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ABSTRACT This paper describes a new approach in project portfolio selection (PPS) problems,
emphasizing the need to overcome traditional deficiencies with respect to multicriteria decision-making and
multiobjective optimization. While existing methods typically allow the solving of partial aspects of the PPS
problem, the proposed approach seeks to provide a holistic framework dealing with aspects like
interdependence between projects, interaction among criteria, the incorporation of both cardinal and ordinal
information, and a hierarchical multiobjective optimization. Unlike approaches that optimize portfolios
neglecting superiority of some projects, or those that only assess individual projects without considering
overall portfolio performance, the proposal allows for a compromise between both objectives. A case study
is given, proving the application of the proposal for developing well-balanced portfolios aligned with strategic
organizational goals and stakeholder preferences. The results point to significant improvements in the
efficiency and effectiveness of decision-making, especially in complex project environments. This research
contributes not only to the advancement of the theoretical framework of PPS but also to practical implications
for portfolio management in a wide variety of organizational contexts.

INDEX TERMS Decision making, Evolutionary algorithms, Multicriteria analysis, Multiobjective
optimization, Outranking methods, Project portfolio selection.

I. INTRODUCTION
Generally, the senior management of an organization
(which may be a group of individuals or a decision-maker

subset is known as the project portfolio. The determination
of the most appropriate portfolio of projects is referred to
as the project portfolio selection (PPS) problem.

representing senior management), hereafter referred to as
the decision-maker (DM), is responsible for determining
how to allocate its resources among a set of project
proposals. In general, the quality of most proposals is
acceptable, and the DM would like to support most of them;
however, resource constraints make this impractical, so a
multi-criteria decision-making process must be undertaken
to determine the subset of proposals to support [1]. This
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Numerous researchers have been proposing dozens of
methods for solving this type of problem for decades [2].
PPS intends to direct an organization’s scarce resources
toward projects that promise the greatest alignment with its
objectives and operational viability. Despite decades of
research and application, traditional PPS methodologies
often fail, particularly when faced with real features of
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modern enterprises that require simultaneous handling of
diverse data types and intricate project interdependencies.
Recent studies reveal significant shortcomings in existing
PPS frameworks, in particular their failure to effectively
incorporate cardinal and ordinal information and to account
for the synergistic and hierarchical nature of project criteria
[31, [4], [5], [6]- These gaps not only limit decision-making
capability, but also potentially bias the strategic alignment
of portfolios toward suboptimal configurations.

The proposal presents a comprehensive methodology to
address these critical shortcomings and to bridge the gap
between both project and portfolio levels of decision-
making. Furthermore, by integrating hierarchical decision-
making processes with this dual data handling mechanism,
our proposal improves the accuracy of project evaluations
and ensures that portfolios are not simply collections of
high-performing projects but are cohesive units that
advance organizational goals. The application of this
methodology to a complex, real-world case study
underscores its practical importance and the substantial
improvements it offers over traditional methods, marking a
significant advancement in PPS research and application.
Multi-criteria decision making (MCDM) and multi-
objective optimization (MOQ) approaches constitute the
most prominent family of methods to address this problem,
mainly in complex PPS scenarios [7]. MCDM has been
applied primarily to evaluate and rank projects; in many
methods and applications, the portfolio value is achieved
by summing the values of the projects in the portfolio; the
best portfolio is achieved from a portfolio value
optimization process. In methods using MOO, the portfolio
is replaced by a vector of objectives; in most MOO
approaches, the values of the portfolio objectives come
from aggregating (possibly considering synergistic effects)
the “impacts” of the projects in the portfolio; the best
portfolio is a Pareto point of the corresponding multi-
objective problem [3]. By analyzing how input variations
like cost and duration impact portfolio stability and
performance, some studies have enabled strategic
prioritization and optimization of resources. They also
demonstrate how sensitivity analysis supports strategic
decision-making, by preparing portfolios to adapt to future
uncertainties and ensuring investments yield the highest
returns with manageable risk levels [3].

While many existing methods effectively address specific
aspects of PPS, our review has identified areas where these
approaches may face challenges under certain conditions.
It is important to note that while some methods do provide
solutions for specific issues, a comprehensive approach that
addresses all these aspects simultaneously has been less
explored. The following are some of these aspects:

a) Difficulty handling high dimensionality, that is,
many project proposals and/or criteria.

b) Inability to consider interdependence between
projects (e.g., synergistic projects).

c)
d)

e)

f)

)}

h)

Inability to consider interaction between criteria.
Problems in handling information that is presented
in ordinal or qualitative form in certain criteria,
and in cardinal scales in other criteria.

Challenges or incapacity in addressing uncertain,
unclear, or potentially absent values related to
criteria scores, resource needs, and preference
parameters. Managing such scenarios becomes
especially pronounced when the decision-maker
comprises a diverse group or an individual who is
not easily accessible, such as a CEO of a large
enterprise.

Inability to cope with PPS problems where criteria
are organized as a hierarchy structure, i.e., where
the score of a (non-elementary) criterion depends
on the scores of other criteria (called descendants),
and the evaluation of projects and portfolios is
performed on different non-elementary criteria.
The optimization process produces unbalanced
portfolios (see e.g., [8], [9]). A portfolio is
unbalanced when relatively poor performance of
the portfolio on some non-elementary criteria
coexist with very good performance on other non-
elementary criteria. For example, when tackling a
public project selection problem, the DM may be
interested in  ensuring an  appropriate
environmental benefit (composed of several sub-
criteria), as well as acceptable economic and social
impacts.

Incapability to manage specific criteria that impact
the portfolio’s quality, yet these criteria do not
stem from the aggregation of project scores.
Achieving the optimal portfolio goes beyond
simply optimizing the combined project scores;
there are additional criteria that the decision-
maker may wish to take into account when
evaluating portfolio quality. For instance, the
decision-maker might seek to maximize the
number of supported R&D projects categorized as
“Good” in terms of their probability of success.
Alternatively, there may be an interest in
minimizing the number of unsupported projects
that rank higher than other supported projects. It’s
important to note that these criteria are utilized to
assess the constructed portfolio, contrasting with
the more traditional criteria used for individual
projects. The former is often employed to gauge
the decision-maker’s alignment with the portfolio,
referred to as “conformity criteria,” while the
latter are simply termed “criteria.” Disregarding
the conformity criteria can result in the decision-
maker being dissatisfied with the portfolio,
especially when the portfolio’s outcome is derived
from optimizing a single quantity representing its
value or a vector of portfolio scores.
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An effective decision support method should have the
capability to handle various subsets of these constraints
based on the specific context. However, to the best of our
knowledge, no existing approach has been published that
accomplishes this feat [1], [3], [10] .

The novelty of the proposed system consists of a
comprehensive approach able to give an effective solution
to complex PPS challenges. The proposal can innovatively
aggregate the decision maker’s objectives into a single
objective and integrate cardinal and ordinal data in PPS,
enhancing decision-making through a comprehensive,
hierarchical approach that includes conformity criteria and
dynamic data aggregation. In more detail:

1.

1. The proposed approach innovatively
transforms a multi-objective optimization problem
into a single-objective one by effectively
incorporating the decision-maker’s preferences.
Typically, project selection and portfolio
optimization involve juggling multiple objectives, a
task that becomes cognitively burdensome due to
human limitations in handling more than seven
conflicting objectives simultaneously, as identified
by [11]. To address this challenge, our strategic
transformation simplifies complexity by focusing
selective pressure on a specific region of interest.
This targeted approach efficiently narrows the
search to the most preferred portfolio, ensuring that
the decision-making process remains manageable
and aligned with human cognitive capacities.

We propose a new approach, which for the first time
handles both cardinal and ordinal information
innovatively and specifically in Project Portfolio
Selection. Specific treatments for each type of
information are indeed required, because they
usually entail different mathematical and logical
treatments to be possibly integrated effectively. The
proposed system has enabled the aggregation of
mixed data types under a compensatory framework,
which is carefully regulated through thresholds by
the decision-maker to avoid overcompensation.
This enhances both the precision and flexibility of
the decision-making process, hence marking a
significant advancement in accommodating the
complex data scenarios typical in strategic project
evaluations.

This proposal represents an evaluative method that
reflects the preference of decision-makers for
rigorous project evaluations from any perspective,
for example, “determine the scientific impact of the
project”, or “determine the overall quality of the
project”. This evaluative technique applies to
portfolio-level evaluations in that it offers an
analytical framework that guarantees strategic
congruence at the level of both individual projects
and the portfolio in general.

We introduce conformity criteria and conformity
constraints. Conformity criteria are standards or

benchmarks against which the fit of a portfolio is
measured. Unlike the traditional criteria that
evaluate individual projects on the aspects of, for
example, cost, risk, and potential return, the
conformity criteria assess the portfolios on how
well the collective group of selected projects
conforms to  broader, often  qualitative
organizational objectives; for example, “Maximize
the number of projects in the category Excellent”.
Conformity criteria ensure that, beyond the
traditional performance metrics, the portfolios will
excel and suit other strategic objectives, including
sustainability, diversity, and long-term
organizational goals. The proposed approach can
ensure that chosen portfolios have the potential for
broader acceptance and support by embedding
criteria reflecting the preferences and values of key
stakeholders. Conformity constraints may be
imposed in the form of, for example, “reject
projects that are Bad or Below Average”.

