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Abstract A large number of di�erential evolution al-

gorithms has been proposed in recent years, many of

which have been used to solve mainly unconstrained

problems. However, similar to other evolutionary al-

gorithms, their performances are highly dependent on

their search operators and control parameters. Al-

though many investigations have been conducted to en-

sure appropriate choices of these operators and param-

eters, the task is recognized as tedious. In this research,

a di�erential evolution algorithm, which includes a new

mechanism for automatically selecting the best combi-

nations of parameters (ampli�cation factor, crossover

rate, and population size) as well as search operators,

is developed. Instead of choosing discrete values for the

ampli�cation factor and crossover rate from a given set

of values, this study adaptively selects them from some

given continuous ranges and, furthermore, proposes a

new methodology for handling constraints. The perfor-

mance of the algorithm is assessed using a well-known

set of constrained problems, with the experimental re-

sults demonstrating that it is superior to state-of-the-

art algorithms.

1 Introduction

Many real-world decision processes involve solving op-

timization problems, that is, �nding the best solutions
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in their feasible spaces which, as they are bounded by

constraint functions, are recognized as constrained op-

timization problems (COPs). In a COP, it is necessary

to optimize an objective function subject to satisfying

a set of constraints. A COP may contain di�erent types

of variables, such as real, integer and discrete, and may

have equality and/or inequality constraints. These ob-

jective and constraint functions can be linear or non-

linear, continuous or discontinuous and uni-modal or

multi-modal. The feasible region of such a problem can

be either a tiny or a signi�cant portion of the search

space and, moreover, either a single bounded region or

a collection of multiple disjointed regions or, as hap-

pens in some practical problems, even unbounded. The

optimal solution may exist on either the boundary or in

the interior of the feasible region. Also, high dimension-

ality due to large numbers of variables and constraints

may add further complexity to solving COPs [16]. These

di�erent characteristics have made COPs a challenging

research area in the optimization domain. In this pa-

per, single-objective COPs are considered, with a COP

formally expressed as:

minimize f(−→x )

subject to: gk(
−→x ) ≤ 0, k = 1, 2, . . . ,K

he(
−→x ) = 0, e = 1, 2, . . . , E

xj≤xj≤xj , j = 1, 2, . . . , D (1)

where −→x = [x1, x2, ..., xD] is a vector with D decision

variables, f(−→x ) the objective function, gk(
−→x ) the kth

inequality constraint, he(
−→x ) the eth equality constraint

and each xj has a lower limit (xj) and an upper limit

(xj).
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Depending on the complexity of a problem, re-

searchers and practitioners choose either conventional

mathematical programming approaches [5] or compu-

tational intelligence (CI) methods to solve it. From

the many CI methods currently available, genetic al-

gorithms (GAs) [14], di�erential evolution (DE) [48],

evolution strategies (ES) [24] and particle swarm opti-

mization (PSO) [27] are among the most popular.

DE has been successfully used to solve COPs [22, 63,

36, 21, 4, 55, 66, 64, 26]. However, like any other EA, the

performance of a DE algorithm depends on the choice

of its search operators and control parameters, which

normally requires a tedious trial-and-error approach to

select the best ones [40, 60]. Furthermore, one search

operator and/or set of parameters well suited for a cer-

tain set of problems may not work well for another [65].

In addition, even if a set of parameters works well dur-

ing the early stages of the evolutionary process, it may

not perform well in later ones and vice versa. The idea

of parameter adaptation was introduced a few decades

ago in the context of GA [23] and ES [44] as a way

to deal with these problems. Due to its importance for

improving the performance of DE, many research stud-

ies have proposed di�erent ways of managing dynamic

changes of its control parameters [8, 25, 40, 42]. To the

best of our knowledge, only a few algorithms reported

in the literature have adapted all three control parame-

ters (ampli�cation factor (F ), crossover (Cr) and pop-

ulation size (PS)) and DE operators to solve mainly

unconstrained problems [54, 7, 52].

In this research, a DE algorithm with automatic se-

lection of operators and parameters for solving COPs

is introduced. In it, for each DE control parameter (F

and Cr), instead of selecting a value from a set of dis-

crete ones, as assumed in [42] and commonly assumed

in other research [30, 3], a range of real values is con-

sidered because choosing a combination of parameters

from given discrete sets may not ensure the best pos-

sible performance of the algorithm. The process begins

by assigning di�erent random real values from prede-

�ned F and Cr ranges for the individuals in a popu-

lation which means that each individual will have an

independent set of F and Cr values that we recognize

as a combination. The success rate of each combination

of parameters (the ratio of the number of successful o�-

spring generated by a combination of parameters and

the number of times the same combination was used)

is recorded for a certain number of generations (a cy-

cle) and the better-performing ones are applied for a

number of subsequent generations with the number of

combinations reduced in subsequent cycles, based on

the success rate. Also, the proposed method dynami-

cally adapts PS, in which a pool of PS values is used,

with each PS used for a cycle. After all PS values are

tested, the one with the best average performance is

�xed for a prede�ned number of generations.

At the beginning of each cycle, the success rates of

the current combinations are set to zero and, after a pre-

de�ned number of cycles, the whole process is restarted

from a random assignment. This work is also di�erent

from that in [42] which proposes: (1) a set of DE op-

erators from which the algorithm automatically selects

the best-performing one during the evolutionary pro-

cess; (2) a new constraint handling technique whereby

the algorithm starts with a subset of the constraints

based on the level of constraints violation and gradu-

ally considers all of them whereas, in [42], all constraints

are handled in any stage of the evolutionary process

(more details are provided later); and (3) a di�erent

way of adapting PS. Although the algorithm could be

designed in a simpler way, in this design : (i) a reduc-

tion in the number of combinations is done while the

gradual handling of the constraint complexity helps to

reduce the computational burden signi�cantly; and (ii)

the use of multi-operators and the restart process en-

sures diversity and better search opportunities as the

evolutionary process progresses.

The performance of the proposed algorithm was

tested on a well-known set of 36 constrained test prob-

lems [32] (18 with 10 dimensions (10D) and 18 with

30D) with di�erent mathematical properties. The re-

sults indicated that the proposed algorithm was able to

reduce the computational time by 13.29% and 23.06%

for the 10D and 30D, respectively compared with the

algorithm reported in [42]. Also, the quality of solu-

tions and statistical test results showed its superiority

to seven state-of-the-art algorithms.

The rest of this paper is organized as follows: an

overview of DE and its operators and parameters is

provided in Section 2; the proposed algorithm is illus-

trated in Section 3; and the experimental results and

conclusions are discussed in Sections 4 and 5, respec-

tively.

2 Di�erential Evolution

DE is a population-based stochastic algorithm for

global optimization [47]. In it, initially, a population

of random D-dimensional vectors is generated, i.e.,

X = {−→x 1,
−→x 2, ...

−→x PS} which are randomly chosen to

generate a mutant population of size PS, i.e., V =

{−→v 1,
−→v 2, ...

−→v PS}. Then, each solution (−→x z), in the

current population, is recombined with its correspond-

ing mutant vector (−→v )z to generate a trial vector (−→u z),
where z = 1, 2, ...PS, and every −→x z and its correspond-
ing −→u z pair-wise compared, with the winning vectors
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becoming the parent population (X) in the next gener-

ation [39, 46]. Below is a brief description of each step

in DE.

� Initialization: each individual in the population is

represented as a D-dimensional vector in which each

variable is generated within its boundaries:

xz,j = xj+randj(0, 1)×(xj−xj)∀ j = 1, 2, ...D (2)

where randj(0, 1) is a uniform random number

within [0, 1]. Note that DE was initially proposed to

solve continuous domain problems and then adapted

to solve other types of optimization problems [39].

� Mutation: DE generates new solutions that are

perturbations of the current ones in which, in its

simplest form (DE/rand/1), a mutant vector (−→v z)
is generated by adding a scaled di�erence between

two random solution vectors to a third one (equa-

tion 3).

−→v z = −→x r1 + F × (−→x r2 −−→x r3) (3)

where −→x r1 , −→x r2 and −→x r3 are distinct solution vec-

tors in the current population and none similar to
−→x z, F a positive real number that controls the rate

at which the population evolves [39] and −→x r1 is also
called the base vector.

There are many variants of this operator, such

as DE/best/1 [48], DE/rand-to-best/1 [40] and

DE/current-to-best [71]. For more details, readers

are referred to [13].

� Crossover: there are two well-known crossover

schemes, binomial and exponential. The former

(sometimes called a uniform or discrete crossover

[39]) is conducted on every j ∈ [1, D] with a pre-

de�ned crossover probability. In particular, for each

j, a uniform random number (randj(0, 1)) is gen-

erated. If its value is less than Cr, the trial value

(−→u z,j) is copied from the corresponding value from

the mutant vector (−→v z,j), otherwise it is copied from
the parent vector (−→x z,j) that is

uz,j =

{
vz,j if (randj(0, 1) ≤ cr or j = jrand)

xz,j otherwise

(4)

jrand ∈ 1, 2, ..., D is a randomly integer index which

ensures that −→uz obtains at least one component from
−→vz .
On the other hand, an exponential crossover is sim-

ilar to a two-point crossover in which the �rst cut

point (l) is randomly selected from a range [1, D]

and the second is determined such that L compo-

nents are copied from −→v z [68] as:

uz,j =

{
vz,j ∀j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L− 1〉D
xz,j ∀j ∈ [1, D]

(5)

where 〈l〉D denotes a modulo function with a mod-

ulus of D and L ∈ [1, D].

� Selection: DE uses a simple one-to-one survivor

selection in which, at generation (t), a trial vector

(−→u z,t) competes against the target/parent vector

(−→x z,t), and the better, in terms of the �tness value

and/or constraint violation, is considered as a vector

in the new population in the next generation (t+1).

