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ABSTRACT This paper describes a new approach in project portfolio selection (PPS) problems, 

emphasizing the need to overcome traditional deficiencies with respect to multicriteria decision-making and 

multiobjective optimization. While existing methods typically allow the solving of partial aspects of the PPS 

problem, the proposed approach seeks to provide a holistic framework dealing with aspects like 

interdependence between projects, interaction among criteria, the incorporation of both cardinal and ordinal 

information, and a hierarchical multiobjective optimization. Unlike approaches that optimize portfolios 

neglecting superiority of some projects, or those that only assess individual projects without considering 

overall portfolio performance, the proposal allows for a compromise between both objectives. A case study 

is given, proving the application of the proposal for developing well-balanced portfolios aligned with strategic 

organizational goals and stakeholder preferences. The results point to significant improvements in the 

efficiency and effectiveness of decision-making, especially in complex project environments. This research 

contributes not only to the advancement of the theoretical framework of PPS but also to practical implications 

for portfolio management in a wide variety of organizational contexts. 

INDEX TERMS Decision making, Evolutionary algorithms, Multicriteria analysis, Multiobjective 

optimization, Outranking methods, Project portfolio selection. 

I. INTRODUCTION 

Generally, the senior management of an organization 

(which may be a group of individuals or a decision-maker 

representing senior management), hereafter referred to as 

the decision-maker (DM), is responsible for determining 

how to allocate its resources among a set of project 

proposals. In general, the quality of most proposals is 

acceptable, and the DM would like to support most of them; 

however, resource constraints make this impractical, so a 

multi-criteria decision-making process must be undertaken 

to determine the subset of proposals to support [1]. This 

subset is known as the project portfolio. The determination 

of the most appropriate portfolio of projects is referred to 

as the project portfolio selection (PPS) problem. 

Numerous researchers have been proposing dozens of 

methods for solving this type of problem for decades [2]. 

PPS intends to direct an organization’s scarce resources 

toward projects that promise the greatest alignment with its 

objectives and operational viability. Despite decades of 

research and application, traditional PPS methodologies 

often fail, particularly when faced with real features of 
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modern enterprises that require simultaneous handling of 

diverse data types and intricate project interdependencies. 

Recent studies reveal significant shortcomings in existing 

PPS frameworks, in particular their failure to effectively 

incorporate cardinal and ordinal information and to account 

for the synergistic and hierarchical nature of project criteria 

[3], [4], [5], [6]. These gaps not only limit decision-making 

capability, but also potentially bias the strategic alignment 

of portfolios toward suboptimal configurations. 

The proposal presents a comprehensive methodology to 

address these critical shortcomings and to bridge the gap 

between both project and portfolio levels of decision-

making. Furthermore, by integrating hierarchical decision-

making processes with this dual data handling mechanism, 

our proposal improves the accuracy of project evaluations 

and ensures that portfolios are not simply collections of 

high-performing projects but are cohesive units that 

advance organizational goals. The application of this 

methodology to a complex, real-world case study 

underscores its practical importance and the substantial 

improvements it offers over traditional methods, marking a 

significant advancement in PPS research and application. 

Multi-criteria decision making (MCDM) and multi-

objective optimization (MOO) approaches constitute the 

most prominent family of methods to address this problem, 

mainly in complex PPS scenarios [7]. MCDM has been 

applied primarily to evaluate and rank projects; in many 

methods and applications, the portfolio value is achieved 

by summing the values of the projects in the portfolio; the 

best portfolio is achieved from a portfolio value 

optimization process. In methods using MOO, the portfolio 

is replaced by a vector of objectives; in most MOO 

approaches, the values of the portfolio objectives come 

from aggregating (possibly considering synergistic effects) 

the “impacts” of the projects in the portfolio; the best 

portfolio is a Pareto point of the corresponding multi-

objective problem [3]. By analyzing how input variations 

like cost and duration impact portfolio stability and 

performance, some studies have enabled strategic 

prioritization and optimization of resources. They also 

demonstrate how sensitivity analysis supports strategic 

decision-making, by preparing portfolios to adapt to future 

uncertainties and ensuring investments yield the highest 

returns with manageable risk levels [3]. 

   While many existing methods effectively address specific 

aspects of PPS, our review has identified areas where these 

approaches may face challenges under certain conditions. 

