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Abstract— Spread spectrum audio watermarking (SSW) is dtteeamost powerful techniques for secure audio

watermarking. SSW hides information by spreading #pectrum. The hidden information is called the
‘watermark’ and is added to a host signal, makirgglatter a watermarked signal. The spreadinge$§gectrum is
carried out by using a pseudo-noise (PN) sequémcenventional SSW approaches, the receiver muikoth
the PN sequence used at the transmitter and thiédowf the watermark in the watermarked signalfetecting
the hidden information. This method has contributedth to secure audio watermarking in that any,wseo is
not able to access this secrete information, cadeieict the hidden information. Detection of the $&8guence is
the key issue of hidden information detection inABRlthough the PN sequence can be reliably detdebte
means of heuristic approaches, due to the high atatipnal cost of this task, such approaches teriokttoo
computationally expensive to be practical. Evolnidiy Algorithms (EAs) belong to a class of suchrapphes.
Most of the computational complexity involved irethse of EAs arises from fitness function evaluatimt may
be either very difficult to define or computatiolyavery expensive to evaluate. This paper propceses
approximate model, calleédaptive Fuzzy Fitness Granulation with Fuzzy Supervisor (AFFG-FS), to replace the
expensive fithess function evaluation. First, atelligent guided technique via an adaptive fuzayiksirity
analysis for fitness granulation is used for dewdbn the use of exact fitness function and dynaltyi@edapting
the predicted model. Next, in order to avoid malyutlning parameters, a fuzzy supervisor as autinty
algorithm is employed. Its effectiveness is invgetied with three traditional optimization benchnsadf four
different choices for the dimensionality of the ehaspace. The effect of the number of granuletherrate of
convergence is also studied. The proposed methbénsextended to the hidden information deteqiailem to
recover a PN sequence with a chip period equal3tol@7 and 255 bits. In comparison with the stashdar

application of EAs, experimental analysis confirthat the proposed approach has an ability to cerasidy
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reduce the computational complexity of the detecpmoblem without compromising performance. Funtinane,

the auto-tuning of the fuzzy supervisor removesbed of exact parameter determination.

Keywords: Watermarked Signal, Fast Hidden Information DédectFuzzy Granulation, Fitness Approximation,

Evolutionary Algorithms.




1. INTRODUCTION

In recent years, digital watermarking has receigdlad attention from the security and cryptography
research communities. Digital watermarking is dtégue to hide information into an innocuous-loakin
media object, which is called ‘host,” so that n@ @an suspect the existence of hidden informatias.
intended to provide a degree of copyright protectie use of digital media mushrooms [1]. Dependimg
the type of the host signal to cover hidden infaiamg watermarking is classified intmage watermarking
andaudio watermarking. In this paper, we focus our attention on auditewaarking but the approach can
be applied to image watermarking as well.

Numerous audio watermarking techniques have bempoped and the most important ones being Least
Significant Bits (LSB) [2], Phase coding [3], Echiwling [4] and spread spectrum watermarking (SSW)
[5]. The latter, SSW, is known as the most prongjsivatermarking method due to its high robustness
against noise and high perceptual transparencynidie idea of SSW is to add the spread spectrum of
hidden information to the spectrum of the host aigBpreading the spectrum of the hidden infornmeito
performed by means of a pseudo-random noise (RiNjesee.

Detection of hidden information from the receivedt@rmark signal is performed using the exact PN
sequence adopted for spreading the spectrum oéhioidormation. Therefore, the receiver should have
access to the PN sequence for detection. This tiseprivate knowledge results in a highly secure
transmission of information against any unauthatiaeer who does not have access to the PN sequence
and the location of the watermark. Hence, the RjNisgce can be regarded as a secret key whichrisdsha
between the transmitter and the receiver.

In [6], genetic algorithms (GAs) have been preséifide detecting hidden information, even though the
receiver has no prior knowledge on the transmétepreading sequence. However, iterative fitness
function evaluation for such a complex problemftemthe most prohibitive and limiting segment luift
approach. For the problem of recovering the PN eecg, sequences with different periods have diftere
converging times. In the study reported in [6],hiis been shown that converging time increases
exponentially as the period of the PN sequences&sds. So, the approach fails by losing the valafit
information. The greater the PN sequence is, theerddficult is the situation for recovering the PN
sequence and the more secure SSW will result. Neteby that a greater period of the PN sequence
decreases the capacity of the SSW algorithm foreglaing hidden information. To alleviate the problem
of exponentially increasing converging times, aietgr of techniques for constructing approximation

models — often referred to aktamodels — have been proposed [7]-[14]. For computationedpensive



optimization problems such as the detection of ddiciformation, it may be necessary to strike arnee
between exact fitness evaluation and approximateds evaluation. A popular subclass of fitnesstfan
approximation methods is fitness inheritance wifiéness is simply transmitted (or “inherited”) [3]. A
similar approach named “Fast Evolutionary Strate@iES) has also been suggested in [9], in which the
fitness of a child individual is the weighted suiite parents. In that approach, fitness and aasedi
reliability values are assigned to each new indigidand then the actual fithess function is onigleated
when the reliability value is below a certain threlsl. Further, Reyes Sierra and Coello Coello [17]
incorporated the concept of fitness inheritance aimulti-objective particle swarm optimizer to ued
the number of fithess evaluations [17]. In [18\hHested their approach on a well-known test sofite
multi-objective optimization problems. They genbraéported lower computation cost, while the gtyali
of their results improved in higher dimensionalcgmsm However, as also shown in [19] as well asim t
paper, the performance of parents may not be a gasstictor of their children for sufficiently cong
and multiobjective problems in rendering fitnedsartance inappropriate under such circumstances.

