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Abstract

Classification is a mainstream within the machine learning community. As

a result, a large number of learning algorithms have been proposed. The

performance of many of these could highly depend on the chosen values of

their hyper-parameters. This paper introduces a novel method for address-

ing the model selection problem for a given classification task. In our model

selection formulation, both the learning algorithm and its hyper-parameters

are considered. In our proposed approach, model selection is tackled as a

multi-objective optimization problem. The empirical error, or training er-

ror, and the model complexity are defined as the objectives. We adopt a

multi-objective evolutionary algorithm as the search engine, due to its high

performance and its advantages for solving multi-objective problems. The

model complexity is estimated experimentally, in a general fashion, as nor-

mally done for any learning algorithm, through the VC dimension. Strategies

for choosing a single model or for constructing an ensemble of models from
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the resulting non-dominated set are also proposed. Experimental results

on benchmark data sets indicate the effectiveness of the proposed approach.

Furthermore, a comparative study shows that the obtained models are highly

competitive, in terms of generalization performance, with other methods in

the state of the art that focus on a single-learning algorithm, or a single-

objective approach.

Keywords: Model type selection, VC dimension, Multi-objective

optimization, Ensemble methods

1. Introduction1

Classification is a common task in supervised learning. Its popularity is2

due to its use in a wide range of applications, such as medical diagnosis,3

text categorization, etc. In the machine learning community, several learn-4

ing algorithms to fit a model have been proposed, including decisions trees,5

artificial neural networks, those based on statistical learning, etc. However,6

to date there is not a universal “best” model; this is referred to as the No7

Free Lunch Theorem [? ]. Moreover, many of these learning algorithms8

have a set of adjustable parameters, called hyper-parameters, whose fine-9

tuning can affect their generalization ability. Taking that into consideration,10

one might ask the questions: what learning algorithm should be used for a11

specific problem? Also, given a learning algorithm, what hyper-parameters12

values should be chosen? These questions are related to the issue of model13

selection.14

In the literature, there are several studies that address the model selection15

problem. Among these, some of them have approached it as an optimization16
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problem, differing in the search technique adopted, including gradient-based17

methods [? ? ? ], grid-search [? ], or bio-inspired meta-heuristics such as18

evolutionary algorithms [? ? ? ? ? ], artificial immune systems [? ] or19

particle swarm optimizers [? ? ? ], etc. Grid-search is the simplest one, but it20

could be time-consuming. Although gradient-based methods tend to be more21

(computationally) efficient, they are very susceptible to the initial search22

point and they can easily get trapped in a local optimum. Evolutionary23

algorithms have gained popularity because of their ease of use and their24

ability to overcome these shortcomings. Indeed, evolutionary algorithms can25

be less computationally expensive than grid-search, and are less susceptible26

to their initial search points than gradient-based methods. Furthermore,27

evolutionary algorithms do not require gradient information and can be easily28

parallelized.29

Another major issue in model selection is the criterion used for this pur-30

pose. In this direction, we can differentiate the works that consider a single-31

objective criterion and those that consider multiple criteria. The single-32

objective criterion approaches are generally based on an estimation of the33

generalization error through the well-known k fold cross validation [? ? ? ?34

]. Attention has also been paid to considering multiple criteria. These works35

typically consider the model performance and some criterion for penalizing36

the model complexity [? ? ]. Others have considered either to minimize the37

sensitivity and specificity [? ? ], or different estimates of the model perfor-38

mance [? ? ? ]. Alternatively, multiple criteria have also been approached39

by simplifying the objectives in a weighted linear combination of these [? ]40

instead of simultaneously optimizing the objectives.41
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Despite these efforts, most of the existing studies consider a single model42

type (i.e., the learning algorithm is fixed a priori and the model selection43

task consists of choosing its hyper-parameters), which could not be the most44

suitable for a particular problem. To the best of the authors’ knowledge,45

nowadays the works that address both the learning algorithm and the hyper-46

parameters selection are scarce (e.g. [? ? ? ]), and most of them tackle47

the problem as a single-objective one. Notwithstanding, the disadvantages48

of using a single-objective approach for hyper-parameters optimization with49

respect to the generalization performance have been pointed out by several50

authors [? ? ? ].51

Inspired from previous ideas, we address both the problem of choosing52

a learning algorithm and its hyper-parameters during the model selection,53

which is faced as a multi-objective optimization problem. The error on54

training samples and the model complexity are considered as the objectives55

in our formulation. Unlike previous works in which the model complexity56

estimation depends on the learning algorithm (e.g., the number of support57

vectors in support vector machines), we propose to estimate it through the58

VC-dimension (for Vapnik-Chervonensky dimension) [? ].59

The main contribution of this paper is a general model selection frame-60

work, whose formulation makes it applicable to any learning algorithm. Ad-61

ditional contributions of the paper are as follows: (i) a multi-objective ap-62

proach for tackling the model type selection problem (i.e., model type plus its63

hyper-parameters), (ii) the use of the VC-dimension in the model type selec-64

tion formulation for estimating the model complexity to any model type, and65

(iii) since the outcome of the multi-objective optimization process is a set of66
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solutions (models), that satisfy an optimal trade-off between the objectives67

from which a model should be chosen, the strategies proposed for construct-68

ing a final classification model from the non-dominated solutions set are an69

additional contribution. The performance of our proposed approach is as-70

sessed on several binary classification benchmark data sets widely used in the71

literature. The experimental results and comparisons show that our proposal72

is able to select highly effective classification models.73

The remainder of this paper is organized as follows. In Section 2, we74

describe the VC-dimension theory and the way in which it can be estimated75

in an experimental fashion. Section 3 presents our proposal, describing in76

detail how the model selection problem is formulated as a multi-objective one.77

It also describes the proposal for constructing a final model from solutions78

in the resulting non-dominated front. Section 4 presents the experiments79

performed to test the validity of our proposal using benchmark data sets,80

and the results obtained from these. Finally, the main conclusions and future81

work direction paths are presented in Section 5.82

2. VC Dimension Estimation83

Vapnik and Chervonenkis defined the VC dimension [? ] as a measure of84

the capacity of a learning algorithm. The VC Dimension is defined through85

the notion of “shattering”, which is described as follows: if we have a set of86

n samples that can be separated by a set of indicator functions F (functions87

that map a sample to its corresponding binary label) in all 2n possible ways,88

we say that the set of samples is shattered by the set of functions F . The89

VC dimension can be formally defined as [? ]:90
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A set of functions F has a VC dimension h if there are h91

samples that can be shattered by the set of functions F , but92

there are not h + 1 samples that can be shattered by the set of93

functions F .94

Notwithstanding that the VC dimension can be seen as a measure of95

the model complexity [? ], exact analytic estimates of this are only known96

for a few classes of functions (linear models), whereas for many others it is97

unknown. To overcome this, Vapnik et al. [? ] proposed a method to exper-98

imentally estimate the effective VC dimension of a model. This approach is99

based on the best fitting between an analytic formula and measurements of100

the maximum deviation between the error rates on two independent data sets101

of varying sizes. Conceptually, this approach can be applied to any learning102

algorithm [? ].103

The maximum deviation, ξ (n), of the error rates between two indepen-104

dent labeled data sets is defined as:105

ξ (n) = max
ω

(
| err

(
Z1

n

)
− err

(
Z2

n

)
|
)

