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Abstract—Premature convergence is one of the best-known mutation operator is in charge of promoting exploration [id]

drawbacks that affects the performance of Evolutionary Al-
gorithms. An alternative for dealing with this problem is to
explicitly try to maintain proper diversity. In this paper, a new
replacement strategy that preserves useful diversity is @sented.
The novelty of our method is that it combines the idea of
transforming a single-objective problem into a multi-objective
one, by considering diversity as an explicit objective, wh the
idea of adapting the balance induced between exploration ah
exploitation to the various optimization stages. Specifidy, in
the initial phases, larger amounts of diversity are accepi
The diversity measure considered in this paper is based on
calculating distances to the closest surviving individualAnalyses
with a multimodal function better justify the design decisions
and provide greater insight into the working operation of the
proposal. Computational results with a packing problem tha
was proposed in a popular contest illustrate the usefulnessf
the proposal. The new method significantly improves on the ks
results known to date for this problem and compares favoraby
against a large number of state-of-the-art schemes.

Index Terms—Diversity preservation, replacement strategy,
survivor selection, exploration, exploitation.

E

such as continuous [1] and multimodal [2] optimization.c®&in

I. INTRODUCTION

their inception,EAs have been widely used in many differen
areas, and nowadays are probably one of the most well-kno

metaheuristics [3]. In spite of their success, adaptag to

new problems is not an easy task, because it usually involyes
many difficult design decisions [4]. As an example of th

difficulties that arise in the design afas, it is known that one

of the keys to success is to induce a proper balance betw

exploration and exploitation [5]. However, the implicat®
of maintaining diversity in such a balance and the way
which exploration and exploitation are promotedens are

not always fully understood [6] and depend on the speci
variant ofEA applied. For instance, while in some schemes t
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VOLUTIONARY Algorithms (EAs) are one of the most
promising approaches for several kinds of optimizatio

other cases this task is assigned to the crossover opegtor [
Since the inception afAs, premature convergence has been
recognized as one of their recurrent drawbacks [6]. Prematu
convergence arises when all the population members are
located in a reduced part of the search space — different
from the optimal region — and the components selected do
not allow escaping from such a region. Many schemes have
been devised in an effort to avoid this drawback [9]. These
studies have revealed that for most problems, maintaining a
diverse population is a prerequisite for avoiding prengtur
convergence [6]. However, if the population is too diverse,
exploitation might be prevented, resulting in too slow a
convergence and in poor-quality solutions. For this reason
Mahfoud used the concept akeful diversity{10] to refer to
those amounts of diversity that result in high-quality siolos.
Regarding the design dfAs, it is important to note that
most initial EAS were generational approaches [11], i.e. in each
generation the offspring unconditionally replaced thevjmes
population regardless of fitness. In these initial scheralss,
known as “reproduction with emphasis” schemes [12], the
parent selection was in charge of biasing the search towards

ﬁhe most promising regions. As a result, many of the initial

attempts to balance the exploration and exploitation of the
§earch space were based on modifying the parent selection
meme [13]. Other alternatives included modifying the-var
ation strategy [7] and/or the population model [14]. How-
ver, in most currenEAs the “reproduction with emphasis”
replaced or at least combined with the “survival of the
ittest” principle [12]. Specifically, these algorithms stead

géﬁeplacing the old population with the child populatiosgu

an additional selection stage — the replacement strategy or

ﬁ]urvivor selection — to decide which individuals survive to

the next generation [15]. Our hypothesis is that by intro-

ﬁjéjcing a diversity preservation mechanism into the survivo
r%Iection stage, a more proper balance between exploration

and exploitation can be induced, with the long-term result
being higher quality solutions. We base this on the fact that
while the variation and parent selection stages make dessi
that affect the current generation — creation of the offepri
—, the survivor selection mechanism makes decisions that
might have a more drastic effect on the whole optimization
process. Specifically, this mechanism is in charge of degidi
which solutions survive to the next generation, so evenriieso
improper individuals are generated by the parent seleétimh
variation stages, this can be fixed — at least partially — by a
properly designed replacement stage.
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In the literature, several survivor selection schemesttiia generationatAs, the main source of selection pressure usually
diversity into account have also been devised [16], [17f Tlktomes from the parent selection. For this reason, specially
novelty of our scheme is the dynamic balance we achiedering the 90s, a large effort was dedicated to devising new
between exploration and exploitation by incorporating thgarent selection schemes where the selection pressurd migh
stopping criterion as an input to the replacement stratedpe controlled [15]. In addition, some schemes capable of
Specifically, in the first stages of the optimization proaedudynamically adapting the balance between exploration and
we induce a larger exploration by diversifying the survgjor exploitation were also devised. However, some studiesdoun
while in the last stages, we promote exploitation. Similghat parent selectors were not able to maintain proper sliyer
ideas have been adopted to maintain diversity by influencipgr se[13] even if relatively large populations were used.
other components [18]. However, to the best of the authorBhus, these schemes have to be combined with other strategie
knowledge, no survivor selection stage has incorporated tio successfully preserve diversity.

use of the stopping criterion to bias its decisions. The population model has also been studied with the
We selected a packing problenp2r) modeled on the com- aim of improving diversity preservation iEAS. EAS with
petitions held at th008 Genetic and Evolutionary Computastructured populations — instead of panmictic schemes —

tion Conferencéo illustrate the benefits of our newly designedhave gained considerable popularity in recent years [24]. |
approach This problem was tackled by several researdhese schemes, some recombination restrictions are impose
groups, which is why we decided to use it as a benchmal¢ taking into account the positions of the individuals i th
problem. Moreover, it is interesting to note that the schempopulation. Some of these schemes, such as the island-based
that have provided the best results for this problem [19]}[2 model [25], were initially devised as a way of reducing the
and which will be extended in this work [19], are memetiinteractions between individuals with the aim of faciliat
approaches. In memetic algorithms, premature convergetioeir parallelization. However, they have important effec
can be even more harmful than in other variantga$é [22], on diversity [14], as a result of which they have also been
[23]. Consequently, applying diversity management in thesed as a way of promoting exploration. Since these schemes
survivor selection stage seems even more important. do not explicitly try to maintain diversity, in the long term
The rest of the paper is organized as follows. A discussiativersity is usually highly reduced. Moreover, since saler
of the relevant background is given in Section Il. Sectidn lcomponents that influence the loss of diversity have to be
presents an analysis of some related approaches thalyjustélected, controlling this reduction in diversity is not easy
the decisions made when designing the new scheme. task [26]. In order to alleviate this problem, some island-
Section IV the new diversity-based replacement schemebased models that try to explicitly maintain diversity have
described. The benchmark problem, as well as the basicsbeken devised [27]. However, they usually introduce many
the memetic scheme that is expanded upon in this paper, pagameters and require several adjustments.
outlined in Section V. Section VI is devoted to presenting Schemes based on mating restrictions are similar to those
our experimental validation. Finally, our conclusions andthe described above in the sense that some interactions between