Other common approaches based on learning anghatétion from known fitness values of a small
population, (e.g. low-order polynomials and leagtiese estimations [10], artificial neural networks
(ANN), including multi-layer perceptrons [11] anddial basis function networks [12], support vector
machines (SVM) [13], regression models [14], eten also be employed.

In 1979, Zadeh [28] developed fuzzy informationmgdation as a technique by which a class of points
(objects) is partitioned into granules, with a grhanbeing a clump of objects drawn together by
indistinguishability, similarity, and/or functionsl. The fuzziness of granules and their attributes
characteristic of the ways by which human concaptsreasoning are formed, organized and manipulated
The concept of a granule is more general tharofrecluster, potentially giving rise to variousiceptual
structures in various fields of science as welhasathematics.

In this paper, with a view to reducing computatiaast, we employ the concept of fuzzy granulatmn
effectively approximate the fitness function in eamnary algorithms (EAS). In other words, the cept
of fitness granulation is applied to exploit the@umal tolerance of EAs in fitness function compiaas.
Nature’s “survival of the fittest” does not necasiganean exact measures of fitness; rather ithisua
rankings among competing peers [29]. By exploitimg natural tolerance for imprecision, optimizatio
performance can be preserved through computingsgronly selectively based on the ranking among
individuals in a given population. Unlike existiagproaches, the fithess values are not interpolated
estimated; rather the similarity and indistinguisility among real solutions is exploited.

In the proposed algorithm as explained in detai[db, 16] and calleddaptive fuzzy fitness granulation

(AFFG), an adaptive pool of solutions (fuzzy gras)lwith an exactly computed fitness function is



maintained. If a new individual is sufficiently slar to a known fuzzy granule, then that granufétsess
is used instead as a crude estimate. Otherwisadhedual is added to the pool as a new fuzzyhgte. In
this fashion, regardless of the competition’s omtepfitness of the new individual is always a pbgy
realizable one, even if itis a “crude” estimate aot an exact measurement. The pool size as welheh
granule’s radius of influence self-adaptively gromshrink depending on the utility of each grarane the
overall population fitness. To encourage fewer fiamcevaluations, each granule’s radius of infllers
initially large and then gradually shrunks in theuse of evolution. This encourages more exace$gn
evaluations when competition is fierce among mandglar and converging solutions. Furthermore, to
prevent the pool from growing too large, granulest are not used are gradually eliminated. Thigyfuz
granulation scheme is applied here as a type ayfapproximation model to efficiently detect hidden
information from spread spectrum watermarked sgynBlnally, a fuzzy supervisor is developed for
adaptively, automatically adjusting system paransete

The paper is organized as follows: Section 2 prsséme framework of adaptive fuzzy fitness
granulation (AFFG). An auto-tuning strategy foretetining width of membership functions (MFs) isals
presented in the section; by which the need ofteq@@a@meter setting is eliminated, without affegtine
rate of convergence. This approach is calddptive fuzzy fitness granulation with fuzzy supervisory
(AFFG-FS). In section 3, the proposed algorithrtested on three traditional optimization benchmarks
with four different dimensions. In Section 4, tleeovery of the PN sequence from a received wat&adar
signal using the proposed approach is illuminatgaine supporting simulation results and discussion

thereof are also presented in the section. Finedigclusions are drawn in Section 5.



2. The AFFG Framework [15]

Adaptive fuzzy fitness granulation (AFFG) was fipgsbposed in [15]. It includes a global model of a
genetic algorithm (GA) which is hybridized with azky granulation (FG) tool (see Figure 1). The
expensive fithess evaluation of individuals readiiie traditional GA, can be partially replaced by a
approximation model. Explicit control strategies ased for evolution control, leading to a consathés
speedup without compromising heavily on the sotut@curacy. While the approximation techniques
themselves are widely known for accelerating tbeaiive optimization process, the focus of AFFG lie
promoting controlled speedup in view of avoidingriheental effects of the approximation. The folloni

section presents the main elements of the AFFGewaork.

A. Basicldea
The proposed adaptive fuzzy fitness granulatiorsaomminimize the number of exact fitness function

(FF) evaluations by maintaining a pool of soluti¢fuzzy granules) by which can be used to approtema
solutions in further stages of the evolutionarygess. The algorithm uses Fuzzy Similarity AnalySiSA)
to produce and update an adaptive competitive gicdissimilar solutions (granules). When a new 8otu
is introduced to this pool, granules compete byeasuare of similarity to win the new solution andrgby
to prolong their lives in the pool. In turn, thewnandividual simply assumes fitness of the winn{ngpst
similar) individual in this pool. If none of theayules are sufficiently similar to the new indivadldi.e., if
their similarity is below a certain threshold), thew individual is instead added to the pool atteexact
fitness is evaluated by the actual fitness functinally, granules that cannot win new individuate

gradually eliminated in order to avoid consisterdvgh of the pool. The basic idea of the proposed
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Figure 1. The architecture of the proposed algori



algorithm is graphically shown in Figure 1 and iscdssed in more detail in the next section. F@nev

more details, we refer to [15, 16].