2.1 Operators and parameters: a brief review

DE has two main operators (mutation and crossover)

and three basic parameters (F , Cr, and PS). These

three parameters may be set by using deterministic,

adaptive or self-adaptive techniques. In addition, the

specialized DE algorithms may use additional operators

and parameters, such as constraint handling operator

and parameters to control self-adaptive techniques. So,

in this subsection, a brief review of recent studies on the

adaptation of DE operators and parameters is provided.

2.1.1 DE operators

Over the last two decades, a great deal of work has been

undertaken on dealing with DE search operators. How-

ever, a general conclusion accepted among researchers

is that no single DE operator is suitable for all optimiza-

tion problems. Consequently, researchers have been

motivated to propose multi-operator DE and multi-

method frameworks; for instance, the multi-method-

based framework introduced in [59] a few years ago

in which the authors proposed using �ve optimization

methods (the covariance matrix adaptation (CMA) ES,

GA, PSO, DE and parental-centric recombination oper-

ator (PCX)) in a single framework, and a self-adaptive

strategy for automatically controlling the number of

new individuals to be generated by each algorithm. On

a set of real-parameter unconstrained problems, this

method showed its superiority over many others. This

idea was also adopted using a single optimizer, such as

DE [40] and GA [16]. Below are some examples related

to DE.

Tasgetiren and Suganthan [53] proposed a multi-

population DE algorithm for solving real-parameter

COPs in which each sub-population conducted its
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search in parallel with a regrouping schedule every pre-

de�ned number of generations. They applied two mu-

tation operators (DE/rand/1 and DE/best/1) with a

�xed probability of 0.5 to each, and the algorithm pro-

duced encouraging results. Qin et al. [40] proposed a

self-adaptive DE algorithm (SaDE) in which the choice

of two control parameters, F and Cr, was not required

to be pre-speci�ed. In it, four mutation strategies were

used and each individual in the population assigned to

one of them based on a given probability. Then, the se-

lection probability of each operator was updated based

on its success and failure rates during previous gener-

ations (a learning period). The algorithm was tested

on a set of unconstrained problems, and showed good

performance.

Cara�ni et al. [10] proposed a super-�t multi-

adaptive DE for solving unconstrained problems in

which four DE operators with equal probability were

used. Then, based on the normalized relative �tness

improvement and normalized distance to the best in-

dividual, each operator's probability was updated. In

addition, F was generated using a Cauchy distribution

and Cr based on a normal distribution, with both pa-

rameters adapted during the evolutionary process and

CMA-ES used as a local search engine.

Elsayed et al. [16] proposed a general framework

that divided the population into four sub-populations,

each of which used a combination of search operators.

During the evolutionary process, the sub-population

sizes were adaptively varied based on the success of

each operator calculated according to changes in �t-

ness values, constraint violations and feasibility ratios.

The algorithm performed well on a set of constrained

problems and then the authors extended and improved

it in [17, 18]. Elsayed et al. [19] proposed two novel DE

variants, each of which utilized the strengths of multi-

ple mutation and crossover operators to solve 60 con-

strained problems, obtaining results superior to those

from state-of-the-art algorithms.

Zamuda and Brest [69] introduced an algorithm that

employed two mutation strategies in jDE [8], with the

population size adaptively reduced during the evolu-

tionary process based on their earlier technique pro-

posed in [7]. The algorithm was tested on 22 real-world

applications and performed better than two other al-

gorithms. It was then extended by embedding a self-

adaptation mechanism for parameter control [9][70],

in it, whereby the population was divided into sub-

populations to apply more DE strategies and a popula-

tion diversity mechanism. The mutation strategies used

depended on the population size which was reduced as

the number of function evaluations increased.

Following their original work proposed in [56],

Tvrdíkand and Poláková [57] introduced a DE algo-

rithm for solving a set of COPs. In it, with a prede�ned

probability, one set of control parameters was selected

from 12 available sets and, during the evolutionary pro-

cess, the probability of selecting each set was updated

based on its success rate in the previous steps. The

algorithm was evaluated using a set of unconstrained

problems and showed to have competitive performance

[58].

Wang et al. [61] introduced a composite DE algo-

rithm (CoDE) in which, in each generation, a trial vec-

tor was generated by randomly combining three DE

variants with three control parameter settings. The al-

gorithm performed well on a set of unconstrained test

problems. Mallipeddi et al. [33, 30] proposed a frame-

work that used a mix of mutation strategies and discrete

control parameters in DE to solve unconstrained prob-

lems. In it, a pool of di�erent mutation strategies, along

with a pool of values for each control parameter, coex-

isted during the entire evolutionary process and com-

peted to produce new individuals. Also, the authors

proposed using a mix of four CHTs based on a DE al-

gorithm (ECHT-DE) [31, 30] to solve COPs in which

four populations were initialized, each using a di�er-

ent CHT. In addition, a mix of mutation strategies and

F and Cr values, along with two mutation strategies,

were employed and the algorithm [30] ranked second in

the CEC2010 competition for solving COPs. However,

our proposed algorithm is di�erent from that in [30] in

that it uses: (1) a single population instead of four sub-

populations; (2) continuous values of F and Cr instead

of only discrete values; (3) a di�erent mechanism for se-

lecting combinations of parameters and operators and

reducing the number of combinations; and (4) a new

mechanism for handling constraints.

In [38], the authors proposed a self-adaptive com-

petitive variant of DE, with opposite-based optimiza-

tion and an adaptively controlled random search used

to enhance the search of the feasible region. They also

studied the e�ects of di�erent mutation operators and

search strategies. This algorithm showed competitive

performance in comparison with other state-of-the-art

algorithms. However, many questions regarding its de-

sign and selection of mutation operators, as well as the

enhanced techniques used to �nd feasible solutions, still

remain open. An improved adaptive DE (ACDE) algo-

rithm, in which a mechanism was used to reduce the

population size, and four mutation strategies with val-

ues of F and Cr using a Cauchy distribution, was in-

troduced in [11].

Wang et al. [62] introduced a new replacement

mechanism to reduce the greediness of the feasibil-
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ity rule. The algorithm used two mutation operators

(DE/rand-to-best/1 and DE/current-to-rand/1), each

of which was applied with a probability of 0.5, with the

binomial crossover was only used with the �rst muta-

tion. Also, a mutation strategy was used when all the

individuals in the population are infeasible. The algo-

rithm was tested on two sets of constrained problems

and showed competitive, if not better, performance in

comparison to other algorithms.

2.1.2 DE parameters

As previously mentioned, because the selection of DE

parameters plays a pivotal role in its success, many re-

searchers have proposed techniques for adapting them.

In [48], it was suggested that PS be within [5D-20D]

and F be set to a value of 0.5 . In another research study

[41], setting F ∈ [0.4 − 0.95] was recommended. Self-

adapting F using DE operators was introduced in [1]

and then modi�ed in [16]. In [40], F was randomly gen-

erated using an independent normal distribution, with

its mean initially set to a value of 0.5 and its standard

deviation �xed at 0.1. Then, Cr was re-generated after

a prede�ned number of generations.

Liu and Lampinen [28] proposed to self-adaptively

control F and Cr using the concept of fuzzy logic. Brest

et al. [8] introduced a self-adaptation method for F and

Cr in which each individual in the population was as-

signed a di�erent combination of their values. Zhang et

al. [71] proposed an adaptive DE (JADE) in which, at

each generation, Crz was independently generated us-

ing N(Cr,Crσ = 0.1) with Cr initially set to a value

of 0.5 and then it was dynamically updated. Similarly,

Fz was generated according to a Cauchy distribution

with a location parameter (F ), the initial value of which

was 0.5, and a scaling parameter of 1 and, at the end

of each generation, F was updated. As an improved

version of JADE, Tanabe and Fukunaga [51, 50] pro-

posed a success-history-based adaptive DE (SHADE)

in which, instead of generating new control parameter

settings based on some distribution around a single pair

of parameters (Cr, F ), historical memories (MCr,MF )

which stored sets of values of Cr and F , respectively,

were used. As it performed well in earlier generations,

it generated new pairs of Cr and F by directly sam-

pling the parameter space close to one of the stored

pairs. This algorithm was tested on the CEC2013 un-

constrained problems and performed better than other

state-of-the-art algorithms. It was then improved by

adapting the population size [52] by setting the initial

population size to a large value and then linearly re-

ducing it to a small one at the end of the evolutionary

process. It was tested on a set of unconstrained prob-

lems and was found to have a superior performance with

respect to many other algorithms.

Mallipeddi et al. [29] introduced a parallel

populations-based DE algorithm, with the number of

function evaluations (FEs) assigned to each population

self-adapted based on the number of better individuals

obtained in the previous generation. In [67], an adap-

tive DE algorithm with the `lbest/1' mutation strat-

egy, based on the greedy DE/best/1 strategy and a

two-level adaptive parameter control scheme, was in-

troduced. However, in it, the population was mutated

under the guidance of multiple locally best individuals.

It was analyzed using a set of unconstrained problems

which showed its capability to outperform state-of-the-

art DE variants for di�erent kinds of optimization prob-

lems although its complexity was high. Sarker et al.

[42] proposed a DE algorithm that used a mechanism

for dynamically selecting the best-performing combina-

tions of the parameters Cr and F for a problem during

the course of a single run. Its performance was judged

based on its capability to solve three well-known sets

of optimization test problems (two constrained and one

unconstrained), with the results demonstrating that it

was superior to other state-of-the-art algorithms.

It is worthy to mention that there are other meth-

ods introduced in the literature to �nd the best con�g-

uration of parameters and/or optimization algorithms

[6, 20]. For instance, F-Race and iterated F-Race [6]

inspired from racing algorithms in machine learning.

