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 

Abstract—This article presents multi-objective variants of two 

popular metaheuristics, namely, the artificial bee colony 

algorithm (ABC) and the teaching learning based optimization 

algorithm (TLBO). Both of them are used to solve an optimal 

power flow problem. The proposed multi-objective variants are 

based on a decomposition approach, where the multi-objective 

optimization problem is decomposed into a number of scalar 

optimization sub-problems which are simultaneously optimized. 

The proposed algorithms are tested on the IEEE 30-bus system 

with different objectives. In addition, an algorithm based on 

fuzzy set theory is used to select the best committed solution. The 

proposed approaches are compared with others metaheuristic 

algorithms available in the specialized literature. Results indicate 

that the proposed approaches are highly competitive and also 

able to generate a well-distributed set of non-dominated solutions 

for the optimal power flow problem.  

 
Index Terms—Artificial bee colony, Decomposition approach, 

Multi-objective optimal power flow, Teaching-learning algorithm  

I. INTRODUCTION 

HE optimal power flow (OPF) problem has a significant 

importance in the power system’s operation, planning, 

economic scheduling, and security. It is a non-linear 

constrained optimization problem, where the solution attains 

the control variables optimal adjustment, while at the same 

time satisfying equality and inequality constraints related to 

the equipments’ rating, in order to optimize a certain objective 

function. 

In general, the optimal power flow problem may include 

several objective functions, possibly in conflict each other. 

Such kind of optimization problem has a set of possible 

solutions (named Pareto optimal set), which represent the best 

commitment among the objectives [1]. Two major solution 

approaches may be identified: 
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(1) The first approach is based on conventional methods. 

Such as Gradient-based Methods, Non-Linear Programming 

(NLP), Quadratic Programming (QP), Linear Programming 

(LP) and Interior Point Methods [2-4], the Weighting Method 

[5], and the ε-Constraint Method [6]. 

(2) The second approach is based on the use of 

metaheuristic algorithms such as the Differential Evolution 

(DE) [7], the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [8,9], Particle Swarm Optimization (PSO) [10], 

Harmony search algorithm [11], and the Hybrid Evolutionary 

Programming Technique [12]. 

Conventional methods are based on an estimation of the 

global minimum. However, due to difficulties of 

differentiability, non-linearity, and non-convexity, these 

methods may not guarantee to reach the global optimum [13]. 

Moreover, these methods exhibit some limitations, depending 

upon the type of problem, e.g., when the objective function is 

not available in algebraic form. Thus, metaheuristics (from 

which evolutionary algorithms is a particular subclass) have 

become a popular choice for solving complex optimization 

problems, due to their flexibility, generality, and ease of use. 

Additionally, most metaheuristics require little or no specific 

domain knowledge. 

Modern multi-objective evolutionary algorithms (MOEAs) 

aim at generating a number of Pareto-optimal solutions as 

diverse as possible. Indeed, MOEAs need a density estimator 

that distributes solutions along the Pareto front (e.g., crowding 

distance, fitness sharing, niching). However, there is evidence 

that these methods cannot always provide good results, 

especially when dealing with complex multi-objective 

problems (MOP) [14, 15]. 

Recently, a novel MOEA framework called the multi-

objective evolutionary algorithm based on decomposition 

(MOEA/D) [14], has been proposed. MOEA/D decomposes a 

MOP into several single-objective optimization sub-problems 

with neighborhood relationship. In this way, a set of optimal 

solutions is achieved by minimizing each sub-problem instead 

of using the traditional Pareto ranking methods. This has given 

rise to a new generation of MOEAs. Nevertheless, the 

performance of MOEA/D in power system applications has 

not been fully investigated. 

This paper proposes a modified artificial bee colony 

algorithm and a teaching-learning algorithm in the MOEA/D 

framework. The proposed approaches are used to solve an 
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optimal power flow problem, with competing objectives.  

In order to minimize the total fuel cost, the active power 

losses and a voltage stability index [16], the proposed 

algorithms estimate the following optimal values: (i) the 

generators’ voltage magnitudes; (ii) generators’ active power 

outputs, (iii) transformers’ tap settings; (iv) the compensating 

value for shunt elements (reactors/capacitors). In addition, an 

algorithm based on fuzzy set theory is used to select the best 

committed solution. 

The effectiveness of the proposed approaches is 

demonstrated and compared with respect to a MOEA based on 

decomposition, which is representative of the state-of-the-art 

in the area: MOEA/D-DRA [17]. Results are also compared 

with respect to the NSGA-II [9], which remains as the most 

popular Pareto-based MOEA. The methods are applied on an 

IEEE 30-bus test system. Additionally, results reported in the 

open research [7, 11] are also included for a comparative 

study. 

The rest of the paper is organized as follows. Section II 

presents some basic background. In section III, the general 

framework of the proposed approaches is summarized. Section 

IV presents the problem formulation and the method based on 

fuzzy theory for choosing the best committed solution. 

Simulation results and a comparative study are presented in 

section V. Finally, our conclusions are provided in Section VI. 

II. PRELIMINARIES 

A. Multi-objective optimization 

A multi-objective optimization problem (MOP) is 

formulated as follows: 

1min ( ) { ( ),..., ( )}

subject to

mF x f x f x

x




 (1) 

where x is the vector of decision variables, and Ω is the 

feasible region within the decision space. : mF  is 

defined as the m objective functions mapping. 

In multi-objective optimization, the goal is to find the best 

possible trade off among the objectives since, frequently, one 

objective can be improved only at the expense of worsening 

another. To describe the concept of optimality for problem (1) 

the following definitions are provided. 

Definition 1: Let ,x y , such that x y , we say that x 

dominates y (denoted by x y ) if and only if, ( ) ( )i if x f y  

for all i = 1, ..., m. 

Definition 2: Let 
*x  , we say that 

*x  is a Pareto optimal 

solution, if there is no other solution y  such that 
*y x . 

Definition 3: The Pareto Optimal Set ( PS ) is defined by 

{  is Pareto Optimal Solution}PS x x  , while its image 

{ ( ) }PF F x x PS   is called the Pareto Optimal Front.  

B. Decomposition of a multi-objective optimization problem 

There are several approaches for transforming a MOP into a 

number of scalar optimization problems, which have been 

described in detail in [18]. Usually, these methods use a 

weighting vector to define a scalar function and, under certain 

assumptions (e.g., the minimum is unique, the weighting 

coefficients are positive, etc.), a Pareto optimal solution is 

achieved by minimizing such function. In this paper, the 

weighted Tchebycheff approach is used to decompose the 

MOP. In this approach, the scalar optimization problem is 

stated as [18]: 

   * *

{1,.., }
Minimize , max ( )

Subject to

i i i
i m

g x w z w f x z

x


 


 (2) 

where w = (w1,..,wm) is a weighting vector and wi ≥ 0 for all i = 

1,..., m. Ʃ wi = 1 and vector z* = (z*
1,…, z*

m) represents the 

reference point, i. e.,  * min ( )i iz f x x   , i = 1, …, m, 

where m is the number of objective functions. 

