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Abstract—Performance of multi/many-objective evolutionary 

algorithms (MOEAs) based on decomposition is highly impacted 
by the Pareto front (PF) shapes of multi/many-objective optimi-
zation problems (MOPs), as their adopted weight vectors may 
not properly fit the PF shapes. To avoid this mismatch, some 
MOEAs treat solutions as weight vectors to guide the evolution-
ary search, which can adapt to the target MOP’s PF automati-
cally. However, their performance is still affected by the similar-
ity metric used to select weight vectors. To address this issue, this 
paper proposes a fuzzy decomposition based MOEA. At first, a 
fuzzy prediction is designed to estimate the population’s shape, 
which helps to exactly reflect the similarities of solutions. Then, N 
least similar solutions are extracted as weight vectors to get N 
constrained fuzzy subproblems (N is the population size), and 
accordingly a shared weight vector is calculated for all subprob-
lems to provide a stable search direction. At last, the corner 
solution for each of m least similar subproblems (m is the objec-
tive number) is preserved to maintain diversity, while one solu-
tion having the best aggregated value on the shared weight vector 
is selected for each of the remaining subproblems to speed up 
convergence. When compared to several competitive MOEAs in 
solving a variety of test MOPs, the proposed algorithm shows 
some advantages at fitting their different PF shapes. 
 

Index Terms—Evolutionary algorithm, Multi/many-objective 
optimization, Fuzzy decomposition. 

I. INTRODUCTION 

VOLUTIONARY algorithms characterized by a popula-
tion-based iterative search engine have been recognized as 

an effective approach for solving multi/many-objective opti-
mization problems (MOPs), which are found in some real-life 
applications [1]-[3]. In this paper, the unconstrained MOPs are 
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considered, as modeled by 
1Minimize ( ) ( ( ),..., ( ))mF x f x f x ,    (1) 

                Subject to: x ,                                            
where 1( , , )nx x x  is an n dimensional vector in the decision 
space  and ( )F x includes m (often conflicting) objectives to 
be optimized. The term multi-objective optimization problem 
is used when m = 2 or 3 and many-objective optimization 
problem is used when m > 3. When considering all the objec-
tives, a set of equally optimal solutions called Pareto set is 
often found, and the mapping of this set into the objective 
function space is called Pareto front (PF) [8]. The main goal of 
solving MOPs is to find a set of solutions that can closely and 
evenly approximate their PFs [4]-[7]. 

In recent years, numerous multi/many-objective evolution-
ary algorithms (MOEAs) have been proposed to solve various 
MOPs, which can be classified into three main categories, i.e., 
Pareto-based MOEAs [9]-[10], indicator-based MOEAs [11]- 
[13], and decomposition-based MOEAs (MOEADs) [14]-[15]. 
MOEADs have become very popular in recent years, mainly 
due to their promising performance and implementation effi-
ciency [16]-[18]. With the decomposition approach, the target 
MOP is transformed into a set of subproblems, which are 
optimized in a collaborative way using evolutionary search. 
However, the performance of MOEADs will be highly af-
fected by their adopted weight vectors or aggregation methods. 
Some relevant works on this topic are briefly reviewed below.  

For the weight vectors used in MOEADs, they are first ini-
tialized to have an even distribution in objective space, which 
helps to maintain the population’s diversity. In some early 
MOEADs [14]-[16], their weight vectors are uniformly sam-
pled from the unit hyperplane 1 2 ... 1mf f f     by using a 
systematic extraction method, such as Das and Dennis’s 
method [19], Deb and Jain’s method [20] or mixture uniform 
design [21]. However, the performance of MOEADs strongly 
depends on the PF shapes, when the weight vectors with even 
distribution are used [22]. These MOEADs are good at solving 
MOPs with regular PFs, but perform poorly on MOPs whose 
PF shapes are degenerate, disconnected, inverted, or strongly 
convex/concave [28]. This is mainly due to the low matching 
degree of the evenly distributed weight vectors and the irreg-
ular PF shapes. To avoid this mismatching, three main kinds of 
improved approaches are used in some recent MOEADs, such 
as adaptive extraction of weight vectors [23]-[25], dynamic 
adjustment of weight vectors [26]-[32], and the use of multiple 
sets of weight vectors [33]-[34], adapting the distribution of 
weight vectors to fit various PF shapes. 

Regarding the aggregation methods, choosing an effective 
aggregation function to formulate scalar subproblems can help 
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to balance convergence and diversity during the evolutionary 
search. Primitively, three aggregation functions, i.e., weighted 
sum (WS), Tchebycheff (TCH), and penalty-based boundary 
intersection (PBI), are introduced in [14], which are also used 
in some recent MOEA/Ds [35]-[36]. However, as discussed in 
[37]-[38], the search capabilities of these MOEADs are also 
highly impacted by their aggregation functions. For example, 
as shown in Fig. 1, the improvement region (IR) and the shared 
IR (SIR) for a subproblem decomposed from WS are always 
larger than that from TCH in the attainable objective space. 
Note that the detailed definitions of IR and SIR can be found in 
[40]-[41], where a larger size of IR implies a larger probability 
to find a solution associated to the subproblem with a better 
aggregated value, while a larger size of SIR indicates a larger 
probability to have the same better solutions for the subprob-
lem and its neighbors (here, the neighbors of a subproblem are 
defined based on the distances between their relevant weight 
vectors). Thus, as observed in Fig. 1, the search capabilities of 
MOEADs using WS are generally better to speed up conver-
gence and worse to maintain diversity when compared to that 
using TCH [40]-[41], especially on MOPs with a large number 
of objectives [39]. In order to better balance convergence and 
diversity with aggregation functions in MOEADs, three main 
kinds of improved methods are proposed, such as embedding 
constraints into aggregation functions [42]-[46], adaptive 
selection of aggregation functions [37], [47], and new aggre-
gation functions [48]. 

Although the above efforts have been conducted on weight 
vectors or aggregation methods to further enhance MOEADs, 
it is not always an easy task to select a suitable aggregation 
method adhering with a specific set of weight vectors, which is 
expected to conform the target MOP’s PF and characteristic 
for getting superior performance [41]. Recently, without using 
the pre-set weight vectors, solutions in some MOEAs [49]-[60] 
are treated as weight vectors, trying to guide the population to 
approximate the PF adaptively. Two metrics are often used to 
select these solutions as weight vectors, which can reflect their 
direction similarity. One is the direction angle of two solutions 
in the objective space, which is used in VaEA [49], MOEA/D- 
AM2M [51], MaOEA-CSS [50], PAEA [52], hpaEA [53], 
MaOEA/C [54], SPSAT [55], and PaRP/EA [56]. The other is 
the distance of two solutions’ projections on the unit hyper-
plane 1 2 ... 1mf f f    (m is the objective number), which 
is adopted in DDEA [57] and MaOEA-DDFC [58]. A smaller 
value of the direction angle or the projections’ distance on the 
unit hyperplane means a higher direction similarity for two 
solutions, which is also used to define the neighborhoods of 

subproblems [14]. In Fig. 2, a simple example is plotted to 
show the measurement of direction similarity based on the 
direction angle (denoted by  ) or the projections’ distance 
(denoted by dis0.5, dis1 and dis2) on three different unit hyper-
planes UHp with p=0.5, 1 and 2 (here UHp indicates the unit 
hyperplane 1 2 ... 1p p p

mf f f    , where p is a positive pa-
rameter to determine the curvature of the hyperplane). Then, in 
these MOEAs [49]-[56], solutions with high direction simi-
larity and poor convergence are removed, while those with low 
direction similarity are added into the population to compen-
sate their diversity. Thus, the search directions are automati-
cally guided by solutions, which have superior performance on 
solving various MOPs [49]-[58]. It is worth noting that, the 
direction angle   in Fig. 2 is actually equal to another special 
metric dis2, as they will return the same comparison results on 
the direction similarity. Thus, the most commonly used metrics 
  and dis1 in these MOEAs [49]-[56] are actually two special 
cases in the family metrics disp that represent the projections’ 
distance on UHp with p=1 and p=2. Obviously, as illustrated in 
Fig. 2, it is insufficient to use the above two metrics to measure 
the direction similarity of solutions [54], but an adaptive metric 
with variable disp should be adopted when tackling MOPs with 
different PF shapes. 

Given the above discussions, a fuzzy decomposition based 
multi/many-objective evolutionary algorithm (called FDEA) 
is proposed in this paper for solving MOPs with various PF 
shapes. In FDEA, a fuzzy decomposition is proposed to divide 
the target MOP as N constrained fuzzy subproblems (N is the 
population size), which includes two main components, i.e., a 
fuzzy prediction and a weight vector extraction. Here, fuzzy 
prediction is used to roughly predict a suitable p for UHp that 
fuzzily fits the current non-dominated solution set. Then, the 
direction similarity between solutions can be appropriately 
measured based on their projections on UHp. After that, the 
weight vector extraction is used to select N solutions as weight 
vectors based on the direction similarity, which can keep a 
high matching degree with the target MOP’s PF. Furthermore, 
one shared weight vector can be obtained from the N extracted 
weight vectors, which provides a stable search direction for all 
fuzzy subproblems. At last, an elite selection strategy is run, 
which chooses one corner solution for each of the m least 
similar subproblems (m is the number of objectives) to main-
tain diversity and then selects one solution with the best ag-
gregated fitness value for each of other subproblems to ensure 
convergence. When compared to some competitive MOEAs, 
our algorithm has shown some advantages in solving numer-
ous test MOPs with various PF shapes. 