Their main idea is to evaluate a given set of candidate

con�gurations iteratively on a stream of instances, and

when there is enough statistical evidence against some

candidate con�gurations, these are eliminated, and the

race continues only with the surviving ones. The F-Race

and iterated F-Race were used for o�ine con�guration

of parameterized algorithms.

3 DE with Automatic Adaptation of Operators

and Control Parameters

In this section, the algorithm proposed in this study

(DE-AOPS) is de�ned and the constraint-handling

technique developed is described.

3.1 DE-AOPS

This research aims to �nd the most appropriate pa-

rameters and search operators during an optimization

process. Firstly, the range of each of two DE parameters

(F and Cr) is divided into a number of segments (with

each segment representing a small range of continuous

values). The upper and lower bounds of the segments
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are given as sets of discrete values represented as Fset
and Crset. For each individual in the evolutionary pro-

cess, one real value for F and one for Cr are randomly

assigned from each segment so that individuals have pa-

rameter values from di�erent combinations of segments.

The success rate of each combination of segments is

recorded for a certain number of generations, and the

better-performing combinations applied for a number

of subsequent generations (known as a cycle). Depend-

ing on the success rate (rank) of each combination, the

number of combinations is reduced in subsequent cy-

cles. At the beginning of each cycle, the success rates

of the current combinations are set to zero and, after

a pre-de�ned number of cycles, the whole process is re-

peated, starting from random assignments of parameter

values. At the same time, the algorithm emphasizes the

best-performing operator during the evolutionary pro-

cess, with multiple operators considered through similar

steps to those for the parameters. Also, PS plays a ma-

jor role in the success of a DE algorithm [29]. However,

one size may be good for one problem but may not suit

another, i.e., a small value of PS can lead to a fast con-

vergence rate in solving one problem but may lead the

algorithm to su�er in another type of problems. There-

fore, the DE-AOPS dynamically determines the most

suitable PS among a set of values. Details of the steps

in the algorithm are discussed below.

3.1.1 Continuous scheme for parameters

In many adaptive DE algorithms [42, 33], a set of dis-

crete values between 0 and 1 is considered for both Fset
and Crset; for example, Fset = {0.8, 0.9, 1.0} means

that the value of F is either 0.8, 0.9 or 1.0. In this case,

any real values within a given range or any two consec-

utive discrete values, i.e., between 0.8 and 0.9 and/or

between 0.9 and 1.0, are not considered. This was the

motivation for proposing a real parameter adaptation

process in this paper, with the expectation that it may

provide better performance. This research considers a

range of parameters de�ned by their upper (S) and

lower (S) bounds from which any real value can be se-

lected. Also, instead of using a single continuous range,

multiple disjointed segments may be considered. For

convenience of implementing the adaptive process, one

continuous range is divided into multiple segments; for

example, a range from 0.8 to 1.0 is split into two seg-

ments, such that 0.8 ≤ F1 < 0.9 and 0.9 ≤ F2 < 1.0,

i.e., F1 = S + rand × (S − S), where S = 0.8, S = 0.9

and rand is a uniform random number within [0.0, 1.0].

Similarly, F2 can be calculated considering S = 0.9 and

S = 1.0.

3.1.2 Multiple DE operators

As previously discussed, it has been proven that the

relative performance of a DE operator may vary dur-

ing the evolutionary process, that is, one operator may

work well in the early (or some) stages of the search

process and perform poorly in later (or other) stages or

vice versa [16]. Also, a DE operator may work well for

a speci�c problem but badly for another. This encour-

ages the use of multiple DE operators, bearing in mind

that more emphasis should be placed on the better-

performing one in each stage of the evolutionary pro-

cess, as described below.

3.1.3 Description of algorithm

The main steps in DE-AOPS are presented in Algo-

rithm 1.

Initially, three sets of the control parameters are

de�ned as Fset, Crset and PSset, where Fset and

Crset contain nf and ncr discrete values to repre-

sent the segment bounds, respectively (where each seg-

ment is a range of continuous values) while PSset =

{PS1, PS2,..., PSnps} is a set of discrete values. A set

of di�erent operators (SOset = {SO1, SO2, ..., SOnso})
is also considered, and nf , ncr, nps and nso refer to

the cardinality of the sets of F , Cr, PS and SO, re-

spectively. Note that the total number of combina-

tions (NoCtotal) for F and Cr is equal to (nf×ncr)
and PSi is assumed to be larger than PSi−1∀i =

nps, nps−1, ..., 2. Also, a population of size PSnps−1 is

a subset of that population with a size of PSnps and so

on.

In lines 3 to 6 in Algorithm 1, PSnps random vec-

tors are generated. Then, each is evaluated, the num-

ber of current �tness evaluations (cfe) is increased by

2 because evaluating the constraints is counted as one

�tness evaluation 1, and the population is sorted from

best to worst based on the �tness function and con-

straint violation values.

As cfe is less than the maximum number of �tness

evaluations (cfemax), each individual in the population

(−→xz) is assigned random F and Cr segments (Fz and

Crz, respectively). Then, Fz and Crz are converted to

values within their segment ranges, as described in sec-

tion 3.1.1. At the same time, one search operator, from

the SOset, is assigned to each individual. To clarify,

each combination of F and Cr is assigned to at least

a single individual and all search operators are strictly

assigned to the same number of individuals (lines 8 to

10 in Algorithm 1).

1 This was a condition in the CEC2010 competition, which is
used in this paper to assess the performance of DE-AOPS
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Algorithm 1 General framework of DE-AOPS
1: PSset ← PS1, PS2, ..., PSnps;Fset ←
F1, F2, ..., Fnf ;Crset ← Cr1, Cr2, ..., Crncr;SOset ←
SO1, SO2, ..., SOnso; t← 1; and set conss;

2: i← nps; PS ← PSi; period← 0; iter ← 1; cfe← 0;
3: Generate an initial random population. The variables of each

individual (−→xz) must be within their boundaries;
4: Calculate the �tness value and constraint violation of (−→xz);
5: cfe← 2× PS as evaluating the constraints is counted;
6: Sort the whole population, based on the superiorty of feasible

solutions method [15].
7: while cfe < cfemax do
8: Each individual is assigned a random combination of pa-

rameter segments F and Cr;
9: Convert discrete segments of F and Cr to continuous val-

ues (sub-section 3.1.1).
10: Randomly assign each search operator to the same number

of individuals;
11: Update conss if required.
12: Evolve all individuals as described in Algorithm 2 consid-

ering conss constraints (subsection 3.1.4).
13: if (period%CS) = 0 and (period < η × CS) then
14: Select the best half combinations to be used in the sub-

sequent cycle;
15: Select the best half SO to be used in the subsequent

cycle;
16: comy,suc ← 0; SOp,suc ← 0;
17: end if
18: if (period%CS) = 0 and (i > 0) then
19: Calculate Rankpsi based equation (8);
20: if 1 < i ≤ nps then
21: Archive the worst psi − psi−1 individuals ;
22: i← i− 1 ;
23: PS ← PSi;
24: end if
25: end if
26: if (period = nps× CS) and (i = 0) then
27: PS ← the one with the best Rankpsi ;
28: Use individuals from the archive as required, i.e., if the

best PS > PS1;
29: end if
30: if (period = η × CS) or no success was recorded for all

combinations then
31: Reset all parameters to their initial values (step 1 and

2);
32: Retrieve the remaining individuals from the archive,

and hence clear the archive.
33: end if
34: t← t+ 1; and go to step 7;
35: end while

For each −→xz, a new o�spring (−→uz) is generated us-

ing its assigned combination of parameters and opera-

tors, and evaluated based on the objective function and

subset of constraints (conss). Note that conss is peri-

odically updated (line 11) and is described in section

3.1.4. If −→uz is better than −→xz, it survives to the next

generation and the success of the corresponding com-

bination (comy,suc) is increased by 1, i.e., comy,suc =

comy,suc + 1, where y = 1, 2, ..., NoCtotal. The success

of a search operator (SOp,suc) is also incremented by 1,

where p = 1, 2, ..., nso. It is worth mentioning that, to

Algorithm 2 Evolving Individuals
1: for z = 1 : PS do
2: Generate a new individual (−→uz) using its assigned Fz , Crz

and SOz ;
3: Calculate the constraints violation Θ(−→uz);
4: if Θ(−→uz) > 0 // the individual is infeasible then
5: cfe← cfe+ 1;
6: Fitness value (fit(−→uz))← fit(−→xz);
7: else if Θ(−→uz) = 0 // the individual is feasible then
8: Calculate the �tness value (fit(−→uz));
9: cfe← cfe+ 2 ;
10: end if
11: if −→uz is better than −→xz then
12: −→uz is survived to the next generation; comy,suc ←

comy,suc + 1; SOp,suc ← SOp,suc + 1;
13: end if
14: period← period+ 1;
15: Update and sort the new population.
16: end for

reduce the number of �tness evaluations, if −→uz is infeasi-
ble, the objective value is not calculated and, as it takes

the �tness value of its parent, cfe is only increased by

1. On the other hand, if −→uz individual is feasible, as its
�tness value is calculated, cfe is increased by 2 (line 12

in Algorithm 1).

As shown in lines 13 to 17 in Algorithm 1, the above-

mentioned processes are repeated for a prede�ned num-

ber of CS generations, after which the number of combi-

nations is reduced by half, i.e., the better combinations

of F and Cr are preserved based on their ranks. The

ranking of any combination (Ranky) is calculated using

equation (6), where NIy is the number of individuals

updated by a combination (y). The higher the value of

Ranky, the better-performing the combination.

Ranky =
comy,suc

NIy
(6)

Similarly, the number of search operators is reduced

by half, but if nso becomes equal to 1, no reduction oc-

curs. This is decided using equation (7), where NIop is

the number of individuals updated by the search oper-

ator (SOop)

Rankp =
SOp,suc
NIop

(7)

Note that at the end of each cycle, the ranks of all

combinations and operators are reset to zero.