B. Basic Algorithm Structure

Step 1. Create a random parent populatioR, ={X], X3 ,..., le X} ., where
X5 ={X\ 1, X}, s X\ ey X o} is thej-th individual in thei-th generationx;, ther-th parameter
of X} , mthe number of design variables drttle population size.

Step 2. Define a multi-set G of fuzzy granules (C,, o0, L) according to
G={(C,,0.,L)|C 00" 0, 00,L 00k=1..J}; G is initially empty (i.e.,] =0). C, is an
m-dimensional vector of centers, is the width of membership functions (WMFs) of théh fuzzy
granule, and., is the granule’s life index.

Step 3: Choose the phenotype of first chromosomfg (E{ Xy, , X, s X, oo Xt} ) @S the center of

the first granule C, ={C,;,C,,,...C., ,---,CLn} = X1).
Step 4. Define the membership functiga, , by a Gaussian similarity neighborhood functionéach

parametek according to
M, (X ) =expE(X, =6, ) N(0,)) k= 1,2,..,1 (1)

wherel is the number of fuzzy granules.

Remark: g, is the distance measurement parameter that cenh®ldegree of similarity between two

individuals. Like in [12],0, is defined based on equation (2). According tl@finition, the granules

shrink or enlarge in reverse proportion to themdss:

1

o, :V—(eF(Ck))p 2)

where 5 >0 is an emphasis operator ap@ constant of proportion. The problem arising hgheow to

determineS and y as design parameters. The fact is that these tveorders are problem dependent and

in practical, number of trials is needed to adibstse parameters. This trial is based on a sinugewith
respect the acceleration of the parameter optifizgirocedure: high speed needs to have enlarggment
the granule spread and, as a consequence ofsssatcuracy in fithess approximatiaicg versa. To deal

with this rule, a fuzzy controller with three ingus adopted (see Section 2.D).
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Step 5: Compute the average similarity of a new solutih ={X;, ,X; , ,..., X X n} to each

m X
granuleG, usingf7;, = Z'ukr( ”)
r=1

Step 6: Either calculate the exact fitness function (FF)(d}) or estimate the FF by associating it to one

of the granules in the pool in case there is aeaim the pool with higher similarity t(Xij than a

predefined threshold, i.e.:

fxpy=) TGO T Max (73> ©)
f(X)) otherwise

where f (C, ) is the FF of the fuzzy granulef,(X}) is the real fitness calculation of the individual

o = o MRAEX), FOG0), . F X} K =argMax( 7, .}, T Z and @ >0 is a

fit KOL2..1} =1

constant of proportionality that is usually se@# unless otherwise indicated. The threst@ldncreases
as the best individual's fitness in generatiomcreases. As the population matures and readigesrh
fitness values (i.e., while converging more), tlgoathm becomes more selective and uses exa@sftn

calculations more often. Therefore, with this tdghe we can utilize the previous computational o

during previous generations. Alternatively, kii}/laxl}{ﬁj o} <@, x! is chosen as a newly created
H{12..., !

granule.
Step 7: If the population size is not completed, repstap 5 to Step 7.
Step 8 Select parents using suitable selection operatat apply genetic operators namely

recombination and mutation to create new generation

Step 9: When termination/evolution control criteria aret moet, then updater, using eqn. (2) and

repeatStep 5to Step 9.

C. Howto Control the Length of the Granule Pool?
As the evolutionary procedures proceed, it is itadle that new granules are generated and added to

pool. Depending on complexity of the problem, thee ©f this pool can become excessive and become a
computational burden itself. To prevent such unssaey computational effort, a “forgetting factos’ i
introduced in order to appropriately decrease the of the pool. In other words, it is better tonmre

granules that do not win new individuals, theretydoicing a bias against individuals that have limeks



and were likely produced by a failed mutation afiertlence,L, is initially set toN and subsequently
updated as below,

_JLeM i k=K
“71 L, Otherwise

(4)

whereM is the life reward of the granule akds the index of the winning granule for each indiial in

generationi. At each table update, onlM; granules with highesk, index are kept, and others are

discarded. In [16], an example has been providéilLigirate the competitive granule pool update.law
While adding a new granule to the granule pool assigning a life index to it is a simple way of
controlling the size of the granule pool, sincedgh@nules with the lowest life index will be remavieom

the pool, it may happen that the new granule isored, even though it was just inserted into thd.dao

order to prevent this, the pool is split into tvarts with sizessN_ and (1— &)N . The first part is a FIFO
(First In, First Out) queue and new granules adeddo this part. If it grows abov@\ , then the top of

the queue is moved to the other part. Removal tfenpool takes place only in tHg— &) N, part. In this

way, new granules have a good chance to survivenabar of steps. In all of the simulations that are
conducted hereg is set at 0.1.

The distance measurement parameter is completyented by granule enlargement/shrinkage in
widths of the produced MFs. As in [34], the comlireffect of granule enlargement/shrinkage is in

accordance with the granule fitness and it requiesfine-tuning of two parameters, namglyand ).