In this regard, the proposed system bases its
approach on a two-layer assessment process that
evaluates on one hand, individual projects, and on
the other, assesses each project portfolio as a whole.
This approach ensures that the evaluation addresses
individual projects and their integration into a
single portfolio, taking into account not just the
value of an individual project but also the
interaction between projects within the portfolio.
Traditional PPS methods often do not consider the
assessment of both perspectives, and to the best of
our knowledge, there are no published approaches
providing explicitly a mechanism where the
decision-maker can express his/her preferences
about the compensation between both perspectives.
We present a novel strategy for assembling
balanced portfolios in a way that their performance
will be uniformly distributed across criteria. For no
single criterion or a group of criteria to strongly
dominate or affect overall effectiveness in the
portfolio.  This approach is  cognitively
straightforward for the decision-maker, as he/she is
allowed to easily articulate his/her preferences in
the form of simple expressions about acceptable
portfolios. Those are used as benchmarks within the
system to guide the selection process. This will
simplify the selection and also allow for closer
outcomes to what is actually perceived by the
decision-maker as balanced.

Combining the outranking approach, the functional
paradigm, and evolutionary algorithms may enable
performing hierarchical decision-making. Though
these methodologies are all well-established in their
respective areas, their integration in the context of
PPS for a hierarchical environment is new. PPS
deals with many decision criteria that can be
interrelated and vary in importance; when treated
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linearly, such treatment tends to be problematic for
the decision-makers. A hierarchical framework in
organizing these criteria at different levels provides
for a systematic evaluation that clearly outlines the
relationship and impact from the lower level
operational goals to the higher level strategic
objectives. The proposed approach is thus
exploiting the strengths of evolutionary algorithms
to handle large solution spaces and taking
advantage of the ability of the outranking method to
handle qualitative and conflicting criteria, whereas
the characteristics of the functional paradigm are
used to deal with cardinal information. Hierarchical
structuring of the evaluation enhances clarity and
efficacy in the decision-making process.

This paper is structured as follows. Section Il provides a
review of the characteristics of some published approaches,
their contributions and limitations. Section Il presents an
extensive example in R&D projects illustrating the
complexity of the problem and the need for a new method.
Section 1V describes the proposed approach. Section V
shows how the proposal is used to address an example with
real-world features related to R&D projects, and Section VI
concludes this paper.

IIl. RELATED WORKS

The novelty of the proposal lies in an overall improvement
of a traditionally two-step process, individual project selection
and portfolio optimization [3]. During the assessment at the
individual project level the proposal handles both cardinal and
ordinal information, allowing for a review of each project’s
potential performance, strategic fit, risk, and resource need
and any other criteria that the decision maker considers
relevant. This ensures that specific projects are analysed based
on their stand-alone benefits and in relation to the
organization’s objectives.

The second stage is portfolio construction, where the
proposal optimizes synergy between projects while
considering some high-level DM’s objectives regarding the
composition of the portfolio. It involves more than just project
selection; there is interaction in resource sharing, risk
distribution, and overall portfolio balancing. The proposal
ensures that the portfolio maximizes collective value and
adheres to several types of constraints by addressing the
dynamic nature of strategic objectives and interdependencies
between projects. This new approach facilitates the process of
selecting the most preferred projects while improving the
strategic congruence and operational viability of the overall
portfolio.

A. ASSESSMENT OF INDIVIDUAL PROJECTS
The initial phase involves evaluating individual projects based
on multiple criteria. Typically, the impacts assessed by a
project across these multiple criteria are: i) consolidated using
a Multi-Criteria Decision Making (MCDM) approach to

generate a singular value representing the project’s quality, ii)
utilized to categorize the project within a set of ordered
classes, iii) employed to rank the projects from best to worst;
or iv) employed to ascertain the project’s contribution to the
portfolio. When feasible, the latter can be accomplished
straightforwardly by summing the scores of the projects
endorsed by the portfolio.

A common approach to produce a single value of the project’s
quality is the weighted sum function (e.g., [12], [13], [14]). It
has been widely used to create a ranking of the projects or to
assign projects to preferentially ordered classes. The main
reason to use this approach is its simplicity; it only requires
defining the importance and the value that the DM assigns to
each criterion. Moreover, it fulfills several appealing
theoretical properties such as independence with respect to
irrelevant  alternatives, comparability, and transitivity.
Nevertheless, this approach does not allow the explicit
consideration of interactions among criteria, veto situations, or
other threshold effects that are very important for a holistic
project evaluation. Additionally, it requires cardinal
information and enforces constant tradeoff rates between
criteria. The latter requires that any decrease in one criterion
be exactly offset by a proportional increase in another
direction, which often does not align with real-world projects.
Another multiple criteria decision-making approach employed
to derive values representing the quality of projects or their
rankings is PROMETHEE (Preference Ranking Organization
METHod for Enrichment of Evaluations) [6], [10], [15].
PROMETHEE, an outranking-based method, is not confined
to working exclusively with cardinal information; it can also
accommodate qualitative data and non-compensatory effects.
Nevertheless, the rankings generated by this method are
susceptible to be influenced from irrelevant alternatives.
Other outranking methods can be used to assign projects to
classes or to generate a ranking. Outranking methods represent
one of the main schools of thought of MCDM. Such methods
build and exploit an outranking relation between pairs of
decision alternatives (also called actions in the related
literature). Given alternatives x and y, the outranking relation
considers arguments to approve and disapprove the assertion
“x is at least as good as y”’. When this assertion is accepted, it
is said that “x outranks y”. Exploitation of the outranking
relation can be performed for choosing, ranking and for
ordinal classification purposes.

The ELECTRE family contains most of the outranking
methods used to address the PPS problem (e.g., [16], [17],
[18], [19], [20], [21]). ELECTRE methods can handle ordinal
information, threshold effects, incomparability and non-
transitivity situations when aggregating the criteria scores.
ELECTRE methods can also cope with imperfect knowledge
(zones of uncertainty) in the preferences of the DM through
several ways, such as discriminating thresholds (so-called
pseudo-criteria) (e.g., [22]) and interval numbers (e.g., [23]).
However, traditional ELECTRE methods are limited in that
they do not accommodate interacting criteria or criteria that
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are hierarchically structured. These limitations can hinder the
decision-making process in complex scenarios where the
interplay between criteria and their structural dependencies
significantly impact outcomes. For a detailed exploration of
these challenges, refer to the illustrative example in Section
.

ELECTRE methods for addressing interacting criteria have
been expanded upon in [24], criteria have been organized
hierarchically in [25], and hierarchical assessments of
alternative performances on interacting criteria are discussed
in [26]. Corrente et al. [27] introduced a multiple criteria
hierarchy process for categorizing alternatives into
preferentially ordered classes (i.e., sorting alternatives).
Drawing inspiration from ELECTRE, Fernandez et al. [28]
presented two multi-criteria sorting methods capable of
handling imperfect knowledge regarding the preferences of
the decision-maker, imprecise, vague, or even missing values
in criteria scores, and resource requirements. Moreover, this
proposal is adept at evaluating alternatives (projects or
portfolios) based on hierarchically structured criteria and
assigning alternatives to ordered classes at the level of any
non-elementary criterion [29]. In spite of the benefits of
ELECTRE, it hardly handles compensatory preferences and
situations where the intensity of the preference in favour of the
outranking relation is relevant; furthermore, it is not able to
consider situations where only cardinal information is treated,
and compensation is allowed in a wide range.

Some other well-known methods for dealing with interacting
criteria have also been proposed outside of the outranking
approach (Choquet, 1954; Sugeno, 1974; Ramedani et al.,
2024; Xing et al., 2022), the same is true for handling
uncertainty [31].

B. BUILDING PROJECT PORTFOLIOS

The second stage involves constructing the project
portfolio, determining which projects will receive support. In
this phase, considerations extend beyond the criteria used in
the first stage to build the portfolio. New criteria related to the
decision-maker’s alignment with the portfolio (conformity
criteria) are taken into account, along with various constraints.
The available options for executing this stage are contingent
upon the actions undertaken in the preceding stage, such as
how project impacts were aggregated in the initial phase.

If a single value representing each project’s quality was
determined, then the portfolio value can be calculated as the
aggregated value of its supported projects, and an optimization
of the portfolio value should be performed. This approach is
very simple and easy to explain, however, it neglects that
criteria can be hierarchically structured, that there can be
interactions between criteria and between projects, and it
requires cardinal information which may be a serious practical
limitation.

