346E-01 

10 1.565E-01 1.759E-01 2.171E-01 2.220E-01 

MaF5 
3 5.497E-01 5.638E-01 5.223E-01 5.663E-01 
5 7.879E-01 7.887E-01 7.708E-01 7.986E-01 
7 8.756E-01 8.803E-01 8.745E-01 8.993E-01 

10 9.347E-01 9.381E-01 9.449E-01 9.640E-01 

MaF12 
3 5.116E-01 5.194E-01 4.865E-01 5.213E-01 
5 6.577E-01 6.639E-01 6.565E-01 7.089E-01 
7 6.882E-01 6.945E-01 7.195E-01 7.744E-01 

10 6.869E-01 6.813E-01 7.503E-01 8.028E-01 
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kinds of PFs. However, AR-MOEA fails to find the leftmost 
segment of the PF on MaF7 with 3 objectives, while 
MOEA/D-AWA, A-NSGA-III and RVEA* find most of the 
final solution sets with poor distributions.   

F. More Discussions about SRV 
1) Effectiveness of the Two Main Components in SRV 
   The effectiveness of our proposed SRV is validated by the 
comparison results of embedding SRV into three MaOEA/Ds 
in Section IV. C and the superior performance of MaOEA 
/SRV is also studied in Section IV. E. As introduced in Section 
III, N RVs are obtained by running SRV on the candidate 
population Pc, which has two main procedures (ADM-based 
initialization of centroids and self-guided adjustment for 
centroids). To study their respective contributions, two vari-
ants of MaOEA/SRV, respectively named MSRV-I and 
MSRV-II, are designed here for comparison. In MSR-I, the 
self-guided adjustment is removed from MaOEA/SRV, i.e., 
only the ADM-based initialization is considered in MSRV-I to 
get the RVs. Regarding MSRV-II, the ADM-based initializa-
tion for centroids is replaced by a random-based initialization, 
i.e., solutions in Pc are randomly selected as the initial cen-
troids in MSRV-II. All the parameter settings in MaOEA/SRV, 
MSRV-I, and MSRV-II are the same. 
   The HV comparison results of MaOEA/SRV and its two 
variants on MaF1-Ma13 with 3 to 10 objectives are provided 
in Table. A. VII of the supplementary file due to page limita-
tions. From the second to last row of this table, MSRV-I 
obtained the best results on 6 out of 65 comparisons, while 
MSRV-II could not perform best on any MaF problem. Con-
sidering the one-by-one comparisons in the last row of this 
table, MaOEA/SRV is only outperformed by MSRV-I on 4 
cases. Therefore, it is reasonable to conclude that these two 
main procedures in SRV contribute to enhancing its overall 
performance, which can help to get appropriate RVs for these 
adopted test problems. Especially, the ADM-based initializa-
tion of centroids seems to be the main contribution as the 
performance of MSRV-II without this process deteriorates 
greatly, which indicates that the selected initial centroids have 
a significant impact on the final clustering results. 
2) Observation of RVs obtained by SRV 

The experimental studies given above have validated the 
effectiveness of the SRV strategy, where RVs are automati-

cally extracted from the population to properly guide the 
evolutionary process. To observe the change of RVs under 
populations with different qualities for clustering during the 
evolutionary process, N RVs extracted by our SRV (Algo-
rithm 1) in MaOEA/SRV (Algorithm 4) are examined for 
each test problem at some specified generations. Considering 
the visualization, only the RVs on 3-objective problems are 
plotted here. Thus, N is set to 153, the generation counter G is 
specified as{1,120,240,360,480,600} , and the extracted RVs 
at these specified generations are plotted. Due to page limita-
tions, Figs. A7-A10 are provided in the supplementary file, 
respectively for MaF1 with an inverted PF, MaF2 with a 
partial concave PF, MaF3 with a convex PF, and MaF6 with a 
degenerated PF, while Fig. 6 is given here as an example to 
show the dynamic change of RVs at the different generations 
for solving MaF7 with a disconnected PF. In these figures, the 
RVs extracted by SRV and the preset evenly distributed RVs 
are respectively marked by blue points and red points to show 
the dynamic change of these extracted RVs, while the true PF 
is plotted in the last figure to show whether these extracted 
RVs can fit the shape of the true PF. As observed from these 
figures, in the initial stage (G =1 and 120), the RVs extracted 
by SRV may mismatch the shape of the true PF, which is 
mainly induced by the poor quality (i.e., poor distribution)  of 
the initial population, but these self-guided RVs are still more 
suitable to guide the evolutionary process than the preset fixed 
RVs. With the running of generations, in the mid and later 
stages (G=240, 360, 480, and 600), the extracted RVs can 
gradually match the shape of the true PF, i.e., the extracted 
RVs by SRV can self-guide the population to approach the PF.   