lines of future work are given in Section VII. individuals are avoided. However, this is not done based on
the positions of the individuals in the population. Instef
[I. DIVERSITY PRESERVATION IN EVOLUTIONARY distance between individuals in genotypic or phenotypacsp
ALGORITHMS is normally used. In some cases, promoting mating between

dissimilar individuals seems to be the most promising [12],
so a large number of techniques to deal with this proble hile in other cases, the 0p_p05|te is true [2B]. A scheme
EH adapts the mating selection was recently proposed [29]

have been devised [9]. Most of these techniques are baseq‘ﬁowever it resulted in a method with many dependencies on
directly or indirectly managing the diversity of the popula K T ;
! y or Ind y ging versty popu the problems to be solved. Note also that it is recognized

tion [6]. These methodologies range from general techisiqu : . X
[6] 9 9 9 q that while some of these alternatives might delay convargen

to problem-dependent heuristics. In this section, we vevie, . i . .
some of the most popular general techniques, which will 6'3'3 effect is not completely avoided. As a result, they righ

used to show the potential of the new method developed'W‘VOOIUC_e add|t_|(_)nal mec_hanlsms. Forinstance, th.G. Cross
?neratlonal elitist selection, Heterogeneous recontibima

this paper. For a broader review of diversity manageme% ) . : . :

techniques, the reader is referred to [6]. ataclysmic mutation schemeHc) uses a highly disruptive _
crossover operator and detects convergence of the papulati
to launch a highly disruptive mutation.

A. Classic Diversity Management Schemes Another alternative resides in adapting the variation estag

Since most initialEAs were generational schemes, sever&bor instance, some parameter control techniques have been

attempts to properly balance exploration and exploitatimt devised that try to adapt the balance between exploratidn an

do not affect the survivor selection mechanism have beewploitation by using different parameter values in difer

developed. These methods are reviewed in this section.stages of the optimization process [30]. In other cases, a
pool of operators with different capabilities are simuétansly

'The  original ~  website (http://www.sigevo.org/gecco-considered [31]. In these schemes, diversity is not usually
2008/competitions.html) is not being maintained. We haveated a

new website where the evaluator and instances can be da:#mioataken int(? accpunt direCtly- Instead, it is indireCtly mgad .
(http://2dpp.cimat.mx). by selecting different operators or parameter values, fwhic

Premature convergence is a well-known drawbacle &8,
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can cause performance drawbacks in some cases [32]. Usregrs [16], [43]. The basic principle of crowding is to force
diversity in the control loop [33], [34] is a very promisingnew individuals entering the population to replace similar
approach which requires further development. In order apad individuals. Some of the most popular crowding methods are
the variation stage, the complete history of the evolutiaghin the following:
be used [35]. However, for very long executions this is ugual
not possible so other alternatives must be considered.
Finally, restarting schemes are also quite popular. Inethes
schemes, instead of avoiding a fast convergence, this event
is detecte_d, and then all or par_t o_f the populatpn is r_ealhrt at least as good as the parent.
Severald!fferentways of establishing the restartmg {sdirave .. Probabilistic crowding[44] (POBCR is similar to deter-
Eeen d_e\|/(|jsead [.36]_%_Thes.e schemes are easy to |mplem§7nt ?nd ministic crowding, but it uses a non-deterministic rule
3\(;?.3”6 € S'g?]' icant m;prO\:jements In some ggses.[ ]r'] N to establish the winner. Specifically, the probability of
a |tt|)on, S|_r|10e t ?./ a(rje .ise hon recrc])verlng versiyy e grvival of each competitor is proportional to its fit-
can be easily combine wit sct emes that attempt_to maintain - hoss value. A scaled variant of probabilistic crowding
diversity. A particular case of this type of schemes is the-sa (SPOBCR was also devised [45]
tooth.genetic algor_ithm_(saw-toottﬁ? [3_7].Thi§ sch_eme USES ¢ In the recently proposeddaptive generalized crowd-
a variable populgtlon size and periodic partial rellnmallon ing [16] (AGCR), the selection pressure of the replacement
of the populatlon in the sh_ape of a saw-tooth function. I.reord rule depends on the value of a parameter. Two different
to configure such a function two parameters are required: the ways of adapting such a parameter were proposed: a self-

period () and the amplitudel). adaptive and an adaptive scheme. In the adaptive scheme,
which is the one applied in this paper, the adaptation is

B. Replacement Schemes based on Diversity done based on the entropy of the population.

« In Restricted Tournament Selecti¢p46] (RTS), after a

new individual ) is created,C'F' individuals from the

current population are randomly selected. Then, C and

its most similar individual — from those in the selected

set — compete for a place in the population using a

traditional binary tournament. The creation of individual

is done as in steady-state schemes.

« In Mahfoud’s deterministic crowdinf#3] (DETCR) each

pair of parents and their corresponding offspring are
paired by minimizing the sum of the distances between
them. Then, for each pair, the offspring survives if it is

Some diversity-preservation techniques that rely on nyedif
ing the replacement phase have also been devised. The basic
principle of these schemes is that by diversifying the suong,
more exploration can be induced. The reason for this is two-
fold. First, if the diversity of a given population is largk,
means that several regions of the search space are mathtaine
Second, most crossover operators tend to be more explorativ
when distant individuals are involved [38]. For instanae, i Several other replacement strategies that promote diyersi
geometric crossovers [39] — such as the one used in this papave been proposed. One of the most popular is probably
— offspring are in the segment between their parents undbe clearing [47] strategy €LR). Clearing can be regarded
a given metric, meaning that the distances between paredgsan extension of fitness sharing. However, while in fitness
and their offspring tend to be larger when distant parerggaring the fitness of each individual is normalized dependi
are involved. This means that when the population maintaia® the number of individuals in its region — defined via
distant parents and this kind of crossover is used, the rifigp the parameter —, in the clearing procedure the resources
can explore other regions and, when coupled with propet a niche are attributed to the beBt elements in each
mutation and replacement, a larger diversity might be ieduc niche. Moreover, the winners of each niche are automaficall
Note that with the use of non-geometric crossovers, such preserved by copying them to the next population. Note that
the one defined in [40], a larger diversity might be inducefl too many niches are detected, this might lead to a large
by the crossover operator. However, in this case, comiplliimmobilization of the population. As a result, Petrowsky
the diversity of the population seems more complex. Fgroposed preserving only the winners with a fitness greater
instance, in such a crossover a bit-flip mutation is appligtlan the mean [47], which is the alternative used in our paper
to the genes where both parents contain the same alleleln some methods, maximizing diversity is considered as
This means that the degree of exploration increases whem objective that is combined with the original objective to
similar individuals are used. Thus, while maintaining &gt calculate the fitness of each individual. However, since the
individuals is appropriate for exploring different reg&rthe two measures are not entirely compatible, such a combimatio
effect on the diversity induced by the variation scheme & tlis complex and problem-dependent. In order to alleviate thi
opposite. Moreover, defining non-destructive non-geoimetproblem, other ways of combining them have been devised.
crossover for the 2pp is not easy, so we decided to apply &or instance, incomB [17] the individuals are sorted by the
geometric crossover. Note that local search and mutatien ariginal cost and by their contribution to diversity. Thehe
also used in our method. When these components are applmathkings of the individuals are combined to generate thedin
alleles not present in an individual might be recovered. value using two parameterd;,.. and Ng;ii.). In each step