The remainder of this paper is organized as follows. Section 
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Fig. 1 Simple examples of (a) IR in WS and TCH, (b) SIR in WS and TCH
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Fig. 2 Direction similarity between solutions measured with the distance 
between their projections on UH1, UH2 and an appropriate UHp 
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II introduces our motivations to design FDEA. Section III 
presents the details of FDEA. The experimental results and 
some discussions are provided in Section IV. At last, our 
conclusions and future work are presented in Section V. 

II. MOTIVATIONS 

In early studies of MOEADs [35]-[36], their weight vectors 
are evenly sampled from the unit hyperplane, resulting in the 
fact that their performance is sensitive to the matching degree 
of weight vectors and the PF shapes [22]. To alleviate this 
problem, solutions are selected as weight vectors based on the 
direction similarity in some MOEAs [49] [50] [51] [54] [56] 
[52], trying to automatically guide the evolutionary search 
toward different PFs. However, there still exist some open 
challenges for these MOEAs. 

First, there are only two special metrics for calculating di-
rection similarity in these MOEAs, i.e., dis1 and   (equal to 
dis2) in Fig. 2, which actually represent the projections’ dis-
tance on UHp with p=1 and p=2. These two metrics cannot 
eliminate the performance sensitivity when solving different 
MOPs with complicated PF shapes. For example, the angle    
between two solutions (equal to dis2) is applied in VaEA [49], 
while dis1 is implemented in DDEA [56]. When using VaEA 
and DDEA to solve the 3-objective MaF3 problem with a 
convex PF [59], their final solutions in a single run will be 
distributed mainly on the central area of the PF, while the PF 
boundaries are rarely covered, as illustrated in Fig. 3. This is 
reasonable since, as pointed out in MaOEA/C [54], the metric 
  or dis2 is not very appropriate to reflect the distribution of 
solutions near the boundaries of the convex PF, which can be 
observed in Fig. 4(a). Six solutions x1 to x6 actually have a 
similar performance on convergence and diversity, but 1 (the 
angle between x1 and x2) and 3  (the angle between x5 and x6) 
are much smaller than 2  (the angle between x3 and x4), which 
indicates that x3 and x4 show better distribution based on the 
metricwhen compared to other solutions near the boundaries. 
Similarly, if dis1 is used for tackling convex MOPs, all solu-
tions are projected onto the UH1 to calculate their distances. 
However, this kind of unfair phenomenon still exists for the 
boundary solutions (see Fig. 4(a)). Thus, an appropriate metric 
to exactly reflect the direction similarity between solutions is 
very important for improving the performance of these 
MOEAs. In PAEA [52] and PaRP/EA [56], the direction 
similarity is modified to compute the angles of two solutions 
on two adversarial directions, i.e., one emanating from the 
ideal point and the other backward from the nadir point (znad), 
as plotted in Fig. 4(b). However, the angle oriented from znad 
for two solutions is still a special case of their projections’ 
distance on a unit hypersurface. 

Second, solutions are selected as weight vectors in some 
MOEAs [49]-[54], leading to the fact that a dynamic change of 
weight vectors happens in each generation. As pointed out in 
[26]-[31], the frequent change of weight vectors may deterio-
rate the convergence speed, as the dynamically changed search 
directions in each generation may be confusing. To alleviate 
this problem, the weight vectors in MOEA/D-AM2M [51] are 
only changed once in each of   generations (  is set to 50 in 

its experiments), while a fixed m-D weight vector (1, 1,…, 1) 
(m is the objective number) is used with the WS method in 
VaEA [49], MaOEA/C [54], PAEA [52] and DAEA [57], 
which can provide a more stable search direction in the evo-
lutionary process.  

Based on the above discussions, in order to extract weight 
vectors that can be well adapted to various PF shapes, a natural 
idea is to fuzzily predict the target MOP’s PF shape during the 
evolutionary process, which can help to obtain an appropriate 
metric to exactly reflect the direction similarity. Then, weight 
vectors should be extracted to fit the PF shapes and an elite 
selection strategy should be designed to balance convergence 
and diversity during the evolutionary process, under the case 
that the weight vectors are dynamically changed in each gen-
eration. Thus, to cover all the above mentioned issues, FDEA 
is proposed in this paper with fuzzy decomposition and elite 
selection, which will be introduced in the following section. 

III. THE PROPOSED ALGORITHM 

The proposed FDEA algorithm includes two main compo-
nents, i.e., fuzzy decomposition and elite selection. At first, 
after the offspring population is generated, fuzzy decomposi-
tion is executed, which includes a fuzzy prediction to estimate 
the population’s shape and a weight vector extraction to define 
N constrained fuzzy subproblems (N is the population size). 
After that, one shared weight vector is further obtained using 
the N extracted weight vectors, which can provide a stable 
search direction for all subproblems. At last, an elite selection 
strategy is run to get the next population, which selects one 
corner solution for each of m least similar subproblems (m is 
the number of objectives) and one solution with the best ag-
gregated value for each of the rest subproblems. By this way, 
our algorithm can properly balance convergence and diversity 
for solving MOPs with different PF shapes. To introduce 
FDEA, its main framework is first introduced in Section III.A, 
and then the details of fuzzy decomposition and elite selection 
are respectively given in Section III.B and III.C to clarify the 
implementation of FDEA. 

  
Fig. 3 Final solution sets achieved by VaEA and DDEA on 3-objective MaF3 
problem, and the true PF indicated by the shaded area. 
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Fig. 4 Illustration of (a) the dis1 and dis2 (or the angle ) between boundary
solutions and intermediate solutions for the convex PF, and (b) the nadir point
oriented angle between solutions.     
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A. The Main Framework 

Here, to give an overview of FDEA, its main framework is 
provided in Algorithm 1 with three inputs: N (the population 
size), m (the number of objectives), and Gmax (the maximum 
number of generations). In line 1, an initial population P is 
randomly generated to have N solutions in decision space   
for solving the target MOP, and the generation counter G is 
initialized as 1. Then, an offspring population Q is produced to 
have N new solutions in line 3, by running variation operations 
(i.e., simulated binary crossover (SBX) [60] and polynomi-
al-based mutation (PM) [61]) on N parent pairs randomly 
selected from P. Then, these two populations (P and Q) are 
merged together in line 4 to get a union population U including 
2N solutions. Next, an adaptive normalization procedure used 
in NSGA-III [20] is run on U to mitigate the impact of dif-
ferent scaled objectives in MOPs, as shown in line 5. Thus, the 
ith objective ( )if x of each solution x in U is normalized as 

*

*

( )
( )= i i

i nad
i i

f x z
f x

z z



,                             (2) 

where ( )if x  ( 1,2,...,i m ) indicate the ith normalized objec-
tive of x, while *z = * * *

1 2( , ,..., )mz z z  is an ideal point and znad =
1 2( , ,..., )nad nad nad

mz z z is a nadir point, which are obtained according 
to all the non-dominated solutions in U using the estimation 
method in [20], [56]. After that, in line 6, our fuzzy decom-
position method is run to decompose the target MOP into N 
constrained fuzzy subproblems, which will be introduced in 
Section III.B. Then, the union population U will be divided to 
get N subsets (S1, S2,…, SN) respectively associated to N 
constrained fuzzy subproblems, by gathering solutions with 
high direction similarity in each subset. At last, the elite se-
lection process is run in line 7 to select one solution from each 
of subsets S1, S2,…, SN to compose the new population, which 
will be introduced in Section III.C. Then, G is increased by 1 
in line 8. While G is smaller than Gmax, the above procedures in 
lines 3-8 will be run iteratively; otherwise, P is reported as the 
final approximate solutions for the target MOP in line 10.  

To further clarify the running of FDEA, the details of fuzzy 
decomposition and elite selection are introduced in the fol-
lowing subsections.  

B. Fuzzy Decomposition 

In our fuzzy decomposition, a fuzzy prediction is first run to 
estimate the PF shape and then a weight vector extraction is 
executed to get N weight vectors, which define N constrained 
fuzzy subproblems. To clarify the running of fuzzy decompo-
sition, its pseudo-code is given in Algorithm 2 with three 
inputs: U (the union population), N (the population size), and 
m (the objective number). In line 1, SA (collecting all 
non-dominated solutions), SB (collecting all candidate solu-
tions), and N subsets Si (collecting all solutions associated to 
i-th subproblem, i=1, 2,…,N) are all initialized as empty sets. 
After running the non-dominated sorting [9] on U in line 2, U 
is divided into L solution subsets (F1, F2,…, FL) based on their 
non-dominated ranks in U. Then, set SA as F1, and SB is con-
structed in lines 3-5 by including one subset each time, staring 
from F1, then F2 and so on, until the size of SB exceeds N for 
the first time. Let Fl be the last subset included into SB, i.e., SB 

=F1+F2+…+Fl. The remaining fronts of U (i.e., Fl+1 to FL) are 
not considered in this process. After that, our proposed fuzzy 
prediction is run on SA in line 6, aiming to find an appropriate 
unit hypersurface (UHp) that fuzzily fits the shape of the 
current non-dominated solutions. The details of fuzzy predic-
tion will be introduced in Section III.B.1. After the estimation 
of PF shape, each solution BSx  will get a projection xon 
UHp in line 7, which is an intersection of a direction ray (from 
the origin pointing to x) on UHp. Then, the ith normalized 
objective of x can be obtained as follows: 

1/

1

( )
( )=

[ ( )]

i
i pm

p
kk

f x
f x

f x



 

 
 