For each Pareto-optimal solution x* there exists a weighting 

vector w such that x* is the optimal solution of (2), and each 

optimal solution is a Pareto-optimal solution for (1). 

Therefore, it is possible to obtain different Pareto optimal 

solutions using different weighting vectors w. 

C. Modified Artificial Bee Colony 

The first framework of the Artificial Bee Colony (ABC) 

was introduced by Karaboga in 2005 as a new swarm 

intelligent technique inspired by the foraging behavior of a 

honey bee swarm [19]. In ABC, a colony of artificial bees 

consists of three groups of bees: employed bees, onlooker 

bees, and scout bees. In the algorithm, the position of a food 

source represents a possible solution to the optimization 

problem, and the nectar amount of a food source corresponds 

to the quality (fitness) of the associated solution. Each food 

source is exploited by only one employed bee. In other words, 

the number of employed bees is equal to the number of food 

sources existing around the hive (number of solutions in the 

population). The employed bee whose food source has been 

abandoned becomes a scout. 

Akay and Karaboga [20] proposed some modifications to 

the standard ABC algorithm in order to improve the 

convergence rate. The pseudo-code of the modified ABC 

algorithm proposed by Akay and Karaboga can be 

summarized in the following way [20]: 

1:  initialization 

2:  Evaluation 

3:  cycle = 1: 

4:  repeat 

5:      Employed Bees Phase 

6:      Calculate probability for Onlookers 

7:      Onlooker Bees Phase 

8:      Scout Bee Phase 

9:      Memorized the best solution achieved so far 

10:     cycle = cycle + 1 

11: Until cycle = Maximum Cycle Number 

D. Teaching-Learning based optimization algorithm 

The original teaching learning based optimization (TLBO) 

algorithm was proposed by Rao et al. [21] to obtain global 

solutions for continuous non-linear functions. In TLBO, the 

design variables are analogous to different subjects offered to 
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learners. The learners’ grade is analogous to the 'fitness' as in 

any other evolutionary algorithm, and the teacher is 

considered as the best solution reached so far. Hence, the 

TLBO’s performance is based on two main phases: the teacher 

phase, which involves learning from the teacher, and the 

learner phase, which involves learning through the interaction 

among learners. The pseudo-code of the TLBO algorithm may 

be summarized in the sequel. 

1:  Initialization 

2:  Evaluation 

3:  iteration = 1 

4:  Repeat 

5:      Teacher Phase 

6:      Keep the best solutions 

7:      Learner Phase 

8:      Keep the best solutions 

9:      iteration = iteration + 1 

10:     Until iteration = Maximum number of iterations 

III. MULTI-OBJECTIVE ALGORITHMS BASED ON 

DECOMPOSITION  

A. Multi-objective Artificial Bee Colony 

The proposed Multi-Objective Artificial Bee Colony 

Algorithm based on Decomposition (MOABC/D) utilizes the 

Tchebycheff approach to decompose the MOP into N scalar 

optimization sub-problems by choosing N weighting vectors: 

1{ ,..., }i i i

mw w w , where i = 1,…, N and m = number of 

objective functions. For two objective functions, i.e., 2m  , 

1 2( , )i i iw w w  can be set as: 

1 2 1( 1) ( 1), 1i i iw j N w w      (3) 

This method for generating weighting vectors works well for 

the formulation in this paper. However other methods may be 

used, as well.  

The i-th sub-problem is associated with weighting vector 
iw  and its scalar function is denoted as ( | )ig x w . MOABC/D 

solves these sub-problems simultaneously by evolving a 

population of solutions that mimics the intelligent behavior of 

a honey bee swarm in a similar way as that described in the 

modified ABC [20]. Because ( | )g x w  is a continuous 

function of w, two sub-problems are likely to have similar 

solutions if their weighting vectors are close from each other 

[14]. Therefore, any information about the weighting vectors 

close to iw  should be helpful for optimizing ( | )ig x w . Based 

on this observation, the neighborhood ( )B i  of sub-problem i 

contains the Tn sub-problems with the closest weighting 

vectors with respect to iw . The Euclidean distance is used to 

measure the closeness between any two weight vectors and it 

is assumed that ( )i B i , that is, the i-th sub-problem is its 

own neighbor. The neighborhood of each sub-problem 

represents an artificial colony and the group of bees: 

employed, onlooker, and scout bees are responsible to solve 

each sub-problem by using the information from its 

neighboring sub-problems. The neighborhood size Tn should 

be much smaller than the population size N [14]. The main 

steps of the proposed MOABC/D are summarized in the 

sequel. 

1) Initial population: firstly, the algorithm generates a 

randomly distributed initial population (food sources position) 

within the range of the parameters’ boundaries [ max

jx , min

jx ], 

min max min

, (0,1) ( )i j j j jx x rand x x     (4) 

where i = 1,..., N,  j = 1,.., D. N is the number of food sources 

(potential solutions) and D is the number of optimization 

parameters. In addition, counters which store the number of 

trials of solutions are reset to 0 in this phase. 

2) Selection of the artificial colony: for the i-th sub-

problem, the artificial colony is selected between the 

neighborhood B(i) and the population N according to, 

th

( )

{1,... }
i

B i if rand
C

N otherwise


 


 (5) 

where rand is a random number within [0,1] and δ the 

probability to select the neighborhood B(i) as the colony. 

3) Employed phase: in this phase, the artificial colony of 

the i-th sub-problem may be expressed as: 

1,1 1,2 1,

2,1 2,2 2,

th

,1 ,2 ,T T T

D

D

i

D

x x x

x x x
C

x x x  

 
 
 
 
 
  

 (6) 

where the subscript ΩT is the size of the artificial colony, and 

D is the number of design variables. An employed bee 

produces a modification in the food source position (xi) by 

finding a new food source (new solution), and then evaluates 

the new food source’s quality (fitness value). The new food 

source (xnew,i) is generated by [20]: 

, , , , ,

,

,

( )i j i j i j k j i j

new i j

i j

x x x if R MR
x

x otherwise

  
 


 (7) 

By means of this modification, for each parameter xi,j, a 

uniformly distributed random number (Ri,j) within the interval 

[0,1] is generated, then parameter xi,j is modified by (7) where 

MR is the modification rate, j is a random integer within the 

range [1,D] and {1,..., }Tk   is randomly chosen index that 

has to be different from i. ϕi,j is a random number in the 

interval [-1,1]. If a parameter value of the new food source 

found by this operation exceeds its predetermined boundaries, 

the parameter is set to an acceptable value. 