One of the first studies on using the replacement phaskthe replacement phase, the individual with the lowese§in
to control the diversity resulted in Cavicchiofgeselection is erased and the ranks are recalculated. Since this schege u
schemd41]. Subsequently, preselection was extended to cmanks instead of the original function value, it results imare
ate crowding [42], which has been quite popular in recentobust scheme. The main drawback is that two new parameters
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must be set, and due to the way in which individuals aRgorithm 1 MULTI survivor selection scheme
scored, some individuals that contribute practically mgh 1: CurrentMembers = Population Offspring
to diversity might be preserved. Another alternative is the? Best = Individual with besyf(z) in CurrentMembers
. . 3: NewPop ={ Best}
meth.od.dlewsed in [48]dD/RW). !n the CD/RW method, a 4 CurrentMembers = CurrentMemberg Best}
new individual enters the population by replacing anothe o s. while (|NewPop < N) do
that is worse both in quality and diversity contributionsifch  6:  CalculatepcnN of CurrentMembers, considering as reference
an individual is not found, aeplace-worststrategy Rw) is NewPop . o .
applied, i.e., the worst individual in the population isssd rNere:tii\i‘;:‘S';jom'”atEd individuals of CurrentMembers (without
if it is worse than the newly generated_ |n_d|V|duaI. _The Maing.  selected = Randomly select an individual from ND
drawback is thakw does not take diversity into consideration,o:  NewPop = NewPopJ Selected
so if the method relies too much on this scheme, prematue  CurrentMembers = CurrentMemberg Selected
convergence might appear very quickly. 11: end while
Finally, another quite popular alternative is to explicitl 12° Population =
consider diversity as an objective and apply a multi-olject
optimization scheme [49], [50]. These kinds of schemes are
usually referred to as diversity-based multi-objectizas exploration and exploitation might differ. In this sectjone
(MOEAS) [51]. In these approaches, a measure of populatiBfesent an analysis of this replacement strategy, whidtfigss
diversity is not required. Instead, the auxiliary objeetimust the design decisions made in this paper.
be a measure of the diversity introduced by the individual The replacement strategyuLT! (Algorithm 1) operates as
in the population. Several different ways of calculating thfollows. First, the population of the previous generatioml a
auxiliary objective have been proposed [51]. One of the md$e offspring are joined in a temporary set. Then, the best
populars is probably thelistance to the closest neighborindividual, i.e., the one with the highest original objgeti
(DCN) metric [49]. InDCN, the auxiliary objective of a given function value — for a maximization problem — is selected
individual is calculated as its distance to the closest meritb to form part of the new population. Then, until the new
the population. In addition, it was shown that calculatbgn ~— population is filled with N individuals, the following steps
by taking into account only the members that have alreadye executed. First, th®@cN objective is calculated. The
been selected to survive is preferred, at least for contisuccalculation considers the currently selected individwaishe
optimization problems [52]. Some variants of these schemkgference, i.e., for each pending individual, the distaocie
have been applied to the benchmark problem that is addresgedrest individual previously selected is taken into aotou
in this paper [19], [53]. Finally, we would like to note thatThen, considering the individuals that have not been sadect
the concept of multiobjectivization [54] is highly relatéd the non-dominated front is calculated. This front is coreplut
diversity-basedvoEAs. However, in the case of multiobjec-as a set with no repetitions, i.e., if a non-dominated member
tivization the calculation of each individual's objectivdoes appears several times in the population, it is only included
not depend on the content of the population, which represeance in the front. While this does not prevent the appearance
a substantial difference in the design and analysis of tinid k of clones, it does reduce their growth rates. Finally, a non-
of approach. Readers are referred to [51], [55] for a mog®minated individual is randomly selected to survive. Nbt
extensive survey on both kinds of schemes. in each step, the probability of selecting any non-domithate
individual is the same because all of them are equally valid
when both objectives are considered simultaneously. Hewyev
once that an individual is selected, tiseN values are re-
calculated, meaning that the selected region is penalized i
In this paper, an extension of the replacement strategybsequent selections. While this action promotes a larger
presented in [52]MULT!) is devised. Initially, we attempted diversity than other standard replacement strategiestétie
to use this method directly to deal with the packing problefpetween exploration and exploitation does not depend on the
we consider here. However, the results were unsatisfactastopping criterion, so there is no proper adaptation to the
Our initial analyses showed that even with the incorporatidgequirement of the different stages of the optimization.
of such a replacement strategy, the diversity was reducedEven though some related methods have been successfully
too quickly and a proper balance between exploration aag@plied to complex problems [19], [49], to the best of our
exploitation was not achieved. The difference with presiolkknowledge, the diversity induced by these kinds of methods
successful applications of related schemes is that, incdge, has not been previously analyzed. Thus, in order to have-a bet
a memetic approach is used and that much longer executitgrsunderstanding of the internal operation of this repiaeet
are required to attain high-quality solutions. In additiother scheme, we present such an analysis here. A common metric
mechanisms for promoting diversity were not incorporatedpplied for analyzing the properties of diversity-presdion
These differences have serious implications for the ogmi schemes is theéakeover time[13], which is defined as the
tion procedure. For instance, while in [52] the variatioheste number of generations required for convergence into a esingl
does not usually generate clones, when a local searchsadution when no variation is accomplished. In our case tdue
applied, clones are more likely to appear. Moreover, gitian t the way in which replacement is done, complete convergence
much longer executions are run, the balance required batwée not expected to appear. For instance, consider an extreme

NewPop

IIl. M ATHEMATICAL ANALYSIS OF RELATED
APPROACHES
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Simple multimodal function Evolution of the amount of basins of attraction covered
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Fig. 1. Simple multi-modal function of one variable used nalgze diversity Fig. 2. Evolution of the mean of the number of basins of atimaccovered
in the population with thewuLTI replacement scheme

case where in a population &f individuals, N — 1 are clones o _
of the best individual B) and there is one individuallY) the optimization process. As a result, the scheme is ndyreal

that differs. Also, assume that all the offspring are cloogs Maintaining a large level of exploration in the initial peas