,                     (3) 

where ( )if x ( 1,2,...,i m ) is the ith normalized objective of x 
in (2). Thus, the direction similarity of two solutions in U can 
be defined as the distance of their projections on UHp. Then, a 
weight vector extraction introduced in Section III.B.2 is run in 
line 8 to select N solutions from SB as weight vectors (saved in 
SW), while the remaining solutions in SB are preserved in SR. 
Consequently, N constrained fuzzy subproblems are defined in 
lines 9-11, by treating the ith solution ix SW as the first 
candidate solution for ith subproblem and adding ix  into Si (i 
= 1, 2,…,N). Afterwards, each solution in SR will be associated 
to the subproblem with the highest direction similarity. Spe-
cifically, the distances of jth solution yj (j = 1, 2,…, R|S | ) in SR 
to ith weight vector ix  (i = 1, 2,…,N) in SW are calculated in 
line 14, the weight vector u with the highest direction similar-
ity for yj is found in line 16, and then yj is added into the subset 
Su to associate with its subproblem in line 17. At last, N solu-
tion subsets 1 2( , ,..., )NS S S  respectively associated to N sub-

Algorithm 2 Fuzzy-Decomposition(U, N, m)  
1: initialize iS  , 1,2,...,i N , SA= , SB=
2: divide U into multiple subsets F1,F2,…,FL by the fast 

non-dominated sorting, and set SA = F1, l = 1
3: while |SB| < N
4:   SB = SB  Fl, l++
5: end while
6: p = Fuzzy-Prediction(SA) 
7: solutions in U are mapped on UHp to get the projections
8: (SW, SR) = Weight-Vector-Extraction(SB, N, m)
9: for i = 1 to N

10:   add the ith solution in WS into Si 
11: end for 
12: for j = 1 to R|S |
13:   for i = 1 to N
14:     compute DS(yj, xi) with (11), RSjy  and WSix 
15:   end for
16: associate u = k : 1 toarg min ( , )  N j kk DS y x

17: add yj into Su

18: end for
19: return 1 2( , ,..., )NS S S

Algorithm 1 FDEA(N, m, Gmax) 
1: initialize P and set G=1
2: while GGmax do
3:  generate the offspring population Q 
4:  U = PQ and set P = , Q =  
5:  normalize all solutions in U 
6:  (S1, S2,…, SN) = Fuzzy-Decomposition(U, N, m) 
7:  P = Elite-Selection(S1,S2,…,SN) 
8:  G++
9: end while

10: return P
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problems are returned in line 19.  
To further clarify the running of this fuzzy decomposition, 

the details of fuzzy prediction and weight vector extraction are 
respectively introduced below. 
1) Fuzzy Prediction 

In this process, an appropriate coefficient p on UHp is es-
timated to effectively guide the evolutionary search and our 
fuzzy prediction is limited in the unit hypercube as defined by 
the origin and the m-dimensional point (1, 1,…,1). The pseu-
do-code of fuzzy prediction on UHp is given in Algorithm 3 
with the input: SA with all non-dominated solutions. In line 1, 
solutions outside the unit hypercube are first removed from SA. 
Then, in line 2, the coefficient p is initialized as 1, while the 
average value (E) and standard deviation ( ) of all distances 
from the solutions in SA to the linear unit hypersurface UH1 are 
initialized as 0. After that, in lines 3-6, the distance of each 
solution ASx to UH1 (marked as D1(x)) can be computed as 

11
( ) 1

( )

m

i
i

f x
D x

m


 
  ,                       (4) 

where ( )if x is the ith normalized objective of x in (2) and m is 
the objective number. Please note that the distance Dis1(x) in 
(4) can be positive or negative. Specifically, the solution x 
below UH1 will have Dis1(x) < 0, otherwise will get Dis1(x) 
0. Different cases of Dis1(x) are shown in Fig. 5, where Dis1(x1) 
< 0 and Dis1(x2) > 0. Then, in lines 6 and 7, the values of E and
 can be respectively calculated by (5) and (6), as follows: 

1 ( )
Ax S
Dis x

E  
A|S |

,                             (5) 

 
1 2( ( ) )

-1
Ax S

Dis x E
 


 

A|S |
 ,                    (6) 

where A|S | denotes the cardinality of AS . Based on E and , p 
can be roughly predicted in lines 8-11 by the following steps: 
Step1: preset two sample sets (sp1 and sp2) of p , as follows: 

1 1

2 2

1 0.05 , and 0,1,..., 1

1 0.1 , and 0,1,..., 1

i  p sp i T   
p

j   p sp j T  

         
,     (7) 

where p is a sample value of p, while sp1 and sp2 contain T1 
and T2 samples of p , respectively. Here, T1=17 and T2=51. 
Step 2: calculate the average fitting value of AS and UHp  for 
each p from sp1 and sp2, denoted as Fit( p ), as follows: 

                   
1/

1 1
[ ( )]

pm
i p

ji j
Fit p

f x



 





 A|S |

A|S |
.                 (8) 

Step 3: preliminarily predict p as a suitable p with the closest 

fitting between UHp and SA, as follows:  

1

2

: arg min ( ) 1 if 0,
   

: arg min ( ) 1 otherwise

p sp Fit p E
p

p sp Fit p

        
.       (9) 

Thus, if E>0, then 1p  , UHp tends to be concave; E<0 or 
0E  respectively indicate UHp tends to be convex or linear.  

Step 4: fuzzily adjust the value of p based on the coefficient of 
variation (cv) between E and , as follows:  

1

3 2

1.0 if 0.1 0.9

if 0.1 0.9

otherwise

cv  cv r

p p r   cv r

p

   
    



 ,             (10) 

where cv = E / , r1 and r2 are two random numbers in [0,1], 
and r3 is a small random disturbance in [-0.02,0.02]. The fuzzy 
adjustment of p here is mainly used to fit the MOPs with linear 
PF shapes that may be far away from the UH1, as shown in Fig. 
6. Thus, if cv approaches to 0, the value of p is predicted close 
to 1 with a high probability.  

As discussed in Section II, in some angle-based MOEAs 
[49]-[56] and decomposition-based MOEAs [35]-[36], the PFs 
of MOPs are only approximated by UH2 or UH1 to define the 
distance of solutions. Moreover, the PF shapes of MOPs are 
estimated as the model of UHp in pa -MyDE [73] and 
RIB-EMOA [74], where a new optimization problem is de-
fined to find the most suitable value of p. However, the esti-
mation methods need the true PF information to obtain the 
hypervolume (HV) [63], which are unpractical and inefficient 
on computational cost. Furthermore, other complicated mod-
els are studied by using some machine learning methods to 
exactly estimate the PF shapes of MOPs, e.g., the generic front 
model in [75] and growing neural gas network in [68]. How-
ever, their performance is significantly affected by the quali-
ties of data for training and testing. Especially, in the early and 
median evolutionary stages, the solutions’ qualities are rela-
tively poor to match the PF shape, which may mislead the used 
machine learning methods. In a recently proposed MDEA 
[76], the PFs of MOPs are estimated by predicting a p value 
from a sample set {0.1, 0.2, …, 4} to calculate the Minkowski 

Algorithm 3 Fuzzy-Prediction(SA)
1: remove solutions outside the unit hypercube from SA

2: initialize E = 0, 0  , p = 1  
3: for each ASx  
4:    compute Dis1(x) with (4) 
5: end for 
6: compute E with (5)  
7: compute with (6)     
8: preset two samples sets sp1 and sp2 of ps with (7) //step 1
9: calculate Fit(ps) by (8) for each sample ps //step 2

10: preliminarily predict p by (9) //step 3 
11: fuzzily adjust p by (10) //step 4
12: return p 

0

f2

x1

f1

(1,1)unit hypercube

x2

 
Fig. 5 Distance between solutions and UH1 in the unit hypercube, where 
Dis1(x1) < 0. 

 
Fig. 6 Example of a MOP’s PF with a linear shape but far away from UH1. 
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distance. Here, m extreme solutions and m+1 center solutions 
are identified at first, and then the fitting degrees between each 
UHp sample and each pair of (center solution, extreme solu-
tion) are calculated in order to find the p value for the most 
frequently matched PF shape. When compared to the men-
tioned methods above, our approach is easily implementable 
and efficient in terms of computational cost, as it only needs to 
fuzzily fit the shape of current non-dominated solutions to the 
model of UHp within some sample values of p.  
2) Weight Vector Extraction 

After the fuzzy prediction of UHp is given in Algorithm 3, a 
number of solutions are selected from SB based on the direc-
tion similarity of their projections on UHp, which are then used 
as weight vectors to assist the fuzzy decomposition for the 
target MOP. Here, the pseudo-code of weight vector extraction 
is introduced in Algorithm 4 with the inputs: SB (all candidate 
solutions), N (the population size), and m (the objective 
number). Here, two definitions of calculating the direction 
similarity are given below. 

Definition 1: Given two different solutions , BSx y , the 
direction similarity of x and y (termed DS(x, y)) is measured by 
the distance of their projections (i.e., x and y  ) on UHp, which 
can be computed as 

 2

1
( , ) ( ) ( )

m
i ii

DS x y f x f y


     ,            (11) 

where ( )if x   and ( )if y   can be obtained by (3). A smaller 
value of DS(x, y) means a higher direction similarity of x and y. 

Definition 2: Given a solution BSx and a subset b BS S , 
the direction similarity between x and Sb (termed DS(x, Sb)) is 
measured by finding a solution bSy  with the minimum 
value of DS(x, y) in Sb. Thus, DS(x, Sb) is set the same with 
DS(x, y), which can be computed as follows: 

,
( , ) minimize ( , )

by x y
DS x DS x y

 
b

S
S  ,                  (12)  

A smaller value of DS(x, Sb) means a higher direction simi-
larity of x and Sb. Note that (12) is also used in the recently 
proposed PMEA [77], which adaptively replaces each invalid 
weight vector by finding the solution vector with the lowest 
direction similarity to the remaining unselected solutions. 