(1)

where Z1
n and Z2

n are two independent labeled data sets of size n, err (Zn) is106

the error rate on the data set Zn, and ω is the set of parameters of a binary107

classifier.108

As it is stated in [? ], ξ (n) is bounded as follows:109

ξ (n) ≤ Φ (n/h) (2)

where110
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Φ (τ) =


1 if τ < 0.5

a
log (2τ) + 1

τ − k

(
1 +

√
1 +

b (τ − k)

log (2τ) + 1

)
if τ ≥ 0.5

(3)

where τ = n/h, and the values of the parameters a = 0.16 and b = 1.2 were111

empirically determined. The value of k = 0.14928 is determined such that112

Φ (0.5) = 1.113

Since the bound in Equation (2) is tight, it can be assumed that114

ξ (n) ≈ Φ (n/h) (4)

The VC dimension h can be estimated from Equations (3) and (4). The115

maximum deviation ξ (n) can be estimated by simultaneously minimizing the116

error rate on one labeled set and maximizing the error rate in the other one.117

This can be accomplished through the following procedure [? ? ]:118

1. Generate a random labeled set Z2n of size 2n.119

2. Split the set Z2n into two sets of size n: Z1
n and Z2

n.120

3. Flip the labels of the set Z1
n, to form Z

1

n.121

4. Merge the two sets: Z = Z
1

n ∪ Z2
n, and train the binary classifier with122

the set Z.123

5. Evaluate Z1
n and Z2

n with the trained classifier. Measure the difference124

of the error rates between the two sets: ξ (n) =| err (Z1
n)− err (Z2

n) |.125

This procedure gives an estimate of ξ (n) from which an estimate of h can126

be obtained. In order to reduce the variability in the estimation, this proce-127
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dure is repeated for different data sets varying the samples sizes n1, . . . , nk.128

Moreover, to reduce the variability due to the random samples, the procedure129

is repeated several times (mj) for each sample set of size ni. The average130

value for each experiment is taken for each ni: ξ (n1) , . . . , ξ (nk). The effec-131

tive VC dimension can be estimated by finding the parameter h∗ that best132

fits ξ (n) with the theoretical formula Φ (n/h), as follows:133

h∗ = argmin
h

k∑
i=1

[
ξ (ni)− Φ (ni/h)

]2
(5)

3. Multi-Objective Approach for Model Selection134

The proposed approach formulates the model selection problem as a135

multi-objective optimization one, where the training error and the model136

complexity are considered as the objectives to be minimized. The general137

diagram of our proposal is shown in Figure 1.138

The process starts by creating an initial population. In our problem,139

each individual in the initial population represents a potential model for a140

classification task. After that, we compute the components to be optimized:141

the training error and the model complexity, which is estimated in a general142

fashion via the VC-dimension, as it is explained in Section 2. Next, the143

models are evolved through by applying the evolutionary operators to create144

an offspring population, which represents new potential models for the given145

classification task. Thereafter, the models that satisfy the best trade-off146

between the two objectives to be optimized are stored in an external archive.147

This process is repeated until a stopping criterion is reached. At the end148

of the search, a final classification model is constructed, which is used for149
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predicting the class labels of unknown samples.150

Figure 1: General diagram for the multi-objective model selection process.

In the proposed approach, we consider five different model types: support151

vector machines (SVMs), neural networks (NNs), random forest (RF), j48152

and random trees (RTs). All of these are available in the WEKA [? ] toolbox,153

and LibSVM [? ] for the SVM. Table 1 shows the learning algorithms154
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considered in our study. It also shows for each method the corresponding155

hyper-parameters. In the rest of the section we explain our proposal in156

detail.157

Table 1: Description of the learning methods considered in our study.

Learn. Alg. Hyper-parameters Description
J48 Confidence: A confidence threshold for prun-

ing.
It constructs a pruned or
unpruned C4.5 decision tree.

K: A minimum number of instances per leaf.
NNs Neurons: Number of neurons in the hidden

layer
It constructs a multi-layer
perceptron using the
backpropagation algorithm.lr: Learning Rate for the backpropagation al-

gorithm.
Momentum: Momentum Rate for the back-
propagation algorithm.
Epochs: Number of epochs to train through.
Seed: The value used to seed the random
number generator.

RF Trees: Number of trees to build. It constructs a forest of random
trees.K: Number of features to consider.

Depth: The maximum depth of the trees.
Seed: The value used to seed the random
number generator.

RT K: Number of features to randomly investi-
gate.

It constructs a tree that considers
K randomly chosen attributes at
each node. It does not perform a
pruning step.

Depth: The maximum depth of the tree.
Seed: Seed used for the random number gen-
erator.

SVMs Kernel: The kernel type to be used. It constructs a support vector
classifier.d: The degree of a polynomial kernel.

γ: Gamma value of an RBF kernel.
B: A bias value in polynomial kernel.
C: The complexity constant.
Seed: Seed for the random number generator.

3.1. Multi-Objective Evolutionary Algorithms158

A multi-objective optimization problem (MOOP) can be stated as follows:159

minimize f (x) = [f1 (x) , . . . , fl (x)]T

subject to x ∈ X
(6)
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where x = [x1, . . . , xn]T ∈ Rn is a decision variables vector, fi (x), i =160

1, . . . , l, are the objective functions, and X is the set of feasible solutions.161

When the objectives in an MOOP are in conflict, there is not a single162

solution that would be the best for all of them. Pareto optimality provides a163

framework for dealing with such cases. We say that a solution x1 dominates164

a solution x2 (denoted by x1 � x2) if and only if x1 is better than x2 at least165

in one objective and it is not worse in the rest, i.e.,166

∀i : fi
(
x1
)
≤ fi

(
x2
)
∧ ∃i : fi

(
x1
)
< fi

(
x2
)

(7)