These parameters are problem dependent and it seidiced to set up a procedure in order to dedhwhis
difficulty. The next section presents an auto-tgnstrategy for determining the width of MFs which

removes the need of exact parameter determinatitiput negative influence on the convergence speed

D. How to Determine the Width of the Member ship Functions?
It is crucial to have accurate estimation of thmess function of the individuals in the finishing

generations. In the proposed method, it can benagiished by controlling the width of the produce&$4
At early steps of evolution, by choosing relativielsge WMFs, the algorithm accepts individuals viis
degree of similarity as similar individual. Theregothe fitness should be computed by more often by

estimation/association to the granules. As theviddals mature and reach higher fitness valuesyttith

TABLE |
Fuzzy Rules of the First Controller
NDV
Zero  Small Big
Zero 0 0.125 0.25
MRDV Small| 0.375 0.5 0.625
Big | 0.75 0.875 1




decreases and the similarity between individualsukhincrease in order to be accepted as similar
individuals. This prompts higher selectivity foagule associability and higher threshold for estiioma In
short, in later generations, the degree of sintjldretween two individuals must be larger than thahe
early generations, to be accepted as similar iddals. This procedure ensures a fast convergetedua

to rapid computation at the early phase and acetitaess estimation at the later stage.

| Fuzzy Logic
NDV "1 Controller
MRDV Ok
PCG
AFFG <

A

A 4

Structural Design
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Figure. 2 Flow-diagram of Adaptive Fuzzy Conteoll
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Figure. 3 Flow-diagram of Proposed Fuzzy Congroll

To achieve these desiderata, a fuzzy supervisbrtiviee inputs is employed. During the AFFG search,
the fuzzy logic controller observes the Number @&sign Variables (NDV), the Maximum Range of
Design Variables (MRDV) and the percentage of cataal trials, and specifies the WMFs. The first inpu
is the NDV and the Range of the input variables/|R$ the second one. Large values of the NDV and
MRDV need big width in the MFsjce versa. The Percent Completed Generations (PCG) is treeitiput,

which takes a number in the range [0, 1], wheresidghifies exhaustion of all allowed trials. Thincerns



the maturity level of search, given a fixed amownhtresources. The combined effect of granule
enlargement/shrinkage in accordance to PCG isalizeeboth rapid computation and accurate fitness
estimation.

The architecture for adaptive fuzzy control of INdFs is visualized in Figure 2. Gaussian MFs are
used for specification of the knowledge base of filnezy logic controller. The knowledge base for
controlling the WMFs based on the above architechas a large number of rules and the extraction of
these rules is very difficult. Consequently, a rewahitecture (as shown in Figure 3) is proposehiich
the controller is separated in two controllers itmidish the complexity of the system and to redtree
number of rules. The first controller has two irp(with three MFs in each, Zero(0, 0.3), Small(0.3),
Big(1.0, 0.3), the first number is the center amelgecond one is the spread), and the second kenkras
only one input. As shown in Figure 3, the spreathefgranules is provided by the multiple outputhef
controllers. The knowledge base for the first coltgr is shown in Table 1. The Gaussian MFs withadq
width in each (0.3) are used for output. The se@mmdroller has just one Gaussian MF in which 0 2%
are its center and spread, respectively. The figzgem (that employs singleton fuzzifier, products

inference engine, and center average defuzzifijtists o, after each generation.

3. BENCHMARK PROBLEMSAND NUMERICAL RESULTS

To illustrate the efficacy of the proposed granolattechniques, a set of 3 traditional optimization

TABLE Il
FunctionsList of Test benchmark
Function Formula
_ 1+Zn: X —Iﬂlcosé), i=1n
Griewangk = 4000 = .fi
-600< x, <600

f(x) =100+ 3 x? —10tos@ 07k,
Rastrigin 9 ;( ' ¢ )

i=1:n; —-512<x <512

_0,2@ }icogm
Ackley f(x) =20+e-20e G _ 3
i=1:n; -32768<x < 32768

TABLE Il
Parameters used for AFFG
Function B y
Griewangk 0.00012 190
Rastrigin 0.004 0.15

Ackley 0.02 0.25




benchmarks (shown in Table 2) are chosen namelgw@ngk, Rastrigin and Ackley. These benchmark
functions are scalable and are commonly used tesaseptimization algorithms. They have some
intriguing features which most optimization algbnits find hard to deal with.

The Ackley function [31], [32] has an exponentiinh by which numerous local minima are produced.
Analyzing a wider region helps to cross the valiégng local optima, thereby achieving better sohsi
The global optimum is alway$ (x) =0, which is obtained ax; =1, 0i .

The Rastrigin function [30] is created by addingpaine modulation term to Sphere function. It csissi
of a large number of local minima whose valueséaase in receding from the global minimum. The globa
optimum is alwaysf (x) = @vhich occurs atx, = QUi .

The Griewangk function [33] is also highly multimeddUnlike Ackley and Rastrigin functions, it has a
product term that introduces interdependence anvamigbles. It is hard to find the optimal solution
without some information on the variables’ depermdsn Regardless of its dimensionality, the global
optimum is f (x) =0 wherex = Q Ui .