B. In such a case, in each step, the non-dominated setaféd_ in some executions the basm of attraction of the global
formed by D and one copy ofB, on the condition thaD optimum is not covered. In practical cases, with the presenc
is not selected in any step — 1 is selected at some step,Of. crossover and larger search spaces, the loss of diversity
complete convergence would not appear. Thus, in each of {fRight be slower. In any event, some disadvantages are clear:
N —1 selections carried out by the replacement stratéhis « The reduction in diversity in the initial phases is too large
selected with probabilitys. This means that an individuds « The user cannot control the reduction in detail (it can

is not selected in the whole process with probabi(igaNfl, only be partially controlled withV), so while this pro-
which can be considered negligible for typical values)of cess might be suitable for certain stopping criteria, in
so complete convergence does not appear. other cases the balance induced between exploration and

Since calculating the takeover time makes no sense in this €Xploitation might not be convenient.
case, a variant of this is studied for the minimization of
the single continuous mathematical function given in (¥e(s IV. OUR PROPOSAL
Fig. 1). This function is not complex, thus making it easier t

study the internal operation afuLTI. This function consists strategy presented before (Algorithm 1), and modifies itwit

of 41 basins of attraction, so it seems interesting to cateul : - . .
) . . the aim of avoiding the drawbacks already discussed. The mai
the number of basins of attraction where there is at least on

individual. Given the complex interactions that appearhia t agvantage of the new propo_sal IS that. the ba"’?‘”ce between
; . : exploration and exploitation is automatically adjustecsdzh
model, this study was carried out experimentally.

on the given stopping criterion. Thus, the stopping criteyi
as well as the elapsed time or the evaluations already esgcut
flz) = min([z] —2,2— |z|)+|z| x le 2, z € [0,40] (1) are used as inputs to the replacement strategy, which is one
of the novelties of the new design. In this way, for shorter
Fig. 2 shows the evolution of the number of basins aftopping criteria the method induces a faster reduction in
attraction covered by the population. It was calculatedgisi diversity than for longer stopping criteria.
the mean of 50 executions, where the parents were selecte®ne of the reasons for the drawbacks previously discussed
usingbinary tournamentsthe initial population was randomly is that the importance assigned to the original objectivkedin
generated, the perturbation strength was a random numbersity objective remains intact throughout the run. Inhsan
in [-0.2,0.2], no crossover was considered and differempproach, more exploitation is done as the execution aéganc
population sizes ) were tested. Specificallyy was set to However, this is only due to the selection pressure induged b
50, 100 and 200. The stopping criterion was set2@@00 the parent selection, which tends to gather more indivilual
generations. We can see that in any of the cases, the numbenahe most promising zones, and to the fact that crossover
basins of attraction covered becomes stable without camples more exploitative when acting on nearby individuals. As a
convergence, i.e., several basins of attraction are exgloresult, this balance can barely be controlled. Howevergesin
even in the final stages. Moreover, &5 is increased, the the origins ofEAs several authors have claimed that adapting
number of basins of attraction maintained also grows. Thuhjs balance to the different stages of the optimization is
the population size is an effective way of increasing thguite important [38]. Using weighted fitness functions ntigh
exploration capabilities. Note also, however, that in gvebe an alternative for balancing the priority of the objessiv
case there is a rapid decrease in the number of basinsHmiwever, since the scale and form of the original objective
attraction maintained in the population in the first phases depend on the problem, generalizing this approach is truly
the optimization before remaining practically intact umiie complicated. Instead, we have defined a dynamic penalty
end of the optimization. In fact, in any of the cases testedpproach that is independent of the scale of the original
more than half of the basins of attraction are lost early on objective.

Our proposal builds on the multi-objective replacement
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Original Objective (+) Algorithm 2 MULTI_DYNAMIC survivor selection scheme

1: CurrentMembers = Population Offspring
® 2: Best = Individual with besif(x) in CurrentMembers
3: NewPop ={ Best}
4: CurrentMembers = CurrentMemberg -Best }
5: while (|[NewPop < N) do
6: CalculatepcN of CurrentMembers, considering as reference
NewPop

7. D =Dy~ Dy Elapsed
8: Penallze(CurrentMemdbers D)
9:  ND = Non-dominated individuals of CurrentMembers (without
> repetitions)
DCN (+) 10:  Selected = Randomly select an individual from ND

11:  NewPop = NewPop Selected
Fig. 3. Effect of the penalty approach with distante 12:  CurrentMembers = CurrentMemberd Selected
13: end while
14: Population = NewPop

One of the basic principles behind the development of the
replacement strategy devised in this pap&ui(TI_DYNAMIC)
is that individuals that contribute too little to diversitvthe instead of time as the stopping criterion were similar tostho
contribution is measured with thecN value— should not be obtained in this paper. However, the algorithms that main-
accepted regardless of their original objective value. Um otained higher levels of diversity incurred more expensbeal
approach, individuals that contribute too little are p&el searches, meaning that much more time was required to evolve
by setting their original objective value to a very low qtyali the same number of generations. Consequently, the results
value. For a non-negative maximization function (as is thgresented in this paper rely on time as the stopping criterio
case of 2PP), the value 0 might be used. This is illustrated inn the case of using generations as the stopping criterfmn, t
Fig. 3. In this figure, the valu® represents the minimumcN relative order of some of the schemes tested changes, but the
required to avoid being penalized. As the figure shows, abgnefits of the new proposal remain intact. Algorithm 2 shows
individual whoseDcN value is lower than this threshold valuethe pseudocode oiuLTI_DYNAMIC. We would like to remark
is penalized. As a result, the non-domination rank (shown #iat the only stage that uses multi-objective concepts as th
the left of each individual) of the penalized individualsgimi replacement strategy. Thus, the remaining parts ofethere
be increased. Obviously, with this approach, the penalizkdpt as a single-objectivea.
individuals will not belong to the non-dominated front, ess Regarding the parameterization of our proposal, we would
every pending individual has been penalized. like to note that while the setting ab; obviously depends
While the above approach is quite logical, one of the keyn the problem, the main advantagemfLTI_DYNAMIC is
choices is how to evaluate whether an individual contribut¢hatDcN is defined in the space of the variables and not in the
enough or not, i.e., how to set the valie. The value space of the objectives. The relationships among the catedid
of D should depend on the optimization stage. Specificallgplutions in the space of the variables are usually easier to
this value should be reduced as the stopping criterion asalyze than those that arise in the space of the objectives
approached. In our scheme, an initidy value must be set. because the former space is known by the user. For instance,
Then, a linear reduction oD is done. The reduction is it is usually quite easy to calculate the maximum distance
calculated in such a way that by the end of the execution, thetween any two solutions or the search space size. However,
resulting value i9). In this paper, the stopping criterion is setn the space of the objectives this is usually not possibbiO
by time. Thus, ifTg,q is the number of seconds allocated t@usly, there are some optimization problems where meaningf
the run andl'g;.,scq the elapsed timel) can be calculated as distances are not easily obtained. For instance, in evolaty
D= DI—DI*%)?@PM Some preliminary tests that took intorobotics simple distances among synaptic weights are not
account different ways of updatinfy were also developed.adequate and more complex definitions are used [51]. In any
Specifically, we defined a pairwise function that allows us tease, in many problems, simple and meaningful distances can
specify the time whenD starts to decrease, as well as thée devised. Moreover, as shown in the experimental vadidati
time when it reaches the zero value. In addition, we testétfached as supplementary material, at least for tirP2the
reductions that were faster as well as slower than the lingg@heme is quite robust in the sense that a large rangeyof
one. While these modifications provided some benefits invalues provides high-quality solutions.
few specific cases, those benefits were not very significant=inally, it is also interesting to note that, similarly to25
and depended on the particular instances, so in this work we also carried out some experiments by penalizing the indi-
use the linear reduction. Some preliminary tests were algwluals that obtained the worst values in the original ofdjec
carried out that used the number of generations to set fFiee key idea was to induce a large diversity but only between
stopping criterion. In these cases, insteadZ@f,,s.¢ and promising individuals. This accelerated the achievemdnt o
Trena, the number of generations already evolved, as well geod-quality solutions, but in the long term there were no
the maximum number of generations, are used to compute benefits. In fact, some cases with improper parameterizatio
The conclusions that could be drawn when using generatimesulted in solutions of lower quality. Since this would uéq
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the use of additional parameters and the benefits were npt ver Evolution of the amount of basins of attraction covered
significant, we did not incorporate it in our final designs. In [
our opinion, incorporating these schemes in only some phase
of the optimization might yield better results. Howeverglsu
an analysis is beyond the scope of this paper.