A solution x∗ is Pareto optimal if there is not another solution x′ ∈ X167

such that x′ � x∗. The set of all Pareto optimal solutions is called Pareto168

optimal set, and the image of this set in objective function space is referred169

to as the Pareto Front.170

Evolutionary algorithms are stochastic search techniques inspired in Dar-171

win’s evolutionary theory. These algorithms have been successfully used for172

solving MOOPs, mainly because they can obtain several elements of the173

Pareto optimal set in a single run, and because they are less susceptible than174

mathematical programming techniques to the shape and continuity of the175

Pareto front [? ? ].176

Since the seminal work of Schaffer [? ], a considerable number of multi-177

objective evolutionary algorithms (MOEAs) have been proposed, such as:178

Multi-Objective Genetic Algorithm (MOGA) [? ], Niched Pareto Genetic179

Algorithm (NPGA) [? ], Strength Pareto Evolutionary Algorithm (SPEA) [?180

], and its improved version SPEA2 [? ], Pareto Archived Evolutionary Strat-181

egy (PAES) [? ], Non-dominated Sorting Genetic Algorithm (NSGA) [? ]182
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and NSGA-II [? ], and Multi-Objective Evolutionary Algorithm based on183

Decomposition (MOEA/D) [? ], among others. A comprehensive review of184

MOEAs can be found in [? ? ? ].185

In the context of multi-objective model selection, evaluating the objec-186

tives is computationally expensive, inasmuch as each candidate model has187

to be trained and tested, possibly several times. Furthermore, in the model188

selection problem, the optimal model is unknown a priori. The latter makes189

necessary that the generated solutions are diverse to each other in order to190

use a posteriori processing for constructing a final model. Taking this infor-191

mation into account, in this study we used MOEA/D, due to its high perfor-192

mance over different difficult problems [? ]. Additionally, MOEA/D has a193

lower computational complexity than other MOEAs (such as the NSGA-II),194

and is able to provide well-distributed solutions along the Pareto front [? ].195

3.1.1. MOEA/D196

MOEA/D [? ] is one of the most recent MOEAs reported in the state197

of the art. It is based on the idea of decomposing an MOOP into a number198

of scalar objective optimization problems, also called subproblems, through199

a weighted aggregation of the objectives. MOEA/D minimizes all these sub-200

problems iteratively in a single run. A neighborhood relation based on the201

distance of the aggregation weights vectors is defined among the subprob-202

lems. The optimal solutions to two neighboring subproblems should be very203

similar. Each subproblem has its best solution found so far in the population204

and is optimized in MOEA/D by using information from its neighbors.205

A description of MOEA/D is presented in Algorithm 1. MOEA/D starts206

by creating an empty external population (EP ) (step 1), which is used207
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to store the non-dominated solutions found so far during the search. In208

MOEA/D, the T closest weight vectors in
{
λ1, . . . , λN

}
to a weight vector λi209

constitute the neighborhood of λi. Thus, for each vector λi, it is computed210

the Euclidean distance between it and the others, and their T closest weight211

vectors are determined, where T defines the neighborhood size. The indexes212

of such T closest weight vectors are assigned to B (i) (step 2). Next, the213

initial population of N individuals is randomly created (step 3). The indi-214

viduals of the initial population are evaluated by using the fitness functions.215

For each objective, the lowest value attained by the individuals in the initial216

population is used to initialize a reference vector z (step 4).217

The process to generate a new solution y comes here. To do this, the218

parents are randomly selected from the neighborhood, to which evolutionary219

operators (such as crossover and mutation) are applied to create y (step 7).220

In case y violates any constraint, the next step consists of applying some221

repair heuristic in order to make y a feasible solution y′ (step 8). Next,222

reference vector z is updated in case an objective with a lower value is found223

(step 9). After that, the neighboring solutions are updated by considering224

all the neighbors of the ith subproblem and replacing xj by y′ if y′ performs225

better than xj (step 10). The external population EP that was initialized in226

step 1 is updated by the new generated solution if and only if this solution is227

non-dominated with respect to those that are in EP . Moreover, if the new228

solution dominates any of those stored in EP , such solutions are removed229

from EP (step 11). Steps 7 to 11 are repeated while a stopping criterion is230

not reached. A detailed description of MOEA/D is beyond the scope of this231

paper, but interested readers are referred to [? ] for more information about232
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this approach.233

Algorithm 1 MOEA/D [? ]

Require: A stopping criterion,
N : number of subproblems considered in MOEA/D,
A uniform spread of N weight vectors: λ1, . . . , λN ,
T : the number of weight vectors in the neighborhood of each weight

vector
Ensure: EP : an external population

1: Initialize EP → ∅
2: Compute the Euclidean distance between any two weight vectors and then

work out the T closest weight vectors to each weight vector. For each i =
1, . . . , N , set B (i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the closest weight
vectors to λi.

3: Generate an initial population x1, . . . ,xN

4: Initialize z = [z1, . . . , zm] by setting zj = min1≤i≤N fj
(
xi
)

5: while stopping criterion is not satisfied do
6: for i = 1 to N do
7: Randomly select two indexes k, l from B (i), and then generate a new

solution y from xk and xl by using genetic operators.
8: Apply a repair/improvement heuristic on y to produce y′.
9: Update z, for each j = 1, . . . ,m if zj > fj (y), then set zj = fj (y)

10: Update of neighboring solutions: For each index j ∈ B (i), if
gte
(
y′λj , z

)
≤ g

(
xjλj , z

)
, then set xj = y′, FV j = F (y′)

11: Update of EP: Add F (y′) to EP if it is non-dominated with respect to
the vectors stored in EP, and remove from EP the vectors dominated by
F (y′).

12: end for

13: end while

As evolutionary operators we used a differential evolution crossover-mechanism [?234

], and polynomial-based mutation [? ]. In the differential evolution operator235

adopted ,each element ȳj of a new solution ȳ = [ȳ1, . . . , ȳn] is generated as236

follows:237
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ȳj =

x
i
j + F ×

(
xkj − xlj

)
with probability CR,

xij with probability 1− CR
(8)

where CR and F are two control parameters.238

Polynomial-based mutation generates the new solution, y = [y1, . . . , yn]239

as follows:240

yj =

ȳj + ∆j × (Ub − Lb) with probability pm

ȳj with probability 1− pm,
(9)

where pm is the probability of mutation, Ub and Lb are the upper and lower241

bounds, respectively, and ∆j is a polynomial distribution for random numbers242

generation in the following way:243

∆j =

(2× rand)
1
η+1 − 1 if rand < 0.5

1− [2× (1− rand)]
1
η+1 otherwise

(10)

where “rand” is a uniform random number in [0, 1], and η is the distribution244

index for the mutation operator.245

One of the key issues in MOEA/D is the method used for decomposing246

the MOOP into a number of scalar objective problems. A simple method247

in this regard is the weighted sum approach, but it has the disadvantage of248

not being able to generate concave portions of a Pareto front [? ]. We used249

instead, the Tchebycheff approach [? ], due to the fact that it is more robust250

to a concave shape of the Pareto front than the weighted sum approach.251

However, any other decomposition approach could be used in MOEA/D.252
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Using the Tchebycheff approach, an MOOP is decomposed into a N scalar253