If an MCDM approach is utilized in the initial stage (e.g.,
[21], [32], [33]), the projects can be arranged in a ranking or a
set of ordered categories. In this manner, the most preferred

projects are supported until resources are depleted.
Alternatively, the requirements of the projects in the top
classes can be adjusted to align with the available resources
(e.g., [34]). This approach to building portfolios is
straightforward and ensures support for the highest-quality
projects. However, it does not consider interdependence
between projects. The interactions (Synergies) between
projects were studied more intensively from the work of
Stummer and Heidenberger [35] (see e.g., [36], [37], [38],
[39], [40]) and continue to be addressed by recent papers [5],
[41]. Typical implications of project interaction often include
increasing/decreasing the criteria scores of synergetic projects
and modifying the total resources consumed by these projects.
Typically, this cannot handle segmentation constraints
directly. Such constraints require, for example, that specific
proportions of resources be allocated or restricted to segments
of the portfolio. For example, “no more than 15% of the total
budget should be allocated to projects from private
organizations”.

Another option is to aggregate the criteria scores of the
supported projects to produce criteria scores now at portfolio
level. After defining the, say, N scores of the projects in the
first stage, the scores of the potentially supported projects can
be combined (e.g., through summation) to define the N scores
at portfolio level. Assessing portfolios this way provides the
DM with an easy way to measure the levels of impact on
his/her objectives; thus, allowing the DM to create balanced
portfolios with acceptable impact levels on objectives.
Nevertheless, in this scenario, the intricacy of the problem can
pose a significant challenge, particularly when handling even
a few objectives and several dozen projects due to the
following reasons: i) the cognitive limitations of the decision-
maker in expressing preferences, which may restrict them to
working with only a few objectives [11], ii) the computational
complexity, making it highly challenging to employ exact
methods, and iii) the vast number of non-dominated portfolios
(in accordance with Pareto optimality), making the
identification of the portfolio that best represents a
compromise among objectives a challenging task.

Strong and complex nonlinear combinatorial optimization
search spaces often characterize project portfolio selection
problems. Many authors have advanced in the design of
metaheuristics to address these problems (e.g., [38], [42], [43],
[44], [45], [46]). Of these works, evolutionary algorithms,
particularly genetic algorithms (GAs), stand out mainly
because of their robustness to deal with diverse shapes of
complex nonlinear search spaces [45], [47] and because their
characteristics (selection, crossover and mutation operators)
make them able to explore the search space reducing risks of
getting stuck in local optimums [48], [49]. Furthermore, they
allow for flexible representations of solutions, which is very
convenient to deal with a 1-0 combinatorial approach as the
required to represent projects in or out the portfolio. GAs
support hierarchical decision-making, integrating both
cardinal and ordinal data, essential for reflecting varied project
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information accurately [29], [50], [51]. Their iterative nature
adapts to changes in strategic priorities or project
environments, making it indispensable for dynamically
optimizing portfolios to align closely with organizational
goals and decision-maker preferences [49].

All the cited works focus only on some of the characteristics
of the PPS problem, lacking the flexibility and robustness to
deal with more complex and realistic scenarios. Furthermore,
they suffer from several limitations, since they do not allow to:

- Contemplate many criteria and/or projects, which avoids
contemplating conformity criteria.

- Reflect synergies between projects.

- Build the portfolio by optimizing objectives at different
levels of a hierarchical structure.

- Handle uncertainty on the criteria scores caused by
imprecision, vagueness, arbitrariness, or even missing values.

- Consider ill-defined preferences of the DM caused, for
example, by a fuzzy entity representing the real DM or
because the DM is a rather heterogeneous group.

- Deal with interacting criteria.

- Ponder and select tradeoffs between improving the overall
quality of the portfolio and supporting better projects.

- Provide information to the DM regarding the classification
of the projects/portfolios on other criteria besides the overall
criterion.

- Incorporate preferences regarding the balance of the
portfolio.

Il. AN ILLUSTRATIVE EXAMPLE IN R&D PROJECT
PORTFOLIO SELECTION

In the PPS problem, a first assessment is performed at a project
level where the criteria scores are defined for each project.
Subsequently, some (most) of the criteria used at project level
can now be considered at a portfolio level. At this new level,
the criteria scores of the projects supported by the portfolio are
aggregated to produce the criteria scores now at a portfolio
level. Additional criteria and constraints may be considered
when assessing portfolios (such as conformity criteria and
conformity constraints).

H
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FIGURE 1. Hierarchy of the criteria used to assess projects. Ho is the
overall quality of the project but, since it is a complex (also called non-
elementary) criterion, itis decomposed on several other criteria which, in
turn, can also be complex.

We present an example that uses the two levels of assessment.
The example, while illustrative and not directly extracted from
real-world data, is meticulously constructed based on
scenarios discussed in published research [29]. Note that the
‘experts’ in this example should be understood as
hypothetical, since they are not real individuals but are instead
fabricated personas created to demonstrate the application and
potential outcomes of the proposed methodology in a
simulated scenario.

A. ASSESSING R&D PROJECTS

Let’s assume the case of a large organization interested in
supporting Research and Development projects. A set of
criteria has been defined and structured as a hierarchy. Given
the number of project proposals and criteria, a group of expert
evaluators has been consulted to define the criteria scores of
the projects and resource requirements; imprecise and vague
information was provided by several evaluators. Multiple
interactions have been found between pairs of criteria and
between pairs of projects. Also, the DM is interested in
supporting the best projects but does not discard supporting
some average projects if doing so implies improving portfolio-
level objectives (see next subsection). However, the DM is
unwilling to support bad projects regarding some non-
elementary criteria.

The root node of the hierarchy represents the overall quality
of the project (Ho), comprised of three direct sub-criteria (refer
to Figure 1): project impact (H1), probability of success of the
project (H), and cost of the project (hs). Some of these criteria,
referred to as non-elementary criteria, are composed of sets of
criteria, while others are considered elementary criteria. For
instance, the cost of projects (hs) is directly measured in
monetary terms, while the project impact (H:) and the
probability of success (H,) are complex and require definition
in terms of other sub-criteria. (Note that the use of upper- and
lower-case notation corresponds to non-elementary and
elementary criteria, respectively.)

The project impact (H1) is dependent on five direct sub-
criteria; economic impact (Hi1), scientific impact (Hio),
development of human resources (Hi3), capacity to make
positive synergy with other projects (h14), and the quality of
the project’s deliverables (his). Economic impact (Hi1)
consists of three criteria: the number of patents generated
(h1.1.1), the number of innovative processes generated (hy,1.2),
and the number of prototypes generated (hi13). Scientific
impact (H1.) is based on three criteria: the number of papers
to be published by first quartile JCR journals (hi21); the
number of papers to be published by other JCR journals
(h122); and the number of papers contributed to international
conferences (hi23). Lastly, the development of human
resources (Hai3) includes three criteria: the number of new
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PhDs to be generated by the project (h1,3,1); the number of post-
PhDs (h132 and the number of new master graduates (hy,33).

The probability of success of the project (H,) relies on six
direct sub-criteria: quality of the leader’s curriculum (Haz31),
likelihood of meeting the deadline (hy>), difficulty of the
research problem (h,3), strength of the research collaborator
group (h2.4), appropriateness of the institutional environment
(h25), and quality of the research design (h2¢). The quality of
the leader’s curriculum (Ha,1) is influenced by ten elementary
criteria: number of relevant awards obtained by the leader
(h21.1), number of papers published by 3-top rated journals
(h2,12), number of papers published by JCR first quartile
journals (h21,3), numbers of papers published by JCR journals
(h214), number of books published by top-rated editorials
(h2,15), number of PhD students advised by the leader (hz16),
number of citations to his/her scientific works (h2,1,7), number
of projects successfully led (h21g), national level of
collaboration (hz19), international level of collaboration
(h2,1,10)-

Tables I-11l show the non-elementary criteria and their
direct sub-criteria for the different levels of the hierarchy.
These tables also show the impact scales used by the
elementary criteria and the preference direction of these
impacts. The impact scales are cardinal (CS) or a six-level
ordinal scale (OS), except for the case of criterion hys whose
values are binary denoting relevance (1) or not (0). Note that,
if evaluated, the impact scales of non-elementary criteria
would always be ordinal. The criteria scores in the case of the
six-level OS are denoted by 0-5 where: Nothing = 0, Very low
=1, Low = 2; Medium = 3, High = 4, Very high = 5. The
preference direction can be decremental (DP) or incremental
(IP). Of course, the experts’ opinions often diverge creating
imperfect knowledge about the actual impacts of the projects.
This knowledge can be effectively managed through the use
of pseudo-criteria or interval numbers. Utilizing pseudo-
criteria may be more suitable when the criterion is represented
by an ordinal scale (e.g., his and hz2). On the other hand,
employing interval numbers may be more fitting for cardinal

scales (e.g., hs and hy17).
TABLE |
NON-ELEMENTARY CRITERIA AND THEIR DIRECT SUB-CRITERIA IN THE
FIRST LEVEL OF THE HIERARCHY

Overall quality of the project (Ho)

Iiarrr10jz§1a((::tt Probability of success Cost of the project (hs): DP, CS
P of the project (H,) proJ .=
(H1)
TABLE I

NON-ELEMENTARY CRITERIA AND THEIR DIRECT SUB-CRITERIA IN THE
SECOND LEVEL OF THE HIERARCHY

Project impact (Hi)

Economic (H11) Scientific (Hy,) Human resources (H 3)