The process of changing the population sizes is as

follows (lines 18 to 25 in Algorithm 1): at the end of

every CS generations, the better-performing PSnps−1

individuals are kept in the population while the re-

maining ones (PSnps − PSnps−1) are transferred to an

archive/memory. The ranking of PSnps is computed as

the average performance per individual in the popula-
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tion for all parameter combinations over CS genera-

tions as:

Rankpsi =

∑CS
1

∑NoCtotal

1 comy,suc

PSi × CS
(8)

This process continues to calculate the ranking of

each population size. After CS × nps generations, PS
is �xed to the size with the best ranking, and the in-

dividuals stored in the archive/memory can be used if

required, i.e., if the best PS > PS1 (lines 26 to 29 in

Algorithm 1).

At every η × CS generations (the selection of

η is based on [42]), all the parameters are reset

to their initial values. The individuals stored in the

archive/memory are retrieved to set PS to its initial-

ized value (PSnps), and hence the archive/memory is

cleared (lines 30 to 33 in Algorithm 1).

To elucidate, a case with nps = 3 (75, 50 and 25

individuals), nso = 4, CS = 20 and NoCtotal = 50 is

considered. Initially, PS is set to a value of 75, and then

this population of individuals will evolve for 20 genera-

tions with 50 combinations and 4 search operators, then

the best 50 individuals will evolve for 20 more genera-

tions with the best 25 combinations and best 2 search

operators, as determined based on their success in the

previous 20 generations, and then the population size of

25 will evolve for 20 generations with 13 combinations

and the best search operator. Finally, the selected pop-

ulation size (75, 50 or 25) will be �xed, and the number

of combinations will be reduced by half. Once the num-

ber of generations is η × CS = 120, all the parameters

are reset to their initial values, i.e., nps = 3, nso = 4,

CS = 20, and NoCtotal = 64. This process continues

until a stopping criterion is met.

3.1.4 New cumulative constraints handling method

It is well known that an increase in the number of con-

straints in any problem will make it more complex and,

therefore, any EA will take a higher computational ef-

fort than for a simpler problem to reach an optimal

solution. Motivated by this, a new way of handling

constraints is proposed. It begins by ordering the con-

straints according to the sum of the constraint viola-

tions of all the individuals in the initial population from

the most violated to least violated constraint or vice

versa. The evolutionary process starts with a subset of

the constraints (conss), instead of all, for a prede�ned

number of generations and, as a new subset is then

added to the current one, the technique tries to reach

the feasible region of both the previous and new subsets

of constraints. This process continues until all the con-

straints are incorporated, and the �nal feasible region

is reached.

The selection process between any o�spring and its

parent follows one of three scenarios [15]: (1) for two

feasible candidates, the �ttest one (according to the �t-

ness function) is selected; (2) a feasible point is always

better than an infeasible one; and (3) for two infeasible

solutions, the one with a smaller sum of constraint vi-

olations (Θ) is chosen, where Θ of an individual (−→xz) is
calculated based on equation (9).

Θz =

K∑
k=1

max(0, gk(
−→xz)−δk)+

E∑
e=1

max(0, |he(−→xz)|−εe)

(9)

where gk(
−→xz) is the kth inequality constraint and he(−→xz)

the eth equality constraint. Note that, as some inequal-

ity constraints may be di�cult, instead of setting the

right-hand side of any gk to zero, a large value (δ) is

used at the beginning and then reduced to be zero. This

also applies to any equality constraint (he), whereby εe
is initialized with a large value and then reduced to

0.0001. Setting the initial value of ε is problem depen-

dent, as demonstrated in [34, 36, 45].

The proposed CHT can be better illustrated using

the following two-dimensional problem.

minimize f =

2∑
j=1

x2j

Subject to

g1 =

2∏
i=1

xj ≤ 0

g2 =

2∑
j=1

xj ≤ 0

h1 = g3 =

2∑
j=1

xjsin(4
√
|xj |) = 0

−10 ≤ xj ≤ 10∀j = 1, 2 (10)

Figure 1a shows a two-dimensional plot of the objec-

tive function and all constraints, and Figure 1b shows

plots of all the constraints and the contour plot of

the objective function (f) and the optimal solution

(f(−→x ∗) = 0), where −→x ∗ = {0, 0}; 20 random points
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are generated per instance (see Figure 1c). Then, the

average violation of each constraint of 20 solutions

(Θi =
∑20

z=1 Θi,z

20 ∀i = 1, 2, 3) is calculated. Based on

this example, Θ1 = 13.05, Θ2 = 2.6 and Θ3 = 5.56. If

we are interested in dealing with the most violated con-

straints �rst and conss = 1, g1 comes �rst, followed by

g3 and g1. Therefore, all 20 points will be evolved con-

sidering only g1 for a prede�ned number of generations

(Figure 1d) which shows that all points satisfy g1 but

may violate the other two constraints. Then, the algo-

rithm will evolve all points considering both g1 and g3
up to a prede�ned number of generations (Figure 1e).

Finally, all three constraints are considered for solving

the problem until an overall stopping criterion is met

and, as is clear in Figure 1f all points converged to the

optimum.

We like to mention here that the proposed CHT

shares a similarity with the behavioral memory (BM)

method proposed by Schoenauer and Xanthakis [43], in

which both handle a subset of constraints at a time.

However, there are signi�cant di�erences too as dis-

cussed below.

In the BM method, a random population is evolved

until a given percentage of the population is feasible

considering only the 1st constraint. Then, the popula-

tion is evolved until a threshold proportion of the popu-

lation satis�es the following constraint (say g-th). Dur-

ing this phase, the individuals that are not feasible for

any of the 1st to (g − 1)
th
constraint disappear from the

selection process. After considering all the constraints,

the algorithm starts the search process to optimize the

objective function. On the other hand, in each phase

of our proposed method, a constraint is added to the

problem, i.e., in the 2nd phase, the population is evolved

considering both the 1st and 2nd constraints, and no

individual is removed from the population. Also, the

proposed method does not wait until the last phase to

apply the search process for optimizing the objective

function, i.e., it optimizes the objective function given

the set of constraints in a particular phase. Another

important di�erence is that the BM method requires a

linear order of all constraints that are processed in turn

without any preferences [35]. However, in our method,

the constraints are ordered based on their complexity,

such as the average level of constraints violation. These

di�erences make our method more �exible, in which a

subset constraints may be considered (instead of one at

a time) at each phase.

4 Experimental Results

In this section, the computational results obtained by

DE-AOPS for the set of CEC2010 constrained problems

are presented and analyzed [32]. All algorithms were

run 25 times for each test problem, with the stopping

criterion run for up to 200, 000 and 600, 000 FEs for the

10D and 30D problems, respectively, using an algorithm

coded in Matlab R2012b2.

Regarding the parameter values used in this study,

� SOset = {DE1,DE2}, where
1. DE1: DE/ϕ-best/1/bin [42]

uz,j =


xφ,j + Fz.(xr1,j − xr2,j)
if(rand ≤ crz or j = jrand)

xz,j otherwise

(11)

2. DE2: DE/current-to-φbest with archive/1/bin

[71]

uz,j =


xz,j + Fz.(xφ,j − xz,j + xr1,j − x̃r3,j)

if(rand ≤ crz or j = jrand)

xz,j otherwise

(12)

where ϕ = 0.5, as suggested in [42], φ = 0.1 [71],

r1 6= r2 6= r3 6= z are random integer numbers, x̃r2,j
randomly chosen from PS∪AR, i.e., the union of PS
and the archive AR, which is di�erent from that in

Algorithm 1. Initially, the archive was empty, then

parent vectors which failed in the selection process

were added to it and, once its size exceeded a thresh-

old, 1.4PS randomly selected elements were deleted

to make space for the newly inserted ones [71]. The

reason for using DE1 was to obtain a balance be-

tween diversity and intensi�cation as described in

[42], whereas DE2 had a high convergence rate.

� Fset ={F5 ∈ [0.5− 0.6[, F6 ∈ [0.6− 0.7[, F7 ∈ [0.7−
0.8[, F8 ∈ [0.8−0.9[, F9 ∈ [0.9, 1[}. This means that

nf = 5.

� Crset ={Cr2 ∈ [0.2− 0.3[ , Cr3 ∈ [0.3− 0.4[, Cr4 ∈
[0.4 − 0.5[, Cr5 ∈ [0.5 − 0.6[, Cr6 ∈ [0.6 − 0.7[,

Cr7 ∈ [0.7− 0.8[, Cr8 ∈ [0.8− 0.9[, Cr9 ∈ [0.9, 1[}.

This means that ncr = 8. Therefore, NoCtotal =

5× 8 = 40 combinations.

� nps was set to a value of 4 and the mini-

mum PS to a value of 60 with each sub-sequent

size increased by 5 for the 10D problems i.e.,

PSset ={60, 65, 70, 75} and by 20 for the 30D prob-

lems, i.e. PSset ={60, 80, 100, 120}, to maintain di-

versity for higher-dimensional problems. Note that

nps should be less than η.

2 The source code is available upon request
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Fig. 1 Possible movements of a population of individuals based on the proposed constraint handling technique
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Table 1 Comparison summary of var1 against var2 for 30D
problems with more than one constraint (values in rows 1 and 2
refer to numbers of test problems for which var1 better, similar
and worse than var2 based on best and average �tness values
obtained, respectively)

Algorithms Criteria Better Similar Worse

var1 vs var2
Best �tness values 0 9 3

Average �tness values 0 8 4

Table 2 Comparison summary of var2 against var3 for 30D
problems with more than one constraint (values in rows 1 and 2
refer to numbers of test problems for which var2 better, similar
and worse than var3 based on best and average �tness values
obtained, respectively)

Algorithms Criteria Better Similar Worse

var2 vs var3
Best �tness values 2 9 1

Average �tness values 4 8 0

� CS = 25 generations, η = log(NoCtotal)
log(2) ' 6 [42].