The aim of the empirical study consists of investilgg the search capability, as a function optimiaé
the proposed granulation technique (AFFG-FS), caoatgpdo the conventional GA, FES and AFFG
techniques. The parameters are summarized in Tihble

The GA routine utilizes random initial populatiomsnary-coded chromosomes, single-point crossover,
bit-wise mutation, fithess scaling, and an eliisichastic universal sampling selection strategyrddver,
crossover and mutation probabilities Bggver = 1 andPyutanion = 0.01 respectively, the population size is
20, and the maximum number of generations is 10@lly chromosome length varies depending on the
number of variables in a given problem, but eadtialde’s length is set to 8 bits. The total numbér
generations as well as the termination criteriordésermined during several trial runs to ensure the
convergence of the algorithm on the three benchipaoklems.

AFFG and AFFG-FS uses all of the above evolutiopamnameters as in a GA to establish analysis only
from the perspective of granulation and in ordekaep track of the best solution found. Ten indejesan
runs of each experiment were executed.

As to FES, a fitness and an associated reliahitityes are assigned to each new individual. Thedi
is actually evaluated if the reliability value iglow a certain threshold. The reliability value iear
between 0 and 1 and depends on two factors: thteofiie is the reliability of parents, and the seloome is
the closeness of parents and children in the smgpace. Three different levels fori.e., 0.5, 0.7 and 0.9,
have been used here which equal to ones propog2d]in

In this experiment, four sets of dimensions ares@ared for each test function; namely 5, 10, 20 and
30. As for AFFG and AFFG-FS, the number of indidtiuin the granule pool is varied between 20, 20, 4



and 80 respectively. The reported results wereiddaby achieving the same level of fithess evabnat
for both the proposed method (AFFG-FS) and the eoatjve references (GA, FES and AFFG), namely
500 for 5-D (dimension), 1000 for 10-D, 2000 forR&nd 3000 for 3-D.

The average convergence trends of the standardFG8, AFFG and AFFG-FG are summarized in
Figures 4-15. All the results presented were awestaiyer 10 runs. In figure 4-18, the y-axis denoes
(average) fitness value in common logarithmic scatel the x-axis denotes the number of exact fancti

evaluation.
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Figure 10: Convergence Trend of GA, FES, AFFG aR#f@-FS as applied to 20-D Rastrigin function.
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Figure 12: Convergence Trend of GA, FES, AFFG aR#f@-FS with regard to 5-D Ackley function.
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Figure 13: Convergence Trend of GA, FES, AFFG aR#F@-FS with regard to 10-D Ackley function.
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Figure 15: Convergence Trend of GA, FES, AFFG aR#F@-FS with regard to 30-D Ackley function.

As shown in Figures 4-15, the search performan@Fé#iG and AFFG-FS are superior to GA and FES,
even with a small number of individuals in the gr@npool. The results also illustrate that fitness
inheritance method (i.e., FES), albeit being corapker in smaller dimensions, deteriorates as thelgno

size increases.

We also studied the effect of varying the numbegrahulesN; on the convergence behavior of AFFG

and AFFG-FS. The comparison can be made by thétsesitained in Figures 16-18. The good news from

the results is that AFFG and AFFG-FS are not seiseato N . However, further increase & slows

down the rate of convergence due to the imposegatational complexity.
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4. SPREAD SPECTRUM WATERMARKING

This section bears out the effectiveness of thpgsed granulation technique in real world applarai
To this end, we consider a hidden information déeagroblem such that the correct PN sequence baust
recovered from a spread spectrum watermarked si@mpabad spectrum watermarking (SSW) has been
perceived to be a powerful watermarking schemedfiats high robustness (surviving hidden inforroati
after noise addition), high transparency (high fguadf watermarked signal after addition of hidden
information) and high security (against unauthatimsers) to hide the bits of information. SSW ubes
idea of spread spectrum communication to embeddbitaformation into a host signal. Spreading the
spectrum of the hidden information is carried opaitpseudorandom noise (PN) sequence. A PN sequence
is a zero mean, periodic binary sequence with sealike waveform whose bits are equal to +1 or25].[
To embed each bit of hidden informatim(i), i = 1, 2..., into a host signal, the embedder conditzs
following steps.
Step. 1: Generates one period of the PN sequence by a dRidisee generator.
Step. 2: Multiplies m(i) by all the bits of the generated PN sequencecteate a watermark signal as

follows:



w(i) = p(n)m(i), n=1..,N (5)

wherep(n) is then-th bit of the PN sequence andi) is thei-th block of the watermark signal.

Step. 3: Produces a watermarked sige@l,x) as follows:

S(w, x) = Aw(n) + x(n) (6)

Then the watermarked sigriglw,x) is sent to the receiver.

Extraction of hidden information from a receivedtgranarked signal at the detector can be done tiking
correlation property of the PN sequence. CrossetationC(.,.) between two PN sequenggsandp, is
given as (7) [26]:

i, if a=b

18,
C(P,, Pp) == Y (P,(i) Py (i) = _
(Pas Po) = ZO( () Py (i) {_]/N' sthermice (7)
Hence, cross correlation between a watermarkedbksagd a PN sequence can be written as:
C(w,p)+m if p=p
C(S p) =C(w,p) +C(mp, p’) = Cw, p,)_% Otherwise (8)

Equation (8) expresses that the bit of hidden méition can be determined by calculating the cotitia
between the received watermarked signal and thedgNence employed at the transmitter, and comparing

the result with a threshold.