In line 1 of Algorithm 4, SW (collecting the selected solu-
tions as weight vectors) and SR (collecting the remaining 

solutions) are all initialized as empty sets. Then, solutions as 
well as weight vectors are collected into SR in lines 2-10, while 
the remaining solutions are collected into SW in lines 11-17. In 
lines 2-10, the solution with the highest direction similarity to 
SB is removed from SB and added into SR in lines 2-10, until 
the size of SB is equal to N. To be specific, two solutions

),( BSd qx x  with the highest direction similarity are found in 
line 3, as follows: 

( , ) ,

( , ) argmin ( , )
i j

d q i j

x x i j

x x DS x x
 


BS

,                   (13) 

where ( , ) {1,2,..., }B|S |d q  and DS(xi, xj) is computed by (11). 
Then, their direction similarity to SB is computed by (12) in 
line 4. One solution with the higher direction similarity to SB is 
removed from SB and added into SR in lines 5-8. After re-
peating the above process, SR is obtained and SB has N selected 
solutions. 

In lines 11-16, m corner solutions [72] (i.e., the first m 
members of SW) are selected from SB to maintain the boundary 
information of population. At first, two solutions ( , ) BSsl xx   
with the lowest direction similarity in SB are found in line 11 as 
the first two corner solutions, as follows: 

( , ) ,

( , ) argmax ( , )
BSi j

l s i j

x x i j

x x DS x x
 

 ,                 (14) 

where ( , ) {1, 2,..., }B|S |i j  and DS(xi, xj) is computed by (11). 
Then, lx  and sx  are added into SW and removed from SB in 
line 12. By this way, SW has two selected solutions. While the 
number of solutions in SW is smaller than m (i.e., W|S | m ) in 
line 13, one solution x with the lowest direction similarity to 
SW will be found in line 14, which will be added into SW and 
removed from SB in line 15. Obviously, the iterative process of 
lines 14-15 will ultimately save m corner solutions in SW, and 
the remaining solutions in SB are also added into SW in line 17 
in an ascending order. At last, the final solution sets SW and SR 
are returned in line 18 to assist the fuzzy decomposition de-
scribed in Algorithm 2.    

C. Elite Selection 

After the above fuzzy decomposition, N subsets are obtained 
as 1 2, ,..., NS S S , where solutions in each Si are associated to 
ith subproblem (i=1,2,…,N). Based on the output of Algorithm 
2, the first member of Si is the weight vector for the ith 
subproblem, the first member in the first m subsets is also a 
corner solution for its subproblem, and each solution in Si has a 
high direction similarity to the first member of Si. 

In this process, an elite selection method is run to get N final 
solutions with balanceable convergence and diversity from 

Algorithm 4 Weight-Vector-Extraction(SB, N, m)  
1: initialize WS and  RS
2: while |SB| > N 
3:     get two most similar individuals ),( BSd qx x  with (13)
4: compute ( , )BSdDS x and ( , )BSqDS x with (12)
5:     if ( , )BSdDS x < ( , )BSqDS x
6:         add xd into SR and remove xd form SB 
7:     else 
8:         add xq into SR and remove xq form SB 
9: end if 

10: end while 
11: find two least similar individuals ),( BSl sx x  with (14)
12: add lx and sx into WS , and remove them from SB

13: while W|S | m  
14: get : arg max ( , )t tx x DS x B W= S S  
15: add x into WS , and remove xfrom SB 
16: end while 
17: SW = SW  SB 
18: return (SW, SR) 

Algorithm 5 Elite-Selection (S1, S2, …, SN)  
1: initialize P  , w = 1 2( , ,..., )mw w w = (1,1,...,1)
2: for i = 1 to m do
3: update wi with (15)
4: end for
5: for i = 1 to m do
6:   add 1x Si into P, x1 is the first individual of Si

7: end for 
8: for j = m+1 to N do
9:   get the optimal solution x for the jth subproblem by (16)

10:   add xinto P
11: end for
12: return P



 7

1 2, ,..., NS S S , where one solution is selected from each subset. 
As shown in Section III.B, the population’s diversity has been 
well maintained by N selected weight vectors, i.e., the first 
solution in each Si (i=1,2,…,N). Thus, this elite selection 
prefers to select one solution with good convergence from 
each Si. In general, MOEADs will use an aggregated function 
(like WS, TCH or PBI) and the associated weight vectors to 
evaluate the solutions’ quality, aiming to balance convergence 
and diversity when a number of evenly distributed weight 
vectors are used during the evolutionary process. However, N 
weight vectors extracted from Algorithm 4 in FDEA are 
dynamically changed in each generation, which will highly 
affect the search direction if the traditional decompostion 
methods in [14]-[15] are used.  

Here, in order to provide a stable search direction for each 
subproblem, a shared weight vector w and the WS aggregated 
function are used for all subproblems. The pseudo-code of 
elite selection is given in Algorithm 5 with the inputs: N 
subsets ( 1 2, ,..., NS S S ). In line 1, the new population P is 
initialized as an empty set and the shared weight vector w =

1 2( , ,..., )mw w w is initialized as (1,1,...,1) . In lines 2-4, each 
member wk (k=1,2,…, m) of w is obtained by  

1
1

1 ,
( )

 to N i
ki x S

k

f x
w

N
 

 



                         (15) 

where x1 represents the first member of Si, 1x  is the projection 
of x1 on the predicted UHp, and 1( )if x  can be computed by (3). 
Please note that the fixed weight vector (1,1,...,1)  was used in 
some MOEAs [49]-[54] to guide the evolutionary search. 
However, an adaptive weight vector w applied here is more 
suitable, as it can follow the distribution of N extracted weight 
vectors, which can be more effective to guide the evolutionary 
search, especially for some imbalance cases in MOPs [27]. 
Thus, the jth constrained fuzzy subproblem can be mathe-
matically defined as follows:  

1 1Minimize ( ) ( ) ... ( )ws j
m mg x r w f x w f x   | = ,   (16) 

subject to: jx S , 

where the weight vector jr  is the first solution in jS , ( )kf x (
1,2,...,k m ) is the kth normalized objective of x in (2), the 

shared weight vector w is obtained by (15), and 1, 2,...,j N . 
With the assistance of the fuzzily predicted UHp, the weight 
vector rj of the jth subproblem is obtained by Algorithm 4, 

which is stored respectively as the jth member of SW and the 
first member of Sj. Specifically, the weight vectors 1 2, ,..., Nr r r
are adopted to define the constrained attainable objective 
subspace of each subproblem, get the associted solution set Sj 
in lines 9-18 of Algorithm 2, and obtain the shared w in (15). 
Next, m corner solutions are added into P by collecting the first 
member of Si (i = 1, 2,…, m) in lines 5-7, which maintains the 
boundary information of population. Then, the currently best 
solution for each subproblem can be selected from its 
corresponding candidated solution set Sj (j =m+1, m+2,…, N) 
using (16). At last, the new population P having N currently 
optimial solutions for these N constrained fuzzy subproblems 
is returned in line 12 for the next generation. 

D. Discussions 

In the above subsections, the general framework and main 
components of FDEA have been introduced in detail. Here, a 
simple example is plotted in Fig. 7, which shows the process of 
FDEA on solving a minimization problem with two objectives 
( 1f  and 2f ). In Fig. 7(a), assume that the union population U 
has 3 parents and 3 children (x1 to x6) that are non-dominated 
with each other. By using the fuzzy prediction in Algorithm 2, 
the predicted curve UHp can be obtained in Fig. 7(a), and each 
solution correspondingly gets a projection on UHp. Then, the 
direction similarity of any two different solutions is measured 
based on their projections’ distance using (3). Three weight 
vectors for decomposition in (16) are extracted from U by 
iteratively dividing U into two subpopulations SW and SR, 
which are shown in Fig. 7(b) to Fig. 7(g). Concretely, the most 
similar solution pair (x3, x4) is identified in Fig. 7(a) using (13), 
followed by adding x4 to SR as DS(x3, U) is larger than DS(x4, 
U), as shown in Fig. 7(b) and Fig. 7(c). By the same way, the 
most similar solution pairs (x1, x2) in Fig. 7(b) and (x3, x5) in 
Fig. 7(d) are respectively found. Then, x2 and x5 are respec-
tively added into SR in Fig. 7(e) and Fig. 7(g). Thereafter, two 
least similar solutions x1 and x6 in Fig. 7(f) are treated as two 
corner solutions using (14), which are also the first two solu-
tions of SW. Thus, three solutions are saved in SW, i.e., x1, x6 and 
x3 in Fig. 7(f), which are treated as weight vectors to define 
three constrained attainable objective subspaces in Fig. 7(f) 
and to get a shared weight vector w in Fig. 7(h). Furthermore, 
three constrained fuzzy subproblems formulated by (16) are 
associated to three candidate solution sets, respectively, i.e., 

x1

x5

x2

x3

0

f1

f2

x4

1.0

x6

(a)

Predicted  curve
Solutions
Projections

Process of Weight Vector Extraction  Elite Selection
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Fig.7 A simple example to show the process of FDEA, (a) for the fuzzy prediction, (b)-(g) for the weight vector extraction, and (h)-(j) for the elite selection.
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{x1, x2}, {x6}, and {x3, x4, x5} in Fig. 7(i). Finally, one best 
solution for each subproblem is selected from its candidate 
solution set by the elite selection in Algorithm 5. As shown in 
Fig. 7(j), the selected three optimal solutions are x1, x6, and x4. 