optimization subproblem as follows:254

minimize g (x | λ, z∗) = max
1≤i≤m

{λi | fi (x)− z∗i |} (11)

where λ = [λ1, . . . , λm] is a weight vector, z∗ = [z1, . . . , zm] is a reference255

point, and m is the number of objectives in the problem.256

In the literature, several repair heuristics have been proposed [? ]. Nev-257

ertheless, we formulate the multi-objective model selection problem as an258

unconstrained one. For this reason, a repair heuristic is not used in our259

study; therefore, step 8 is not performed. The following sections explain the260

proposed approach for multi-objective model selection using MOEA/D.261

3.2. Representation262

Evolutionary Algorithms work with a population of solutions. In our pro-263

posed approach, each solution, also called individual, represents a potential264

model for the classification task. As previously stated, the task approached265

by our model selection proposal is to choose among a pool of learning al-266

gorithms and their corresponding hyper-parameters. To achieve this task,267

each model (the learning algorithm plus its hyper-parameters) should be en-268

coded in a D-dimensional vector. In this study, each solution is encoded in269

a 7-dimensional vector as follows:270

xi =
[
xim, x

i
hp1
, . . . , xihpD−1

]
(12)

where xim controls the learning algorithm, and
[
xihp1 , . . . , x

i
hpD−1

]
represents271

the hyper-parameters for the learning algorithm.272
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Since the hyper-parameters are numerical values, and in order to have273

them as accurate as possible, we used a real encoding for the individuals.274

By applying the evolutionary operators, such as crossover (Eq. (8)) and275

mutation, the individuals are evolved in an iterative process. One should276

note that there are some discrete variables, such as xim, which represent a277

learning algorithm, or xihpx , which could represent a kernel type in the SVM278

case. For the evolutionary operators, this type of variable is internally treated279

as a real number, but we round it off to its nearest allowable discrete value.280

From Table 1, we can observe that different learning algorithms require281

different hyper-parameters. For example, in J48 two hyper-parameters are282

considered, whilst in SVMs there are six hyper-parameters. Thus, xim and283

the six hyper-parameters are the seven variables in our representation. The284

configuration given by an individual and the training set are used to fit a285

model.286

The seven variables constitute the search space for our problem. An initial287

population is created using the Latin Hypercube sampling technique [? ]288

with the aim of having a representative distribution of solutions in the search289

space. Once the initial population is created, it is used for producing an290

offspring population by applying the evolutionary operators until a stopping291

criterion is satisfied, and a set of non-dominated solutions is obtained.292

3.3. Fitness Functions293

In the proposed approach, the model selection problem is tackled as a294

multi-objective optimization problem, and an MOEA is used for solving it.295

Since the search is based on a population of solutions, it is required to have296

a way to measure how well a model performs in order to choose the best one.297
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The fitness function is in charge of this, and its definition is a crucial issue298

in model selection. One could try to estimate the effectiveness of the model299

based on the error on the training samples, also known as empirical error,300

and the optimization problem would try to minimize that error. Nonetheless,301

this would result in optimistic estimations of model performance, and could302

lead to highly complex models, causing the problem known as over-fitting.303

In other words, the model has a good performance on the training samples,304

but not on unseen samples (see [? ? ? ] for more information about this305

problem). To overcome this handicap, the model complexity should also be306

controlled. Taking this into account, in this paper we propose not only to307

minimize the error on the training data, but also to minimize the model308

complexity.309

The VC-dimension is a measure of the capacity of the model, which is310

related to its complexity, and it is used in the present study. The fitness311

functions defined for our problem are stated as follows:312

err =
1

N

N∑
i=1

L (yi, y
∗
i )

complexity = argmin
h

k∑
i=1

[
ξ (ni)− Φ (ni/h)

]2 (13)

where N is the number of samples in the training set, yi is the class label, y∗i313

is the class predicted by the model, L (yi, y
∗
i ) is a loss function, ξ (ni) is the314

experimental maximum deviation error rate of two observed independent315

labeled data sets, and Φ (ni/h) is the expectation of the largest deviation316

error between two sets (see Section 2 for details about complexity estimation).317

We used the 0/1 loss function because it is well suited for classification tasks.318
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The 0/1 loss function is defined as:319

L (yi, y
∗
i ) =

1 if y∗i 6= yi

0 if y∗i = yi

(14)

In consequence, the goal of performing this optimization is to simulta-320

neously minimize the training error and model complexity. The outcome321

of this optimization step is a set of potential models that satisfies the best322

trade-off between the objectives, from which a model should be chosen. The323

next section explains how we approach this issue.324

3.4. Constructing a Final Model325

Once the evolutionary search is completed, a set of non-dominated so-326

lutions is obtained. Mathematically, all of them are equally acceptable so-327

lutions of the multi-objective optimization problem and, in our case, each328

of them represents a potential model for a given classification task. There-329

fore, it is desirable to select one model to be used to predict new samples330

from such set. In model selection for classification tasks, we have to choose331

the model with the highest possible generalization capability. Nevertheless,332

it is not clear what classification model from the non-dominated set is the333

“best” one. In this paper, we studied three strategies for constructing a final334

classification model, which are explained in the rest of this section.335

3.4.1. Choosing a Single Model336

As we previously stated, for our problem we seek the solution with the337

best possible generalization ability. In order to identify such solution, we338

studied the performance of the non-dominated solutions on unseen samples.339
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Figure 2: Behavior of non-dominated solutions on training samples and test samples

We noticed that the best solutions are those located at the knee of the curve,340

while solutions with low complexity and high complexity lead to models341

with a poor generalization performance. Both problems are well-known in342

machine learning as under-fitting and over-fitting, respectively. Figure 2343

depicts an example of this behavior for a particular case. It also shows the344

trade-off between the training error and the model complexity, such that by345

increasing the model complexity, the training error is reduced.346

We empirically found that in most cases, the solution with a good gen-347

eralization performance is the one nearest to a reference point z∗, which is348

defined as:349

z∗j = min
1≤i≤L

fj
(
xi
)

for j = {1, 2} (15)

where L is the cardinality of the non-dominated set.350

As it is shown in Figure 2, the objectives are measured in different scales.351
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In order to avoid that one objective has a higher impact than the other one in352