VOLUME XX, 2017

The deliverables
are relevant
(h1,5)3 |P, oS

Positive synergy
(h114): IP, OS

Probability of success of the project (H,)

Likelihood of -
Leader curriculum meeting the Difficulty of the .
: research problem (h3):
(Hz.) deadline DP. OS
(hZ,Z): |P, oS !
Research group Instltu_tlonal Research design (hye):
(ho.): IP, OS environment P OS
e (hzys): |P, 0S '
TABLE IlI

THIRD LEVEL OF THE HIERARCHY

Economic impact (H11)

Innovative
Patents generated g;?]ger:s; Prototypes generated
(hl‘l,l): IP, CS (h1,1,2): IP, (hl‘l,3): IP, CS
CS

Scientific impact (Hy2)

Papers to be

published in QL JCR  published in other
journals (hy21): IP, JCR journals
CS (hl‘z‘z): IP, CS

Papers to be Papers contributed to
international

conferences (hy23): IP,
CS

Development of human resources (Hy3)

Number of PhD Number of post- Number of master
generated (hy32): IP, PhD (hy32): IP, (hy33): IP, CS
Cs CS

Quality of the leader curriculum (H,1)

Number of papers ~ Number of papers in Q1
in 3-top journals JCR journals (hy3): IP,
(hz’l‘z): |P, CS CS

Number of awards
(h2‘1,1): |P, CS

Number of papers in Number of books

Number of PhD students

other JCR journals in top-rated - .
(ho1): IP, CS editorials (hye:  20Vised (Rug): IP.CS
IP, CS
National level of
Number of citations Number of collaboration (hy.): IP,
(h217): 1P, CS projects led 0S
(h21): IP, CS

International level of
collaboration (hy,1.10):
IP, OS

Several pairs of criteria show some kind of interaction (cf.
[52]). For instance, since it is expected that good leaders
design good proposals, quality of the leader curriculum (Hz.1)
and research design (hze) exhibit an antagonism interaction;
that is, when comparing two projects, say a and b, to assess the
credibility of “a is at least as good as b”, the credibility that
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Ha1 can generate in favor of that assessment when the quality
of the leader curriculum of a is high enough is reduced when
the research design (hz6) of a is bad enough.

A strengthening interaction (positive synergy) s
appreciated between quality of the leader curriculum (Hz1)
and the research problem difficulty (h3), between quality of
the leader curriculum (Hz1) and the strength of the research
group (h2.4), and between research problem difficulty (h,3) and
the strength of the research group (h24); thus, for example, a
high enough quality of the leader curriculum (H.1) makes
more credible the assertion “a is at least as good as b” when
the difficulty of the research problem (hz3) is low enough.
Finally, since higher ranked journals and editorials usually
imply a higher number of citations of published works, some
redundancy (that is, weakening interaction or negative
synergy) is identified between numbers of papers in other JCR
journals (hz,1.4) and number of citations (h21,7), also between
number of papers in 3-top journals (hz12) and number of
citations (hz,1.7).

B. ASSESSING PORTFOLIOS

As stated above, most of the criteria used to assess projects are
also used to assess portfolios; thus, some scores of the projects
supported by a portfolio need to be aggregated to define the
scores on these portfolio-level criteria; moreover, additional
criteria are also used to encompass a wider perspective on the
overall quality of a portfolio. Let us mention the criteria
considered here to assess portfolios.

The quality of the portfolio (Go) is assessed considering the
portfolio impact (Gi1) and the DM’s conformity with the

8111 8121 8131

8102 [ 8122 8132

8113 > 8125 > 8133

FIGURE 2. Hierarchy of the criteria used to assess portfolios

portfolio (Gy), as seen in Figure 2. The portfolio impact (G1)
is assessed by aggregating the scores of the projects supported
by the portfolio, while the DM’s conformity with the portfolio
(Gy) is assessed by considering other criteria that are not
impact measures.
G, comprises economic impact (Ga,1), scientific impact (G1.2),
development of human resources (Gi3), and number of

VOLUME XX, 2017

relevant deliverables (gi14). Economic impact (Gy) is further
broken down into the number of patents to be generated (g1,1.1),
the number of innovative processes to be generated (g1.12), and
the number of prototypes to be generated (gi113). Scientific
impact (Gi2) is dependent on three criteria: the expected
number of papers that the projects in the portfolio will publish
in first quartile JCR journals (gi12.1); number of papers to be
published in other JCR journals (gi22); number of papers
contributed to international conferences (gs,23). Development
of human resources (G1,3) consists of the number of new PhDs
to be generated (gi32); the number of post-PhDs to be
generated (gs1,32); and the number of new master graduates to
be generated (g1,3,3).

The DM’s conformity with the supported portfolio (G2) is
assessed through three sub-criteria: the number of projects
with good scientific impact (gz1), the total cost incurred by the
portfolio (g22), and the quantity of supported projects with a
quality lower than that of non-supported projects (g23). The
portfolio score on gz is measured by comparing the class of
overall quality to which each supported project was assigned
with that of each non-supported project. If the supported
project was assigned to a class worse than that of at least one
of the non-supported projects, then this is counted as an
inconsistency for the supported project (i.e., each supported
project can increase the number of inconsistencies in one). We
denote by g.,3 the number of inconsistencies for all the projects
supported by the portfolio.

Note that the scores on all elementary criteria descending from
G are imprecise, as well as gz..

Also note that, to assess g3, the projects must be assigned to
preferentially ordered classes of overall quality a priori (Ho).
Assume that there are three possible classes of overall quality:
Bad, Acceptable, and Good. Furthermore, a project can also
be assigned to any set of preferentially ordered classes
regarding any of the other non-elementary criteria. Assume
that each project is also sorted regarding its impact (Hi), its
probability of success (H), and its scientific impact (Hio).
Therefore, a set of constraints that the portfolios must fulfill is
that the supported projects are at least Acceptable regarding
their overall quality and their impact, and that they have a
Good probability of success.

Finally, the supported portfolio must be balanced; that is, the
DM requires the supported portfolio to create Acceptable
scientific, economic and human resources impact.

IV. THE PROPOSED METHODOLOGY

As stated before, the proposal aims to consider the two stages
of portfolio management, individual project selection and
portfolio construction. The proposed methodology introduces
a new approach to represent the preferences of the decision-
maker, utilizing the HI-INTERCLASS-nC method for sorting
alternatives. This comprehensive framework enhances PPS by
characterizing and selecting the best compromise portfolio,
aligning individual project evaluations with strategic
objectives to optimize portfolio synergy. The proposal
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addresses complex interdependencies and ensures operational
efficacy and strategic congruence.

This section presents first the notation and a succinct
explanation of the proposed methodology mentioning its main
components; after that, a deeper description of the
methodology is provided.

For homogeneity purposes, we will use here part of the
notation adopted by Fernandez et al. [29].

e Let A be the set of alternatives (potential actions).

o Let Iy be the set of indices of all criteria in the
hierarchy.

e Lety=1{0o, 91, ... Jeard(ig)} D€ the set of all the criteria
in the hierarchy. Without loss of generality, we
assume that the preference increases in the sense of
the values of the criteria.

e Let EL be the set of indices of all elementary criteria.

o  Let Nh be the number of immediate sub-criteria of a
non-elementary criterion g.

o LetGn={gns ... Gnn} be the set of immediate sub-
criteria of a non-elementary criterion gn. If g; € G,
then it is said that g; is an immediately descending
criterion from g, and this one is an immediately
ascending criterion of g;.

o  Let Ignbe the set of indices of all the criteria in Gp.

o Let Wh={(i,j) € lon x len such that the pair (gi, g;)
produces mutual weakening effect with respect to
gn}, that is, the pair of criteria where the DM would
consider the combined importance to be smaller than
the sum of the individual contributions, which
indicates certain redundancy between both criteria;

e Let Sth={(i,j) € lon x len, such that the pair (g;, g;)
produces mutual strengthening effect with respect to
gn}, that is, the DM would consider that the
combined importance of these two criteria is greater
than the total importance of the criteria when they are
considered separately; this means that there is
cooperation between these cri- teria;

e Let Anth = {(i,j) € lon x lgn, such that g; produces
antagonistic effect to giwith respect to gn}, that is, the
impact of a given action is high on a given criterion
(say, g;), but the importance of the criterion is
actually decreased in the mind of the DM when the
impact of that action on another criterion (say, g;) is
low enough;

o Let EL(h) be the set of indices of all elementary
criteria which influence a non-elementary criterion
Oh;

o Let D(h) is the set of indices of all criteria which
influence a non-elementary criterion g, from a lower
hierarchical level;

When jeD(h), then it is said that gj is descending from g.
For more detailed information about the interactions among
criteria, the reader is referred to [53].

A. OVERALL FRAMEWORK
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Figure 3 shows the overall framework of the proposed
methodology.
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FIGURE 3. Framework of the proposed methodology

Once the problem is defined, the proposed methodology
models the decision-maker’s preferences by a novel eclectic
approach that merges hierarchical interval outranking with the
value function method. This new framework aggregates the
criteria scores for comparing i) individual projects or ii)
projects against reference profiles. This is the process that
involves the DM’s preferences and, therefore, dictates the
projects’ evaluation to assign them into preferentially ordered
classes.

