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Abstract

This supplementary material provides complementary information related to

the paper entitled “Uniform Mixture Design via Evolutionary Multi-Objective

Optimization.” In particular, we present proofs that support this research work.
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Appendix A. Proofs

Appendix A.1. Any solution evaluated in MOP1 maps to a mixture

We prove that given an x ∈ [0,1]M−1 such that x = (x1, . . . , xM−1) and the

objective vector F (x) = (f1(x), . . . , fM(x))T produced by MOP1 (Equation (3))

is a mixture.5

i) First, we show that given an x ∈ [0,1]M−1, fi(x) ≥ 0 for each i ∈ {1, . . . ,M}.

Since xj ∈ [0,1] for all j ∈ {1, . . . ,M − 1} then:

○ ∏k
i=1 xi ≥ 0 for 0 < k ≤M − 1, and

○ (1 − xj) ≥ 0

Therefore, fi(x) ≥ 0 for each i ∈ {1, . . . ,M}.10
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(Luis Miguel Garćıa-Velázquez), ccoello@cs.cinvestav.mx (Carlos A. Coello Coello)

Preprint submitted to Journal of LATEX Templates September 3, 2021



ii) Now, we show that given an x ∈ [0,1]M−1, ∑M
i=1 fi(x) = 1.

Substituting each term of the sum by its definition in MOP1 (Equation (3))

and simplifying, we obtain:

f1(x) + f2(x) + f3(x) +⋯ + fM−1(x) + fM(x)

=x1x2⋯xM−1 + (1 − xM−1)x1x2⋯xM−2+

(1 − xM−2)x1x2⋯xM−3 +⋯ + (1 − x2)x1 + (1 − x1)

=x1x2⋯xM−1 + (x1x2⋯xM−2 − x1x2⋯xM−1)+ (A.1)

+ (x1x2⋯xM−3 − x1x2⋯xM−2) +⋯ + (x1 − x1x2)+

(1 − x1) = 1

Hence, from i) and ii), we have that given an x ∈ [0,1]M−1, F (x) is a

mixture.∎

Appendix A.2. Any solution evaluated in MOP2 maps to a mixture

We prove that given an x ∈ [0,1]M−1 such that x = (x1, . . . , xM−1) and15

x1 ≤ x2 ≤ ⋯ ≤ xM−1, the objective vector F (x) = (f1(x), . . . , fM(x))T produced

by MOP2 (Equation (4)) is a mixture.

i) First, we show that given an x ∈ [0,1]M−1, fi(x) ≥ 0 for each i ∈ {1, . . . ,M}.

Since xj ∈ [0,1] for all j ∈ {1, . . . ,M − 1} and 0 ≤ x1 ≤ x2 ≤ ⋯ ≤ xM−1 ≤ 1,

we have that:20

○ x1 ≥ 0

○ Since 1 ≥ xi ≥ xi−1 ≥ 0 for each i ∈ {2, . . . ,M − 1}, xi − xi−1 ≥ 0

○ 1 − xM−1 ≥ 0

Therefore, fi(x) ≥ 0 for each i ∈ {1, . . . ,M}.

ii) Now, we show that given an x ∈ [0,1]M−1 such that x1 ≤ x2 ≤ ⋯ ≤ xM−1,25

∑M
i=1 fi(x) = 1.
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Substituting each term of the sum by its definition in MOP2 (Equation (4))

and simplifying, we obtain:

f1(x) + f2(x) + f3(x) +⋯ + fM−1(x) + fM(x) =

=x1 + (x2 − x1) + (x3 − x2) +⋯ + (xM−1 − xM−2)+

(1 − xM−1) = 1

Hence, from i) and ii), we have that given an x ∈ [0,1]M−1 such that x1 ≤
x2 ≤ ⋯ ≤ xM−1, F (x) is a mixture.∎

Appendix A.3. Any solution evaluated in MOP3 maps to a mixture

We prove that given an x ∈ [0,1]M sucht that x ≠ 0, the objective vector30

F (x) = (f1(x), . . . , fM(x))T produced by MOP3 (Equation (5)) is a mixture.

i) First, we show that given an x ∈ [0,1]M such that x ≠ 0, fi(x) ≥ 0 for each

i ∈ {1, . . . ,M}.

Since xj ∈ [0,1] and the L1-norm is nonnegative and x ≠ 0, we have that

∣xi∣
∣∣x∣∣1 is well-defined and it is always a nonnegative number.35

Therefore, fi(x) ≥ 0 for each i ∈ {1, . . . ,M}.

ii) Now, we show that given an x ∈ [0,1]M such that x ≠ 0, ∑M
i=1 fi(x) = 1.

Substituting each term of the sum by its definition in MOP3 (Equation (5))

and simplifying, we obtain:

f1(x) + f2(x) + f3(x) +⋯ + fM−1(x) + fM(x) =

= ∣x1∣
∣x1∣ + ∣x2∣ + ⋯ + ∣xM ∣ +

∣x2∣
∣x1∣ + ∣x2∣ + ⋯ + ∣xM ∣ + ⋯+

∣xM ∣
∣x1∣ + ∣x2∣ + ⋯ + ∣xM ∣ =

∣x1∣ + ∣x2∣ + ⋯ + ∣xM ∣
∣x1∣ + ∣x2∣ + ⋯ + ∣xM ∣ = 1

Hence, from i) and ii), we have that given an x ∈ [0,1]M such that x ≠ 0,

F (x) is a mixture.∎
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Appendix A.4. Any solution is a Pareto optimal solution40

Now, we show that any x ∈ Ω1 is Pareto optimal solution of its corre-

sponding MOP. By definition of the formulated MOPs, we know that z =
(f1(x), . . . , fM(x)) is a mixture for any x ∈ Ω, i.e., zi ≥ 0 (i = 0, . . . ,M) and

∑M
i=1 zi = 1 (see the proofs in the above sections).

Let us assume that there is an objective vector y such that y dominates45

z. Notice that y is a mixture. Then, from the definition of Pareto dominance,

we have that there exists i ∈ {1, . . . ,M} such that yi < zi and yj ≤ zj for all

j ∈ {1, . . . ,M} with i ≠ j. Therefore ∑M
j=1,j≠i yj ≤ ∑M

j=1,j≠i zj . Since yi < zi,

∑M
j=1,j≠i yj + yi < ∑M

j=1,j≠i zj + zi. Therefore, ∑M
i=1 yi < 1. Hence, y is not a

mixture.∎50

1Ω = [0,1]M−1 for MOP1 and MOP2, and Ω = [0,1]M ∖ {0} for MOP3

4


	Proofs
	Any solution evaluated in MOP1 maps to a mixture
	Any solution evaluated in MOP2 maps to a mixture
	Any solution evaluated in MOP3 maps to a mixture
	Any solution is a Pareto optimal solution