Obviously, the proposed FDEA is a decomposition-based 
MOEA, where N weight vectors are extracted from the com-
bined population to formulate N constrained fuzzy subprob-
lems (N is the population size). Compared with the traditional 
decomposition-based MOEAs, FDEA is characterized with 
the following three features. 

(1) FDEA involves a fuzzy prediction procedure before the 
decomposition of a MOP, which aims to estimate the shape of 
the current non-dominated solutions using the model UHp, as 
plotted in Fig.7(a). Consequently, FDEA can handle MOPs 
with different curvatures in their PFs, e.g., convexity, linearity, 
or concavity.  

(2) FDEA does not require a set of predefined weight vec-
tors, but fuzzily extracts them from the population, which aims 
to decompose a MOP automatically, as plotted in Figs.7 
(b)-7(g). Thus, FDEA can handle MOPs with irregular shapes 
of PFs, e.g., degenerated, inverted, and disconnected PFs. 

(3) FDEA decomposes a MOP into N constrained fuzzy 
subproblems by (16), where each subproblem has a candidate 
solution set in its constrained attainable objective subspace (as 
plotted in Fig. 7(i)) and all subproblems share the same ag-
gregation function (i.e., the WS function with the shared w in 
(15)) in order to provide a stable evolutionary direction, as 
plotted in Fig. 7(h). Thus, by collaboratively optimizing the 
shared WS function and getting the optimal solution for each 
subproblem from its candidate solution set, FDEA can balance 
the population’s diversity and convergence well. 

IV. EXPERIMENTAL STUDIES 

A. Benchmark Problems and Performance Metrics 

To investigate the effectiveness of our proposed FDEA, 
especially on problems with irregular PF shapes, a total of 30 
test problems with different PF shapes are selected from the 
WFG [62], WFG4x [27] and MaF [59] test suites, including 
WFG1-WFG9, WFG41-WFG48, and MaF1-MaF13. In this 
study, the objective number m is set from 2 to 15, i.e.,

{2,3,5,8,10,15}m . The number of decision variables n in 
each problem is set as follows. For WFG1-WFG9 and 
WFG41-WFG48, the decision variables have k position re-
lated parameters and l distance related parameters, i.e., n=k+l, 
where k and l are respectively set to 2 ( 1)m  and 20 as sug-
gested in [54]; for MaF1-MaF7, n is set by n=m+k-1, where k 
is set to 10 for MaF1-MaF6 and to 20 for MaF7 as suggested in 
[59]; n=2 and n=5 are respectively used for MaF8-MaF9 and 
MaF13. Due to page limitations, the main characteristics of 
these test problems are summarized in Table A.I of the sup-
plementary file.  

In this paper, the well-known HV [63] and inverted gener-
ational distance (IGD) [64] are used as the performance indi-
cators. Both HV and IGD are able to reflect the convergence 
and diversity of the final solution set produced by the algo-
rithms. A larger HV value or a smaller IGD value indicate a 

better approximation to the true PF. When computing HV, a 
reference point dominated by the nadir point of the true PF is 
carefully specified for various problems. To ensure a fair 
comparison, the reference point of all test problems in our 
experiments are set as suggested in [65] and [66]. All objective 
values in the final solution set are firstly normalized by using 

1 21.1 ( , ,..., )nad nad nad
mf f f , where nad

kf is the kth member of the 
nadir point in the true PF ( k  1,2,...,m ), and then the refer-
ence point is set to the m-D point (1.0,1.0,...,1.0) . Here, the 
recently proposed walking fish group algorithm [67] is used to 
compute the exact HV values for problems with m  10, and 
the Monte Carlo simulation [13] using 107 sampling points is 
used to calculate HV for problems with m=15. To calculate 
IGD, a large set of points that are evenly sampled from the true 
PF is required. In particular, 5000, 10000, and 20000 points 
are uniformly sampled from the true PF to calculate the IGD 
values of 2-objective, 3-objective, and 5- to 15-objective 
problems, respectively. Due to page limitations, please refer to 
[13], [64] and [67] for details of computing HV and IGD.  

B. Compared Algorithms and Parameters Settings 

In this study, eight competitive MOEAs, i.e., NSGA-III [20],
-DEA [69], VaEA [49], MaOEA/C [54], MOEA/D-LTD 

[70], PaRP/EA [56], MOEA/AD [33], and DDEA [57], are 
included for performance comparison. In NSGA-III and

-DEA , N weight vectors evenly extracted on UH1 are used in 
their optimization process, whereas in MOEA/D-LTD, the 
weight vectors and aggregation methods are adaptively set by 
learning the characteristics of the estimated PFs for various 
problems. Moreover, in VaEA, MaOEA/C and DDEA, solu-
tions are treated as weight vectors. The angles between solu-
tions are used to reflect their direction similarity as done in 
VaEA and MaOEA/C, while the distances of solutions’ pro-
jections on UH1 are employed in DDEA. Furthermore, two 
adversarial directions are considered in MOEA/AD by using 
two sets of weight vectors, and the direction similarity of 
solutions is adaptively computed by using two adversarial 
directions in PaRP/EA. The parameters settings of these 
MOEAs are provided in Table A. II of the supplementary file, 
as suggested in their references. Particularly, FDEA and all 
compared MOEAs use the same evolutionary operators, i.e., 
SBX and polynomial-based mutation.  

The settings of population size for different numbers of 
objectives are listed in Table A. III of the supplementary file. 
For test problems with 2, 3, 5, 8, 10 and 15 objectives, the 
numbers of weight vectors are respectively set to 100, 120, 
210, 240, 275 and 240, using the two-layer generation method 
with the simplex-lattice design factor H in [44]. According to 
[54], the population size in MaOEA/C should be set as a 
multiple of m. Thus, its population size on 10-objective test 
problems was set to 280. For other compared MOEAs, their 
population sizes are set the same as the number of weight 
vectors. All the compared MOEAs are run 30 times inde-
pendently on each test problem. The mean HV and IGD values 
and their standard deviations (included in brackets after the 
mean HV or IGD results) from 30 runs are collected for 
comparison. All the compared MOEAs are terminated when a 
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predefined maximum number of generations Gmax is reached. 
The values of Gmax are set to 300, 500, 600, 800, 1000 and 
1500, respectively for 2-, 3-, 5-, 8-, 10- and 15-objective test 
problems. Their maximum number of function evaluations 
(MFE) can be easily obtained by computing MFE = N Gmax. 

C. Comparison Results on WFG and WFG4x Problems 

In this experiment, FDEA was compared with respect to 
NSGA-III, -DEA , VaEA, MaOEA/C, MOEA/D-LTD, 
PaRP/EA and DDEA on WFG1-WFG3, WFG41-WFG48 and 
WFG9 with different numbers of objectives. Here, a Wilcoxon 
rank sum test with a 0.05 significance level and a Wilcoxon 
signed ranks test from the tool KEEL [71] are used to ensure a 
statistically sound conclusion, which can show the statistically 
significant differences on the performance results. In the 
following tables, the symbols “+”, “–” and “~” indicate that the 
comparison results of the corresponding algorithm are signif-
icantly better than, worse than, and similar to FDEA on tack-
ling each problem with different objectives, “+/-/~” collects 
the corresponding numbers of the above statistical results, and 
‘Avg. rank’ indicates the average performance ranks of FDEA 
and other compared MOEAs by Friedman’s test from KEEL.  

1) IGD Results on Problems with 2- and 3-objective  
The average IGD results of FDEA and its seven competitors 

on WFG1-WFG3, WFG41-WFG48 and WFG9 with 2- and 
3-objective are presented in Table I. As shown in the second 
last row of Table I, FDEA obtains the best results in 13 out of 
24 problems, while NSGA-III, -DEA , VaEA, MaOEA/C, 
DDEA, MOEA/D-LTD and PaRP/EA perform best in 2, 2, 0, 
1, 3, 2 and 1 problems, respectively. According to Wilcoxon 
rank sum test, when compared to NSGA-III, -DEA , VaEA, 
MaOEA/C, DDEA, MOEA/D-LTD and PaRP/EA, FDEA is 
respectively worse in 2, 3, 0, 1, 5, 3, 1 out of 24 cases, while it 
is respectively better in 17, 18, 21, 16, 15, 18 and 18 cases, 
which validate the superiority of FDEA for tackling these 2- 
and 3-objective WFG and WFG4x problems. Particularly, 

FDEA outperforms all competitors on WFG3, WFG42, 
WFG44 and WFG9, whereas it performs worse than NSGA-III 
and -DEA on WFG41 and WFG45, and worse than DDEA 
and MOEA/D-LTD on WFG1.  