� conss = 50% of the number of constraints.

4.1 E�ect of proposed CHT

The components of the proposed CHT were analyzed in

order to answer the following questions: (1) should the

most violated subset of constraints be handled �rst or

vice versa; (2) does the proposed CHT add any bene�ts

to the algorithm; and (3) what is the best subset size

to consider?

To answer the �rst question, two variants of DE-

AOPS were run. In the �rst variant var1, the most vio-

lated constraints and, in var2, the easiest ones were con-

sidered �rst, with conss = 50% in both. Also, both vari-

ants were tested on the 30D test problems with more

than one constraint, that is, 12 problems. A comparison

summary is presented Table 1. Although, from the re-

sults obtained, there was not a great deal of di�erence

between the variants, there was a slight bias towards

var2. As it was noticed that var2 was able to reduce

the average FEs to obtain optimal solutions with a tol-

erance of 0.0001 by 0.25%, it was selected.

To demonstrate the bene�t of the proposed method,

var2 was compared with the same algorithm without

the proposed CHT, i.e., conss = 100%, which was called

var3, for solving the same 12 problems, that is, those

with more than one constraint. From the comparison

summary shown in Table 2, it was found that var2 was

better, especially for the average results obtained, and

was able to reduce the average FEs by 0.25%.

Another variant was run by changing conss to 25%

(var4) and its results were compared with those for

var2, on only test problems with more than 2 con-

straints, that is, problems C02, C04, C13, C14, C15,

C16 and C17. From the comparison summary shown in

Table 3, var2 was found to be superior to var4 in terms

of the quality of solutions obtained although var4 was

25% faster. It is worth mentioning that C02 was the

only problem for which var4 obtained better mean re-

sults. As we seek good results, var2 was selected and

used as the proposed DE-AOPS in this paper.

Table 3 Comparison summary of var2against var4for 30D
problems with more than two constraints (7 problems) (values in
rows 1 and 2 refer to numbers of test problems for which var2was
better, similar and worse than var4based on best and average �t-
ness values obtained, respectively).

Algorithms Criteria Better Similar Worse

var2 vs var4
Best �tness values 3 4 0

Average �tness values 3 3 1

4.2 DE-AOPS VS DE-DPS

In this section, the proposed algorithm is compared

with a successful adaptive DE (DE-DPS) with discrete

values [42]. Detailed computational results are shown

in Appendix A a summary is presented in Table 4.

Considering the best solutions obtained for the 10D

test problems, DE-AOPS was better than DE-DPS for

only one problem while both algorithms were able to

achieve optimal solutions for the remaining 17 prob-

lems. Based on the average results, DE-AOPS was bet-

ter than DE-DPS for 6 problems, and both were similar

for 10 problems while DE-AOPS was inferior for C02

and C08.

In reference to the best results obtained for the 30D

test problems, those from DE-AOPS were better for

13 test problems, and those from both algorithms were

the same for the other 5. Based on the average solu-

tions, DE-AOPS performed best for 14 test problems

and was able to obtain the same results as DE-DPS

for 2 more while being inferior to DE-DPS for other 2

problems (C02 and C13). The reason for these inferior

solutions was the large population sizes considered, as

described in Section IV-C. From these results, it was

noted that DE-AOPS had the capability to improve

results for most test problems, especially the higher-

dimensional ones.

Also, the Wilcoxon signed rank test [12] was used

to statistically compare the algorithms. Using a signi�-

cance level of p = 5%, one of three symbols (+, −, and
≈) was assigned, where + means that the 1st algorithm

was statistically superior to the 2nd, − that the 1st al-

gorithm was statistically inferior to the 2nd and ≈ that

there was no signi�cant di�erence between the two al-

gorithms. The results in Table 4 show that there was no

signi�cant di�erence between those from the algorithms
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Table 4 Comparison summary of DE-AOPS against DE-DPS (values in rows 1 and 2 refer to numbers of test problems for which
DE-AOPS better, similar and worse than DE-DPS based on best and average �tness values obtained, respectively with p a probability
used to take decision based on Wilcoxon test)

Algorithms Criteria
10D 30D

Better Similar Worse p Decision Better Similar Worse p Decision

DE-AOPS vs DE-DPS
Best �tness values 1 17 0 0.317 ≈ 13 5 0 0.002 +

Average �tness values 6 10 2 0.612 ≈ 14 2 2 0.056 +

for the 10D results, with p = 10%, DE-AOPS was found

to be signi�cantly better than DE-DPS based for the

30D ones.

As it is well known that no solution better than the

optimum can be obtained, if competing algorithms ob-

tain the same solution (either the optimum or a solution

within an acceptable tolerance limit), the only way to

assess the superiority of one is to compare their com-

putational burdens. We must mention that DE-AOPS

achieved a faster convergence rate, as shown in Figure 2

in which it is clear that it was able to converge quickly

to optimal solutions for C03, C07 and C14. It was noted

that for all the test problems, DE-AOPS reduced the

average number of �tness evaluations required to reach

optimal solutions, with a tolerance value of 0.0001, by

13.29% and 23.06% for the 10D and 30D problems, re-

spectively.
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Fig. 2 Convergence plots of DE-AOPS and DE-DPS for C03,
C07 and C14 with 30D (the y-axis in log scale)

4.3 Bene�ts of dynamic change in population sizes

In this subsection, we discuss the bene�t of the pro-

posed dynamic adaptation of PS demonstrated by run-

ning DE-AOPS with di�erent single PS values of 60, 80,

100 and 120. All the variants were used to solve the 30D

test problems, and their average results recorded and

ranked from best to worst, i.e., 1 to 5, with a summary

presented in Table 5.

Firstly, it was found that DE-AOPS with PS =

60 was the best for C02 and C13, and achieved more

stable results than all the other algorithms. However,

it became stuck in local solutions for the multi-modal

problems C01, C03, C07 toC12 and C14 to C15. On the

other hand, with PS = 120, it was superior to the other

variants for those problems, but the worst for others,

especially C02 and C13, while with PS = 100 it was

good for some test problems, such as C03, C07, C08,

C14, C16 and C18.

Regarding the feasibility ratio (FR), it was found

that all the variants were able to obtain a 100% FR,

except DE-AOPS with PS = 60 and PS = 100 for

which both variants obtained a rate of 99.8%. In terms

of the average FEs required to obtain optimal solutions,

with a tolerance of 0.0001, it was found that DE-AOPS

with PS = 60 was the best and DE-AOPS with PS =

120 the worst. For all the test problems, DE-AOPS with

the proposed dynamic mechanism of PS was found to be

the best compared to the abovementioned variants with

a single PS value, as it provided a balance among all

the other variants. From this analysis, one could easily

justify including this dynamic mechanism of PS in the

proposed algorithm.

Table 5 Ranks of DE-AOPS with PS = 60, PS = 80, PS =
100, PS = 120 and dynamic PS (proposed)

Probs. Dynamic PS PS = 60 PS = 80 PS = 100 PS = 120
C01 2 5 4 3 1
C02 3 1 2 4 5
C03 2 5 3 1 4
C04 1 1 1 1 1
C05 1 1 1 1 1
C06 1 1 1 1 1
C07 2 4 3 1 5
C08 2 5 4 1 3
C09 3 4 5 2 1
C10 2 5 3 4 1
C11 1 5 1 5 1
C12 1 5 2 3 4
C13 3 1 2 4 5
C14 3 5 2 1 4
C15 1 5 2 4 3
C16 1 1 1 1 1
C17 4 5 3 2 1
C18 3 4 2 1 5

Avg. 2.00 3.50 2.33 2.22 2.61

FR 100% 99.8% 100% 99.8% 100%
Avg. FEs 3.37E+05 3.07E+05 3.13E+05 3.25E+05 3.44E+05
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Table 6 Ranks of DE-AOPS with nps = 3, 4, 5, 6 based on
Friedman test

nps
3 4 5 6

Ranking 2.86 2.14 2.14 2.86

4.4 E�ect of nps

To evaluate the performance of each population size,

nps should be less than or equal to η, as discussed in

[42]. Therefore, to analyze the e�ect of this parame-

ter, we ran the algorithm by setting nps =3, 4,5 and

6 and solved the 10D problems. Then, the ranking of

each variant based on the average �tness value obtained

was calculated by the Friedman test. From the results

presented in Table 6, it was found that setting nps to

3 and 4 had best ranking.

4.5 Scaling Analysis

The relationship between the dimensionality of a prob-

lem and the average number of FEs required to obtain

solutions with a tolerance limit of 0.0001 was derived.

Three test problems (C07, C09 andC15) were selected,

the mathematical properties of which are shown in Ta-

ble 7, with their optimal solutions at f(
−→
x∗) = 0. All the

problems were solved using di�erent dimensions, i.e.,

D = 5, 10, 15, 20, 25 and 30 variables. For each D, the

algorithm was run 51, times and the average FEs were

recorded. It is worth mentioning that only up to 30 de-

cision variables were used due to data availability. Note

that to be consistent with the selection of PSset dis-

cussed in Section 4, it was assumed that the minimum

PS should be 60 and each subsequent PSi increased

by 5 for 5D and 10D (i.e., PSset ={60, 65, 70, 75}),

10 for 15D (i.e., PSset ={60, 70, 80, 80}), 15 for 20D

(i.e., PSset ={60, 75, 90, 105}) and 20 for D > 20 (i.e.,

PSset ={60, 80, 100, 120}).

Figure 3 shows the average FEs for each dimension.