After generating a new solution (xnew,i) within the 

boundaries, a fitness value for a minimization problem is 

assigned to the new solution given by: 

1/ (1 ) 0

1 ( ) 0

i i

i

i i

f if f
fitness

abs f if f

 
 

 
 (8) 

where fi is the cost value of the new solution. A greedy 

selection is applied between xi and xnew,i; therefore, the better 

one is selected depending on its fitness values. If the new 

solution xnew,i is equal or better than the old one xi in terms of 
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quality, the employed bee memorizes the new position and 

forgets the old one. Otherwise the previous position is kept in 

memory. If solution xi cannot be improved, the number of 

trials is incremented by 1; otherwise, the counter is reset to 0. 

After all employed bees complete their searching 

procedures, an onlooker bee evaluates the nectar information 

gathered from all employed bees and assigns a probability to 

each food source. This probability depends on the fitness 

values of the solutions and is calculated by the following 

expression, 

1

i
i N

ii

fitness
p

fitness





 (9) 

4) Onlooker phase: In this phase, a random number (rj) 

within the interval [0, 1] is generated for each source. If the 

probability value pj associated with that source is greater than 

rj then the onlooker bee produces a modification on the 

position of this food source by, 

 

, , , , ,

,

,

( )i d i d j d k d i d

newi d

i d

x x x if R MR
x

x otherwise

  
 


 (10) 

where index i corresponds to the current index of i-th sub-

problem, xj is the food source, which probability value (pj) is 

greater than rj; the index d is a random integer within the 

interval [1, D]. (ϕi,d) is a random number between [-1, 1], (Ri,d) 

is an uniformly distributed random number within [0,1] and 

the MR is the modification rate. 

Similarly to the employed phase, after the new source is 

evaluated, greedy selection is applied. If solution xi cannot be 

improved, the number of trials is incremented by 1; otherwise, 

the counter is reset to 0. 

5) Scout phase: In a cycle, after all employed bees and 

onlooker bees complete their searching, the algorithm verifies 

if there is any exhausted source to be abandoned. In order to 

decide if a source is to be abandoned, the counters which have 

been updated during searching are used. If the value of the 

counter is greater than the control parameter, known as the 

“limit”, then the source associated with this counter is 

abandoned. The food source abandoned by its bee is replaced 

with a new food source discovered by the scout. This is 

simulated by randomly produce a new position by using (4) 

and replacing it with the abandoned one. If more than one 

counter exceeds the “limit” value, one of the maximum ones 

might be chosen. 

6) Updating strategy: Set 0n   and then do [15]: 

( ) is empty

. Otherwise pick an index  from C

( ) ( ) ( ), Then set 

and 1

( ) remove  form  and go to ( )

r

j j

new j j new

a if n s or C

random j

b if g x w g x w x x

n n

c j C a



 

 

break

 (11) 

where (sr) is the maximum number of solutions replaced by 

the new solution. 

Summarizing, the proposed MOABC/D algorithm can be 

described in pseudo-code format in the following way: 

Step1) Initialization 

 Generate a well-distributed set of N weighting vectors by (3) 

 Find the neighborhood of each sub-problems B(i) 

 Set trial (i) = 0, for i = 1,.., N 

 Generate the initial population according to (4) and evaluate 

its fitness. 

 Initialize the reference point z* 

Step 2)  
For i = 1 to N 

 Determine the colony (Ci) according to (5)  

 Employed phase: Create a new solution (xnew,i) by (7) 

 Update the reference point z* 

 Update solutions by (11) 

End For i 

Step 3)  

For i = 1 to N 

 Determine the colony (Ci) according to (5)  

 Onlooker Phase: Create a new solution (xnew,i) by (10) 

 Update the reference point z* 

 Update solutions by (11) 

End For i 

Step 4) Scout Phase 
Step 5) Stop Criterion: If the stop condition is satisfied, then 

stop MOABC/D. Otherwise, go to Step 2). 

B. Multi-objective Teaching Learning algorithm 

The proposed Multi-Objective Teaching-Learning 

Algorithm based on Decomposition (MOTLA/D) utilizes the 

Tchebycheff approach to decompose the MOP into N scalar 

optimization sub-problems, in an analogous way to the 

procedure described in the previous section. MOTLA/D solves 

these sub-problems simultaneously; the neighborhood 

relationships among these sub-problems are defined by 

computing the minimum Euclidean distances between the 

weighting vectors. In this case, the neighborhood of each sub-

problem represents a group of learners or a class, responsible 

to solve such sub-problem. 

The main steps of the proposed MOTLA/D may be 

summarized as follows: 

1) Initial learners: At the first step, the algorithm generates 

a randomly distributed initial population (learners) within the 

range of the parameters’ boundaries according to (4). 

2) Selection of the Class: The size of the class is selected 

between B(i) and the population size N by (5). 

3) Teacher phase: In this phase, the class of the i-th sub-

problem may be expressed as, 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,T T T

D

D

i th

D

x x x

x x x
C

x x x  

 
 
 
 
 
  

 (12) 

where ΩT is the size of the class, and D is the number of 

design variables. Within the teacher phase, the mean of the 

class (Mclass) for each design variable is calculated column-

wise: 

1 2[ , ,..., ]class DM mean mean mean  (13) 
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The teacher (Mnew) for the i-th sub-problem represents the 

best learner of the class Ci,th. Thus, the teacher is determined 

by, 
*min ( , )}

i T

i

new i i
x

M x g x w z


  (14) 

The solutions are updated according to the difference 

between the mean of the class (Mclass) and the new mean 

(Mnew) by 

, ( )new i i i new F classx x r M T M    (15) 

where index i corresponds to the current index of i-th sub-

problem, ri is a random number within the interval [0, 1]. TF is 

the teaching factor, which value can be either 1 or 2; this is 

decided randomly with equal probability as TF = round [1 + 

rand (0, 1)]. The new solution (xnew) is accepted if it gives a 

better function value. 

4) Learner phase: In this phase, for the i-th sub-problem, 

two learners xj, and xk are selected randomly such that i ≠ j ≠ k. 

A new solution (xnew) is generated as follows, 

                       

( ) ( )

( )

( )

j k

new i i j k

new i i k j

if f x f x

x x r x x

else

x x r x x

end



  

  

 (16) 

Additionally, a polynomial mutation operator is applied to 

maintain solutions’ diversity. The new solution (xnew) is 

accepted if it gives a better function value. If a parameter 

value produced in the teacher o learner phase exceeds its 

predetermined boundaries, the parameter is set to an 

acceptable value. 