the distance computation, both objectives are firstly normalized in the range353

0 to 1. Subsequently, the Euclidean distance is computed on the normalized354

objective vector. In the end, the closest solution is chosen1, and is used355

to predict future samples of the problem. One should note that since the356

objectives are normalized, the reference vector z∗ corresponds to the (0, 0)357

point. Figure 2 shows with a triangle the solution that would be chosen with358

this strategy.359

3.4.2. Ensemble of the Whole Non-Dominated Front360

Ensembles of classifiers are based on the idea of combining the predicted361

outputs from different individual classification models. They have been suc-362

cessfully used for improving the performance of individual models [? ? ]. One363

should remember that the output of the MOEA is a set of non-dominated364

solutions. Based on this, one might ask why not to construct an ensemble365

with the potential models (solutions) in the non-dominated front instead of366

choosing a single model.367

Now the problem is to determine which models should be used in the en-368

semble. In the absence of knowledge about the preferences, all non-dominated369

solutions are equally good. With these ideas in mind, we used all of them for370

constructing an ensemble. One should recall that the non-dominated front371

could contain models with a very low complexity or a very high complexity,372

which could lead to over-fitted and under-fitted models, respectively. In a373

1One should note that this is a suggestion. If the model, however, does not satisfy the
performance requirements, any other solution can be chosen from the non-dominated set
without performing a new search.
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majority vote scheme all models are equally important, even those whose374

generalization performance could not be good enough. For that reason, we375

argue in favor of a weighted linear combination approach over a majority vote376

one2. This is because models with a less satisfactory performance are kept in377

the ensemble, but with a lower weight. Therefore, the final prediction given378

by the classification model would consist of a weighted linear combination of379

the individual predictions, as follows:380

y∗ =
L∑
i=1

ωiy
∗
i (16)

where L is the number of single classification models, and is equal to the381

cardinality of the non-dominated set, y∗i is the prediction given by the ith382

single model, and ωi is the weight associated to that model. The weight383

vector ω = [ω1, . . . , ωL] is a normalized vector, whose values depend on the384

distances between the reference point (defined by Equation (15)) and the385

potential solution. The normalized weight vector is computed as follows:386

ωj =

1
dj∑L
i=1

1
di

(17)

where dj is the Euclidean distance between the jth solution and the reference387

point z∗.388

Alternatively, one could think in exploring other well-known ensemble389

techniques, such as bagging or boosting, or even trying to optimize the en-390

semble performance. Nevertheless, the main focus in this stage of our study391

2Please note that the majority vote ensemble is a special case of the weighted linear
combination approach.
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is not the ensemble itself, but the optimization of the hyper-parameters for392

the classifiers. Our aim is to find the hyper-parameters that satisfy the best393

trade-off between the objectives, as well as to find ways to construct a classi-394

fication model from the resulting non-dominated front, which could then be395

used for the prediction of unknown samples. These issues could be explored396

as part of our future work.397

3.4.3. Ensemble of Some Solutions in the Non-Dominated Front398

It is well-known from machine learning that for constructing an ensemble,399

two conditions have to be satisfied: the individual models should be accurate400

(i.e., the performance should be better than a random guessing), and they401

have to be diverse (i.e., single models should incur in different errors on new402

samples) among them [? ]. This issue is explored in the third strategy for403

the final model construction. Therefore, for constructing an ensemble in this404

third strategy, we need to choose a subset of potential models in the non-405

dominated front, such that these models are accurate and diverse among406

them.407

We would like to remark that the models were optimized during the op-408

timization step, and the ones that satisfy the best trade-off are obtained as409

a result of this. Thus, we can assume that the models in the resulting non-410

dominated set are accurate (i.e., their performance is better than a random411

one). By making this, the problem is reduced to choosing a subset of these412

models that are as diverse as possible among them, which are used in the413

ensemble. In order to determine such subset, a forward aggregation approach414

is used. In the forward aggregation approach, we start by adding the solution415

closest to the reference point, z∗ (as it was defined in Equation (15)). After416
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that, a second model that maximizes the diversity is added, followed by a417

third model and so on. This process is repeated while the diversity among418

the models is not deteriorated.419

Under the adopted approach, a diversity measure is required. There are420

a number of diversity measures reported in the literature, and a review of421

these can be found in [? ]. In this study, we used one based on entropy, but422

any other can also be used. This measure is defined as follows:423

E =
1

N

N∑
i=1

1

L− dL
2
e

min {l (si) , L− l (si)} (18)

where N is the number of samples, L is the number of individual models,424

and l (si) is the number of models that correctly predict the sample si. This425

measure ranges between 0 and 1, where 0 indicates no difference and 1 is the426

highest possible diversity.427

Finally, the prediction given by the ensemble is based on the weighted428

linear combination of the predictions of the individual models, as it is shown429

in Equation (16).430

3.5. Final Remarks431

One should note that under the proposed approach the expert’s knowl-432

edge is not exploited. This could be a key issue in order to improve the433

performance of the models. In the agnostic learning vs. prior knowledge434

challenge [? ] it was shown that, even when prior knowledge outperforms435

agnostic learning for most of the problems, there were some problems for436

which agnostic learning performs better than prior knowledge. In conse-437

quence, it is difficult to know when it is going to be better to use this kind of438
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knowledge. Based on the results of this challenge, the organizers concluded439

that the agnostic learning approach is very powerful. Furthermore, there are440

cases in which this knowledge could not be available. For these reasons, we441

bet in favor of not using expert’s knowledge.442

Notwithstanding, if prior domain-knowledge is available, this could be443

integrated in several manners in the proposed approach. For example, based444

on the characteristics of the problem at hand, an expert could suggest that a445

particular learning algorithm would be more suitable than the others. This446

suggestion could be used for fixing a priori the learning algorithm. Thus,447

the search would be performed under its hyper-parameters set, reducing the448

search space. The expert’s knowledge could also be used for choosing a single449

solution from the non-dominated front. Another way in which prior knowl-450

edge could be used would be during the ensemble construction, through the451

assignment of weights to each classifier. For our experiments, we assumed452

that expert’s knowledge is not available. Next section describes the experi-453

ments and results obtained by our proposal.454

4. Experiments and Results455

In this section, we describe the experiments performed as well as the re-456

sults obtained by our proposal using a benchmark test suite. We present457

a comparative study between the three proposed strategies for construct-458

ing a final classification model from the resulting non-dominated front. We459

also present statistical tests to validate our results when compared to other460

approaches reported in the specialized literature.461
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4.1. Experimental Settings462

In order to evaluate the feasibility of our proposal in the model selection463

problem, we used the IDA benchmark3 data sets introduced by [? ]. This464

benchmark is well-suited for this purpose and it has been widely used in465

several related studies (e.g. [? ? ? ? ? ? ]). Table 2 describes the suite466

of thirteen benchmark data sets, which are diverse in the number of samples467

and features. These data sets correspond to binary classification problems4,468

and have been previously pre-processed in [? ], in which the samples with469

missing values have been removed and all features have been standardized,470

i.e., all features have mean zero and a standard deviation of one.471

The typical experimental protocol used with this benchmark was intro-472

duced by [? ], and is sometimes called the median protocol. The median473

protocol consists on performing the model selection on the first five parti-474

tions. After that, the median values of the hyper-parameters resulting from475

those partitions are taken, which are used to estimate the error rate for each476

partition. However, this protocol can introduce an optimistic bias into the477

performance estimation [? ]. In order to overcome this bias in the perfor-478

mance evaluation, the model selection process is performed independently479

for each partition of each data set; this protocol is known as the internal480

protocol. The use of the internal protocol leads to a total of 1140 model481

selection experiments.482

The parameters configuration used in our experiments is the following.483

3Available at http://www.raetschlab.org/Members/raetsch/benchmark
4Without loss of generality, the experiments are performed on binary classification

problems. Multi-class classification problems can be approached with multiple binary
classifiers.
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Table 2: Details of the data sets used in our experiments. The table shows the number
of features for each data set and the number of instances for training and testing for each
replication of each data set.