N=200,DI=02 ——
il =200, DI=0.1
=100, DI = 0.2
N=50,DI =038
N=50 DI=04 ==

50 -

e

30 |

20

A. Reduction of Diversity

Basins of attraction covered
/

10 1

In previous sections, we identified some of the drawbacks N
of earlier schemes by considering the simple function given 0200040006000, 8000 100091200014000 16000 16000 20000
in (1). As in previous cases, for our new model, analyzing
the takeover time makes no sense. However, it is mterestlﬂg 4. Evolution of the mean of the number of basins of afimaccovered
to study the dependency between the parameters of the n€We population with theuLTi_DYNAMIC replacement scheme
approach and the trend in the number of basins of attraction
covered by the population. We considered the same variation o
operator and parent selection as in previous cases. THgplacement were run, taking into account the aforemeedon
the only modification was the replacement strategy. In ordgppPulation sizes, and in all of them the basin of attraction o
to study the effects of the parameterization, three differethe best solution was co_vered.lln contrast, whea the ofligina
population sizes (50, 100 and 200) were used. Moreover, fELT! sc_heme was applied, this basin of attraction was lost
each case, two different values Bf, were taken into account; Multiple times.
20 and2%-. These values were selected considering the range
of admissible values for the variable In the first case, in the V. TWO-DIMENSIONAL PACKING PROBLEM
initial stages of the optimization there is no penalty orfly iA. Formal Definition
the individuals_ are perfectly distributed. This thus pré@so  Tpe problem used as a benchmark in this paper is the
more exploration. In the second case, the balance towaﬁjcfcking problem that was proposed in teecco 2008

exploration is reduced. ~ competition session. Problem instances are described by th
Fig. 4 shows the evolution of the number of basins gfjiowing data:

attraction (mean of 50 execution_s) covered for each Case, The sizes of a rectangular grict, Y.
We can clearly see that as the final stages are approached
the number of occupied regions diminishes. However, the
reduction can now be controlled and depends on the number
of generations allocated to the execution. Two important
effects are illustrated in this figure. First, the setting /6f
is particularly important to the amount of exploration iced
at the end of the optimization, i.e., for a fixed value &f

' The maximum number which can be assigned to a grid
position: M. The value assigned to each grid location is
an integer in the rang@, M].

« The score or value associated with the appearance of each

pair (a,b) wherea,b € [0, M]: v(a,b).
A candidate solution is obtained by assigning a number to

the number of basins of attraction covered at the end of tfi ch pO)S(If[}I/OI’I on_the grid. Thus, the search space consists of
optimization is not heavily dependent dn;. The reason is ( [+ 1) candidate solutions. The objective of the problem

that, regardless oDy, at the end of the optimizatior) is IS t_o pack a grid so that the_ sum O.f the point scores for every
set to 0. The value ofD; is useful for setting the initial pair of adjacent numbers is maximized. Two positions are

balance between exploration and exploitation, and the Wgon&dered to be adjacent if they are neighbors in the same

I wrich s balance changes. Speciicaly, g values [0 O™ of dagonal o he g Once o paruar par
imply that in the initial stages, more exploration is inddce '

and diversity is reduced later but more quickly. Finally, igr'd'. M.athematlcg_lly, tt.he ;)bjegtlva Is to find the gridwhich
is also interesting to note the behavior @OLTI_DYNAMIC maximizes the objective functiofi

when N = 50 is used. In this case, in the initial phases the M M
number of basins of attraction covered increases. The measo f= Z ng(a, b) (2)
is that for N = 50, the random initialization might not cover a=0 b=0
every basin of attraction and that with large valuesiafin = \ynhere
o the pencing indvials are penaized. i ese cases, t 1s(0,) — { 0, 11 0] e et adcent i G
) ' ’ v(a,b) if (a,b) are adjacent in G

only objective taken into account BCN, so the scheme is 3)
very explorative and occupies the under-explored regibhe. 1, grger to better illustrate the benefits of the schemes

advantage of maintainiag a Iarger_exploration in the ihitigyayised in this paper, an instance generator was devefoped.
phases is that each basin of attraction can be better e&ploFp, e generator allows for the creation of instances of diffier
so the individuals are placed near the local optima. Th'meacomplexities. Specifically, the grid siz&(andY), the maxi-

_tha_t i_n the long te_rm, additional info_rnjation is used to dist mum value (/) and a ratio &) must be specified. Each entry
individuals, meaning that better decisions can be madeadt f

10000 executions of the scheme with thauLTI_DYNAMIC 2t can be downloaded from http://2dpp.cimat.mx
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v(a, b) with a,b € [0, M] is set to a random number betweerflgorithm 3 Diversity-based Lamarckian Memetic Algorithm
0 and 999999 with probability?. Otherwise, it is set to 0. 1 Initialization : Generate an initial populatioRy, with NV individ-

Thus, the complexity of the instances can be increased bzy Eilcsa.llAsssggrglng.rform local search for every individual in the
using larger values ok, Y, M or R. : . Very individuat
population.
3: Dr=Rr xG
. 4: while (not stopping criterionjlo
B. Memetic Approach 5. Evaluation: Evaluate all individuals in the population.
A memetic scheme (Algorithm 3) that follows the Lamar- 6: Mating selectiort Perform binary tournament selection &