It is important to note that while some methods do provide 

solutions for specific issues, a comprehensive approach that 

addresses all these aspects simultaneously has been less 

explored. The following are some of these aspects: 

a) Difficulty handling high dimensionality, that is, 

many project proposals and/or criteria. 

b) Inability to consider interdependence between 

projects (e.g., synergistic projects). 

c) Inability to consider interaction between criteria. 

d) Problems in handling information that is presented 

in ordinal or qualitative form in certain criteria, 

and in cardinal scales in other criteria. 

e) Challenges or incapacity in addressing uncertain, 

unclear, or potentially absent values related to 

criteria scores, resource needs, and preference 

parameters. Managing such scenarios becomes 

especially pronounced when the decision-maker 

comprises a diverse group or an individual who is 

not easily accessible, such as a CEO of a large 

enterprise. 

f) Inability to cope with PPS problems where criteria 

are organized as a hierarchy structure, i.e., where 

the score of a (non-elementary) criterion depends 

on the scores of other criteria (called descendants), 

and the evaluation of projects and portfolios is 

performed on different non-elementary criteria. 

g) The optimization process produces unbalanced 

portfolios (see e.g., [8], [9]). A portfolio is 

unbalanced when relatively poor performance of 

the portfolio on some non-elementary criteria 

coexist with very good performance on other non-

elementary criteria. For example, when tackling a 

public project selection problem, the DM may be 

interested in ensuring an appropriate 

environmental benefit (composed of several sub-

criteria), as well as acceptable economic and social 

impacts. 

h) Incapability to manage specific criteria that impact 

the portfolio’s quality, yet these criteria do not 

stem from the aggregation of project scores. 

Achieving the optimal portfolio goes beyond 

simply optimizing the combined project scores; 

there are additional criteria that the decision-

maker may wish to take into account when 

evaluating portfolio quality. For instance, the 

decision-maker might seek to maximize the 

number of supported R&D projects categorized as 

“Good” in terms of their probability of success. 

Alternatively, there may be an interest in 

minimizing the number of unsupported projects 

that rank higher than other supported projects. It’s 

important to note that these criteria are utilized to 

assess the constructed portfolio, contrasting with 

the more traditional criteria used for individual 

projects. The former is often employed to gauge 

the decision-maker’s alignment with the portfolio, 

referred to as “conformity criteria,” while the 

latter are simply termed “criteria.” Disregarding 

the conformity criteria can result in the decision-

maker being dissatisfied with the portfolio, 

especially when the portfolio’s outcome is derived 

from optimizing a single quantity representing its 

value or a vector of portfolio scores. 
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An effective decision support method should have the 

capability to handle various subsets of these constraints 

based on the specific context. However, to the best of our 

knowledge, no existing approach has been published that 

accomplishes this feat [1], [3], [10] . 

The novelty of the proposed system consists of a 

comprehensive approach able to give an effective solution 

to complex PPS challenges. The proposal can innovatively 

aggregate the decision maker’s objectives into a single 

objective and integrate cardinal and ordinal data in PPS, 

enhancing decision-making through a comprehensive, 

hierarchical approach that includes conformity criteria and 

dynamic data aggregation. In more detail: 

1. 1. The proposed approach innovatively 

transforms a multi-objective optimization problem 

into a single-objective one by effectively 

incorporating the decision-maker’s preferences. 

Typically, project selection and portfolio 

optimization involve juggling multiple objectives, a 

task that becomes cognitively burdensome due to 

human limitations in handling more than seven 

conflicting objectives simultaneously, as identified 

by [11]. To address this challenge, our strategic 

transformation simplifies complexity by focusing 

selective pressure on a specific region of interest. 

This targeted approach efficiently narrows the 

search to the most preferred portfolio, ensuring that 

the decision-making process remains manageable 

and aligned with human cognitive capacities. 

2. We propose a new approach, which for the first time 

handles both cardinal and ordinal information 

innovatively and specifically in Project Portfolio 

Selection. Specific treatments for each type of 

information are indeed required, because they 

usually entail different mathematical and logical 

treatments to be possibly integrated effectively. The 

proposed system has enabled the aggregation of 

mixed data types under a compensatory framework, 

which is carefully regulated through thresholds by 

the decision-maker to avoid overcompensation. 

This enhances both the precision and flexibility of 

the decision-making process, hence marking a 

significant advancement in accommodating the 

complex data scenarios typical in strategic project 

evaluations. 

3. This proposal represents an evaluative method that 

reflects the preference of decision-makers for 

rigorous project evaluations from any perspective, 

for example, “determine the scientific impact of the 

project”, or “determine the overall quality of the 

project”. This evaluative technique applies to 

portfolio-level evaluations in that it offers an 

analytical framework that guarantees strategic 

congruence at the level of both individual projects 

and the portfolio in general. 