To visually show the performace, the final solution sets with 
the median IGD values obtained by FDEA and its seven 
competitors on these considered WFG and WFG4x problems 
with 2 and 3 objectives are plotted in Figs. A1-A24, which are 
provided in the supplementary file due to page limitations. As 
observed from these figures, the test problems have different 
PF shapes. For WFG1 with a mixed and biased PF in Figs. 
A1-A2, all the algorithms perform poorly on convergence, 
while only DDEA and MOEA/D-LTD perform better in terms 
of distribution. Regarding WFG2 with a mixed and 
disconnected PF in Figs. A3-A4, FDEA obtains a solution set 
with the most even distribution on both 2- and 3-objective 
cases. On the 2-objective instance of WFG3 with a linear PF in 
Fig. A5 and on the 3-objective instance of WFG3 with an 
irregular PF in Fig. A6, all the agorithms except for NSGA-III 
can obtain an evenly distributed set of solutions for the 
2-objective case, but they perform relatively poorly for the 
3-objective case. Regarding WFG41 with a regular concave 
PF in Figs. A7-A8, the solutions obtained by NSGA-III and

-DEA are distributed more evenly. For WFG9 with a 
multi-modal concave PF in Figs. A9-A10, FDEA finds the 
solution set with the best distribution. On WFG42 with a 
convex PF (in Fig. A11-A12) and WFG44 with an extremely 
convex PF (in Fig. A13-A14), only FDEA can generate the 
entire PF, while other algorithms tend to maintain solutions 
that concentrate on the central part of the PF. Regarding 
WFG43 with a sharply concave PF (in Figs. A15-A16), FDEA 
shows the best distribution of solutions on the 3-objective case, 
but it is outperformed by MOEA/D-LTD on the 2-objective 
case. On WFG45 (in Figs. A17-A18) and WFG46 (in Figs. 
A19-A20) respectively with simple mixed and linear PFs, 
FDEA and its competitors obtain a similar distribution of their 

TABLE I
PERFORMANCE OF EIGHT MOEAS ON 2- AND 3-OBJECTIVE WFG AND WFG4X PROBLEMS WITH IGD 

Problems m NSGA-III -DEA  VaEA MaOEA/C DDEA+NS MOEA/D-LTD PaRP/EA FDEA

WFG1 2 8.950E-1(9.98E-2)- 8.550E-1(8.89E-2)- 8.831E-1(1.29E-1)- 9.256E-1(1.21E-1)- 1.570E-1(4.12E-2)+ 1.760E-1(5.06E-2)+ 8.964E-1(1.36E-1)- 7.625E-1(7.85E-2)

3 9.389E-1(8.41E-2)- 9.006E-1(1.02E-1)- 8.324E-1(9.72E-2)- 1.104E+0(1.26E-1)- 2.805E-1(4.39E-2)+ 2.385E-1(2.91E-2)+ 9.194E-1(8.38E-2)- 7.225E-1(1.06E-1)

WFG2 2 1.262E-1(9.43E-2)- 1.198E-1(9.29E-2)~ 1.464E-1(8.91E-2)- 1.303E-1(9.33E-2)- 1.017E-1(2.15E-3)+ 1.264E-1(9.33E-2)- 1.278E-1(9.52E-2)- 1.181E-1(9.38E-2)

3 2.290E-1(7.42E-2)- 2.463E-1(6.92E-2)- 2.730E-1(6.98E-2)- 2.957E-1(5.37E-2)- 2.443E-1(6.51E-2)- 2.865E-1(3.85E-2)- 2.232E-1(5.33E-2)- 2.106E-1(6.37E-2)

WFG3 2 2.135E-2(5.35E-3)- 2.024E-2(2.57E-3)- 1.998E-2(2.14E-3)- 1.622E-2(1.60E-3)~ 1.704E-2(1.57E-3)- 1.833E-2(3.34E-3)- 2.099E-2(3.59E-3)- 1.467E-2(8.84E-4)

3 1.041E-1(1.33E-2)- 1.076E-1(1.58E-2)- 1.605E-1(1.32E-2)- 7.061E-2(1.05E-2)~ 7.098E-2(5.48E-3)~ 8.597E-2(8.81E-3)- 7.650E-2(1.31E-2)- 7.040E-2(4.80E-3)

WFG41 2 1.471E-2(7.95E-4)+ 1.464E-2(8.99E-4)+ 1.706E-2(7.31E-4)- 1.578E-2(5.72E-4)~ 1.396E-2(3.18E-4)+ 1.593E-2(8.42E-4)~ 1.706E-2(9.51E-4)- 1.582E-2(7.79E-4)

3 1.923E-1(9.06E-4)~ 1.916E-1(7.45E-4)+ 2.088E-1(3.84E-3)~ 2.049E-1(3.33E-3)~ 1.967E-1(2.27E-3)+ 2.087E-1(1.97E-3)~ 2.036E-1(3.48E-3)~ 2.055E-1(2.50E-3)

WFG42 2 2.710E-2(9.77E-4)- 3.044E-2(1.28E-3)- 7.666E-2(2.09E-2)- 3.922E-2(6.16E-3)- 3.089E-2(3.81E-3)- 2.808E-2(1.46E-3)- 2.882E-2(3.39E-3)- 1.523E-2(5.42E-4)

3 1.864E-1(3.70E-3)- 1.884E-1(5.29E-3)- 2.212E-1(7.54E-3)- 2.478E-1(2.09E-2)- 1.944E-1(9.37E-3)- 2.086E-1(1.38E-2)- 2.052E-1(9.50E-3)- 1.476E-1(2.01E-3)

WFG43 2 3.216E-2(9.76E-3)- 3.341E-2(9.20E-3)- 3.310E-2(9.85E-3)- 3.014E-2(8.95E-3)- 4.685E-2(1.71E-2)- 2.264E-2(2.49E-3)+ 3.090E-2(1.03E-2)- 2.416E-2(1.04E-2)

3 3.075E-1(8.65E-3)- 3.051E-1(5.90E-3)- 2.767E-1(7.92E-3)~ 2.901E-1(7.70E-3)- 3.110E-1(8.50E-3)- 3.960E-1(2.00E-2)- 2.771E-1(7.96E-3)~ 2.766E-1(6.96E-3)

WFG44 2 1.734E-1(2.70E-2)- 2.019E-1(3.21E-2)- 4.269E-1(7.81E-2)- 2.011E-1(3.93E-2)- 1.727E-1(3.07E-2)- 2.228E-1(5.68E-2)- 1.638E-1(3.48E-2)- 1.120E-1(2.59E-2)

3 1.811E-1(1.05E-2)- 2.396E-1(1.18E-2)- 2.843E-1(2.40E-2)- 2.803E-1(1.80E-2)- 2.190E-1(1.79E-2)- 1.923E-1(1.95E-2)- 1.880E-1(1.78E-2)- 1.274E-1(2.00E-2)

WFG45 2 1.443E-2(5.61E-4)+ 1.446E-2(9.60E-4)+ 1.692E-2(9.69E-4)- 1.543E-2(6.11E-4)~ 1.492E-2(5.39E-4)~ 1.526E-2(6.65E-4)~ 1.688E-2(9.41E-4)- 1.565E-2(6.09E-4)

3 2.033E-1(9.27E-4)~ 2.020E-1(8.32E-4)~ 2.043E-1(5.29E-3)~ 2.056E-1(7.35E-3)~ 2.060E-1(7.26E-3)~ 2.212E-1(4.46E-3)- 2.011E-1(5.37E-3)+ 2.037E-1(4.85E-3)

WFG46 2 1.450E-2(8.75E-4)- 1.411E-2(8.18E-4)- 1.632E-2(7.91E-4)- 1.395E-2(5.29E-4)~ 1.476E-2(5.51E-4)- 1.628E-2(1.01E-3)- 1.768E-2(1.35E-3)- 1.318E-2(3.74E-4)

3 1.513E-1(1.07E-3)~ 1.498E-1(9.51E-4)~ 1.698E-1(3.38E-3)- 1.624E-1(5.53E-3)- 1.568E-1(1.93E-3)~ 1.645E-1(1.91E-3)- 1.602E-1(3.51E-3)~ 1.505E-1(1.96E-3)

WFG47 2 1.223E-1(2.37E-1)- 1.024E-1(2.17E-1)- 8.331E-2(1.95E-1)- 2.218E-1(2.38E-1)- 9.971E-2(2.16E-1)- 1.247E-1(2.36E-1)- 1.841E-1(2.82E-1)- 5.959E-2(1.59E-1)

3 2.863E-1(3.46E-1)- 3.332E-1(4.22E-1)- 3.705E-1(4.82E-1)- 1.936E-1(5.83E-3)+ 3.320E-1(4.23E-1)- 3.617E-1(4.09E-1)- 4.146E-1(5.23E-1)- 2.366E-1(2.60E-1)

WFG48 2 2.316E-1(4.17E-1)- 1.302E-1(3.13E-1)- 1.711E-1(3.11E-1)- 2.631E-1(4.43E-1)- 1.958E-1(3.90E-1)- 1.699E-1(3.52E-1)- 2.258E-2(2.29E-3)~ 2.180E-2(2.62E-1)
3 1.921E-1(1.16E-2)~ 2.820E-1(3.34E-1)- 6.609E-1(7.92E-1)- 3.499E-1(4.65E-1)- 4.689E-1(6.32E-1)- 3.074E-1(3.28E-1)- 2.713E-1(3.36E-1)- 1.905E-1(1.12E-2)

WFG9 2 4.145E-2(3.80E-2)~ 5.511E-2(4.65E-2)- 4.336E-2(3.75E-2)~ 4.967E-2(4.24E-2)- 6.192E-2(5.19E-2)- 6.690E-2(5.13E-2)- 5.592E-2(4.61E-2)- 4.181E-2(3.80E-2)

3 2.147E-1(2.33E-2)-  2.155E-1(2.36E-2)-  2.205E-1(2.16E-2)- 2.248E-1(2.32E-2)- 2.272E-1(2.88E-2)- 2.495E-1(1.60E-2)-  2.130E-1(2.31E-2)~  2.080E-1(1.88E-2)

Best/All 2/24 2/24 0/24 1/24 3/24 2/24 1/24 13/24
+/-/~ 2/17/5 3/18/3 0/21/3 1/16/7 5/15/4 3/18/3 1/18/5 ——
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solutions. For WFG47 (in Figs. A21-A22) and WFG48 (in 
Figs. A23-A24), in which their PFs are discontinuous with 
three segments, NSGA-III, VaEA and PaRP/EA only find the 
solutions with poor distribution around the first segment of 
2-objective WFG47, MaOEA/C cannot find any solution 
around its last segment, whereas MOEA/D-LTD only gets a 
poorly distributed solution set on 3-objective WFG47. More-
over, only FDEA can obtain solutions around the first segment 
of 2-objective WFG48 and also shows the best distribution of 
solutions for its 3-objective case. 