. . . . - . in order to fill the mating pool.
ckian approach [56] is used in this paper. Since in the Lamar;. /@ v0 Apply geneti% poperators to the mating pool to

ckian model modifications made by thedividual learning create a child populatio’P.
procedure(local search in our case) are placed back into the: Local Search Perform a local search for every individual in
individuals, the burden associated with this kind of schésne the offspring.

usually shorter than with Baldwinian schemes, which is why?:  Survivor selection Combine P, and C'P, and apply the

. e . MULTI_DYNAMIC replacement scheme to cred®e; .
this model was selected. Specifically, note that in our sceher{b: =111
the local search is stopped when a local optimum is reachggl. eng while
In the cases where the modifications are placed back into
the individuals, the new individuals created by variatior a
usually closer to a local optimum that when this informatioapplying local search to all the offspring was preferredihss
is not placed back, which is why using the Lamarckiais the alternative used in this paper.
model is faster in our case. The scheme considers the localn our proposal, Hamming distances are used to calculate
search and variation operators used in [19], applies aesinglhe bcN value, meaning the maximum distance that can appear
objective parent selection based on binary tournaments, dretween any two solutions is equal to the number of genes
takes into account thkULTI_DYNAMIC survivor selection. In (G = X xY). Note also that the number of alleles in each gene
our proposal, the local search is applied to all the offsprinis A7 + 1. Thus, if the population size is lower thad + 2, the
Note that in some cases, schemes for balancing betwetistances between any two individuals in the populationhinig
genetic and local searches were used [57] and it is known that as large a&'. As a result, it might make sense to set the
several other design decisions might affect performan8g [5value of D; to G. However, we expect that this would induce
For instance, local search might be applied only to a suldsetam exceedingly large explorative behavior for some inganc
individuals selected according to some features [59], ¢hg@. In any case, relating the value &f; to G seems appropriate.
best ones. Applying local search only to the best individuaParticularly, in this paper the value &f; is set to a percentage
is, in some ways, contrary to the principles of our schem@R; x 100) of G, and the implication of using differen®;
Note that our new proposal dynamically changes the balanadues is analyzed.
between exploration and exploitation. Thus, in each stalje, A brief description of the variation operators and local
the members of the population are considered promising. Rmarch is attached. For a more comprehensive description,
this reason, it is important to intensify the search in a# threaders are referred to [19].
regions maintained in the population. This is exacerbated b The local search procedure, which was initially proposed
the fact that in this problem, crossover can be quite disrept in [20], is a single-objective stochastic hill-climbingmpach.
but with the application of local search, drastic improveise In this scheme, the order in which neighbors are analyzed
can be obtained. Specifically, while many good pairs aie determined randomly. The local search moves to the first
maintained in the candidate solutions, some improper paitewly generated neighbor that improves the current salutio
are also generated in the line selected by the crossover (aed it stops when none of the neighbors improves the current
the crossover definition for details). As a result, applyang solution. The definition of neighborhood applied considers
local search to all the new members seems quite importanéw neighbor for each pair of adjacent grid positidnsj)
otherwise, the new individuals might quickly be selectednd (k,!). Each neighbor is constituted by assigning the best
for removal. In order to test these hypotheses, we used fussible values to the positiofis j) and(k,[) while leaving
different instances and tested our models by applying lodatact the assignments in all other grid locations. In order
search only to a subset of the offspring. Specifically, twm assign the best values to both locations a pruning-based
different alternatives were tested. In the first one, thet besechanism that speeds up the generation of neighbors is used
10% individuals were selected, while in the second case, theThe variation stage is based on the application of crossover
same number of individuals were selected but randomly. Whand mutation [60]. Crossover is applied with probabitityand
comparing the results with the case where all the offspriniggo different parametersi{in_p,, andmaz_p,,) are used to
undergo a local search, we noted that in the case of selectaugntrol the mutation. The crossover operator is #ie Sub-
the best individuals, the results obtained were inferiogvary String Crossover(ssx) [61]. It is an extension of one-point
case and the differences were statistically significarlec®ieg crossover for two-dimensional chromosomes. The mutation
individuals randomly was more encouraging. Specifically, ioperator applied is th&niform Mutation with Domain In-
four of the instances the results were similar to those obthi formation (UMD). Prior to the mutation, a random number
by applying local search to all the offspring, and in one cagep,,) betweenmin_p,, and maz_p,, iS generated. Then,
it obtained better results. However, in the remaining inst®, each gene is mutated with a probability,,,. In order to make
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new assignments to the gene, a random value is selected ftbe same in every case except @Hc, and it was based
among those that produce a non-zero increase in the olgectim the crossover and mutation operators already described.
value. If such a value does not exist, a random value betweks in previous studies [19], the parametgrs min_p,, and

0 and M is used. maz_p, Were set to 1, 0.1 and 0.15, respectively, while the
population size was set to 50. &rHc, the use of half-uniform
VI|. EXPERIMENTAL EVALUATION crossover and no mutation (except for reinitialization)reve

eWken into account. For the reinitialization, the probipibf

In this section, the experiments conducted with our n .
I5]%§J_tat|on was set to 0.35. IDETCRandsPoOBCR the members
r0 t

scheme are described. The optimization schemes were im h lati ired randoml h b K
mented usingeTCO (Metaheuristic-based Extensible Tool fo € population were paired randomly, So each member takes

Cooperative Optimizatign60]. The analyses were performeoDart in the creation of one child. Th'.s IS a reqwsn.e becguse
with 10 different instances of thedb2pP. One of the instances these schemes, the parents a_nd t_helr correspondlng_cmame
(GECCO was the one used during theecco2008 contest. paired to compe_te _for a_lo_catlon in the new population. Ir? the
The remaining ones were created with the newly designgaSe OfCHC, &s in its °F'9_'”a' version, they were aiso paired
instance generator. In order to test cases of different &amp randomly._ In the remaining schemes, parents were selected
ities, instances with different features were used. Spadiyi through binary tournaments._lln the casecuR, RTS, COMB,
three small, three medium and three large instances wi CR and Saw-ToothcA additional parameters must be set.

created. In the small instance$,andY were set to 10. In the hese parameters were s_et exp_erimentally_and taking i.”t"
medium instances, they were set to 15. Finally, in the lar count the recommendations given by their corresponding

instances, they were set to 20, which is the same size as hr(])rs. Ic;‘,foLR' g Wlas setWto(?LQ(; ><5X X YH and _rrehsults
one used in the&Eccoinstance. Each group consists of thre or three different values oW (1, 2, 5) are shown. The tag

instances. Thé/ value was set to 400 in every case and i LR.—W i?Q' used to denote each configuration.Ams, results
each group three differenR values were considered: 0.05 or five different \{alues oU'F (2,5, 10, 25, 50) are presented.
0.10 and 0.15. The tags used for denoting the instancessin {H'e tagRTs_CF is used to denote these schemescams,

paper are “XY_M_R_S", where the symbol denotes the NCI‘FISE ang NE”tehwere set to 3 and 8 as recofmlrlnended
seed used for the random number generator and the remairﬁ%gﬁ e authors (other parameters were unsuccessfullydjeste
In"AGCR, results for two different scale factogs (0.25 and

symbols have already been introduced.
y y 75) are shown. The tagGCR_¢ is used for these models.