Also, the quadratic regression equations [37] were �t-

ted to help approximate the average FEs required for

every D. Hence, the quadratic regression equation for

C07 was FEs = 193.61D2 + 3480.1D + 10062 and the

coe�cient of determination [37] 97.9% (a larger value,

with a maximum absolute value of 1, means that the

curve is highly �tted to expect future values). For C09,

FEs = 165.74D2 + 4828.6D + 5240.4 and the coe�-

cient of determination was equal to 98.1% and, that

for C15, FEs = 219.85D + 3051.9D + 22856, and the

coe�cient of determination 97.6%. These encouraging

results demonstrated that the algorithm was e�cient

and scaled well with an increasing number of dimen-

sions.

4.6 Discussion

In this subsection, we discuss the di�erent parameter

segment combinations (F and Cr) during the evolu-

tionary process that could lead to good performances

which will guide researchers and practitioners in choos-

ing appropriate parameter sets for their problems.

For the best run of each problem, the best segment

combination, at every level of combination reduction

was recorded. B the x-axis represents FEs and the y-

axis is scaled from 2 to 10, where each value represents

a segment of F and Cr, as described in Section 4. A

summary of the preferred values for Cr and F is pre-

sented in Table 8. Generally speaking, there was no sin-

gle value that was good for all the test problems which

was consistent with the motivation for our work.

4.7 Comparison with state-of-the-art algorithms

DE-AOPS is compared with: (1) εDEag [49] (the win-

ner of the CEC2010 competition), (2) ECHT-DE [30],

which used an ensemble of CHTs as well as opera-

tors and parameters; (3) an adaptive ranking mutation

operator-based DE (ECHT-ARMOR-DE) [22], which

is an improved version of ECHT-DE; (4) a constrained

DE with non-dominated sorting mutation (MS-(µ+λ)-

CDE) [63]; (5) a binary real-coded GA (BRGA) [2];

and (6) two versions of SHADE with a linear reduction

mechanism (LSHADE), as it has shown its superiority

to other algorithms for solving unconstrained problems

[52], that is (i) LSHADE with the adaptive penalty

CHT (LSHADE-AP), i.e., converting a COP to an un-

constrained one; and (ii) LSHADE with the superior-

ity of feasible solutions CHT (LSHADE-SFS). In the

second version of LSHADE, the amount of �tness im-

provement represented in equation 9 in [52] was mod-

i�ed to consider constraint violations so that ∆fvz =

|max(0, f(−→x z,iter)−f(−→u z,iter))|+|max(0, Θ(−→x z,iter)−
Θ(−→u z,iter))|. Note that both versions used the same pa-

rameter settings as those reported in [52] and the source

code was taken from [52] which is available online. De-

tails of the results are presented in Appendix A.

Firstly, DE-AOPS was able to reach 100% FRs for

both the 10D and 30D problems. εDEag attained a

100% FR for 35 out of the 36 test instances, while it

only obtained a 12% FR for C12 with 30D, the FRs of

ECHT-DE, ECHT-ARMOR-DE and MS-(µ+λ)-CDE

were less than 100% for the10D and 30D problems, with

no exact percentages reported in their papers, BRGA
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Table 7 Mathematical properties of C07, C09 and C15

Properties
C07 C09 C15

Obj. Func.
Constraints Obj. Func. Constraints Obj. Func. Constraints

equality inequality equality inequality equality inequality

Non-separable
√ √ √

Separable
√ √ √

Multi-modal
√ √ √ √ √

Shifted
√ √ √ √ √

Rotated
√

No of constraints 1 1 3
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Fig. 3 Average number of function evaluations versus problem dimensions for C07, C09 and C15 using 51 runs (solid green curves
represent quadratic regression �tting of data and bars represent standard deviations)

Table 8 Summary of preferred values for F and Cr based on problems' characteristics

Prob.
Characteristics

F Cr
Objective function constraints

C01and C03 multi-modal and non-separable [0.5− 0.8] Early stages (small values), later stages (high values)

C07, C09, C14 and C18 multi-modal and non-separable multi-modal separable [0.5− 0.8] Early stages (small values), later stages (high values)

C02and C05 separable multi-modal separable [0.5− 0.8] [0.2− 0.8]
C04 separable separable and non-separable multi-modal equality [0.4− 0.7] [0.6− 1.0]
C13 separable separable and non-separable multi-modal inequality [0.6− 1.0] Early stages (small values), later stages (high values)

C17 non-separable unimodal separable and non-separable [0.5− 1.0] [0.8− 1.0]
C16 non-separable multi-modal separable and non-separable constraint [0.4− 0.7] Small values

C06, C08, C10, C11, C12 and C13 rotated functions [0.4− 0.7] Early stages (small values), later stages (high values)

achieved 89% and 81% FRs for the 10D and 30D prob-

lems, respectively, and LSHADE-SFS and LSHADE-

AP 78% and 77.5% FRs, respectively, for the 10D prob-

lems, and 76% and 77%, respectively, for the 30D ones.

A summary of the quality of solutions obtained is

provided in Table 9. For the 10D problems, DE-AOPS

was superior to all algorithms for the majority of them

based on the average results and performed much better

than the other algorithms for the 30D test problems.

Based on the statistical analysis, DE-AOPS was

found to be superior to ECHT-DE, ECHT-ARMOR-

DE and MS-(µ+λ)-CDE considering the average results

for the 10D test problems, and better than BRGA,

LSHADE-SFS and LSHADE-AP based on both the

best and average results. For the 30D test problems,

DE-AOPS was signi�cantly better than all the other

algorithms.

5 Conclusions

For solving constrained and unconstrained optimization

problems, DE has shown good performance in com-

parison with other EAs. However, as the selection of

appropriate search operators and control parameters

has been known to be a tedious task, a considerable

number of DE algorithms that used an ensemble of

search operators and/or adaptive or self-adaptive con-

trol parameters has been introduced. In the approach

in this study, an adaptation of two search operators,

as well as three parameters, was proposed. Multiple

search operators and continuous values of the control

parameters, in which three di�erent sets of parame-

ter values were initialized for F , Cr, and PS, were

used. For a de�ned number of generations, each in-

dividual in the population was assigned to a random

combination and the normalized success for each com-

bination recorded. Subsequently, the number of com-

binations was reduced to a prede�ned level at which

the success counters were reset. The same was under-

taken for the search operators, whereby the algorithm

emphasized the well-performing operators during the

search process. Also, a new methodology for handling

constraints, in which the constraints were divided into

subsets based on each constraint violation, was intro-
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Table 9 A comparison summary of DE-AOPS against εDEag, ECHT-DE, ECHT-ARMOR-DE, BRGA and APM-ES. The values in rows
1 and 2 refer to the number of test problems in which DE-AOPS is better, similar and worse than the second algorithm in the 1st
column, based on the best and average �tness values obtained, respectively. p is a probability that is used to make a decision based
on Wilcoxon's test

Algorithms Criteria
10D 30D

Better Similar Worse p Decision Better Similar Worse p Decision

DE-AOPS vs. εDEag
Best �tness values 5 12 1 0.345 ≈ 17 1 0 0.000 +

Average �tness values 9 7 2 0.286 ≈ 17 0 1 0.003 +

DE-AOPS vs. ECHT-DE
Best �tness values 2 16 0 0.18 ≈ 7 9 2 0.021 +

Average �tness values 12 3 3 0.009 + 14 1 3 0.002 +

DE-AOPS vs. ECHT-ARMOR-DE
Best �tness values 1 17 0 0.317 ≈ 11 6 1 0.004 +

Average �tness values 8 7 3 0.033 + 14 1 3 0.003 +

DE-AOPS vs. MS-(µ+λ)-CDE
Best �tness values 3 15 0 0.109 ≈ 16 2 0 0.000 +

Average �tness values 13 2 3 0.002 + 18 0 0 0.000 +

DE-AOPS vs. BRGA
Best �tness values 17 1 0 0.000 + 18 0 0 0.000 +

Average �tness values 18 0 0 0.000 + 18 0 0 0.000 +

DE-AOPS vs. LSHADE-SFS
Best �tness values 5 13 0 0.00 + 11 5 2 0.005 +

Average �tness values 8 7 3 0.021 + 13 2 3 0.002 +

DE-AOPS vs. LSHADE-AP
Best �tness values 5 13 0 0.00 + 11 5 2 0.003 +

Average �tness values 8 7 3 0.021 + 13 2 3 0.004 +

duced. The algorithm started with a single subset and

gradually combined all the subsets. The proposed algo-

rithm was tested on the CEC2010 problems and showed

superior performance to our earlier proposed algorithm

in terms of solution quality. Also, it was able to reduce

the average FEs by 13.29% and 23.06% for the 10D and

30D problems, respectively, and performed much better

than state-of-the-art algorithms

In addition, an analysis of the e�ect of the pro-

posed CHT on the performance of DE-AOPS success-

fully demonstrated its bene�ts as did the proposed

methodology for its dynamic switching of population

sizes with �xed PS values.
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Appendix A: Best and average �tness values (FV) achieved by DE-AOPS and 8 state-of-the-art algorithms, where

�*� and �-� refer infeasible solutions, while �n/a� refers to not available results

Prob. Algorithm
10D 30D

Best FV Average FV Std. Best FV Average FV Std.