Furthermore, this approach transforms a multi-objective
optimization problem into a single-objective one by using the
DM’s preferences, in a novel manner. This transformation
uses selective pressure to focus the search for the most
preferred portfolio within a region of interest. A canonical
genetic algorithm is adapted, aimed at identifying the best
project portfolio.

The balance in the selected portfolio is maintained through
a two-step process. Firstly, the DM creates a portfolio
prototype by either directly inputting acceptable scores for the
criteria based on his/her experience or, otherwise, through
some interaction process. This prototype plays the role of a
benchmark with respect to balance that needs to be
outperformed. Secondly, the outranking of this prototype will
guarantee the balanced criteria scores of the portfolio in

7
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situations where some of the criteria have veto power. A
portfolio that does not outrank this prototype will be vetoed.
The need for outrank ensures that the integrity and balance of
the supported portfolio are maintained.

B. ANEW APPROACH TO REPRESENT THE
PREFERENCES OF THE DECISION-MAKER

Here, we introduce a generalization of the method proposed
in [29]. This novel method adheres to the same principle for
comparing alternatives as its predecessor: evaluating the
credibility of “a is at least as good as y” on a given non-
elementary criterion necessitates an assessment of such an
assertion on the criterion’s immediate descendants. However,
recognizing that descendants are occasionally measured on a
cardinal scale and may require compensation, the new method
incorporates capabilities to aggregate scores on the
corresponding non-elementary criterion using a function
value. The function value employed in this method can also
accommodate imperfect knowledge, similar to the approach in
[54], by utilizing interval numbers. Additionally, based on the
preferences of the decision-maker, it can limit compensatory
effects by considering veto thresholds.

1) Handling qualitative and ordinal criteria scores with
the outranking approach

If the information that must be handled at the level of a
given non-elementary criteria is qualitative and/or ordinal, the
aggregation should be done through the outranking approach.
We now explain how it can be done.

The following concepts are added to the notation:

e Let EL, S EL be the set of indices of all the criteria
which are pseudo-criteria.

e Let EL, S EL be the set of indices of all the criteria
which are interval numbers.

Interval numbers also allow dealing with ill-defined scores.
They are defined using an upper and a lower bound that
identify the range where an imprecise quantity is believed to
be [55]. Thus, a quantity i believed to be in the range i- (lower
bound) and i* (upper bound) can be denoted by the interval
number i = [i7, i*]. We will use boldface to denote an interval
number. Interval numbers extend real numbers in the sense
that any real number r can be defined as an interval number as
r = [r, r*], which is known as a degenerate interval number.
On the other hand, some mathematical properties have been
developed in the context of interval numbers; these properties
allow to address an important question in the context of
interval numbers: how to determine if an interval number is
not lower than another, even when their ranges intersect.
Fernandez et al. [56] used the following function to define the
possibility that the interval number i is not lower than j:

* Other veto thresholds, vj, can also be defined for criteria g; that do not
immediately descend from g, that is, j € D(r). These must fulfill that Vj, <
er f0r gj € Gh.
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1 lfp{ll} > 1,

pi=j)=4 0 ifpy <0, @)
pujy  otherwise.
)T
Where pujy = G imrgr
Furthermore, if it =i~ and j* = j~, then
C_ (1 ifiT >,
> =
(i 2j) {0 otherwise.

Ferndndez et al. [29] suggest employing a partial outranking
relation. S;  AxA associated to each criterion gj € EL to
denote that “a is at least as good as b from the perspective of
g” (a, b € AxA), and a degree of the credibility that aSb is
fulfilled, 8j(a, b). Calculating &;(a, b) depends on g; being a
pseudo-criterion or an interval number. Thus, when g; is an
interval number, i.e. gj € EL;:

8j(a, b) = P(gi(a) > gi(b)).
And when g; € ELp:

1 if g,(b) - g(@) = p,
g(a)—g () +p
8(ab) = # if g(b)-p; < g <g®)-q,
] ]

where p;j and q; represent the preference and indifference
thresholds for criterion g;. The former builds a range where the
DM has a strict preference for one of the alternatives; the latter
builds a range where the DM is indifferent given that the
performances of the alternatives are similar enough.

Now, the credibility degree of aSyb when h ¢ EL, denoted
by on(a, b), can be recursively calculated by aggregating all the
oj(a, b) values for g; € Gn (note that cj(a, b) = §;(a, b) when g;
e EL). Such an aggregation requires a criterion weight
(considered as a coefficient of relative importance) to be
defined for each gj € G, let us denote by kj, this weight. Other
parameters associated to gj € Gy can also be defined; these
parameters are (i) a veto threshold®, vj (rejecting any
credibility of aSib if gj(b) exceeds gj(a) by an amount greater
than vj); (i) a value to be subtracted from kj, to model the
mutual weakening effect between gj and gi in Gp, ki‘j}”h; (iii) a
value to be added to kj» to model the mutual strengthening
effect between g;and giin Gy, &;;"; (iv) a value to be subtracted
from kj, to take into account the antagonistic effect between g;
and @i in Gy, kfj’h. Parameters (ii)-(iv) allow to model
interactions between criteria and, together with the criteria
weights kijn, they allow to calculate a y-Concordance index
related to Sy, cn(a,b,y). This value represents the support of the
coalition of criteria in concordance with aSpb, where vy is the
highest credibility value of these criteria supporting the
assertion. The credibility degree of the statement “the
considered y-concordance coalition is sufficiently strong” is
then calculated as P(cn(a,b,y) > &), where ix is a threshold set
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by the DM for establishing what a strong majority is. The
reader is referred to [56] to see the details in the calculation of
cn(@,b,y), as well as some constraints that the parameters
mentioned above must fulfill.

Regarding the veto power that g; € Gy may exert to aSwb, if
j € EL or if vjn is an interval number, djx(a, b) is calculated by
P(gi(a) > gj(b) + vjn); if gj € ELp and vj, is a well-defined value,
din(a, b) is calculated by:

I( 1 if g () - gj(a) = Vjp,
8 (b) —gj(a) “Up
din(a,b) =4 2 T iy < g (b) - g(a) < vy
Ujh — ujh J ]
0 if

g;(b) —g;(a) < ujp.

The credibility index of “a is at least as good as b with
respect to gn” is then defined for a given y as ony = min{y,
P(cn(a,b,y) > An), 1 - max djn(a, b)} and, comprehensively, as
oh(@, b) = max{cy,,} With y € T and T = {oj(a, b) > 0; gj <
Gn}. Note that this form of calculating on(a, b) assumes that at
least one of the following conditions is fulfilled:

i) At least one criterion in Gy is ordinal or qualitative.

ii) There is interaction between some criteria in Gp.

iii) The preferences of the DM over the criteria in Gy are
non-compensatory.

Now, let g be a real number in (0.5, 1] considered as a
credibility threshold to establish the flowing crisp preference
relations:

Hierarchical outranking: aS(8)b < on(a, b) > .

Hierarchical preference: aP(f)b < on(a, b) >  and on(b,
a)<p.

Hierarchical indifference: al(8)b < on(a, b) > 8 and on(b,
a)>p.

Hierarchical incomparability: aR(f)b < on(a, b) < g and
on(b, a) <B.

Finally, it is said that a dominates b if gj(a) > gj(b) for all g;
€ ELr and P(gi(a) = gi(b)) > 0.5 for all gi € EL,.

2) Aninterval value function to aggregate cardinal
immediate descending criteria
On the other hand, if the immediate descendants of a given

non-elementary  criterion gn fulfill the following
characteristics:
i) are elementary criteria measured on a cardinal
scale,
i) preference intensity is important on them,
iii) compensation between their scores is possibly
allowed, and
iv) there is no interaction between them,

then a value function on(a, b) should be used to assess the
credibility of “a is at least as good as b”. Now on(a, b) can be
exploited by the procedure described in the previous section to
assess or(a, b) such that gy € G..

Value functions constitute a traditional paradigm to address
multi-criteria decision problems; they are of special
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significance in the presence of cardinal information. A value
function maps the objective space to the expected reward.

One of the most popular forms of value functions, U(a), is
the normalized weighted sum, which is defined as follows:

U(a) = £ kin (gi(@) — g™/ (g™ - gi™)

where g™ (resp. gi™") is the maximum (resp. minimum)
value attainable by alternatives on criterion gi (or an estimate
of it), and kin is the weight of criterion i. Each weight expresses
the importance of its related criterion.

A preference function defined this way models fully
compensatory and transitive preferences. Nevertheless, it can
be extended to handle partially compensatory preferences and
veto effects as suggested by Fernandez et al [57]. Let v; be the
veto threshold associated to criterion g;, and S be the binary
reflexive preference relation defined below:

aSh < U(a) > U (b) A gi(b) — gi(a) < v; for all g;.

The presence of veto conditions converts S into a non-
transitive relation. Compensation is possible within the ranges
allowed by the veto thresholds.