5) Updating strategy: For updating the solutions to the i-th 

sub-problem, we adopt (11). 

The proposed MOTLA/D may be summarized in the sequel. 

Step1) Initialization 

 Generate a well-distributed set of N weighting vectors by (3) 

 Find the neighborhood of each sub-problem B(i) 

 Set trial (i) = 0, for i = 1,.., N 

 Generate the initial population according to (4) and evaluate 

its fitness. 

 Initialize the reference point z* 

Step 2)  
For i = 1 to N 

 Determine the class (Ci) according to (5)  

 Teacher phase: Create a new solution (xnew,i) by (15) 

 Update the reference point z* 

 Update solutions by (11) 

End For i 

Step 3)  

For i = 1 to N 

 Determine the class (Ci) according to (5)  

 Learner Phase: Create a new solution (xnew,i) by (16) 

 Update the reference point z* 

 Update solutions by (11) 

End For i 

Step 4) Stop Criterion: If the stop condition is satisfied, then 

stop MOTLA/D. Otherwise, go to Step 2). 

C. Modified Phases of MOABC/D and MOTLA/D 

The onlooker phase and the learner phase of the ABC [19, 20] 

and TLBO [21], respectively, create a new solution from the 

random selection of two parents. This strategy may increase 

the probability that algorithms remain trapped in local minima. 

Therefore, to prevent premature convergence and to avoid 

getting trapped in local minima, a new strategy had to be 

implemented. In these phases (onlooker and learner), in order 

to create a new solution for the i-th sub-problem, three parents 

(xi, xj, and xk) are selected such that xi ≠ xj ≠ xk. Additionally, 

in the learner phase, a polynomial mutation operator is applied 

to maintain the solutions’ diversity.               

IV. PROBLEM STATEMENT 

In this paper, an optimal power flow problem is formulated 

as a multi-objective optimization problem where three 

objective functions are taken into account for minimization, 

while satisfying a number of equality and inequality 

constraints. The problem is formulated in the sequel. 

A. Objective functions 

A.1 Fuel cost minimization 

The objective is to minimize the generation total fuel cost 

Fcost. The generators’ fuel cost curves are modelled by 

quadratic functions and the total fuel cost Fcost in ($/h) may be 

expressed by, 

2

cos

1

gN

t i i gi i gi

i

F a b P c P


    (17) 

where Ng is the number of generators; ai, bi, and ci are the cost 

coefficients of the i-th generator, and Pgi is the corresponding 

active power output. 

A.2 Active power losses minimization 

The objective is to minimize the active power losses (Ploss) 

through the transmission lines, which are calculated by, 

2 2

1

[ 2 cos( )]
nl

loss k i j i j i j

k

P g V V VV  


     (18) 

where nl is the number of transmission lines, gk is the 

conductance of the k-th transmission line connecting the i-th 

and j-th bus; Vi, Vj, θi, and θj are the voltages magnitudes and 

phase angles of i-th and j-th bus, respectively. 

A.3. Voltage stability enhancement 

A conventional way for the voltage stability assessment is 

the use of indexes, which estimate the proximity to voltage 

instability and determine those buses exhibiting weak stability. 

Nowadays there is a variety of indexes that help to assess the 

steady state voltage stability [22]. 

In this research, voltage stability enhancement is achieved 

through minimizing the voltage stability index Lindex [23], 

which is able to evaluate the steady state voltage stability 

margin of each bus. The Lindex value lies between 0 (no load) 

and 1 (voltage collapse). This value implicitly includes the 

load effect. The bus with the highest Lindex value will be the 

most vulnerable, and therefore, this method helps to identify 

weak areas that require reactive power critical support. The 

Lindex is calculated in the following way [23]: 
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The network equations in terms of the bus admittance 

matrix can be written as, 

bus bus busI Y V  (19) 

The buses are broken down into two categories: (i) the set 

of load buses (αL); and (ii) the set of generator buses (αG). 

Thus, equation (16) becomes, 

1 2

3 4

L L

G G

Y YI V

Y YI V

    
     
    

 (20) 

It is assumed that the transmission system is linear and 

allows a representation in terms of a hybrid matrix H: 
L L LL LG L

G G GL GG G

V I Z F I
H

I V K Y V

       
          

       
 (21) 

where VL and IL are voltage and current vectors for load buses; 

VG and IG are voltage and current vectors for generator buses; 

ZLL, FLG, KGL, and YGG are sub-matrices of the hybrid matrix 

H. 

Matrix H is generated from the admittance matrix (Ybus) by 

a partial inversion, where the load buses voltage’s vector is 

exchanged for the current’s vector. This representation may 

then be utilized to define a voltage stability index in the load 

bus, namely Lj which is defined by [23], 

1 G

ji i

i

j

j

F V

L
V


 


 (22) 

For stable conditions, 0 ≤ Lj ≤ 1, must not be violated for 

any j. Hence, a global indicator Lindex describing the whole 

system’s stability is defined by [23], 

max( )
L

index j
j

L L


  (23) 

The Lindex in (23) is associated with the worst bus in the 

sense of voltage stability. The Lindex minimization implies to 

take such bus toward a less stressed condition. 

B. Constraints 

1) Equality constraints: 

The equality constraints are the balance of the active and 

reactive power described by the set of power flow equations. 

They may be expressed as follows, 

1

cos( )
bN

gi di i j ij i j ij

j

P P V V Y   


     (24) 

1

sin( )
bN

gi di i j ij i j ij

j

Q Q V V Y   


     (25) 

where, Nb is the number of buses, Pgi is the i-th active power 

generation, Qgi is the i-th reactive power generation, Pdi is the 

i-th active power load, Qdi is the i-th reactive power load, and 

|Yij| is the ij-th element of the bus admittance matrix. These 

equality constraints are handled by running the power flow 

program. 

2) Inequality constraints 

These constraints represent the system operating limits as 

follows, 

A) Generators: these constraints are associated to the 

generator voltages (Vg), active power output (Pg), and 

reactive power output (Qg), 
min max , 1,...,gi gi gi gV V V i N    (26) 

min max , 1,...,gi gi gi gP P P i N    (27) 

min max , 1,...,gi gi gi gQ Q Q i N    (28) 

where Ng is the number of generators. 

B) Transformers: Transformers tap settings are restricted 

by their minimum and maximum limits as follows: 
min max , 1,...,i i i tT T T i N    (29) 

where Nt is the number of transformers. 