A. RECOVERING THE PN SEQUENCE
In general, it is very hard to recover the PN segadrom a spread spectrum watermarked signal where

no information about the PN sequence or its locagdknown. The reason is that there are vast nsgiar
the solution sets of possible PN sequences. Farios, to recover a PN sequence with a period ¢q &3
bits, 2° PN sequences must be generated.

To make the problem of recovering the PN sequerare tnactable, we assume that the exact location of
the watermark in the watermarked signal is knownthis section, a novel algorithm for detecting the
location of the watermarked signal will be explaink [20], an approach for detecting hidden infation
from an image spread spectrum signal has been gedpd his approach detects abrupt jumps in the
statistics of the watermarked signal to recoveRNesequence. However, the algorithm which is based
hypothesis tests for detection of abrupt jump i@ $hatistics is very complicated and its perforneanc
suffers from low frequency embedding.

Our approach to recover the PN sequence is basesh@nstrained optimization. We have a set of
feasible solutions available in order to find thebgl minimum of a cost function. The feasible simns

are sequences with the period length of the PNesezpiand elements of +1 and —1. A cost functiothier



problem can be defined by a exploring a very usgfoperty of SSW (in detection), namely the coriela
property of the PN sequence. Thus, the proper(fitrs¢ss) function is the cross correlation betwden
generated sequence and the watermarked signatianed in Equation (8).

In [21], an interesting method for recovering thd Bequence of the spread spectrum signal with a
predefined SNR has been proposed. The approacla@aspproach with a fitness function based on the
cross correlation between the estimated PN sequerttéhe spread spectrum. However, spread spectrum
watermarking is more complicated than a singleapepectrum signal since, in SSW, the spread spectr
hidden information is like a white Gaussian noisethe host signal.

We observe here that the computation of the crosselation between the sequences of possible
solutions’ set and the watermarked signal for amg block of the SSW signal would not convergen® t
PN sequence used at the transmitter. This is be¢ha®nergy of host signal is at least 12 dB rtiear the
energy of the watermark, and that has a strongctefie maximizing the cross correlation (i.e., the
optimization algorithm converges to a sequencerttaaiimizes the correlation with the host). As aiioh
to this problem, several consequence blocks ofwaermark (i.e. several bits of hidden information)
should be considered in the computation of thescoasrelation. In this case, the watermark sigmal &
stronger effect than the host signal on maximizivgcross correlation function.

Carrying out the global optimization by searchingothe entire solution set, as mentioned aboubgis
subject of deterministic methods such as coverieghods, tunneling methods, zooming methods, etc.
Such methods discover the global minimum by an estie search over the entire solution set. For
instance, the basic idea is to cover all the féasiblutions by evaluating the objective functiomlapoints
[22]. Although these schemes have high reliabifityd accuracy is always guaranteed, they are not
practical due to their poor convergence [23].

Since the solution set is vast, we need an effia@timization algorithm with high reliability arfést
converging rate. Many stochastic optimization alipons have been proposed such as GA, simulated
annealing, ant colony, etc. However, the GA appndes been perceived to be promising in a wideeang
of applications. Moreover, it is apt to strike dtmactive balance between reliability and conveggiate. In
this regard, we have chosen the GA framework fergllbbal optimization task. In order to further anbe
the search capability, we employ the proposed AFS3of Section Il) with a view to reduce the number

of expensive fitness evaluations by incorporatingpproximate model.

B. Empirical Results for Recovering PN Sequence
This empirical study focuses on performance impnoxet of the proposed granulation technique

(AFFG-FS) in comparison with conventional GA apmtoes [35]. In Section 3, it has been exhibited that
the fuzzy supervisory part of AFFG-FS gets ridiaf heed of exact parameter determination of AFRG, a



their performances are comparable to each othereder, it has also been shown that FES is muckevor
than the granulation techniques. As such, we didtake into account the original AFFG and FES as
comparative references in this experiment.

In order to reasonably keep track of the best gmiudbund, the GA uses roulette-wheel selectiorhwit
elitism. Moreover, one-point crossover and bit-wigetation are implemented. Crossover and mutation
probabilities used are 1.0 and 0.01, respectividig. population size is set to 20 with the elite it 2.

For AFFG-FS, the number of individuals in the glamool varies between 10, 20 and 50. The reported
results were obtained by achieving the same lelvBtreess evaluations for both a canonical GA amel t
proposed AFFG-FS. In this experiment, all resuksenaveraged over 10 runs.