ID Data set Feat. Training
Samples

Testing
Samples

Replications

1 Banana 2 400 4900 100
2 Breast Cancer 9 200 77 100
3 Diabetes 8 468 300 100
4 Flare Solar 9 666 400 100
5 German 20 700 300 100
6 Heart 13 170 100 100
7 Image 20 1300 1010 20
8 Ringnorm 20 400 7000 100
9 Splice 60 1000 2175 20
10 Thyroid 5 140 75 100
11 Titanic 3 150 2051 100
12 Twonorm 20 400 7000 100
13 Waveform 21 400 4600 100

For the differential evolution crossover, we fixed the value of F = 0.5,484

CR = 0.7. With respect to the mutation operator, the mutation proba-485

bility pm was fixed to 0.1 and index distribution to 20. These parameters486

were experimentally tuned by evaluating the performance under each con-487

figuration of pm = {0.1, 0.2, 0.3}, CR = {0.5, 0.6, 0.7, 0.8, 0.9}, and F =488

{0.3, 0.4, 0.5, 0.6, 0.7} on the first five partitions of splice data set, one of the489

largest both in number of training samples and features. The stopping crite-490

rion is defined as performing 1,000 fitness functions evaluations. To achieve491

this, the population size is set to 20, and the number of generations to 50.492

Moreover, the VC-dimension for each model is estimated experimentally.493

Thus, it is required to train and to test a number of times each model. In494

our experiments, we fixed this number to 10. Next, we present the results495
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reached by our proposal, comparing the proposed strategies for a final model496

construction and with other evolutionary and non-evolutionary approaches497

for model selection.498

4.2. Experimental Results and Discussion499

In this section, we present the results obtained by our proposal (MOMTS,500

Multi-Objective Model Type Selection) so as to demonstrate its feasibility501

for the model selection problem. Table 3 shows the average error rates and502

standard deviations on the test sets attained for the three proposed strategies503

for constructing a final model, i.e., choosing a single model (MOMTS-S1),504

ensemble of the whole non-dominated front (MOMTS-S2), and the ensemble505

of some solutions in the non-dominated front (MOMTS-S3). As a baseline,506

we report the results obtained by using random forest (RF) with its default507

hyper-parameters, which is a standard learning algorithm based on an en-508

semble of decision tress.509

We compare our results with those reported by Cawley and Talbot [?510

], who used Bayesian regularization at the second level of inference, adding511

a regularization term in the model selection criterion. Furthermore, in or-512

der to make a fair comparison, we also performed experiments consider-513

ing approaches that consider different learning algorithms and their hyper-514

parameters during the model selection process. For that sake, we used515

PSMS [? ] and SUMO [? ], which are two evolutionary approaches that were516

proposed for model selection. PSMS is a single-objective approach based on517

a particle swarm optimizer that minimizes the error rate estimated through518

k fold cross validation. SUMO adopts a genetic algorithm as a search engine519

and the fitness function can be defined as minimizing some measure obtained520
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via some evaluation strategy; in our case the measure was fixed to be the er-521

ror rate and the evaluation strategy to be the k fold cross validation. In both522

cases, the number of particles/individuals was set to 20, and the number of523

iterations/generations to 50, resulting in 1,000 fitness function evaluations.524

This is the same number of fitness function evaluations set for our proposed525

approach. The reference results used the same 100 partitions (20 in case of526

the image and splice data sets) for training and testing, and also used the527

same experimental protocol (i.e., the internal protocol), making the results528

directly comparable.529

Figure 3 shows the non-dominated fronts generated by our proposal for530

some data sets in a particular trial. It is expected that these non-dominated531

fronts are an approximation to the true Pareto front. We can observe that532

different solutions are distributed along the non-dominated front. We can533

also note that the non-dominated front is formed by solutions that represent534

different learning algorithms. Each one of these solutions corresponds to535

models with different levels of complexity. Although, in some cases, a learning536

algorithm is represented by more than one solution, these correspond to537

different configurations of its hyper-parameters, which could lead to diverse538

models. Thus, in the resulting non-dominated front there are models, which539

are learned by different learning algorithms with a different hyper-parameters540

configuration5.541

5The full list of the models generated by our proposed method for each partition of each
data set is available at http://ccc.inaoep.mx/~arosalesp/Resources/Models.zip
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(a) Breast-Cancer (b) german

(c) splice (d) twonorm

Figure 3: Non-dominated fronts generated from a particular trial of the proposed method.
The solutions in the non-dominated front represent different learning algorithms with
different hyper-parameter configurations.

4.2.1. Comparison of Strategies for Constructing the Final Model542

The results of the proposed strategies for constructing a final model are543

shown in the last three columns of Table 3. The results of the ensemble ap-544

proaches outperformed those obtained when a single model is chosen in most545

cases. The single model was better than the ensemble of some solutions in546

the non-dominated front in 2 out of 13 data sets (ringnorm and twonorm547

data sets). This seems reasonable insomuch as it is well-known that using an548

ensemble of models helps to improve the predictions. Between the two en-549
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sembles approaches, the one based on the whole non-dominated front showed550

better results in 12 out of 13 data sets.551

An ANOVA statistical test with a 95% of confidence is applied so as552

to determine if the difference between the proposed strategies is significant,553

and Tukey’s test is used as a post-hoc test. The results obtained by this554

test are shown in Table 4. In this table, we can note that the analysis of555

variance showed a statistical significance difference for most of the data sets,556

except for the flare solar one, to which the post-hoc test is not applied.557

According to the pairwise comparisons, we can also note that the ensemble558

of some solutions of the front (MOMTS-S3) performs significantly better559

than the single model approach in 6 out of 13 data sets (banana, diabetes,560

german, heart, image, and titanic). On the other hand, the ensemble of the561

whole front (MOMTS-S2) showed to be significantly better than the single562

model approach in 10 out of 13 benchmark data sets (banana, breast cancer,563

diabetes, german, heart, image, splice, thyroid, titanic, and waveform), and564

also significantly outperformed the ensemble of some solutions approach in565

10 out of 13 data sets (banana, diabetes, german, heart, image, ringnorm,566

splice, thyroid, twonorm, and waveform). It seems clear that the ensemble567

of the whole front approach is the best of the three approaches. However,568

for assessing the statistical difference among them over the different data569

sets, Demšar [? ] recommends the Friedman’s test for comparing multiple570

classifiers over multiple data sets. This test is performed with a 95% of571

confidence, and the Nemenyi test as the post hoc test. According to these572

tests, the ensemble of the whole front approach is statistically superior to the573

others.574
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Table 4: F -statistic obtained from the ANOVA test and q-values from the Tukey HSD
test for performing all possible pairwise comparisons among the proposed strategies for a
final model construction. The critical values at the 0.05 level for ANOVA test are 3.16
(F (2, 57)) for the image and splice data sets and 3.03 (F (2, 297)) for the rest. The critical
values at 0.05 level for the Tukey HSD test are 3.41 for the image and splice data sets (57
degrees of freedom) and 3.34 for the rest of the data sets (297 degrees of freedom). Cases
that exceed the critical value are considered as a difference that is statistically significant
at the fixed level and are marked with an asterisk (∗).