C) Shunt VAR: Reactive power injections at buses are 

restricted by their minimum and maximum limits as follows: 
min max , 1,...,ci ci ci cQ Q Q i N    (30) 

where Nc is the number of shunt VAR sources. 

D) Load bus voltage: each load bus is restricted by its 

limits as follows: 
min max , 1,...,i i i PQV V V i N    (31) 

where NPQ is the number of load buses. 

C. Decision variables 

The decision variables include the generator voltages (Vg), 

generator active power outputs (Pg) except at the slack bus 

Pg1, transformers tap settings (T), and shunt VAR 

compensations. Hence, the vector of control variables (u) is 

expressed as, 

1 2 1 1[ ,..., , ,..., , ,..., , ,..., ]
Ng Ng Ncg g g g Nt c cu V V P P T T Q Q  (31) 

It is worth noting that the decision variables are self-

constrained by the optimization algorithm. 

D. Best committed solution 

Having obtained the Pareto optimal solution, choosing a 

best committed solution is important in decision making 

process. In this research, a technique based on fuzzy set theory 

is applied to find the best committed solution. In this 

technique, the i-th objective function fi of the Pareto optimal 

solution k is represented by a membership function k

i  

defined as [24], 
min

max
min max

max min

max

1

0

i i

k i i
i i i i

i i

i i

f f

f f
f f f

f f

f f



 



  


 

 (32) 

where max

if  and min

if  are the maximum and minimum value 

of i-th objective function, respectively. 

For each non-dominated solution k, the normalized 

member-ship function k  is calculated as, 

1

1 1

obj

obj

N

k

i
k i

NM
k

i

k i









 






 (33) 

where Nobj is the number of objective functions; M is the total 

number of Pareto optimal solutions, and k  is the member-

ship value of the non-dominated solution k.  
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The best compromise solution is the one achieving the 

maximum value for k . 

E. MOABC/D and MOTLA/D for solving the OPF problem 

The initial population for both algorithms consists of the 

vector of decision variables (31) and is generated by (4): 

, 1 2 1 1[ ,.., ,.., ,.., ,...]i j g g cx V P T Q , i = 1,…,N and j = 1,…,D. 

where N represents the population size and D is the number of 

design variables. This generates N individuals for solving the 

MOP. During the initialization, the decision variables are 

randomly generated within the allowable intervals. The 

minimum and maximum values for each decision variable are 

exhibited in the sequel. 

The dependent variables are handled by adding them as the 

quadratic penalty terms to the objective functions to form a 

generalized objective functions: 
2 2

1 cos

2 2

2

2 2

3

i iPQ g

i iPQ g

i iPQ g

t L L G GN N

loss L L G GN N

index L L G GN N

f F K V K Q

f P K V K Q

f L K V K Q

    

    

    

 

 

 

 (34) 

where KL and KG are defined as penalty factors. ∆VL and 

∆QG are defined by, 
min min

min max

max max

min min

min max

max max

if ( )

0 if ( ) , 1,...,

if ( )

if ( )

0 if ( ) , 1,...,

if ( )

i i i i

i i i i

i i i i

i i i i

i i i i

i i i i

L L L L

L L L L PQ

L L L L

G G G G

G G G G g

G G G G

V V V V

V V V V i N

V V V V

Q Q Q Q

V Q Q Q i N

Q Q Q Q

  


    


 

  


    


 

 (35) 

The flowchart for MOABC/D and MOTLA/D is 

summarized in Figure 1. An important difference between the 

original scheme of decomposition in MOEA/D [14] and the 

proposed one, is the number of stages. Whilst MOEA/D uses 

one stage to apply the DE strategy [15], in the proposed 

scheme the main phases of each algorithm are in different 

stages, see Fig. 1. The applied phase depends on the used 

algorithm. This scheme allows that each phase explores the 

solution space individually, and also helps to compose hybrid 

algorithms easily by including the desired strategy within the 

stages. However, this topic is not addressed in this paper.           

V. SIMULATION RESULTS AND COMPARISON 

In order to assess the effectiveness of the proposed 

algorithms, the MOABC/D and MOTLA/D have been 

compared with respect to the MOEA/D-DRA [17] and NSGA-

II [9]. The algorithms have been tested in the IEEE 30 bus 

system. This system consists of six generators, four 

transformers with off-nominal tap ratio, and nine reactive 

power injection sources. The complete system data are given 

in [2]. The optimization problem has 24 parameters. 

The parameters used in each algorithm are summarized in 

Table 1, where Npop represents the population size; Sr, is the 

number of solutions which are replaced in the neighborhood; 

Tn defines the neighborhood size; Cr is the crossover rate.  For 

MOABC/D the Cr is equal to its MR parameter. F is the 

scaling factor used in MOEA/D-DRA [17]. ηm, is the mutation 

index. For the algorithms using the mutation operator, the 

mutation rate (Pm=1/n) is applied, where n is the number of 

decision variables of the problem; δ is the probability of 

selecting solutions from the neighborhood. For MOEA/D-

DRA, πs and Δr, represent the percentage selection and decay 

rate for the utility, respectively; limit is the algorithm 

       Initialize Algorithm Parameters

· Generate initial population with N individuals

· Create a uniform spread of N weight vectors

· Compute the neighborhood B(i) of each weight vector

· Run Power Flow and Evalute Fitness Function

· Initialize the reference point Z*

i = 1

Select subproblem (i)

Select: Colony or Class

Algorithm Phase (Employed or Teacher)

Update solutions and reference point Z*

Is Stop Criteria 

satisfied?

END

i = i+1

Run Power Flow and evaluate fitness

Select subproblem (i)

Select: Colony or Class

Algorithm Phase (Onlooker or Learner)i = i+1

i < N

Run Power Flow and evaluate fitness

i < N

Scout Phase (only for MOABC/D)

i = 1

 

 

Update solutions and reference point Z*

S
ta

g
e

 1
S

ta
g

e
 2

NO

NO

NO

YES

 

Figure. 1. Flowchart of MOABC/D and MOTLA/D. 
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parameter of the MOABC/D. It is worth mentioning that the 

stop condition of each algorithm is the number of function 

evaluations, (30,000 function evaluations). 

Two different cases for the minimization problems are 

considered in the sequel. 

A. Case study 1: Fuel cost and Lindex 

In this case, two competing objective functions, i.e., fuel cost 

and the voltage stability indicator Lindex, are considered. The 

multi-objective optimization problem is solved by the 

proposed methods, and also through MOEA/D-DRA and 

NSGA-II. 

The Pareto optimal set of the solutions is shown in Fig. 2. 