G. Computational Complexity Analysis of MaOEA/SRV 
The process of MaOEA/SRV is introduced in Algorithm 4. 

Here, the computational complexities for its main procedures 
are analyzed as follows. To get the candidate population Pc, 
the non-dominated sort is run on the union population U with 
2N solutions in line 4, which requires a time complexity of 
O(mN2), where m is the objective number and N is the popu-
lation size. Then, in line 5, the normalization of solutions in Pc 
requires O(m2|Pc|), N |Pc| 2N. In line 7, to get N RVs from 
Pc by Algorithm 1, O(m|Pc|2) is required to run the ADM 
-based initialization of centroids in Algorithm 2 and O(m|Pc|2

) is needed to finish the self-guided adjustment of centroids 

  

 
Fig. 6 The dynamically changed RVs (blue points) extracted by SRV on 3-objective MaF7 problem at the different generations, which are different from the preset 
evenly distributed RVs (red points) and can well trace the shapes of the true PF. 
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in Algorithm 3, where min{2 , }m , and 1 indicates 
the number of times that the RVs need to be self-adjusted in 
order to reach a stable state, i.e., flag=false in Algorithm 3. In 
line 8, N subsets 1 2, ,...,RV RV RV

NS S S of Pc are obtained by an as-
sociating procedure, which requires a time complexity of 
O(m|Pc|2). Moreover, to get the final population P in lines 
10-18, the selection process on these N subsets needs a total 
time complexity of O(mNlogN). As indicated above, since |Pc| 
and are respectively equal to 2N and 2m in the worst case, 
the overall worst time complexity of MaOEA/SRV is O(m2N2) 
in one generation. Note that the times  of calling the 
self-guided adjustment method for centroids in MaOEA/SRV 
are often smaller than 2m (i.e., 2m ) in solving MaF1- 
MaF13, which can be observed from the 10-objective cases in 
Fig. A11 of the supplementary file due to page limitations. 
Thus, the actual time complexity will be smaller than the worst 
one.  

To evaluate the actual runtime of MaOEA/SRV, its average 
running times (in seconds: s) from 30 runs are plotted in Fig. 7, 
for MaF1-MaF13 with 10 objectives. Additionally, the aver-
age running times of NSGA-III, -DEA, MaOEA/C and 
VaEA on these 10-objective problems are also plotted in Fig. 7 
for comparison. Obviously, -DEA shows the fastest speed 
due to its simple implementation. Although MaOEA/SRV has 
a slightly slower running speed than VaEA and MaOEA/C, it 
still runs faster than NSGA-III on most problems. 

V. CONCLUSIONS AND FUTURE WORK 
This paper proposes a novel SRV strategy to extract refer-

ence vectors from the population, which can quickly track the 
evolutionary process and fit the PF shapes. To achieve this 
purpose, individuals in the candidate population cP  are classi-
fied into N clusters using a modified k-means with k=N (N is 
the population size), which includes two main procedures: 
initialization of centroids using an angle-based density meas-
urement strategy and the self-adjustment method for centroids. 
Then, N reference vectors can be extracted by mapping the 
centroids of these clusters on the unit hypersphere. When 
integrating SRV into three competitive MaOEA/Ds 
(NSGA-III, EFR-RR and -DEA), their performance can be 
highly improved, especially on some problems with irregular 
PFs. Moreover, our experiments also investigated the impact 
of the two common strategies to embed SRV into MaOEA/Ds, 
and this motivated us to present a new strategy of embedding 
SRV into MaOEA/Ds, under the use of frequently changed 

reference vectors. Thus, N reference vectors generated from 
SRV are only included in the association-based partition 
process to maintain diversity, while the use of shared and fixed 
reference vectors by joining the ideal point and nadir point is 
considered in the elitism selection strategy to ensure conver-
gence. This way, a new algorithm named MaOEA/SRV was 
presented, which can provide a good balance between con-
vergence and diversity. When compared to other MaOEAs 
with adaptive reference vectors (MOEA/D-AWA, 
A-NSGA-III, RVEA* and AR- MOEA) and two competitive 
MaOEAs (VaEA and MaOEA/C), MaOEA/SRV showed 
superiority in solving most of the test problems adopted. 
Furthermore, the experiments have validated the effectiveness 
and efficiency of SRV in MaOEA/SRV, which has a compa-
rable time complexity with most of the compared MaOEAs. 

In our future work, other machine learning methods will be 
studied to generate reference vectors and this SRV strategy 
will be extended to solve more difficult MaOPs with con-
straints [70]-[72]. Since our SRV strategy can adaptively 
extract reference vectors, it may be more suitable for real-life 
applications as their PF shapes are generally irregular, which is 
considered as part of our future work. 
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