ANOVA
q Tukey HSD

MOMTS-S1 vs. MOMTS-S1 vs. MOMTS-S2 vs.
Data Set F MOMTS-S2 MOMTS-S3 MOMTS-S3

Banana 294.899∗ 33.967∗ 12.584∗ 21.384∗

Breast Cancer 10.178∗ 6.380∗ 3.085 3.294
Diabetes 117.12∗ 21.643∗ 11.027∗ 10.616∗

Flare Solar 0.932 −− −− −−
German 93.107∗ 19.293∗ 10.042∗ 9.251∗

Heart 72.394∗ 16.734∗ 11.032∗ 5.705∗

Image 14.221∗ 7.542∗ 3.698∗ 3.844∗

Ringnorm 5.690∗ 1.499 3.173 4.672∗

Splice 22.736∗ 9.238∗ 2.568 6.670∗

Thyroid 19.140∗ 8.110∗ 1.210 6.900∗

Titanic 575.616∗ 42.203∗ 40.876∗ 1.328
Twonorm 3.939∗ 2.864 0.948 3.812∗

Waveform 15.937∗ 7.731∗ 2.138 5.593∗
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4.2.2. Comparison with Other Model Selection Approaches575

Table 3 also shows the performance of random forest (RF), LS-SVM with576

Bayesian Regularization (LS-SVM-BR), which uses a radial basis function577

kernel reported by [? ], as well as the results obtained with the application578

of PSMS and SUMO in the benchmark data sets. Due to the fact that the579

best results of our proposal were reached with the ensemble of the whole non-580

dominated front (MOMTS-S2), this approach is used for the comparison.581

First, we compare with random forest (RF), which is used as a baseline582

to evaluate the benefits of performing model selection. From the reported583

results in Table 3, we can note that our proposal outperformed RF in 12 out584

of 13 data sets, being the image data set the only one in which RF performed585

better than our proposal.586

Comparing the ensemble of the whole non-dominated approach (MOMTS-587

S2) with LS-SVM-BR, we can note that our proposal obtained better results588

in 7 out of 13 data sets (banana, breast cancer, diabetes, image, splice, thy-589

roid, and titanic), but it was outperformed in the rest of the data sets. In590

addition, it is worth noting that an improvement of more than a 6% was591

reached in the splice data set.592

With respect to PSMS, a single-objective approach that considers dif-593

ferent learning algorithms and hyper-parameters selection, we note that our594

approach performed better than PSMS in 12 out of 13 benchmark data sets.595

Comparing MOMTS-S2 with SUMO, another evolutionary approach for596

model selection, we note that MOMTS-S2 got better generalization perfor-597

mance on 10 out of 13 data sets.598

Regarding statistical assessment, we applied the ANOVA test with a 95%599
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of confidence to compare the performance of the model selection approaches:600

LS-SVM-BR, PSMS, SUMO, and MOMTS-S2. Inasmuch as our goal is to601

compare the performance of the proposed approach with the reference results,602

the Dunnett’s test is used as the post-hoc test. These statistical tests were603

conducted independently for each data set. The results of these are shown in604

Table 5, from which we can note that, for all cases, the analysis of variance605

revealed that there is a statistically significance difference at the 0.05 level,606

i.e., p < 0.05. Thus, the post-hoc test is applied.607

According to the results shown in Table 5, statistical tests indicated that608

the proposed approach significantly outperformed LS-SVM-BR in 2 data sets609

(image and splice), and it was significantly outperformed in one data set610

(twonorm). Regarding SUMO, our method performed significantly better in611

5 out of 13 data sets (banana, flare solar, splice, thyroid, and titanic), and it612

was significantly outperformed in the twonorm data set. On the other hand,613

our approach significantly outperformed PSMS in 10 of the benchmarks data614

sets (banana, breast cancer, diabetes, german, heart, image, ringnorm, splice,615

titanic, and waveform data sets), but it was significantly worse than PSMS616

in the twonorm data set.617

Overall, our ensemble approach was able to get lower error rates than the618

other model selection methods in 7 out of 13 data sets, while the Bayesian619

regularization approach did the same in 5 out of 13 data sets, and SUMO620

in 2 out of 13 data sets. There is not a clear advantage of LS-SVM-BR and621

MOMTS-S2 when multiple data sets are considered. In order to statistically622

assess the four model selection approaches over the suite of 13 benchmark623

data sets, the Friedman test with a 95% of confidence was used. As a post-624
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Table 5: F -statistic obtained from the ANOVA test and td-values from Dunnett’s test
when MOMTS-S2 is compared with LS-SVM-BR, PSMS, and SUMO. The critical values
at the 0.05 level for the ANOVA test are 2.72 (F (3, 76)) for the image and splice data sets
and 2.63 (F (3, 396)) for the rest. For Dunnett’s test, the critical values at the 0.05 level
are 2.40 for the image and splice data sets (76 degrees of freedom) and 2.36 for the rest of
the data sets (396 degrees of freedom). Cases that exceed the critical value are considered
as a difference that is statistically significant at the fixed level and are marked with an
asterisk (∗).