From the Pareto optimal solution, it is clear that the proposed 

MOABC/D and MOTLA/D are able to give well-distributed 

solutions and better convergence than MOEA/D-DRA and 

NSGA-II. Also, it is clear that methods based on 

decomposition, i.e., MOABC/D, MOTLA/D, and MOEA/D-

DRA have better convergence with respect to the method 

based on Pareto ranking, i.e., NSGA-II. 

TABLE 2. Best solutions for case study 1. 

  Limits MOABC/D MOTLA/D MOEAD/DRA NSGA-II 

Variable Min Max 
Min 

Cost 

Min  

Lindex 
Best  

Comp 

Min 

 Cost 

Min  

Lindex 
Best  

Comp 

Min 

 Cost 

Min 

 Lindex 
Best  

Comp 

Min  

Cost 

Min 

 Lindex 
Best 

 Comp 

V1(p.u) 0.95 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0999 1.1 

V2(p.u) 0.95 1.1 1.087 1.089 1.089 1.087 1.093 1.090 1.087 1.094 1.090 1.088 1.1 1.0924 

V5(p.u) 0.95 1.1 1.061 1.067 1.064 1.062 1.080 1.068 1.061 1.072 1.066 1.063 1.1 1.0725 

V8(p.u) 0.95 1.1 1.070 1.080 1.073 1.0703 1.090 1.077 1.069 1.088 1.076 1.072 1.1 1.086 

V11(p.u) 0.95 1.1 1.1 1.099 1.099 1.1 1.099 1.099 1.1 1.1 1.1 1.094 1.0987 1.0946 

V13(p.u) 0.95 1.1 1.1 1.099 1.1 1.1 1.1 1.1 1.1 1.097 1.099 1.092 1.1 1.0939 

P2(MW) 20 80 48.686 48.779 48.745 48.662 49.537 48.673 48.809 48.561 48.723 48.742 44.495 47.866 

P5(MW) 15 50 21.301 21.378 21.308 21.322 21.444 21.331 21.332 21.175 21.221 21.451 23.355 21.564 

P8(MW) 10 35 20.956 20.918 21.069 20.963 21.085 21.039 20.866 21.254 20.984 20.815 25.411 21.817 

P11(MW) 10 30 11.873 11.935 11.916 11.818 12.085 12.076 11.897 12.868 12.170 11.927 14.727 13.112 

P13(MW) 12 40 12.000 12.001 12.001 12 12.028 12.005 12.000 12.011 12.003 12.001 14.319 12.022 

T6-9 0.9 1.1 1.017 1.023 1.021 1.025 0.983 1.014 1.015 0.995 1.000 0.993 0.990 0.974 

T6-10 0.9 1.1 0.905 0.900 0.9 0.900 0.934 0.908 0.907 0.922 0.917 0.947 0.923 0.949 

T4-12 0.9 1.1 0.968 0.976 0.975 0.969 0.982 0.977 0.968 0.969 0.975 0.986 0.978 0.973 

T28-27 0.9 1.1 0.956 0.955 0.955 0.958 0.960 0.958 0.955 0.959 0.956 0.970 0.965 0.970 

Qc10(Mvar) 0 5 4.845 4.576 4.871 4.738 0.027 4.505 4.980 4.687 4.833 2.842 4.274 2.291 

Qc12(Mvar) 0 5 4.985 4.758 4.989 4.994 4.836 4.942 4.998 3.803 4.670 4.837 2.804 4.974 

Qc15(Mvar) 0 5 4.993 4.115 4.785 4.775 4.918 4.990 4.999 4.413 4.840 4.307 2.554 4.535 

Qc17(Mvar) 0 5 4.996 4.342 4.965 4.999 4.215 4.664 4.991 3.608 4.634 4.359 3.276 4.544 

Qc20(Mvar) 0 5 3.721 3.661 3.871 3.988 4.936 4.000 3.690 1.321 3.052 3.237 3.498 2.807 

Qc21(Mvar) 0 5 4.992 4.848 4.999 4.993 4.986 4.994 4.999 4.994 4.995 5 0.160 5 

Qc23(Mvar) 0 5 2.272 2.422 2.260 2.42 1.547 1.739 2.445 0.801 2.018 4.023 0.496 4.593 

Qc24(Mvar) 0 5 4.999 4.903 4.992 4.999 4.278 4.946 4.999 4.914 4.977 3.994 4.488 3.648 

Qc29(Mvar) 0 5 1.640 0.002 0.855 1.832 0.102 0.886 1.446 0.29 0.852 2.459 0.003 3.002 

OBJECTIVE FUNCTIONS’ VALUES 

Fuel Cost ($/h) 799.043 799.186 799.064 799.046 799.58 799.116 799.044 799.487 799.111 799.135 801.941 799.446 

Lindex 0.1292 0.1286 0.1288 0.1292 0.1283 0.1287 0.1292 0.1284 0.1287 0.1315 0.1279 0.1287 

 

799.1 799.2 799.3 799.4 799.5 799.6 799.7 799.8 799.9 800
0.1282

0.1284

0.1286

0.1288

0.129

0.1292

0.1294

Fuel Cost ($/h)

L
in

d
e
x

 

 

MOEA/D-DRA

MOTLA/D

MOABC/D

NSGA2

 
Figure. 2. Pareto optimal solution for case study 1. 

  

TABLE 1. Algorithms’ control parameters 

Parameter MOABC/D MOTLA/D MOEA/D-DRA NSGA-II 

Npop 100 100 100 100 

Tn 30 30 30 - 

Sr 3 3 3 - 

δ 0.9 0.9 0.9 0.9 

Cr 0.5 - 1 0.9 

limit 15 - - - 

ηm - 20 20 20 

F - - 0.5 - 

πs - - 5 - 

Δr - - 0.95 - 
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Table 2 summarizes the optimal values of the decision 

variables corresponding to the best fuel cost and Lindex, 

(corresponding to the extreme points of the corresponding 

Pareto front), as well as the best compromise solution 

evaluated by the fuzzy membership approach described in 

(32)-(33). In this table, the best values are displayed in 

boldface. 

It is worth mentioning that the fuel cost and Lindex of the 

base case (before optimization) are 901.975$/h and 0.1766, 

respectively. Therefore, according to Table 2, the fuel cost 

reduction corresponding to the extreme point obtained by 

MOABC/D, MOTLA/D, MOEA/D-DRA and NSGA-II is 

11.41%, 11.41%, 11.41%, and 11.40%, respectively. The 

improvement in Lindex attained by MOABC/D, MOTLA/D, 

MOEA/D-DRA and NSGA-II is 27.18%, 27.34%, 27.29%, 

and 27.57%, respectively. Although these results are not 

significantly different, it is evident from Fig. 2, that our 

proposed algorithms have better convergence than the other 

MOEAs with respect to which it was compared. 