Average convergence performance of GA and AFFGdd&picted in Figures 19-21 and is summarized
in Table IV. It is seen that cross correlation eslueturned by AFFG witNg ={10,20,50} are much better
than that of GA. It is also observed that the cammselation increases, albeit insensitive, with tumber
of granules. However, the increase ¢ slows down the rate of convergence due to its Bafdo
computational complexity. Moreover, Table 1V exhgbihat the rate of convergence of AFFG-FS is, on
average, 3.5 times faster than that of GA. Itdted that the performance gain is not so depermettie
chip length of the PN sequence (i.e., problem sizeym the results, it can be concluded that tlzecke
performance of AFFG-FS is superior to that of th &ven with the small number of individuals in the

granule pool.
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Figure 19: Cross correlation between the estimBiédequence with the period of 255



chips and the watermarked signal
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Table IV: Performance comparison of GA and AFFGwHth Ns={10, 20, 50}

Chip Length Criteria-I Criteria-l Criteria-1ll
GA 451 4.16 9934
AFFG-FS, 10 5.90 5.58 3817
255 AFFG-FS, 20 6.10 5.72 2969
AFFG-FS, 50 6.19 5.86 2156
GA 6.54 6.16 9994
AFFG-FS, 10 8.39 7.88 3211
L AFFG-FS, 20 8.00 7.60 2952
AFFG-FS, 50 8.45 8.14 2194
GA 10.17 9.57 9965
AFFG-FS, 10 10.29 10.18 2978
63 AFFG-FS, 20 10.36 10.29 2547
AFFG-FS, 50 10.39 10.28 1904

Criteria-l: The best cross correlation of populat#i the last generation.

Criteria-Il: The average cross correlation of pepiain at the last generation.

Criteria-lll: The average number of fithess evailiag until the same cross correlation value ishedc
(the values are equal to the average cross caoelat population achieved by GA at the last getieny;
4.16 for 255 chips, 6.16 for 127 chips, 9.57 forcé$s.

5. Concluding Remarks

An intelligent guided technique via an adaptiveziusimilarity analysis for fithess granulation, leal
adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS), has been presented. The aim was to
decide on use of expensive function evaluation asapt the predicted model in a dynamic manner. A
fuzzy supervisor as an auto-tuning strategy has bEen proposed in order to avoid the tuning of
parameters. Empirical evidence on its effectivermss existing approaches (i.e., GA and FES) was
adduced with widely-known benchmark functions. &tail, numerical results showed that the proposed

technique is capable of optimizing functions ofiedrcomplexity efficiently. It was seen that AFF@da
AFFG-FS are not much sensitive to the number afiges (N ), and smaller values dfl; still lead to
good results. Moreover, the auto-tuning of fuzzpeswisor eliminated the need for exact parameter

determination without compromising convergence grenfince.

The proposed AFFG-FS has been further extendeddietecting hidden information from a spread



spectrum watermarked signal. Under the assumpficmawing the location of hidden information, the
knowledge necessary for detecting hidden infornmagibthe receiver (that is the PN sequence ustaat
transmitter) could be detected. Experimental stdiemonstrated that AFFG-FS is capable of rapidly

detecting hidden information.

Acknowledgment

This research received funding from the Europeam@onity's Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. INFSQIZ3IB44, the Next Generation Infrastructures
Research Program of Delft University of Technolagyl the Mexican CONACyYT project No. 45683-Y.

References

[1] N. Cvejic, “Algorithms for Audio Watermarkingnal Steganography”, PhD thesis, Oulu University of
Technology, June 2004.

[2] K. Gopulan “Audio steganography using bit machtion”, Proceedings of the 2003 International féoence
on Acoustic Speech and Signal Processing, 2003.

[3] R. Ansari, H. Malik, A. Khikhar “Data-hiding iaudio using frequency-selective phase alteratiBrdceedings
of the IEEE International Conference on Acoustie&rh and Signal Processing, 2004.

[4] H. Joong, Y. H. Choi, “a novel echo-hiding sofewith forward backward kernels” IEEE Transactioms
Circuits and Systems for Video Technology, Volunde No 8, Aug 2003.

[5] Z.Liu, A. Inue, “Spread spectrum watermarkisigaudio signals”, IEEE Transactions on Circuitsl &ystem
for Video Technology, Volume 13, No. 8, Aug 2003.

[6] Saeed Sedghi, Habib Rajabi Mashhadi, Mortezad€mi. “Detecting Hidden Information from a Spread
Spectrum Watermarked Signal by Genetic AlgorithdEEE Congress on Evolutionary Computation, pp.
480--485, July 16-21, 2006

[7]1 J.-H. Chen, D. Goldberg, S.-Y. Ho, and K. SgstiFitness inheritance in multiobjective optimimat”’,
Proceedings of the 2002 International conferenc&enetic and Evolutionary Computation Conferenge, p
319--326, 2002.

[8] Margarita Reyes-Sierra, Carlos A. Coello CogelDynamic fitness inheritance proportion for nmabjective
particle swarm optimization”, Proceedings of thé &nnual Conference on Genetic and Evolutionary
Computation, July 2006.

[9] Mehrdad Salami , Tim Hendtlass, “The Fast Eaihn Strategy for Evolvable Hardware”, Genetic
Programming and Evolvable Machines, Volume 6, N@.239-162, June 2005.

[10] R. Myers and D. Montgomery. “Response Surfsleéthodology”, John Wiley & Sons, Inc., New York, 9%

[11]Y.-S. Hong, H.Lee, and M.-J. Tahk, “Accelecatiof the convergence speed of evolutionary algost using
multi-layer neural networks”, Journal of Enginegri@ptimization, Volume 35, No. 1, pp. 91--102, 2003



[12]Won, K. S. and Ray, T., “A Framework for Dasi@ptimization using Surrogates”, Journal of Engiireg
Optimization, pp. 685--703, 2005.