Imprecisions in setting the weights in U and the veto
thresholds are, to a great extent, unavoidable. Sometimes, the
DM should handle imprecisions in criteria performance levels
and parameters gimin and gimax. Here, following [57], we will
use interval numbers to model such imprecisions:

U(a) == wi (gi(@) — g™")/(g™ - gi™")

The outranking relation is:

aSh < U(a) > U (b) A there is no veto

The credibility degree of the assertion “a is at least as good
as b” is calculated as the degree of truth of a conjunction of
two predicates. So, using on(a, b) to denote this credibility
degree and with g; € Gp, we have:

on(a, b) = Min {P(U(a) > U(b)), [1-Poss(gi(b) — gi(a) =
vi)l}

C. SORTING ALTERNATIVES USING THE HI-
INTERCLASS-nC METHOD

Fernandez et al. [56] also presented a novel method to
assign alternatives to preferentially ordered classes called HI-
INTERCLASS-nC. Such assignments can be performed at the
level of any non-elementary criterion gs. Let C" be a finite set
of classes C" = {Cy, ..., Cq, ..., Cm}", M > 2, ordered with
increasing preference concerning gn. Let R = {rj, j=1, ...,
card(Ry)} denote the subset of reference alternatives
introduced to characterize Cy, k=1, ..., M. Let {ro, Ry, ..., Rwm,
rms+1} be the set of all reference alternatives, where ro and ry1
are the anti-ideal and the ideal alternatives. See [56] for the
conditions that should be fulfilled by the reference set.

The credibility indices between alternative a and the class
Cx are defined as:

on({a}, R = j=l,..r.r,lca&)r(d(Rk){Gh(a, rij)}

on(Ry.{a})= i 1,.%%§d(Rk){Gh (rk J,a)}.
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Therefore, the hierarchical categorical crisp outranking
relations are defined as:

a) aSn(B)Rk < on({a},Re) = B;

b) RSh(B)a < on(R,{al) =B.

The selection function is defined as in({a}, Ry =
min{on({a},Ry), on(Rw{at)}.

Similarly to ELECTRE TRI-nC, to suggest assignments,
the HI-INTERCLASS-nC uses two joint rules, namely the
descending rule and the ascending rule, which should be
employed conjointly. Each of these rules selects only one class
for a potential assignment of an alternative.

Descending assignment rule:

Set B and A. Define the set of classes C" and the
representative subsets of alternatives {ro, R1, ..., Rm, rm+1}.

i Compare a to R for k = M, ..., 0, until the first
value, k, such that aSn(3)R«.

ii. For k = M, select Cw as a possible category to
assign alternative a.

iii. For 0 <k <M, ifin({a}, R) > in({a}, Rk+1), then
select Cx as a possible category to assign a;
otherwise, select Cy1.

iv. For k = 0, select C; as a possible category to
assign a.

Ascending assignment rule:
Set p and A. Define the set of classes C" and the
representative subsets of alternatives {ro, R1, ..., Rm, rm+1}.
i. Compare a to Rg for k = 1, ..., M+1, until the
first value, k, such that RgSh(B)a.

ii. For k = 1, select C; as a possible category to
assign alternative a.

iii. For 1 < k < M+1, if in({a}, Re) > in({a}, Re-1),
then select Cy as a possible category to assign a;
otherwise, select Cy-1.

iv. For k =M + 1, select Cw as possible category to
assign a.

D. CHARACTERIZING THE BEST COMPROMISE
PORTFOLIO

The intricacy of the problems outlined in Section 11 renders
it impractical for exhaustive optimization methods to
determine the best portfolio. Therefore, resorting to
evolutionary algorithms seems plausible to tackle the problem.
However, the many-objective nature inherent in portfolios (as
depicted in Fig. 2) causes evolutionary algorithms to generate
numerous non-dominated Pareto optimal solutions, which can
be counterproductive for decision support. Hence, we present
a novel approach to leverage the preferences of the decision-
maker, modeled by the hierarchical interval outranking
approach, to exert selective pressure towards the so-called
region of interest within the Pareto front. This selective
pressure aims to yield a more focused set of recommended
solutions.

Let Q be the set of feasible portfolios and A a given subset
of portfolios (e.g., the population of an evolutionary
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algorithm). Following recommendations from Balderas et al.
[18], we consider that the best compromise portfolio (in terms
of the DM’s preferences) within A must be a feasible portfolio
a“ such that: i) there is not b € Q that is preferred to a” (see the
definition of hierarchical preference above), and ii) the
number of portfolios b for which a*Sgb holds is high enough.
Measuring the credibility degree that “a is preferred to b”, 6(a,
b), as the conjunction of “a is at least as good as b” and “b is
not at least as good as @” in terms of the hierarchical interval
outranking approach and assuming that (b, a) = 0 when a
dominates b, we have 6(a, b) = o(a, b) A (1- o(b, a)).
Therefore, the best compromise portfolio in A is defined by
maximizing the truth degree that a is preferred to all b € A,
denoted by ©(a, A) and calculated by:
O@,A)=VhicA0@b)e0@hb)Ard@b)a... (2

E. SELECTING THE BEST COMPROMISE PORTFOLIO

We will now outline our approach for selecting the best
portfolio concerning the DM’s preferences as expressed in Eq.
(7). Our proposal relies on a canonical genetic algorithm, with
the initial population being augmented with specific
knowledge pertaining to the problem. Through preliminary
experiments, we observed a substantial enhancement in the
algorithm’s performance by incorporating this knowledge into
the search procedure. The primary aim of this genetic
algorithm is to identify the region of interest within the Pareto
front.
1) Components of the search procedure

We describe here the input and output required and
generated by the proposal.

Input data

The input data for the search procedure must be provided
for both project and portfolio levels. For both levels it is
necessary to specify the parameters of the hierarchical interval
outranking approach. These parameters are:

e A threshold for the crisp outranking relations, . It
sets the minimum threshold for determining when
one alternative is considered at least as good as
another in outranking relations.

e Athreshold for defining what a strong majority is A.
It defines the level of agreement that the criteria must
fulfill for the superiority of one action over the other
to be sufficiently supported.

The hierarchy of criteria.
The performance matrix that contains the scores of
the projects on the elementary criteria.

e The set of non-elementary criteria gn € x/EL where
the project scores on gj € Gn must be aggregated
through a value function.

e  For each non-elementary criterion gn € y/EL:

o The criteria weights kin G = 1, 2, ...,
card(Gn)); these weights are coefficients of
relative importance in the context of the
outranking approach, and compensatory
factors in the context of value functions.



IEEE Access

Author Name: Preparation of Papers for IEEE Access (February 2017)

o The pairs of criteria (gi, gj) showing
weakening effect and the weight of such an
effect ki‘j}”h. This weight quantifies the
important of the antagonistic effect, which
is vital for managing trade-offs and
conflicts within the portfolio.

o The pairs of criteria (gi, gj) showing
strengthening effect and the weight of such
an effect k",

o The pairs of criteria (gi, gj) showing
antagonistic effect and the weight of such
an effect k3",

o An indifference threshold g; for each
elementary pseudo-criterion gj € Gn. This
threshold determines the level at which
differences between project scores on
criterion @; are considered negligible,
effectively making them indifferent in
terms of impact on the decision-making
process.

o An preference threshold p; for each
elementary pseudo-criterion gj € Gn. This
sets the level at which differences between
scores on criterion g; are significant enough
for one alternative to be considered
preferable over others.

o A (possibly empty) set of veto and pre-veto
thresholds vjr and uj (=1, 2, ..., card(Gp)).
These thresholds represent conditions
under which a particularly high difference
between scores on one criterion can
completely override (veto) or significantly
influence (pre-veto) the decision-making
process about two alternatives, despite
other criteria scores.

e  For each non-elementary criterion gn € x/EL, where
sorting must be performed:

o Asetofclasses C"= {C;,...,Ck,...,Cu}", M
> 2, ordered with increasing preference.

o The set of all reference alternatives, {ro, R,
..., Rm, rws1} used to characterize the
classes.

Output of the search procedure

The output of the search procedure is a single (or
sufficiently small set of) portfolio(s). The output portfolio
represents the best compromise portfolio in the sense that it
maximizes the DM’s overall satisfaction by fulfilling all the
constraints that the portfolio must satisfy; the output portfolio
gives priority to the most important criteria considering some
relevant thresholds and interactions.
2) A genetic algorithm to select the best compromise
portfolio

The canonical version of the genetic algorithm (GA) has
been adjusted here to address the project portfolio
optimization problem. This choice is strategic, given the GA’s
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robustness in managing vast and intricate search spaces,
crucial for evaluating numerous project combinations and
criteria interdependencies in PPS [49]. The GA supports
hierarchical decision-making, integrating both cardinal and
ordinal data, essential for reflecting varied project information
accurately [29], [50], [58]. Its iterative nature, which exploits
crossover and mutation, adapts to changes in strategic
priorities or project environments, making it indispensable for
dynamically optimizing portfolios to align closely with
organizational goals and decision-maker preferences [5], [49].
Hereon, we will use the concepts “portfolio”, “solution”,
“individual” and “chromosome” interchangeably.
Solution representation

Given the specific characteristics of the project portfolio
selection problem, the genetic algorithm utilizes a
straightforward yet powerful representation where the
genotype and phenotype are identical. Each chromosome
within the genetic algorithm is structured as a binary string,
each position of which directly corresponds to a potential
solution to the problem. In this binary representation, a ‘1’ in
the ith position of the string indicates the inclusion of the ith
project in the portfolio, whereas a ‘0’ denotes its exclusion.
This direct mapping simplifies the genetic manipulation
processes such as crossover and mutation, enhancing the
algorithm’s efficiency in evaluating and evolving the portfolio
configurations.