Based on the above analysis, NSGA-III and -DEA can 
only solve the WFG and WFG4x problems with regular PFs 
(like WFG41 and WFG46), as they use the fixed and evenly 
distributed weight vectors. MOEA/D-LTD can adaptively 
adjust the weight vectors and aggregation method by a learn-
ing model, which enhances the performance in some irregular 
problems (like WFG1 and WFG43), but it still faces some 
challenges on problems with discontinuous PFs, such as 
WFG2, WFG47 and WFG48, especially in their 3-objective 
cases. Moreover, although solutions are treated as weight 
vectors in MaOEA/C, VaEA and DDEA, they still fail to solve 
problems with convex PFs (like WFG42 and WFG44) or with 
a sharp convex segment on PFs (like WFG2, WFG47 and 
WFG48). Furthermore, PaRP/EA cannot deal with problems 
having discontinuous, extremely concave or convex PFs (like 
WFG43, WFG44, WFG47), even when using two adversarial 
directions. Considering our FDEA, as the fuzzy decomposition 
includes a fuzzy prediction to estimate the PF shape and a 
weight vector extraction to get N constrained subproblems, it 
can properly solve different problems by adaptively fitting 
their complex PF shapes. Based on the experimental studies on 
WFG and WFG4x problems, it is reasonable to conclude that 
FDEA achieves a superior performance on all of these selected 
problems except for WFG1.  

2) HV Results on Problems with 2 to 15 objectives  
Due to page limitations, the median IGD and HV of FDEA 

and its seven competitors on those WFG and WFG4x 
problems with 2 to 15 objectives are given in Table A. IV to  
Table A. VI of the supplementary file. Here, the statistical 

results using Wilcoxon rank sum test and Wilcoxon signed 
ranks test from KEEL [71] are summarized in Table II based 
on the HV results. From the separately statistical results with 
the value of m, FDEA is significantly better than its seven 
competitors on both WFG and WFG4x problems with multiple 
objectives (i.e., m = 2 or 3) and many objectives (i.e., m>3). 
Specifically, FDEA is only outperformed by MOEA/D-LTD 
on the 5-objective case, where MOEA/D-LTD is better than 
FDEA in 6 out of 12 problems and has the best performance 
rank (1.75), while FDEA is ranked with 2.9176. According to 
the statistical results for all cases in the last row of Table II, 
FDEA is advantageous on solving the WFG and WFG4x 
problems as it has the best rank (2.3403) in terms of HV. 

D. Comparison of Results on the MaF Problems 

As discussed above, FDEA is highly competitive or signif-
icantly superior to its competitors on the WFG and WFG4x 
problems with discontinuous, convex or sharp concave PFs. In 
this section, the performance of FDEA is further studied on 
solving the problems with other irregular PF shapes, e.g., the 
inverted and degenerated cases. Here, FDEA is compared with 
NSGA-III, -DEA , VaEA, MaOEA/C, MOEA/AD, PaRP/EA 
and DDEA on solving MaF1-MaF9 and MaF13 with different 
objectives {3,5,8,10,15}m . As MOEA/AD adopts two ad-
versarial sets of weight vectors to get two solution sets corre-
spondingly, only the solution set with the better IGD/HV 
performance is reported as its final solution set. 

1) IGD Results on Problems with 3 objectives  
The average IGD results of FDEA and its seven competitors 

on MaF1-MaF9 and MaF13 with m=3 are presented in Table 
III. As shown in the second last row of Table III, FDEA ob-
tains the best results in 7 out of 10 problems, while NSGA-III, 
VaEA, -DEA , MaOEA/C, MOEA/AD, DDEA and PaRP- 
/EA perform respectively best in 0, 0, 0, 0, 1, 0 and 2 problems. 
According to Wilcoxon’s rank sum test, FDEA is only worse 
than PaRP/EA on MaF5 and MaF13, and is better than or at 
least similar to other compared algorithms on the remaining 
cases. Thus, the advantages of FDEA on these 3-objective 
MaF problems are validated.  

TABLE II 
SUMMARY OF SIGNIFICANCE TEST BETWEEN FDEA AND SEVEN MOEAS ON WFG AND WFG4X PROBLEMS WITH HV 

Comparisons 
on 

NSGA-III  -DEA  VaEA MaOEA/C DDEA+NS MOEA/D-LTD PaRP/EA FDEA
+/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank Avg. rank

m = 2, 3 4/14/6 4.4792 3/14/7 4.125 0/16/8 6.4583 2/14/8 4.3125 7/11/6 3.6667 5/12/7 4.5208 1/14/9 5.7917 2.6458
m = 5 2/9/1 5.0 3/6/3 3.8333 0/12/0 7.5 3/7/2 3.4583 2/7/3 4.4583 6/3/3 1.75 0/11/1 7.0833 2.9167
m = 8 0/12/0 6.25 0/11/1 6.3333 0/12/0 5.75 5/6/1 2.5833 2/10/0 4.1667 2/8/2 2.9167 0/12/0 6.3333 1.6667
m = 10 0/9/3 4.5833 1/9/2 4.3333 0/11/1 6.8333 5/7/0 3.3333 2/9/1 5.1667 4/4/4 2.75 1/11/0 6.9167 2.0833
m = 15 2/10/0 6.25 1/11/0 5.75 1/9/2 4.375 1/9/2 3.125 3/8/1 4.0833 2/10/0 5.4167 1/9/2 4.9167 2.0833

All 8/54/10 5.1736 8/51/13 4.75 1/60/11 6.2292 16/43/13 3.6208 16/45/11 4.2014 19/37/16 3.5458 3/59/10 6.1389 2.3403
TABLE III  

PERFORMANCE OF EIGHT MOEAS ON 3-OBJECTIVE MAF PROBLEMS WITH IGD 
Problems m NSGA-III -DEA  VaEA MaOEA/C MOEA/AD DDEA+NS PaRPEA FDEA

MaF1 3 5.115E-2(1.29E-3)- 6.878E-2(5.08E-4)- 3.806E-2(5.15E-4)- 3.802E-2(5.044E-4)- 3.740E-2(3.67E-4)~ 3.747E-2(6.97E-4)~ 3.745E-2(2.03E-4)~ 3.732E-2(4.45E-4)

MaF2 3 3.050E-2(4.49E-4)- 3.156E-2(2.86E-4)- 2.683E-2(3.13E-4)- 2.798E-2(6.72E-4)- 3.743E-2(1.24E-3)- 2.588E-2(2.80E-4)- 2.699E-2(4.57E-4)- 2.456E-2(6.48E-4)

MaF3 3 6.322E-2(2.73E-2)- 4.706E-2(1.62E-3)- 5.090E-2(3.26E-3)- 1.832E-1(2.50E-2)- 1.120E-1(7.53E-2)- 1.659E-1(1.19E-1)- 5.340E-2(1.24E-2)- 3.350E-2(3.51E-3)

MaF4 3 2.971E-1(1.73E-2)- 3.209E-1(2.11E-2)- 2.900E-1(1.54E-2)- 5.001E-1(9.67E-2)- 2.937E-1(9.85E-2)- 3.472E-1(5.11E-2)- 2.721E-1(1.21E-2)~ 2.720E-1(2.37E-2)

MaF5 3 3.784E-1(8.52E-1)- 3.784E-1(8.52E-1)- 4.269E-1(8.74E-1)- 2.425E-1(6.93E-3)~ 2.772E-1(2.47E-2)- 3.496E-1(4.54E-1)- 2.254E-1(3.43E-3)+ 2.300E-1(3.07E-3)

MaF6 3 1.186E-2(1.40E-3)- 2.804E-2(2.80E-3)- 4.717E-3(3.98E-4)- 4.947E-3(1.09E-3)- 3.235E-2(3.33E-3)~ 4.270E-3(2.05E-4)- 3.792E-3(1.65E-4)- 3.247E-3(3.32E-4)

MaF7 3 6.491E-2(2.10E-3)- 9.999E-2(7.16E-2)- 6.978E-2(5.47E-2)- 6.395E-2(5.43E-2)- 6.495E-2(5.43E-2)- 6.458E-2(5.60E-2)- 5.901E-2(1.69E-3)- 5.096E-2(7.64E-3)

MaF8 3 9.377E-2(7.00E-3)- 1.415E-1(4.78E-2)- 6.588E-2(2.94E-3)- 8.123E-2(6.91E-3)- 6.451E-2(3.18E-3)- 6.565E-2(5.80E-3)- 6.261E-2(1.16E-3)- 6.141E-2(1.69E-3)

MaF9 3 5.962E-2(9.23E-3)- 6.26E-2(1.21E-2)- 6.071E-2(2.54E-3)- 6.770E-2(4.96E-3)- 2.392E-1(1.46E-1)- 3.856E-1(7.29E-2)- 9.194E-1(8.38E-2)- 5.569E-2(4.53E-4)