C01

DE-AOPS -7.473104E-01 -7.473104E-01 2.821438E-16 -8.218844E-01 -8.216488E-01 8.639430E-04
DE-DPS -7.473104E-01 -7.473104E-01 2.26623E-16 -8.21884E-01 -8.212036E-01 1.79648E-03
εDEag -7.473104E-01 -7.470402E-01 1.323339E-03 -8.218255E-01 -8.208687E-01 7.103893E-04

ECHT-DE -0.7473 -0.7470 0.0014 -0.8217 -0.7994 0.0179
ECHT-ARMOR-DE -7.4730E-01 -7.4700E-0 1.4E-03 -8.1806E-01 -7.8992E-01 2.51E-02
MS-(µ+λ)-CDE -7.4731E-01 -7.4193E-01 1.1715E-02 -8.1142E-01 -7.3471E-01 5.3191E-02

BRGA -7.473E-01 -7.288E-01 1.732E-02 -7.850E-01 -6.940E-01 6.740E-02
LSHADE-SFS -7.473104E-01 -7.473104E-01 6.969063E-15 -8.218844E-01 -8.215233E-01 1.261038E-03
LSHADE-AP -7.473104E-01 -7.467701E-01 1.869859E-03 -8.218844E-01 -8.215695E-01 1.090028E-03

C02

DE-AOPS -2.277711E+00 -1.867885E+00 4.897646E-01 -2.28097E+00 -1.940295E+00 2.702060E-01
DE-DPS -2.277711E+00 -2.277512E+00 2.54035E-04 -2.280671 -2.244631 5.20548E-02
εDEag -2.277702E+00 -2.269502E+00 2.3897790E-02 -2.169248E+00 -2.151424E+00 1.197582E-02

ECHT-DE -2.2777 -2.2744 0.0067 -2.2251 -1.9943 0.2099
ECHT-ARMOR-DE -2.2777E+00 -2.2770E+00 3.3E-03 -2.2607E+00 -2.1706E+00 7.36E-02
MS-(µ+λ)-CDE -2.2777E+00 -2.2527E+00 1.2755E-02 -2.1431E+00 -1.2735E+00 4.2140E-01

BRGA -4.028E-01 3.346E+00 1.257E+00 2.660E+00 4.230E+00 5.170E-01
LSHADE-SFS -2.277710E+00 -2.148228E+00 1.853388E-01 -2.28097E+00 -2.277377E+00 3.940237E-03
LSHADE-AP -2.273042E+00 -2.179539E+00 1.022030E-01 -2.280958E+00 -2.226907E+00 8.139753E-02

C03

DE-AOPS 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 7.705795E-26 2.679942E-25
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00 1.6200E-19 1.8479E-13 4.17994E-13
εDEag 0.000000E+00 0.000000E+00 0.000000E+00 2.867347E+01 2.883785E+01 8.047159E-01

ECHT-DE 0.000000E+00 0.000000E+00 0.000000E+00 3.2433E-21 9.8920E+01 6.2594E+01
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00 2.5801E-24 2.6380E+01 7.94E+00
MS-(µ+λ)-CDE 0.00000E+00 5.9090E+13 1.2249E+14 1.1164E+12 2.2083E+13 2.5059E+13

BRGA 3.298E+09 2.187E+13 3.860E+13 4.560E+11* 2.450E+13* 2.800E+13*
LSHADE-SFS 7.274523E+00 3.477702E+14* 2.487137E+14 1.039162E+01* 1.207354E+01* 6.990000E-01
LSHADE-AP 5.863095E+04* 1.878530E+13* 5.530525E+13 1.059550E+02* 1.210112E+02* 1.086404E+01

C04

DE-AOPS -1.000000E-05 -1.000000E-05 0.00000E+00 -3.333333E-06 -3.333333E-06 7.207721E-14
DE-DPS -1.000000E-05 -1.000000E-05 9.09633E-15 -3.3318E-06 -3.3123E-06 2.03926E-08
εDEag -9.992345E-06 -9.918452E-06 1.5467300E-07 4.698111E-03 8.162973E-03 3.067785E-03

ECHT-DE -1.00000E-05 -1.00000E-05 0.00000E+00 -3.3015E-06 -1.0257E-06 9.0135E-02
ECHT-ARMOR-DE -1.00000E-05 -1.00000E-05 0.00000E+00 -3.3326E-06 8.3713E-02 2.89E-01
MS-(µ+λ)-CDE -1.0000E-05 -1.0000E-05 6.7684E-13 1.7476E-02 6.8459E+00 9.9375E+00

BRGA 5.627E-03* 3.987E+00* 7.365E+00 2.830E-01* 4.340E+00* 5.260E+00
LSHADE-SFS 1.369123E+01* 3.462476E+01* 9.246601E+00 4.006270E+01* 4.896515E+01* 4.733187E+00
LSHADE-AP 1.287461E+02* 5.081855E+03* 3.808307E+03 7.518004E+05* 8.316182E+06* 8.363571E+06

C05

DE-AOPS -4.836106E+02 -4.836106E+02 3.480934E-13 -4.836106E+02 -4.836106E+02 7.071077E-12
DE-DPS -4.836106E+02 -4.836106E+02 1.25826E-10 -4.836106E+02 -4.836106E+02 4.42074E-06
εDEag -4.836106E+02 -4.836106E+02 3.89035E-13 -4.531307E+02 -4.495460E+02 2.899105E+00

ECHT-DE -483.6106 -411.4532 76.3137 -213.6844 -106.4228 167.1481
ECHT-ARMOR-DE -4.8361E+02 -4.8361E+02 0.0E+00 -4.8122E+02 -4.3335E+02 1.46E+02
MS-(µ+λ)-CDE -4.8361E+02 -4.6883E+02 4.8666E+01 -4.6313E+02 -3.5787E+02 8.3832E+01

BRGA -3.451E+01 1.166E+02 6.813E+01 1.240E+02 2.640E+02 7.070E+01
LSHADE-SFS -4.836106E+02 -4.836106E+02 3.480934E-13 -4.836106E+02 -4.836106E+02 1.778427E-08
LSHADE-AP -4.836106E+02 -4.836106E+02 3.480934E-13 -4.836106E+02 -4.836106E+02 2.992156E-10

C06

DE-AOPS -5.786624E+02 -5.786624E+02 1.411580E-13 -5.306379E+02 -5.306379E+02 3.232427E-11
DE-DPS -5.786624E+02 -5.78662E+02 8.05379E-04 -5.306379E+02 -5.306329E+02 5.89364E-03
εDEag -5.786581E+02 -5.786528E+02 3.6271690E-03 -5.285750E+02 -5.279068E+02 4.748378E-01

ECHT-DE -578.6624 -562.4688 45.1479 -295.7192 -137.6152 98.8995
ECHT-ARMOR-DE -5.7866E+02 -5.7866E+02 4.0E-13 -5.2465E+02 -4.8931E+02 1.32E+02
MS-(µ+λ)-CDE -5.7866E+02 -5.0947E+02 1.0497E+02 -5.2182E+02 -3.2308E+02 1.2814E+02

BRGA 9.574E+01 1.874E+02 5.703E+01 1.610E+02 2.680E+02 7.490E+01
LSHADE-SFS -5.786624E+02 -3.113090E+02 2.770278E+02 -5.306379E+02 -5.306196E+02 9.017545E-02
LSHADE-AP -5.786624E+02 -4.787993E+02 1.544245E+02 -5.306379E+02 -5.306163E+02 6.487517E-02

C07

DE-AOPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 2.204073E-27 4.881227E-27
DE-DPS 0.000000E+00 0.000000E+00 0.0000000E+00 5.48786E-20 1.03359E-13 2.20540E-13
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 1.147112E-15 2.603632E-15 1.233430E-15

ECHT-DE 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.1329 0.7279
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.0789E-25 2.20E-25
MS-(µ+λ)-CDE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.5946E-01 7.9732E-01

BRGA 2.242E-03 1.260E+01 2.752E+01 1.440E+01 7.450E+02 1.570E+03
LSHADE-SFS 0.000000E+00 0.000000E+00 0.000000E+00 3.542613E-26 6.644020E-22 1.945602E-21
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.292713E-21 9.561772E-21

C08

DE-AOPS 0.000000E+00 6.590903E+00 5.122612E+00 0.000000E+00 6.312850E-28 2.715168E-27
DE-DPS 0.00000E+00 3.950387E+00 5.01904E+00 4.575719E-13 3.447568E-09 8.86366E-09
εDEag 0.00000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14

ECHT-DE 0.00000E+00 6.1566E+00 6.4527E+00 0.00000E+00 3.3585E+01 1.1072E+02
ECHT-ARMOR-DE 0.00000E+00 7.5262E+00 5.0E+00 0.000000E+00 2.0101E+01 4.70E+01
MS-(µ+λ)-CDE 0.0000E+00 8.0132E+00 4.6560E+00 2.4806E-15 1.0464E+03 3.1626E+03

BRGA 8.795E-04 2.716E+02 4.555E+02 1.820E+01 1.400E+03 1.870E+03
LSHADE-SFS 0.000000E+00 1.006622E+01 3.029575E+00 2.267461E-23 2.607775E+01 5.651018E+01
LSHADE-AP 0.000000E+00 9.773469E+00 3.284353E+00 1.198148E-25 1.878701E+01 4.545001E+01

C09

DE-AOPS 0.00000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 7.257287E-27 1.440838E-26
DE-DPS 0.00000E+00 0.000000E+00 0.0000000E+00 3.81580E-23 5.29059E-14 1.27939E-13
εDEag 0.00000E+00 0.000000E+00 0.0000000E+00 2.770665E-16 1.072140E+01 2.821923E+01

ECHT-DE 0.00000E+00 1.4691E-01 8.0482E-01 0.00000E+00 4.2441E+01 1.3762E+02
ECHT-ARMOR-DE 0.000000E+00 1.7633E-01 8.8E-01 0.000000E+00 4.6110E+00 2.31E+01
MS-(µ+λ)-CDE 0.00000E+00 2.9773E+04 1.4886E+05 4.3409E+07 2.5118E+09 3.7457E+09

BRGA 9.640E-10 7.888E+02 3.189E+03 3.600E+01 2.150E+05 4.680E+05
LSHADE-SFS 0.000000E+00 0.000000E+00 0.000000E+00 9.519716E+01 4.894634E+04 7.521028E+04
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 1.825224E-08 4.864067E+04 5.852319E+04
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Prob. Algorithm
10D 30D

Best Mean Std. Best Mean Std.