B. Case study 2. Fuel cost and active power losses 

In this case, the minimization of the fuel cost and active 

power losses are approached. These two competing objective 

functions are optimized simultaneously with the proposed 

methods, also with MOEA/D-DRA and the NSGA-II 

algorithm. 

The Pareto optimal set of the solutions is shown in Fig. 3. It 

is noticed from this figure that the proposed algorithms have 

similar performance than that of the MOEA/D-DRA and 

better convergence than the NSGA-II. Also, it is worth 

mentioning that similarly to case study 1, it is clear that the 
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o
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W
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Figure. 3.  Pareto optimal solution for case study 2. 

 

TABLE 3. Best solutions for case study 2. 

 
Limits MOABC/D MOTLA/D MOEAD/DRA 

 
NSGA-II 

 

Variable Min Max 
Min 

Cost 

Min 

Loss 

Best 

Comp 

Min 

Cost 

Min 

Loss 

Best 

Comp 

Min 

Cost 

Min 

Loss 

Best 

Comp 

Best 

Cost 

Best 

Loss 

Best 

Comp 

V1(p.u) 0.95 1.1 1.099 1.099 1.099 1.1 1.0965 1.1 1.099 1.099 1.1 1.1 1.1 1.1 

V2(p.u) 0.95 1.1 1.087 1.093 1.090 1.089 1.089 1.089 1.088 1.094 1.092 1.087 1.096 1.098 

V5(p.u) 0.95 1.1 1.058 1.070 1.067 1.062 1.072 1.066 1.056 1.079 1.069 1.057 1.082 1.079 

V8(p.u) 0.95 1.1 1.071 1.083 1.077 1.072 1.083 1.077 1.070 1.084 1.079 1.067 1.089 1.088 

V11(p.u) 0.95 1.1 1.098 1.079 1.098 1.097 1.074 1.092 1.049 1.1 1.093 1.098 1.097 1.099 

V13(p.u) 0.95 1.1 1.099 1.1 1.099 1.097 1.099 1.098 1.027 1.099 1.099 1.095 1.1 1.086 

P2(MW) 20 80 48.570 58.726 50.942 48.020 54.790 51.557 47.240 62.510 52.004 49.121 52.609 49.508 

P5(MW) 15 50 21.211 46.597 30.967 21.146 48.980 29.85 21.267 48.161 30.995 21.397 50 34.442 

P8(MW) 10 35 20.935 34.972 34.997 20.5405 34.9902 34.9878 26.770 34.893 34.994 20.695 35 35 

P11(MW) 10 30 12.227 29.982 26.911 12.502 29.9949 27.7995 13.270 29.998 26.579 11.789 30 27.359 

P13(MW) 12 40 12.123 38.410 21.173 12.003 35.447 20.323 12.498 36.723 20.998 12.013 39.882 23.657 

T6-9 0.9 1.1 1.011 1.041 1.016 1.0123 0.9827 0.9851 1.018 1.019 1.026 1.070 0.995 1.008 

T6-10 0.9 1.1 0.918 0.911 0.9111 0.905 0.924 0.947 1.030 0.908 0.900 0.901 0.954 0.929 

T4-12 0.9 1.1 0.978 0.967 0.978 0.986 0.964 0.970 0.960 0.974 0.978 1.019 1.008 1.016 

T28-27 0.9 1.1 0.959 0.958 0.966 0.968 0.962 0.960 1.011 0.963 0.968 0.974 0.962 0.953 

Qc10(Mvar) 0 5 3.236 4.998 3.806 0.382 4.945 4.461 3.791 1.114 1.292 4.240 0.0004 0.154 

Qc12(Mvar) 0 5 3.901 3.071 4.757 3.618 4.889 3.662 2.432 0.661 2.889 4.247 0.995 1.671 

Qc15(Mvar) 0 5 4.276 3.797 4.420 4.155 4.960 4.168 3.603 4.712 3.302 2.028 2.798 2.872 

Qc17(Mvar) 0 5 4.155 2.745 3.746 4.531 4.791 4.972 3.565 3.393 4.937 1.925 1.605 1.327 

Qc20(Mvar) 0 5 2.976 2.633 3.995 3.743 1.858 4.084 1.916 3.351 2.104 3.210 1.807 1.053 

Qc21(Mvar) 0 5 4.673 4.557 4.762 3.104 1.896 4.73 2.343 4.122 3.585 1.549 4.823 3.977 

Qc23(Mvar) 0 5 0.024 1.220 1.507 3.302 3.300 1.874 2.767 2.391 3.681 4.143 2.590 2.897 

Qc24(Mvar) 0 5 3.916 4.999 4.998 4.287 4.390 4.961 2.669 4.557 4.873 3.599 3.752 3.485 

Qc29(Mvar) 0 5 1.250 0.154 1.851 0.177 1.737 0.837 2.917 0.968 1.591 0.436 1.987 1.571 

OBJECTIVE FUNCTIONS’ VALUES 

Fuel Cost ($/h) 799.179 912.854 827.636 799.202 912.241 826.446 800.756 920.298 827.717 799.319 924.509 837.416 

Active power losses (MW) 8.6446 3.3714 5.2451 8.6933 3.3869 5.3074 8.4171 3.2468 5.2556 8.7103 3.2745 5.0397 
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methods based on decomposition exhibit better convergence 

than the algorithm based on Pareto ranking, NSGA-II. 

The optimal values of decision variables of the best fuel 

cost and active power losses, and the best compromise 

solution obtained by the algorithms are given in Table 3. The 

best values are displayed in boldface. 

The base case has a fuel cost and active power losses of 

901.975$/h and 5.831 MW, respectively. Therefore, 

comparing with the base case, the fuel cost reduction obtained 

by MOABC/D, MOTLA/D, MOEA/D-DRA and NSGA-II is 

11.40%, 11.39%, 11.22%, and 11.38%, respectively. The 

active power losses reduction obtained by MOABC/D, 

MOTLA/D, MOEA/D-DRA and NSGA-II is 42.18%, 41.92%, 

44.32%, and 43.84%, respectively. Although these results are 

slightly different from each other, it can be observed from Fig. 

3, that our proposed algorithms exhibit better convergence. 

C. Comparison with other optimization strategies 

In order to show the effectiveness and performance of the 

proposed methods, the results of the proposed algorithms, 

MOABC/D and MOTLA/D, are compared with those obtained 

by the Differential Evolution (DE) [7], and Multi-objective 

harmony search (MOHS) [11] algorithms, which are based on 

Pareto ranking. Table 4 and 5 summarize the best compromise 

solution for the case study 1 and 2, respectively. 