Initialization scheme

The random initialization of the canonical genetic algorithm
has been adapted to consider some context-specific
knowledge.

First, since the preferences of the DM have already been
modeled, it is relatively straightforward to produce a ranking
of the projects; for example, using the so-called net flow score
[59]. If o(a, b) is a fuzzy relation on a set A, the net flow score
related to a € A is defined as NFs(a) = 2, 4 /(4 [0(a, b) - (b,
a)]. This ranking of course will present many of the problems
described in the introductory sections. However, it can ensure
that some aspects required by the DM are fulfilled while
defining the best overall projects. Then, by following the
paradigm of supporting the best projects, an accumulation of
the required budgets is performed until exhausting the
monetary resources. Now the supported projects form a
portfolio that is introduced as part of the initial population of
the genetic algorithm, while the rest of the individuals in that
population are randomly created. Experimentally, we noted
that the performance of the algorithm is evidently increased
when introducing this “seed” into the initial population. For
assessing this genetic algorithm (see Section V), we used two
hundred individuals.

Fitness function

In Subsection 1V.D, we explore the adaptability of the
genetic algorithm to the project portfolio selection problem by
identifying the best compromise portfolio within a set A of
portfolios. This optimal portfolio is defined as the one that
maximizes its credibility of being preferred to all other
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portfolios in the set, as specified by Equation (2). This fitness
function highlights the genetic algorithm’s flexibility in
adapting to varying decision criteria and complex portfolio
configurations.

Parent selection

A binary tournament selection is employed here to
determine the parents to be crossed and form the child
population. In this approach, each individual in the population
is randomly selected to compete against another individual.
Following the recommendation of Deb et al. [60], a constraint
handling approach is utilized with the following rules:

i) If both parents are feasible, then choose the one with the
highest fitness.

i) If only one parent is feasible, choose this one.

iii) If both parents are infeasible, choose the parent with the
lowest constraint violation value.

Crossover operator

The best individual in a tournament is chosen to be crossed
with another best individual and produce two offspring
individuals. The offspring individuals are created by
exploiting the single-point crossover operator. So, the
algorithm takes a random value s € [1, m] (where m is the
number of projects and length of the chromosome) that will be
the crossover point. Then, from a pair of fitted parents, form
one child individual by taking genes from 1 to s of parent 1
and genes from s + 1 to m of parent 2 to combine the genetic
information from both parents and create the first child.
Similarly, the second new child is created with the union of
the second part of parent 1 and the first part of parent 2. The
crossover operation is performed for each pair of criteria with
a given p_cross probability. In the experiments described in
Section V, we used p_cross = 0.8.

Mutation operator

The mutation operator simply consists of interchanging an
allele for its complement. That is, if the randomly selected
allele is zero, then it is changed to one and viceversa. The
mutation operation is performed for each individual with a
given p_mut probability. In the experiments of Section V, we
used p_mut =0.1.

Restart of the generational process

The algorithm intends to exploit elitism and reduce
randomness effects by restarting its generational process. This
process is composed of the initialization scheme, the parent
selection method, and crossover and mutation operators. Thus,
after evolving the initial solutions during several generations,
the best solution is determined for the generational process;
this best solution is now considered as a new “seed” for the
initial population of the following generational process. The
best overall solution is determined as the best solution of the
final generational process. We used two hundred individuals
per generational process and thirty generational restarts in the
experiments in the following section.

V. EXPERIMENTAL DESIGN
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In this section, we demonstrate the capability of the
proposed approach to tackle the entire complexity of a realistic
illustrative example. To achieve this, we revisit the problem of
R&D project portfolio selection outlined in Section Il1. It is
crucial to emphasize that, to the best of our knowledge, no
published work has comprehensively addressed the entire
complexity of this problem.

A. INPUT DATA

We follow the specifications of Subsection IV.E.1 and
describe the data used as input for the experiments. As
specified in that subsection, first we provide the input data at
a project level and, later, at a portfolio level.
1) Project level

e The threshold for the crisp outranking relations is
defined as = 0.75.

e  The strong majority threshold is defined as A = [0.51,
0.75].

e  The hierarchy of criteria is given in Fig. 1.

e The project scores for the elementary criteria
described in Subsection I11.A are randomly created
for one thousand projects according to the domains
shown in the third column of Table IV.

e Only the project’s economic (Hi1) and scientific
(H12) impacts are defined by aggregating their sub-
criteria scores through a value function. Note that
these sub-criteria are all defined using a cardinal
scale.

e  The criteria weights are shown in the fourth column
of Table 1V for all criteria but Ho.

e As stated in Section I, (h2ws, h2i7) and (haiz, hai7)
show weakening effects; the weights reflecting such
effects are k3331, = [0.04, 0.06], and k3,33} = [0.06,
0.08], respectively.

e  Also stated in Section 1, (ha1, h23), (ha1, h2s) and (has,
hos) show strengthening effects; the Weights
reflecting such effects are k§’l'f223 =[0.02, 0.05], k2’1’f§4
=[0.05, 0.08], and k§’3’f24 =[0.1, 0.15], respectively.

e The pair of criteria (ha1, hzs) shows an antagonistic
effect whose weight is k3, 52 = [0.05, 0.08].

e The indifference thresholds for those elementary
criteria defined as pseudo-criteria are shown in
column five, while the preference thresholds are
shown in column six of Table 1V.

e The criteria exerting veto power regarding their
immediate ascending criterion are shown in column
seven of Table IV.

e According to the discussion in Section Ill, each
project will be assigned to one of three classes: Bad
(Cy), Average (C2), and Good (Cs) regarding each of
four non-elementary criteria, Ho, Hi, Hz, and Haa.

e Each class will have one characteristic alternative
according to Table V.

TABLE IV
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PROBLEM INFORMATION AT PROJECT LEVEL

L 1 L 2] [4, 6] 7, 8] [10, 10]
[2 2] [3, 4] [5, 6] [8, 9] [10, 10]
[ 1 12 3] [4, 5] 17, 8] [10, 10]
[0, 0] [0, 1] [2 3] [3, 4] [5, 5]
[0, 0] [0, 1] [ 2] 12, 3] [4, 4]
[1.1] [1.2] [3.4] [4,7] [8, 8]
[1,1] [12] [2,3] [3,4] [5, 5]
0 0 1 1 1
[ 1 [6,7] [12, 18] [18, 27] [30, 30]
0 5 19 36 50
2 1 36 62 100
10 26 72 135 200
0 1 3 6 10
1 8 15 26 50
20 1250 4250 15250 20000
0 5 10 15 20
1 2 3 4 5
1 2 3 4 5
[1,1] [1,2] [2,3] [3.4] [5, 5]
[5, 5] [3,4] [2,3] [1,2] [1,1]
[1,1] [1,2] [2,3] [3,4] [5, 5]
[1,1] [1,2] [2,3] [3.4] [5, 5]
[1,1] [0,1] [2,3] [3,4] [5, 5]
[400 000, 400 [370 000, 380 [250 000, 260 [195 000, 210 [180 000, 180
000] 000] 000] 000] 000]