MaF13 3 9.001E-2(1.29E-2)- 9.15E-2(1.90E-2)- 7.698E-2(7.96E-3)- 8.400E-2(1.15E-2)- 1.502E-1(2.66E-2)- 7.975E-2(1.01E-2)- 2.699E-2(4.57E-4)+ 6.777E-2(3.65E-3)

Best/All 0/10 0/10 0/10 0/10 1/10 0/10 2/10 7/10
+/-/~ 0/10/0 0/10/0 0/10/0 0/9/1 0/8/2 0/9/1 2/6/2 ——
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In order to visually show their performace, the final solution 
sets with the median IGD values obtained by all the compared 
MOEAs on MaF1-MaF7 problems with 3 objectives are 
shown in Figs. A25-A31, which are provided in the 
supplementary file due to page limitations. From these figures, 
it can be observed that each MaF problem has a different and 
irregular PF shape. For MaF1 with an inverted linear PF (in 
Fig. A25), MOEA/AD and FDEA obtain the best solution sets 
in view of distribution, while NSGA-III and -DEA generate 
poorly distributed solutions. On MaF2 with a partially mild 
concave PF (in Fig. A26), FDEA obtains the best solution set 
in terms of convergence and distribution. Considering MaF3 
with a convex PF (in Fig. A27), only FDEA can get an evenly 
distributed solution set, while the other competitors can only 
find solutions concentrating on the central part of the PF. 
Regarding MaF4 with an inverted concave PF (in Fig. A28), 
FDEA performs slightly better than the other algorithms, 
although they actually cannot get an evenly distributed solu-
tion set. For MaF5 with a badly scaled concave PF (in Fig. 
A29), FDEA only gets the second-best result, while PaRP/EA 
performs best. On MaF6 with a degenerated PF (in Fig. A30), 
NSGA-III, -DEA and MOEA/AD cannot find an evenly 
distributed solution set, while other algorithms can almost 
cover the whole PF completely. Regarding MaF7 with four 
discontinuous PF segments (in Fig. A31), FDEA performs best 
as it can find solutions spread well on all segments of the PF. 

Through the above experimental studies on the MaF prob-

lems, some conclusions can be drawn as follows. As the fixed 
weight vectors in NSGA-III and -DEA cannot properly 
match the target problems’ PFs, such as inverted PFs in MaF1 
and MaF4, degenerated PFs in MaF6 and discontinuous PFs in 
MaF7, they perform poorly on these problems. Although two 
adversarial sets of weight vectors are considered in 
MOEA/AD, it still cannot guarantee an appropriate match for 
the weight vectors and PFs when facing problems with de-
generated PFs (like MaF6) and discontinuous PF (like MaF7). 
For VaEA, MaOEA/C, PaRP/EA, DDEA and our FDEA that 
regard solutions as weight vectors, FDEA is the best to solve 
the MaF problems, as the used fuzzy prediction can estimate 
the PF shapes, which helps to run the weight vector extraction 
in fuzzy decomposition. 

2) HV Results on Problems with 3 to 15 objectives  
Due to page limitations, the median HV and IGD values of 

all the compared algorithms on MaF1-MaF13 with 3 to 15 
objectives are given in Tables A.VII and A.VIII of the 
supplementary file, whereas the statistical test results on 
MaF1-MaF7 with HV are summarized in Table IV. Obviously, 
FDEA is significantly superior to its seven competitors on 
MaF1-MaF7 with different objectives. On case of m = 3, 
FDEA gets the best rank 1.5, and only PaRP/EA with the rank 
2.7857 approximates to FDEA, while other competitors are all 
significantly worse than FDEA. For many-objective MaF 
problems (i.e., m > 3), FDEA is outperformed by DDEA in the 
10-objective case as DDEA is better than FDEA in 3 out of 7 

TABLE IV 
SUMMARY OF SIGNIFICANCE TEST BETWEEN FDEA AND SEVEN MOEAS ON MAF1-MAF7 PROBLEMS WITH HV 

Comparisons 
on 

NSGA-III  - DEA  VaEA MaOEA/C MOEA/AD DDEA+NS PaRP/EA FDEA 
+/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank +/-/~ Avg. rank Avg. rank

m = 3 0/6/1 5.7143 0/6/1 5.2143 0/5/2 4.2145 0/4/3 4.7143 0/5/2 5.8571 0/6/1 6.0 1/2/4 2.7857 1.5
m = 5 1/6/0 4.7143 1/6/0 5.8571 0/6/1 4.7143 0/5/2 4.1429 0/5/2 5.0 0/4/3 5.0 1/4/2 4.7143 1.8571
m = 8 0/6/1 5.0 0/7/0 6.0 0/7/0 5.1429 3/3/2 3.0 0/7/0 4.7143 1/5/1 3.7143 0/7/0 7.1429 1.2857
m = 10 1/4/2 3.6429 2/5/0 4.8571 1/6/0 5.50 3/3/2 3.4286 2/5/0 4.7143 3/2/2 3.2143 0/6/1 7.2857 3.3571
m = 15 2/4/1 5.0 2/4/1 4.5714 2/4/1 4.7857 3/2/2 3.5 2/4/1 4.0 4/2/1 3.0 0/6/1 7.5 3.6429

All 4/26/5 4.8143 5/28/2 5.3 3/28/4 4.8714 10/17/11 3.7571 4/26/5 4.8571 8/19/8 4.2857 2/25/8 5.8857 2.2286

 
Fig. 8 Average ranks for all considered MOEAs by Friedman test based on all HV results for all MaF, WFG and WFG4X problems with 3-15 objectives  

Fig. 9 Average ranks for all considered MOEAs by Friedman test based on all IGD results for all MaF and WFG problems with 3-15 objectives 

3.89
5.4167 5.7533 5.7867 6.0433 7.01 8.09 8.14 8.2167 8.8433 9.2567 9.8467 10.0067

11.6233
13.3233

14.7533Average Ranks based on HV results

5.3318 5.4545 5.7909 5.8364 6.3091 6.8682
8.0955 8.2545 8.3864 8.5364 8.5773 9.1045 9.4909

11.1591

13.9864 14.8182Average Ranks based on IGD results
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problems, and is outperformed by MaOEA/C and DDEA in 
the 15-objective case as MaOEA/C and DDEA are respec-
tively better than FDEA in 3 and 4 out of 7 problems. When 
considering all cases, FDEA is the best one for solving 
MaF1-MaF7, as it has the best rank (2.2286) in terms of HV. 

E. Comparison Results on More Algorithms  

To further validate the performance of FDEA, another eight 
MOEAs including SPEA2 [10], MOEA/D-PaS [37], BCE- 
MOEA/D [6], RVEA [44], KnEA [5], hpaEA [53], MaOEA- 
IGD [11], and GFM-MOEA [75], are considered here for the 
experimental studies. For a fair comparison, the parameters 
settings of these MOEAs are provided in Table A. II of the 
supplementary file, as suggested in their references, and other 
parameters are set the same with that described in Section IV. 
A-B. Moreover, the HV and IGD results of these MOEAs on 
WFG1-WFG9, WFG41-WFG48 and MaF1-MaF13 test prob-
lems with 3 to 15 objectives are provided in Tables A. IX- A. 
XI of the supplementary file. Moreover, two overall average 
ranks of each MOEA considered in this paper are obtained by 
Friedman test on KEEL [71] respectively based on these IGD 
and HV results, which are plotted in Fig. 8 and Fig. 9. From 
these summarized results, FDEA gets the best ranks on both 
HV-based and IGD-based rankings, which validate its superior 
performance when compared to these MOEAs.  

F. More Discussions about the Shared Weight Vector and the 
Predicted Values for p 

Here, two variants of FDEA are designed to study the in-
fluence of the shared w, with one using a fixed w = (1, 1, .., 1) 
and the other one without using the shared w for the subprob-
lems. Moreover, four other variants of FDEA are designed to 
study the influence of p, where p is not fuzzily predicted but 
fixed as p=0.5, p=1.0 and p=2.0 respectively for first three of 
these variants, and p is obtained by (9) instead of (10) for the 
last variant. Furthermore, the observations of the predicted 
value of p on all considered MOPs during the evolutionary 
process are also studied. Due to page limitations, details for the 
comparison results of these six variants with FDEA and the 
observations of p are provided in the supplementary file. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a fuzzy decomposition based MOEA has been 
proposed for tackling various MOPs, i.e., FDEA. This algo-
rithm can fuzzily decompose a MOP into a set of constrained 
subproblems. To do this, fuzzy decomposition is run by using 
the fuzzy prediction to estimate the PF shapes and employing 
weight vector extraction to select solutions. Please note that 
the fuzzy prediction will finally estimate a UHp, which helps to 
define a more precise metric for computing the direction 
similarity between solutions in the weight vectors extraction. 
This way, the decomposed subproblems can well fit the target 
problem’s PF. At last, only m corner solutions are selected to 
maintain diversity and other solutions are chosen for each of 
the remaining subproblems. In this case, the best convergence 
can be achieved by using the WS aggregated function and the 
shared weight vector from all the extracted weight vectors. 

When compared to eight competitive MOEAs (NSGA-III, 
-DEA, VaEA, MaOEA/C, DDEA, MOEA/D-LTD, MOEA/ 
AD and PaRP/ EA, FDEA has shown to be better in most cases, 
especially on problems with irregular PFs.  

In our future work, the prediction of the population’s shape 
with more complicated models and the measurement of direc-
tion similarity between solutions will be further studied on 
more complicated MOPs. The application of FDEA on the 
real-world problems will be also conducted in our future work. 
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