From Table 4, notice that the proposed methods based on 

decomposition achieve better results with respect to DE and 

MOHS in the fuel cost objective function. Regarding the Lindex 

objective function, the proposed methods reach slightly higher 

value than DE and MOHS. 

According to Table 5, the proposed methods achieve better 

results in both objective functions with respect to DE and 

MOHS. 

TABLE 4. Comparison of the best compromise solution for case study 1. 

Objective Functions MOABC/D MOTLA/D DE[7] MOHS[11] 

Fuel cost ($/h) 799.064 799.116 800.59 799.9401 

Lindex 0.1288 0.1287 0.1249 0.1075 

TABLE 5. Comparison of the best compromise solution for case study 2. 

Objective Functions MOABC/D MOTLA/D DE[7] MOHS[11] 

Fuel cost ($/h) 827.636 826.446 828.59 832.6709 

Active power losses (MW) 5.2451 5.3074 5.69 5.3143 

D. Performance measure 

In order to assess the algorithms’ performance, the coverage 

of two sets measure is adopted. This performance measure 

was proposed by Zitzler et al. [25]. This performance measure 

compares two sets of non-dominated solutions (A, B) and 

calculates the percentage of individuals in one set dominated 

by the individuals on the other set. It is defined as: 

{ : }
( , )

b B a A a B
C A B

B

  
         (36) 

The value C(A,B) = 1 means that all points in B are 

dominated by or equal to all points in A. ( , ) 0C A B   

represents the condition when none of the solutions in B are 

covered by the set A. Note that both C(A,B) and C(B,A) have 

to be considered, since C(A,B) is not necessarily equal to 

1 ( , )C B A . When C(A,B) = 1 and ( , ) 0C B A   then, we say 

that the solutions in A completely dominate the solutions in B 

(i.e., this is the best possible performance for A). 

For each case study, twenty independent runs were made, 

and the results of the performance measure (36) are 

summarized in Tables 6 and 7. These tables present the 

average and standard deviation (in brackets) for each case 

study. The best results are displayed in boldface. In addition, 

the average CPU time is also shown. 

TABLE 6. Results of coverage of two sets measure for case study 1. 

Algorithm C(A,B) C(B,A) 

A B 
average  

(std) 

average  

(std) 

MOABC/D MOEA/D-DRA 
0.563  

(0.2518) 
0.251  

(0.1844) 

CPU time: 108.8 s NSGA-II 
0.915  

(0.1804) 

0  

(0) 

MOTLA/D MOEA/D-DRA 
0.502  

(0.2074) 
0.31  

(0.1934) 

CPU time: 107.3 s NSGA-II 
0.955  

(0.1012) 

0  

(0) 

TABLE 7. Results of coverage of two sets measure for case study 2. 

Algorithm C(A,B) C(B,A) 

A B 
average  

(std) 

average  

(std) 

MOABC/D MOEA/D-DRA 
0.408   

(0.1726) 

0.203  

(0.1928) 

CPU time: 62.4 s NSGA-II 
0.868  

(0.0998) 

0 

(0) 

MOTLA/D MOEA/D-DRA 
0.30  

(0.1773) 

0.26  

(0.1860) 

CPU time: 60.4 s NSGA-II 
0.858  

(0.1465) 

0  

(0) 

Note from Tables 6 and 7 that the proposed approaches 

outperformed MOEA/D-DRA and NSGA-II in all cases 

regarding the Coverage of two sets performance measure. This 

indicates that the proposed approaches produce more solutions 

that dominate (according to Pareto optimality) the solutions 

produced by MOEA/D-DRA and NSGA-II. Table 6 indicates 

that in case study 1, MOABC/D and MOTLA/D generate 

solutions that dominate 56% and 50% of the solutions 

generated by MOEA/D-DRA, respectively. Likewise, 

MOABC/D and MOTLA/D produce solutions that dominate 

91% and 95% of the solutions generated by NSGA-II, 

respectively. Table 7 shows that in case study 2, MOABC/D 

and MOTLA/D produce solutions that dominate 40% and 30% 

of those solutions generated by MOEA/D-DRA, respectively. 

Further, MOABC/D and MOTLA/D produce solutions that 

dominate 86% and 85% of the solutions generated by NSGA-

II, respectively. 

Moreover, in order to verify the effectiveness of the 

proposed approaches with respect to a deterministic algorithm, 

the same objective functions are individually minimized by 

the sequential quadratic programming (SQP) method from the 

MATLAB Optimization Toolbox. Table 8 summarizes the 

corresponding statistical analysis. 

 TABLE 8. Statistical analysis for SQD method. 

Algorithm SQD 

objective function Cost ($/h) Lindex Loss (MW) 

Best  799.0436 0.1279 2.8778 

Worst 831.6104 0.1648 7.7541 

Average 808.2715 0.1445 5.1938 

Standard Deviation 9.9928 0.0131 1.9788 

average CPU time (s) 2.54 2.56 3.99 
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As seen in Table 8, SQD attains the best Lindex and active 

power losses objective functions, and the average CPU time of 

SQD is less than that of the proposed algorithms. However, 

even though MOABC/D and MOTLA/D consume more 

execution time, their standard deviations and average values 

are better and quite satisfactory in comparison to those 

obtained by the SQP method. 

Based on the above results and comparisons, it can be 

concluded that MOTLA/D and MOTLA/D are reliable for the 

multi-objective optimal power flow problems approached in 

this paper. This is evidenced by the fact that the Pareto 

optimal set obtained by them have exhibited satisfactory 

diversity and convergence for each of the case studies 

considered. Also, the proposed algorithms produced highly 

competitive results with respect to those obtained by the other 

approaches with respect to which they were compared. 

VI. CONCLUSIONS 

This paper presented two multi-objective optimization 

methods based on decomposition for solving a multi-objective 

optimal power flow problem. The first method is based on 

intelligent behavior of honey bees and the second one is based 

on the teaching-learning strategy.  

In order to validate the effectiveness and performance of the 

proposed methods, MOABC/D and MOTLA/D were applied 

to the IEEE 30 bus test system and compare with respect to 

MOEA/D-DRA and the NSGA-II in two different multi-

objective optimal power flow problems. Additionally, results 

reported in the open research were considered for a 

comparative study. 

 The results indicated that the proposed methods 

outperformed and are highly competitive with respect to the 

algorithms in comparison to the cases that were analyzed. 

Moreover, the proposed algorithms based on decomposition 

have better convergence that the traditional multi-objective 

evolutionary technique based on Pareto ranking, NSGA-II. 

Thus, it may be concluded that the proposed algorithms may 

be a quite promising and reliable choice for power systems 

applications. 
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