Since stochastic algorithms were considered in this stuv%, llv. in Saw-Tooth D and P t t0 45 and 50
each execution was repeated 30 times and comparisons pally, In Saw-100thGA, L-an were set 1o an '
spectively. This was the best configuration found among

¢

carried out by applying a set of statistical tests. A simild| _ o

guideline as the one applied in [62] was used. Specifical ﬁ,e .12 d|f_ferent pargmetenzaﬂons that were checked.. &hes
onfigurations combined the valudd = {45,30,15} with

the following tests were applied, assuming a significancel le
9 bp 9 9 P ={30,50,100,200}.

of 5%. First, aShapiro-Wilk testwas performed to check Th : h Il as th

whether or not the values of the results followed a Gaussian' ¢ Pr€VIOUS SCNEMES, as Well as the ML TI_DYNAMIC
distribution. If so, theLevene testvas used to check for the m_ode_l, were ex_ecuted using a stopping criterion of 24 haars.
homogeneity of the variances. If samples had equal varjangaS first experlm_ent, _the_ parame.t&[. 9f MULTI_DYNAMIC

an ANOVA testwas done; if not, aVelch teswas performed. was set to 0.5, i.e., initially the individuals are penatizé

For non-Gaussian distrii)utions the non-parametrioskal- more than half of its genes are similar to those of an already

Wallis test was used to test whether samples are drawn fr(%cepted individual. Add't'ona"W'U"T'—DY'\.'AM'C. with R .
the same distribution. In this work, the sentence “algonith set_ to 0 was also executed. Note that with this parameteri-
is better than algorithm B” means that the differences betwezat'o?t’_ this schert'ne bzhal/es”m;e theLT! scthemi l;etf:ause

them are statistically significant, and that the mean andanegPenaties are not used at all. As we mentioned betore, we

obtained by A are higher than the mean and median achie\?é?oztesmd this scEeme kl)y in_corp?rﬁting the penalties?pﬂcljiln
by B. In order to show the benefits of the new model and 52]. However, the application of these components g

better understand its internal operation, two differers s¥ the use dOf add_|t|o_rf\_a| pflr;;\meﬁrs that h?)\,:e_ o dbeAset by trllte
experiments were performed. user, and no significant benefits were obtained. As a result,

the integration of these components with the newly designed
) ) elements is left for future work. In order to obtain an ovkeral
A. Comparison with Other Schemes ranking of the different approaches tested, pairwisessiedi

In order to show the validity of the new scheme, it is vergomparisons between the 20 configurations were carried out.
important to do an extensive comparison with other schem®&mce the benchmark set comprises 10 instances, 190istdtist
developed in the specialized literature. We selected eelarngsts were done for each scheme. Table | shows, grouped by
set of schemes, including several recent as well as more mategory, the results of these statistical tests. For eatelyory,
ture methods. Specifically, the following schemes were usemblumns with the symbol show the number of cases where
CD/RW, CLR, DETCR, SPOBCR AGCR, RTS, COMB, RW, CHC the model listed in each row is statistically better. The bam
and Saw-ToothcA. In addition, a generational scheme withof cases where it is worse is shown in the column with the
elitism (GEN_ELIT) was used. In this schemd, — 1 offspring symbol |. Finally, the number of cases where the differences
are created and all of them, as well as the best individumle not statistically significant are shown in the columnhwit
of the previous generation survive. The variation scheme wie symbok—. In addition, a score is assigned to each model.
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TABLE |
STATISTICAL COMPARISON OF EVERY CONSIDERED SCHEME IR4 HOURS
SMALL MEDIUM LARGE GECCO TOTAL
T | o1 T oT T =T T <= T T Score
MULTI_DYNAMIC 57 0 0 57 0 0 57 0 19 0 0 190 0 190
MULTI 47 4 6 48 5 4 51 6 0 17 2 0 163 17 146
CHC 39 12 6 || 47 7 3 54 3 0 18 1 0 158 23 135
COMB 46 4 7 39 12 639 9 9 12 4 3 136 29 107
CLR_1 33 14 10| 41 12 4140 9 8 15 3 1 129 38 91
CLR_2 27 18 12 35 17 539 9 9 12 4 3 113 48 65
GEN_ELIT 15 32 10| 35 17 5 37 10 10f| 12 3 4 99 62 37
SPOBCR 40 9 8 52 3 2 8 48 1 3 16 0 103 76 27
CLR_5 21 22 14 27 24 6 [ 30 20 7 11 7 1 89 73 16
CD/RW 3 43 11 14 25 18] 29 20 8 11 4 4 57 92 -35
SawTootheA 16 27 14 15 25 17]] 16 37 5 5 9 5 51 98 -47
RTS 10 10 35 12 11 27 19 21 27 9 5 9 5 a7 98 -51
RTS 25 16 29 12 14 26 17]] 15 38 4 5 9 5 50 102 -52
AGCR_0.25 50 3 4 3 37 17 3 54 O 1 18 O 57 112 -55
RTS 50 27 19 11 8 33 16 12 45 0 4 15 0 51 112 -61
RTS 5 3 43 11 8 33 16 22 23 12 &5 9 5 38 108 -70
RTS 2 3 44 10| 8 33 16| 20 24 13 5 9 5 36 110 -74
RW 3 45 9 8 31 18] 19 28 10| 5 9 5 35 113 -78
DETCR 23 19 15[ 5 b1 1 6 50 1 2 17 O 36 137 -101
AGCR_0.75 0 57 0 0 57 0 0 57 0 0 19 O 0 190 -190

This score is equal to the number of cases where the modbtained the fifteenth position was used. The reason is that,
was superior minus the number of cases where the modelce the exact times where the restarts are triggered vary
was inferior. The models are sorted by taking this score infor each run, showing the mean of several executions is less
account. The statistical tests clearly show the supeyi@mit meaningful. Note that the only model where there is a slow
the MULTI_DYNAMIC model. In fact, since its score is 190but continuous decrease in the entropymiSLTI_DYNAMIC.

it means that it was superior to all the remaining models Due to the way in which the crossover operates, this means
every instance. Among the remaining models, the behavibiat the balance between exploration and exploitation gésn
depends on the category of the instances. For example, doadually in our case. In the remaining models, given that th
small instances it is quite important to preserve diversityr  stopping criterion is not taken into account, achievinghsac
this reason, the approaches that place a larger emphasiggmdual reduction in diversity is too complex.