C10

DE-AOPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 8.491790E-27 1.654768E-26
DE-DPS 0.000000E+00 0.000000E+00 0.0000000E+00 1.63778E-21 2.23928E-13 6.24058E-13
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 3.252002E+01 3.326175E+01 4.545577E-01

ECHT-DE 0.000000E+00 1.7117E+00 7.6554E+00 0.00000E+00 5.3381E+01 8.8308E+01
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.00000E+00 6.0209E-13 6.5536E+01 1.07E+02
MS-(µ+λ)-CDE 0.000000E+00 4.5513E+01 2.8860E+01 4.5657E+07 1.4104E+09 1.9076E+09

BRGA 4.306E+01 5.597E+02 7.129E+02 8.790E+02 1.600E+04 1.890E+04
LSHADE-SFS 0.000000E+00 0.000000E+00 0.000000E+00 5.329364E-14 1.827317E+04 5.453344E+04
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 3.774930E-13 8.544700E+01 1.677114E+02

C11

DE-AOPS -1.522713E-03 -1.522713E-03 7.796085E-18 -3.923439E-04 -3.923438E-04 1.199812E-10
DE-DPS -1.52271E-03 -1.52271E-03 3.14275E-12 -3.92344E-04 -3.923423E-04 8.77688E-10
εDEag -1.52271E-03 -1.52271E-03 6.3410350E-11 -3.268462E-04 -2.863882E-04 2.707605E-05

ECHT-DE -0.0015 -0.0044* 0.0157 -0.0004 0.0026 0.0060
ECHT-ARMOR-DE -1.5227E-03 - 4.4E-02 -3.9234E-04 - 5.28E-03
MS-(µ+λ)-CDE -8.7342E-02* -4.9555E-03* 1.7164E-02 -3.9231E-04 2.6918E-03* 7.1179E-03

BRGA -9.097E-05* -1.717E-01* 1.896E+00 -4.380E-02* -9.570E-02* 2.440E-01
LSHADE-SFS -2.702077E+01* -6.232310E+00* 1.322113E+01 -8.756476E+00* 1.268593E+00* 6.369888E+00
LSHADE-AP 2.507472E+05* 1.545297E+07* 1.343245E+07 5.490169E+10* 2.552285E+11* 2.222209E+11

C12

DE-AOPS -3.054888E+02 -6.730572E+01 1.138406E+02 -1.992635E-01 -1.992635E-01 1.012003E-08
DE-DPS -1.9925E-01 -1.9925E-01 4.19599E-10 -1.992635E-01 -1.9926E-01 2.60287E-08
εDEag -5.700899E+02 -3.367349E+02 1.7821660E+02 -1.991453E-01 3.562330E+02 2.889253E+02

ECHT-DE -0.1992 -171.8714* 221.0436 -0.1993 -25.1292* 136.5593
ECHT-ARMOR-DE -1.9925E-01 -1.9925E-01 1.6E-13 -1.9926E-01 -1.6076E-01 1.93E-01
MS-(µ+λ)-CDE -1.9925E-01 -1.9924E-01 2.5000E-06 -1.9926E-01 5.7980E-01 3.0953E+00

BRGA -1.958E-01 1.666E+01* 3.712E+01 -2.820E+02* -7.140E+00* 6.320E+01
LSHADE-SFS -2.194386E+03* 1.968868E+02* 1.249431E+03 -3.601012E+03* 4.279879E+02* 2.111636E+03
LSHADE-AP 5.502293E+06* 8.044863E+07* 1.127357E+08 4.863293E+12* 3.164231E+13* 2.085429E+13

C13

DE-AOPS -6.842937E+01 -6.842937E+01 2.626767E-14 -6.84294E+01 -6.457963E+01 3.027647E+00
DE-DPS -6.842937E+01 -6.842937E+01 0.0000000E+00 -6.84294E+01 -66.33141 2.08493E+00
εDEag -6.842937E+01 -6.842936E+01 1.0259600E-06 -6.642473E+01 -6.535310E+01 5.733005E-01

ECHT-DE -68.4294 -65.1208 2.3750 -68.4294 -64.5831 1.6690
ECHT-ARMOR-DE -6.8429E+01 -6.7169E+01 2.1E+00 -6.7416E+01 -6.4646E+01 1.97E+00
MS-(µ+λ)-CDE 6.8429E+01 -6.3669E+01 2.3430E+00 -6.3251E+01 -5.9597E+01 2.5966E+00

BRGA -6.843E+01 6.154E+01 2.523E+00 -6.020E+01 -5.630E+01 2.320E+00
LSHADE-SFS -6.842937E+01 -6.769539E+01 3.604648E-01 -6.227638E+01 -3.089694E+01* 2.650899E+01
LSHADE-AP -6.842937E+01 -6.765320E+01 5.239996E-01 -6.227637E+01 1.028506E+03* 2.803956E+03

C14

DE-AOPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 9.521141E-27 2.881915E-26
DE-DPS 0.000000E+00 0.000000E+00 0.0000000E+00 8.925796E-21 5.137406E-14 1.31791E-13
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 5.015863E-14 3.089407E-13 5.608409E-13

ECHT-DE 0.00000E+00 7.0242E+05 3.1937E+06 0.00000E+00 1.2368E+05 6.7736E+05
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00 1.5809E-27 6.6135E+02 2.47E+03
MS-(µ+λ)-CDE 0.00000E+00 9.5337E+01 4.0097E+02 4.8313E-16 6.7881E+05 3.3878E+06

BRGA 5.004E+00 2.537E+06 6.030E+06 2.480E+01 3.130E+10 1.530E+11
LSHADE-SFS 0.000000E+00 0.000000E+00 0.000000E+00 2.423696E-26 4.834862E-17 2.395498E-16
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 3.013299E-25 3.225427E-16 1.591360E-15

C15

DE-AOPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 9.452131E-28 2.809169E-27
DE-DPS 0.000000E+00 5.438912E-26 2.19329E-25 6.336258E-20 1.957805E-13 5.22687E-13
εDEag 0.000000E+00 1.798980E-01 8.8131560E-01 2.160345E+01 2.160376E+01 1.104834E-04

ECHT-DE 0.00000E+00 2.3392E+13 5.2988E+13 1.9922E+09 1.9409E+11 4.3524E+11
ECHT-ARMOR-DE 0.0000E+00 2.8246E+00 1.6E+00 1.1716E-04 3.1316E+08 1.20E+09
MS-(µ+λ)-CDE 1.4458E+10 4.8297E+13 4.2378E+13 4.7916E+01 1.1977E+13 2.1951E+13

BRGA 1.655E+01 8.201E+06 1.570E+07 5.610E+01 5.780E+06 1.110E+07
LSHADE-SFS 0.000000E+00 1.798978E-01 8.994890E-01 1.205931E+01 2.131498E+01 1.984036E+00
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 2.150558E+00 2.101213E+01 3.982252E+00

C16

DE-AOPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00
εDEag 0.000000E+00 3.702054E-01 3.7104790E-01 0.000000E+00 2.168404E-21 1.062297E-20

ECHT-DE 0.000000E+00 3.9327E-02 4.2815E-02 0.00000E+00 0.00000E+00 0.00000E+00
ECHT-ARMOR-DE 0.000000E+00 2.8478E-02 5.0E-02 0.000000E+00 0.000000E+00 0.000000E+00
MS-(µ+λ)-CDE 0.00000E+00 8.2716E-02 1.3780E-01 0.00000E+00 6.9181E-03 2.8588E-02

BRGA 6.663E-01 9.894E-01 8.576E-02 9.780E-01 1.050E+00 2.510E-02
LSHADE-SFS 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
LSHADE-AP 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

C17

DE-AOPS 0.000000E+00 6.289787E-26 1.790341E-25 2.580746E-32 1.236845E-19 5.494802E-19
DE-DPS 0.000000E+00 1.061273E-24 3.88726E-24 3.236013E-12 8.766191E-02 1.55966E-01
εDEag 1.463180E-17 1.249561E-01 1.9371970E-01 2.165719E-01 6.326487E+00 4.986691E+00

ECHT-DE 0.00000E+00 1.1152E-01 3.3152E-01 0.00000E+00 2.7496E-01 3.7832E-01
ECHT-ARMOR-DE 0.00000E+00 3.6978E-33 3.1E-33 3.3564E-16 4.0336E-01 3.51E-01
MS-(µ+λ)-CDE 0.00000E+00 4.9304E-34 1.7065E-33 2.5480E-02 2.6504E-01 2.3245E-01

BRGA 2.864E+00 1.704E+01 9.554E+00 4.760E+01 1.160E+02 4.770E+01
LSHADE-SFS 0.000000E+00 7.395571E-34 2.044028E-33 0.000000E+00 4.602433E-18 2.301215E-17
LSHADE-AP 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 7.284498E-23 3.442614E-22

C18

DE-AOPS 0.000000E+00 1.502663E-24 7.260554E-24 6.441314E-26 5.294587E-20 1.156098E-19
DE-DPS 0.000000E+00 3.209082E-23 7.12457E-23 6.747743E-13 9.459914E-08 1.91224E-07
εDEag 3.731440E-20 9.678765E-19 1.8112340E-18 1.226054E+00 8.754569E+01 1.664753E+02

ECHT-DE 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
MS-(µ+λ)-CDE 0.00000E+00 0.00000E+00 0.00000E+00 2.4371E-20 7.4534E-01 1.8865E+00

BRGA 1.280E-01 2.589E+00 3.917E+00 1.200E+01 4.130E+01 2.310E+01
LSHADE-SFS 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 2.558945E-31 2.523441E-31
LSHADE-AP 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.157669E-30 2.122595E-30
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Appendix B: The best combination of F (green squares) and Cr (blue circles) at every combinations reduction level for the

10D and 30D test problems, respectively. Each integer value of each parameter represents its corresponding range as described

in Section 4. Each subplot is for the best solution obtained.
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