ANOVA MOMTS-S2 versus
(F-value) (td Dunnett)

Data Set F LS-SVM-BR PSMS SUMO

Banana 17.594∗ 1.191 6.513∗ 4.346∗

Breast Cancer 37.582∗ 1.875 9.438∗ 0.841
Diabetes 94.396∗ 0.216 14.239∗ 1.466
Flare Solar 38.338∗ 1.130 0.478 8.435∗

German 62.129∗ 0.138 11.188∗ 0.280
Heart 23.938∗ 0.488 7.080∗ 2.001
Image 6.543∗ 3.605∗ 3.605∗ 1.156
Ringnorm 83.108∗ 1.862 11.621∗ 1.629
Splice 377.328∗ 20.560∗ 33.152∗ 20.660∗

Thyroid 2.881∗ 2.042 1.036 2.752∗

Titanic 445.726∗ 1.250 5.150∗ 31.664∗

Twonorm 20.588∗ 5.683∗ 4.086∗ 7.534∗

Waveform 78.231∗ 0.631 12.074∗ 0.631

hoc test, we used the Bonferroni-Dunn test, to compare the performance of625

our proposal (MOMTS-S2) with the references. According to these tests,626

MOMTS-S2 is statistically better than PSMS, but there is not a statistical627

significance difference between MOMTS-S2 and LS-SVM-BR and MOMTS-628

S2 and SUMO.629

Another aspect to take into consideration is the computational cost of630

the methods. In this regard, we compare the execution time required by631

our proposal against PSMS and SUMO. The average execution time of our632

proposal (MOTMS) was 54.29 minutes, whilst PSMS and SUMO required,633
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respectively, 30.36 and 31.90 minutes on average. As one could note, our634

proposal is more time-consuming than the others. This is due to the fact that635

under the proposed approach two objectives have to be evaluated, while in636

PSMS and SUMO only a single objective is evaluated. In our case, estimating637

the model complexity through the VC-dimension implies to train and to test638

a model a number of times (10 times, according to the parameter that we639

used). Measuring the training error also implies to train and test such model.640

Hence, evaluating both objectives involves training and testing the model.641

This could represent a disadvantage with respect to the others, in terms of642

computational cost. Notwithstanding, we can argue that the task of model643

selection can be performed off-line. Moreover, since the models are in the644

non-dominated set, several strategies for constructing a final classification645

model can be performed without significantly increasing the computational646

cost. In addition to this, our proposal (MOTMS) has the advantage of getting647

highly competitive models, outperforming SUMO and PSMS in most of the648

data sets.649

4.2.3. Discussion650

From the experimental results shown in Table 3, we can note how over-651

fitting can be present in model selection. Among the three strategies for652

constructing a final model, those based on ensembles proved being benefi-653

cial, reducing the over-fitting effect. In spite of this, we cannot say that654

ensemble approaches completely solve the problem. We can also note that in655

most cases, the use of the solutions in the whole non-dominated front in an656

ensemble achieved a better generalization performance than when a subset657

of these are considered for the ensemble. This is a surprising result, since it658
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was expected that by taking into account the diversity as a criterion for the659

ensemble construction, a better performance would be attained than when660

not doing so. Observing the diversity between both approaches, we noted661

that the whole non-dominated approach has better diversity, whereas the662

ensemble of a subset of solutions approach gets trapped in a local optimal663

solution.664

A comparison with random forest (RF) showed the benefits of performing665

model selection against not doing so. This is specially remarkable in the666

ringnorm, splice, and twonorm data sets, in which an improvement above a667

4% is reached. Even though a simple RF outperformed our proposal in the668

image data set, a pairwise comparison did not show a statistical significant669

difference between both. Therefore, it is worth performing the computational670

effort in order to construct a reliable classification model.671

The ensemble of the whole front of the proposed approach (MOMTS-S2)672

significantly outperformed LS-SVM-BR on three benchmark data sets, but673

it was significantly worse in one data set. The greatest improvement was674

obtained in the splice data set, reducing the error rate in 6.07%. The great-675

est degradation was on the twonorm data set, with a difference of 0.89%.676

In spite of this, the overall performance of both approaches was similar.677

Neither the reference nor the proposed approach were significantly better678

than each other. It is interesting to note that MOMTS-S2 does not out-679

perform LS-SVM-BR, which is a model selection method of the state of the680

art. This is due to the fact that MOMTS-S2 deals with different model681

types and their corresponding hyper-parameters. Nevertheless, we can argue682

that in LS-SVM-BR there are only two parameters to be optimized, while in683
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MOMTS-S2, seven parameters are taken into consideration, which consider-684

ably increase the search space and makes it harder to reach the “optimal”685

solutions with a lower number of iterations. Moreover, we gain generality686

without significantly over-fitting the models.687

The experimental evaluations showed that MOMTS-S2 significantly out-688

performed PSMS. Although there was not a statistical significant difference689

between MOMTS-S2 and SUMO, when different data sets were considered,690

MOMTS-S2 significantly outperformed SUMO on several data sets. This691

gives evidence about the suitability of using a multi-objective approach in692

contrast to a single-objective approach, in spite of the computational cost of693

doing so. The experimental results showed that only minimizing the error694

rate estimated through k-fold cross validation could lead to choose a model695

with a small degree of over-fitting. In spite of this, the k-fold cross validation696

approach has the advantage of being free from the model assumptions, which697

makes it applicable to any learning algorithm and feasible to the full model698

selection formulation6. On the other hand, the use of the VC-dimension for699

controlling the model complexity, and avoiding over-fitting, as much as pos-700

sible, also shows its potential for being applicable to different model types.701

Therefore, we believe that this approach can also be applicable to the full702

model selection formulation.703

6The full model selection formulation consists of the task of finding the best combi-
nation of pre-processing, feature selection, and learning algorithms together with their
parameters [? ? ].
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5. Conclusions and Future Work704

In this paper, we have proposed a multi-objective approach for dealing705

with the problem of model selection. Our model selection approach takes706

into account both the learning algorithm and the hyper-parameters during707

the search process. We defined the training error, or empirical error, and708

the model complexity, which is estimated through the VC dimension, as the709

objectives to be optimized. The adopted formulation showed the following710

advantages: (i) the experimental way for measuring the VC dimension allows711

us to consider different learning algorithms in a general framework, and makes712

the method applicable to the full model selection problem; (ii) our proposal713

had a competitive performance over different benchmark data sets, making714

it applicable to problems from diverse domains; and (iii) the multiple non-715

dominated solutions obtained through the multi-objective formulation makes716

it easy to extend it to ensembles of models.717

The experimental results showed that constructing an ensemble of mod-718

els performs better than choosing a single model. Furthermore, the ensemble719

approach showed to be effective for reducing the effect of over-fitting. The ad-720

vantages of the multi-objective approach over a single-objective formulation721

such as PSMS were also supported by the experiments. The experimental re-722

sults also show that highly competitive classification models were generated723

by our proposal, without significantly degrading the performance in most724

cases. Hence, we can conclude that our proposed approach can be an useful725

framework for model selection in real world problems.726

In the proposed approach, the VC dimension is experimentally estimated,727

making it computationally expensive. Alternatives such as approximating728
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this value through surrogate-assisted evolutionary computation, or comput-729

ing it using parallel computing would be interesting paths of future research.730

Other future research directions also include the extension to the full model731

selection problem, i.e., considering feature selection and data pre-processing732

into the model selection process. Studying more effective ways for construct-733

ing an ensemble (possibly) by using a second level of optimization would be734

another interesting direction for future research.735
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