exploitation, such awTs with low C'F' values orrRw, are Previ | h th | iority of th
the worst-behaved schemes. However, in the larger insgance revious analyses show the clear superionty o €

it is also quite important to promote exploitation, so thesmoZéJ\:‘;t—;YeNsAm'Zursc?gnz)i‘allnﬁordg rsr:((;wl?settrt]eer el\llglsut:s)tr? otfhtie
explorative schemes, likeeTCR or RTS with high C'F' values, mean o?the f'tnesg fopr the’d'f?érent schemes in HECCO
are not proper approaches. Note that theLTI and CHC ! ' !

schemes also yielded quite promising behaviors. Howev 'stan.(ie.trllt is evident hoyv, due the elelqt con;roll of the
both of them failed in several instances and did not obtat Versity, the convergence MULTI_DYNAMIC 1S much slower

. . an in many other schemes. In fact, even after 10 hours,
results as good aguLTI_DYNAMIC in any of the instances. ) y
the fitness values reported byuLTI_DYNAMIC are not as

In order to better understand the reasons for the vast $ugh as those attained byt R_1 or cHC. However, this slow
periority of MULTI_DYNAMIC, it is important to analyze how convergence is quite useful, in the sense that at the end of
diversity is managed in the different schemes. Entropy [46] the executions, the differences betweenvh&Ti_DYNAMIC
a popular diversity metric that can be used for this purposesults and those obtained by any other schemes are quite
Note that, in our opinion, using entropy alone to contrdarge. The behavior oEHC is especially interesting. In this
diversity is not adequate. For instance, in a problem wheze tcase, the diversity is lost quite fast but is then recovered
representation is done with binary strings, a populatioeneh in each reinitialization. This yields very good values ire th
half of the members are individuals containing O in evemniddle term; however, in the long term it is clearly infertor
gene and half of the members are individuals containing 1 iuLTI_DYNAMIC. Note that these results do not imply that our
every gene would have maximum entropy. In any case, a l@sheme is not useful for lower stopping criteria. The redson
entropy value implies low diversity and since in our schemntbat if the stopping criterion is set to a more restrictectithe
we ensure a minimal distance among individuals, analyzithglance between exploration and exploitation induced by ou
how the entropy evolves provides valuable information. Big scheme would be altered quicker. In any case, the applicatio
shows the evolution of the mean of the entropy for all thef our proposal is not encouraging when very short times are
models considered in theeccoinstance. In the case afHC taken into account because the main advantages arise from
and Saw-TootlGA, only one execution was used to generatine controlled loss of diversity, which is not an important
this trend. Specifically, the executions were sorted taking issue in very short executions. In order to better illustithis
account the fitness at the end of the runs and the one tlssue, we note that when Table | is generated with a stopping
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Fig. 6. Evolution of the mean of the fitness for all the consdeschemes@geccoinstance)

criterion of 3 hoursMULTI_DYNAMIC ranks second with 149 performance [64]; the progress over time is also taken into
points. For this time period;HC was the best approach withaccount. Since our proposal induces a slow convergence, it
169 points. When the stopping criterion was set to 5 houmsill not perform correctly in this kind of metric.
MULTI_DYNAMIC was the best method, obtaining 173 points. In this experimental validation, the evolution of the fitaes
Finally, in the 12-hour runyUuLTI_DYNAMIC was also the best and entropy is only shown for theeccoinstance. However,
scheme and obtained the maximum attainable score. It is ailsas also analyzed for the remaining ones. In those cases,
interesting to remark that, in the largest instances, timedg similar conclusions can be drawn. It is also important teenot
of MULTI_DYNAMIC is still increasing around the terminationthat other methods for solving theb@p based on different
time. This means that starting the intensification eartiethe ways of controlling the diversity have also been provided in
optimization process might be beneficial. In Section VII, wéhe literature. For instance, island-based schemes arftbdet
discuss some alternatives to improve the performance éseth that resort to restarts and populations with variable dies®
cases. been tested [19], [53]. All of these methods are signifigantl
inferior to the one devised in this paper.

Finally, we would like to remark that our proposal should
not be regarded as an anytirga [63]. In fact, in anytime
optimizers, the stopping criterion is usually unknown, s$w o
adaptive penalties cannot be applied. In addition, usually Since the MULTI_DYNAMIC scheme incorporates a new
is not just the end results that are used to measure therameterD;), it is very important to analyze the robustness

B. Analysis of Robustness
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of the approach in terms of it. A detailed analysis of thbetween solutions might be proposed, we would like to study
robustness ofiULTI_DYNAMIC with respect to this parameterthe properties that they should have in order to provide-high
is attached as supplementary material. The main conclsisiquality results. Specifically, these distances could betedlto

obtained from this study are: the definition of the variation operators, so some studiethisn
« In instances with different features, the same parametégPic might be in order. Second, our experiments have shown
ization is able to yield high-quality solutions. that due to the use of a multi-objective replacement scheme,

« Small modifications in the parameterization ofOnvergence is not obtained even in the final optimization
MULTI_DYNAMIC do not have a large effect onstage. Moreover, in some instances the fitness value is still
the results. increasing around the termination time. One alternative to

offset this drawback might be to updafe in a way that,

Finally, note that in order to facilitate future comparispfor . h S ; hes th lue 0
each instance the best and mean results obtained with BJP" t© the termination time, it reaches the value 0. Howeve

proposal are also incorporated in the supplementary rageri even in this case complete convergence might be prevented by
the use of multi-objective concepts. Since other replaceme

phases allow for complete convergence, they could be used

in the last stages instead of the multi-objective scheme. In
Premature convergence is a well-known drawbaclkea$ our opinion, intelligently combining different replacente

that requires further research. Since this drawback is schemes could yield some additional benefits. This might be

popular, several schemes for dealing with it have been dsmbined with the use of different strategies to alter ihe

vised. Among these schemes, those based on modifying tadue, including some adaptive and/or self-adaptive se&sem

replacement phase afAs seem quite promising. HoweverAnother alternative would be to adapt the way in which a non-

they have not been the most popular schemes. This is wiyminated individual is selected in our scheme. For ingtaitc

several ideas that have been used to tackle premature csgems encouraging to be more greedy in terms of the original

vergence by adapting different componentseas have not objective in the final phases. Finally, we would like to corbi

been applied to modify the replacement phase. Particularyur diversity-preservation strategies with other methosisd

in this paper we have presented the first replacement scheorethe 2opp. Specifically, since the crossover definition and

(MULTI_DYNAMIC) that combines the idea of transforming ahe management of diversity are closely linked, applyinpso

single-objective into a multi-objective problem, by cafesing other crossover operators as the ones used in [21] seems to be

diversity as an explicit objective, with the principle ofaaling very encouraging.
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