[13] Vapnik V., “The Nature of Statistical Learnifidneory”, Springer-Verlag, NY, USA, 1999.

[14]Gunn S.R., “Support Vector Machines for Cléisation and Regression”, Technical Report, Schobl
Electronics and Computer Science, University oftBamnpton, (Southampton, U.K.), 1998.

[15] M. Davarynejad, “Fuzzy Fitness Granulationgwnolutionary Algorithms for Complex Optimizationkj.Sc.
Thesis. Ferdowsi University of Mashhad, DepartnoériElectrical Engineering, 2007.

[16] M. Davarynejad, M.-R. Akbarzadeh-T, N. Pafi4, novel general framework for evolutionary optiration:
adaptive fuzzy fitness granulation”, in: Proceedinfithe 2007 IEEE International Conference on Eiohary
Computation (CEC'2007), pp. 951--956, IEEE Ser@eater, Singapore, September 2007.

[17] Margarita Reyes Sierra, Carlos A. Coello Coébynamic fithess inheritance proportion for mdbtjective
particle swarm optimization”, GECCO, 2005.

[18] Margarita Reyes Sierra and C. A. Coello Caoélfostudy of fithess inheritance and approximatieohniques
for multi-objective particle swarm optimization"n Ithe Proceedings of the Congress on Evolutionary
Computation, pp. 65--72, 2005.

[19]E. Ducheyne, B. De Baets, and R. deWulf, ‘itaefss inheritance useful for real-world applicag®@”, in
Evolutionary Multi-Criterion Optimization, ser. LN&2631. Berlin, Germany: Springer-Verlag, pp. 32;-4
2003.

[20] S. Trivedi and R. Chandramouli, "Secret Keyiation in Sequential Steganography”, IEEE Tratieacon
signal processing, Volume 53, No. 2, Feb 2005.

[21]V. R. Asghari and M. Ardebilipour, “Spread $pim Code Estimation by Genetic Algorithm”, Intational
Journal of Signal Processing, Vol. 1,Number 4, 2004

[22]J. S. Arora, O. A. Elwakeil and A. Chahand&ldbal optimization methods for engeering applmagi a
review”, Optimal Design Laboratory, 1995.

[23] K. Yen and L. Hanzo, "Genetic Algorithm Asgst Joint Multiuser Symbol Detection and Fading Cign
Estimation for Synchronous CDMA Systems”, IEEE T&attion on Selected Areas in Communication, Vol.
19, No. 6, June 2001.

[24] M. Salami and T. Hendtlass, “A fast evaluatstrategy for evolutionary algorithms”, Applied $&omputing,
Vol. 2, pp. 156--173, 2003.

[25] S. Haykin, “Communication Systems,” 4th editidohn Wiley & Sons, Inc, 2001.

[26] Z. Liu, Y. Kobayashi, S. Sawato, and A. InotA,robust audio watermarking method using sinecfion
patterns based on pseudorandom sequences”, inFRaoific Rim Workshop on Digital Steganography, 200

[27]1M. Davarynejad, M.-R. Akbarzadeh-T and CarlasCoello Coello, “Auto-Tuning Fuzzy Granulationrfo
Evolutionary Optimization”, in 2008 Congress on Exmnary Computation (CEC'2008), pp. 3573--3580,
IEEE Service Center, Hong Kong, June 2008.

[28] L.A. Zadeh, “Fuzzy sets and information grarity”, in: M. Gupta, R. Ragade, R. Yager (Eds.glvAnces in
Fuzzy Set Theory and Applications, North-Hollandkshing Co., pp. 3--18, Amsterdam, 1979,.



[291M. Husken, Y. Jin, B. Sendhoff, “Structure mpization of neural networks for evolutionary desig
optimization”, Soft Computing 9 (1), pp. 21--28,05)

[30]L. A. Rastrigin, “Extremal control systems’h Theoretical Foundations of Engineering Cyberise8eries.
Moscow: Nauka, Russian, 1974.

[31]1D. Ackley, “An empirical study of bit vectorufction optimizacion”, Genetic Algorithms and Siuead
Annealing, pp. 170--215, 1987.

[32]T. Back and H. P. Schwefel, “An overview of cdutionary algorithms for parameter optimization”,
Evolutionary Computation, 1(1), pp. 1--23, 1993.

[33]T. Béack, D. Fogel, and Z. Michalewicz, “Handiko of Evolutionary Computation”, Institute of Physi
Publishing Ltd, Bristol and Oxford University Presgew York, 1997.

[34] M.-R. Akbarzadeh-T, M. Davarynejad, N. ParfAdaptive Fuzzy Fitness Granulation for Evolutiopar
Optimization”, International Journal of Approximaeasoning, Vol. 49(3), pp. 523--538, 2008.

[35] M. Davarynejad, S. Sedghi, M. Bahrepour, C. Min, M. Akbarzadeh, C. A. Coello Coello, “Detegtin
Hidden Information from Watermarked Signal usinga@ration Based Fitness Approximation”, World

Conference on Soft Computing in Industrial Applioas, 2008.