Criterion Not. Domain Wi g pj Vih
Overall quality Ho
Project impact Hi [gi]s
- [0.2,
Economic impact Hu 0.4]
Number of patents to be generated his [0, 4] (5042] - [2,3]
Number of innovative processes to be [0.125,
generated huz  [0.4] 0.35] (2.3]
Number of prototypes to be generated hus [0, 4] [gi]s - [2,3]
L [0.25,
Scientific impact Hi2 0.45]
Number of papers to be published by first [0.35
quartile JCR journals hz [0,10] 0.45] (3.5]
Number of papers to be published by other [0.3, :
JCR journals hzz [0,10] 0.4] (3.5]
Number of papers to be contributed to [02,
international conferences huz  [0,10] 0.25] [3.9]
Development of human resources His [g' ;]5
Number of new PhD to be generated by [0.35
the project fua [0,5] 0.45] 2.3]
Number of post-PhD to be generated by [0.2, : :
the project hiz [0, 4] 0.25]
Number of new master graduates to be [03
generated by the project hiz [0, 8] 0.4] [3.9]
Capacity to make positive synergy with h L, 5] [ :
other projects (ordinal) 4 ' 0.2]
If the project’s deliverables are relevant or [0.15, R
not (ordinal) hs {0, 1} 0.2] 00
- [0.3,
Probability of success H2 0.4]
Quality of the leader curriculum Ha1 (Eozg]
Number of relevant awards obtained by [0.05, R
the leader hau [0,30] 0.1]
Number of papers published by 3-top [0.15, R
rated journals haiz [0,50] 0.2] 58
Number of papers published by JCR first [0.12, R
quartile journals haia [0, 100] 0.15] 015
Numbers of papers published by JCR [0.08, R
journals ha1a [0, 200] 0.12] 20 31
Number of books published by top-rated [0.05, R
editorials hais [0, 10] 0.1] 1218
Number of PhD students advised by the [0.1, R
leader hais [0, 50] 0.15] 575
Number of citations to his/her scientific [0.15, 20 30 R
works haiz [0,20000] %" 54 gy
Number of projects successfully led hais [0, 20] [(?32] 2233 -
National level of collaboration (ordinal)  h2ie  [1, 5] [000051] 0.40.6 -
International level of collaboration [0.02,
(ordinal) haio  [1, 5] 0.08] 0.40.6
Likelihood of meeting the deadline [0.1,
(ordinal) hz [LS] G5 - [2.3]
Difficulty of the research problem (ordinal h [, 5] [0.15, R
& to minimize) = ' 0.25]
Strength of the research collaborator [0.15, : R
group (ordinal) has  [1,5] 0.2]
Appropriateness of the institutional [0.05,
environment (ordinal) hos  [L,5] 0.15] (2.3]
Quality of the research design (ordinal) has [, 5] [(())215 - - [2,3]
) [100 000, [0.2, [46 000,
Cost of the project (dollars) hs 400000] 0.3] 68 000]
TABLE V

CRITERIA SCORES OF THE CHARACTERISTIC ALTERNATIVES

USED FOR SORTING.

Criterion ro R1 R2
hi11 [0, 0] [0, 1] [1,
hi1z [0, 0] [0, 1] [1,
113 [0,0] [0,1] [1,
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2
2]
2

Rs

[2.3]
[2.3]
[2.3]

ra

4.4
[4.4]
4.4

2) Portfolio level
The specific information used in the experiments is as

follows:

e The threshold for the crisp outranking relations is
defined as = 0.75.

e  The strong majority threshold is defined as A = [0.51,
0.75].

The hierarchy of criteria is given in Fig. 2.

The criteria scores of each portfolio are calculated
from the portfolio’s supported projects according to
Subsection I11.A.

e At this level, no criteria score is aggregated through
a value function.

e  The criteria weights are shown in the fourth column
of Table VI for all criteria but Go.

e No criteria pair shows interaction effect.

e The indifference thresholds for those elementary
criteria defined as pseudo-criteria are shown in
column five, while the preference thresholds are
shown in column six of Table VI.

e The criteria exerting veto power regarding their
immediate ascending criterion are shown in column
seven of Table VI.

TABLE VI
PROBLEM INFORMATION AT PORTFOLIO LEVEL
Criterion Not. Weight g P Vih
Overall quality Go
Portfolio impact Gt [0.4, 0.6]
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Economic impact Gu [0.2,0.4]

Number of patents to be generated g1 [0.2,0.3] - - [25, 35]

Number of innovative processes to  gi12 [0.5, 0.6] - - [25, 35]

be generated

Number of prototypes to be Qi3 [0.2,0.3] - - [25, 35]

generated

Scientific impact G [0.25, 0.45]

Number of papers to be published g121 [0.6, 0.6] - - [80, 115]

by first quartile JCR journals

Number of papers to be published g122 [0.25,0.3] - - [80, 115]

by other JCR journals

Number of papers to be contributed  gi23 [0.1,0.15] - - [80, 115]

to international conferences

Development of human resources Gis [0.15, 0.3]

Number of new PhD to be generated  gia1 [0.45, 0.6] - - [30, 45]

by the project

Number of post- PhD to be O132 [0.15, 0.3] - - -

generated by the project

Number of new master graduates to Qi3s3 [0.1,0.3] - - -

be generated by the project

Number of relevant deliverables gu4 [0.1,0.2] 0 0 [15, 20]

DM’s conformity with the portfolio Gz [0.35, 0.55]

Number of projects with high ga1 [0.2,0.4] 0 0 -

scientific impact

Total cost incurred by the portfolio 022 [0.2,0.4] - - [1000 0000,
1500 0000]

Number of supported projects witha  gz3 [0.4, 0.6] - - -

quality inferior to that of non-
supported projects

B. RESULTS AND DISCUSSION

The results of the experiments performed in this work can
be accessed in the supplementary material provided here. The
criteria scores of the thousand simulated projects are shown in
the supplementary material. This material also shows the class
to which each project was assigned regarding some non-
elementary criteria of interest.

Subsection 111.B mentions that the supported projects must
be at least Acceptable regarding their overall quality (Ho) and
their impact (H1), and that they must have a Good probability
of success (Hy). 189 projects fulfill these constraints as shown
in the online supplementary material.

An additional constraint, now at portfolio level, considered
by the genetic algorithm during optimization is that the
required budget of the portfolio must not be greater than
$35,000,000. Considering this amount, a ranking is built using
the net flow score according to the description of the
Initialization scheme in Subsection IV.E.2. This ranking of
projects is used as a “seed” for the initial population of the
algorithm and is considered as a benchmark for the results of
the proposal. Another benchmark portfolio was built by
supporting the projects with the best overall quality until
exhausting resources (if two projects are equal regarding their
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quality, we chose the cheapest one). Note that these
benchmarks form part of a paradigm when building project
portfolios. The benchmark portfolios as well as the portfolio
recommended by the proposal are shown in the online
supplementary material. Table VII shows the criteria scores
for these portfolios.

TABLE VII
PERFORMANCE OF THE BENCHMARK AND PROPOSED
PORTFOLIOS
Criterion Net flow score Best overall Our proposal
) quality (z) ()
gu1 [152, 237] [176, 280] [166, 266]
gu12 [149, 237] [167, 269] [204, 314]
gus [130, 217] [153, 257] [143, 243]
gi21 [418, 647] [494, 766] [545, 838]
g122 [473, 709] [593, 891] [593, 890]
g123 [453, 697] [530, 816] [554, 846]
g131 [166, 272] [223, 359] [225, 358]
g132 [132, 211] [144, 236] [154, 246]
g133 [333, 536] [406, 648] [417, 664]
gu4 78 74 69
921 19 25 38
922 (M) [2.3,3.5] [2.3,3.5] [2.3,3.5]
023 [-88, -88] [0, 0] [0, 0]

Except for gis (which has the lowest weight in its
corresponding non-elementary criterion), the proposed
portfolio dominates the portfolio built by using the net flow
score. On the other hand, both the portfolio built considering
the projects that were assigned to the best overall category and
the proposed portfolio provide more competitive scores
throughout the criteria; however, taking into consideration the
preferences expressed by the DM, the proposed portfolio is
superior as shown below.

Assessing the credibility of outranking between the
benchmark and proposed portfolios for the different non-
elementary criteria, we obtain the results shown in Table VIII.

TABLE VII
CREDIBILITY DEGREES OF THE OUTRANKING RELATION BETWEEN
SOLUTIONS
Criterion o(X, y)/o(y, X) o(X, 2)/o(z, X)

Go 0.75/0.2 0.58/0.39

Gi 0.75/0.2 0.58/0.39

G, 0.95/0 0.94/0.5

Gu 0.75/0 0.58/0.31

G2 0.8/0 0.61/0.39

Gis 0.74/0 0.51/0

Note that if a marginal asymmetric preference relation is
defined on each criterion with a threshold £ = 0.51, we have
“x is preferred to y” and “x is preferred to z” for all criteria in
Table VIII.

VI. CONCLUSIONS

The proposed approach allowed detailed project
evaluations consistent with strategic goals and reflecting
decision-maker’s preferences for individual projects, as well
as the whole portfolio. Also, with the addition of both
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conformity criteria and conformity constraints, the portfolios
will not just meet traditional performance metrics but also
satisfy broader qualitative organizational objectives vital in
stakeholder buy-in and eventual successful implementation of
projects.

The proposal uses a dual assessment approach where both
individual projects and overall portfolio impacts are assessed,
which is not present in traditional PPS methods. This dual
assessment ensures a more complete analysis, as the synergies
of projects are considered, and overall optimal performance of
the portfolio is not compromised by leaving out high-potential
projects. It resolves interrelated and differing importance of
decision criteria, incorporating well-known methodologies
such as the outranking approach, functional paradigms, and
evolutionary algorithms within a hierarchical decision-making
framework to enhance clarity and efficacy.

Extensive experiments in the context of R&D proposals
demonstrated the method’s ability to consider hundreds of
projects, constructing portfolios with zero project quality
violations and achieving positive impacts on other critical
objectives. The method optimizes project status information at
various levels, such as overall quality, probability of success,
and individual project impact. Results surpass benchmarks
that support the best projects directly, indicating the
effectiveness of the proposed methodology in addressing this
complex project portfolio selection problem comprehensively.

Future research directions include evaluations in real
scenarios with sophisticated optimization techniques,
scalability studies, and robustness assessments. Additionally,
exploring indirect elicitation procedures to define parameter
values more intuitively is considered a necessary complement
to this work.
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