4. We introduce conformity criteria and conformity 

constraints. Conformity criteria are standards or 

benchmarks against which the fit of a portfolio is 

measured. Unlike the traditional criteria that 

evaluate individual projects on the aspects of, for 

example, cost, risk, and potential return, the 

conformity criteria assess the portfolios on how 

well the collective group of selected projects 

conforms to broader, often qualitative 

organizational objectives; for example, “Maximize 

the number of projects in the category Excellent”. 

Conformity criteria ensure that, beyond the 

traditional performance metrics, the portfolios will 

excel and suit other strategic objectives, including 

sustainability, diversity, and long-term 

organizational goals. The proposed approach can 

ensure that chosen portfolios have the potential for 

broader acceptance and support by embedding 

criteria reflecting the preferences and values of key 

stakeholders. Conformity constraints may be 

imposed in the form of, for example, “reject 

projects that are Bad or Below Average”. 

5. In this regard, the proposed system bases its 

approach on a two-layer assessment process that 

evaluates on one hand, individual projects, and on 

the other, assesses each project portfolio as a whole. 

This approach ensures that the evaluation addresses 

individual projects and their integration into a 

single portfolio, taking into account not just the 

value of an individual project but also the 

interaction between projects within the portfolio. 

Traditional PPS methods often do not consider the 

assessment of both perspectives, and to the best of 

our knowledge, there are no published approaches 

providing explicitly a mechanism where the 

decision-maker can express his/her preferences 

about the compensation between both perspectives.  

6. We present a novel strategy for assembling 

balanced portfolios in a way that their performance 

will be uniformly distributed across criteria. For no 

single criterion or a group of criteria to strongly 

dominate or affect overall effectiveness in the 

portfolio. This approach is cognitively 

straightforward for the decision-maker, as he/she is 

allowed to easily articulate his/her preferences in 

the form of simple expressions about acceptable 

portfolios. Those are used as benchmarks within the 

system to guide the selection process. This will 

simplify the selection and also allow for closer 

outcomes to what is actually perceived by the 

decision-maker as balanced. 

7. Combining the outranking approach, the functional 

paradigm, and evolutionary algorithms may enable 

performing hierarchical decision-making. Though 

these methodologies are all well-established in their 

respective areas, their integration in the context of 

PPS for a hierarchical environment is new. PPS 

deals with many decision criteria that can be 

interrelated and vary in importance; when treated 
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linearly, such treatment tends to be problematic for 

the decision-makers. A hierarchical framework in 

organizing these criteria at different levels provides 

for a systematic evaluation that clearly outlines the 

relationship and impact from the lower level 

operational goals to the higher level strategic 

objectives. The proposed approach is thus 

exploiting the strengths of evolutionary algorithms 

to handle large solution spaces and taking 

advantage of the ability of the outranking method to 

handle qualitative and conflicting criteria, whereas 

the characteristics of the functional paradigm are 

used to deal with cardinal information. Hierarchical 

structuring of the evaluation enhances clarity and 

efficacy in the decision-making process. 

 

This paper is structured as follows. Section II provides a 

review of the characteristics of some published approaches, 

their contributions and limitations. Section III presents an 

extensive example in R&D projects illustrating the 

complexity of the problem and the need for a new method. 

Section IV describes the proposed approach. Section V 

shows how the proposal is used to address an example with 

real-world features related to R&D projects, and Section VI 

concludes this paper. 

II. RELATED WORKS 

The novelty of the proposal lies in an overall improvement 

of a traditionally two-step process, individual project selection 

and portfolio optimization [3]. During the assessment at the 

individual project level the proposal handles both cardinal and 

ordinal information, allowing for a review of each project’s 

potential performance, strategic fit, risk, and resource need 

and any other criteria that the decision maker considers 

relevant. This ensures that specific projects are analysed based 

on their stand-alone benefits and in relation to the 

organization’s objectives. 

The second stage is portfolio construction, where the 

proposal optimizes synergy between projects while 

considering some high-level DM’s objectives regarding the 

composition of the portfolio. It involves more than just project 

selection; there is interaction in resource sharing, risk 

distribution, and overall portfolio balancing. The proposal 

ensures that the portfolio maximizes collective value and 

adheres to several types of constraints by addressing the 

dynamic nature of strategic objectives and interdependencies 

between projects. This new approach facilitates the process of 

selecting the most preferred projects while improving the 

strategic congruence and operational viability of the overall 

portfolio. 

A. ASSESSMENT OF INDIVIDUAL PROJECTS 

The initial phase involves evaluating individual projects based 

on multiple criteria. Typically, the impacts assessed by a 

project across these multiple criteria are: i) consolidated using 

a Multi-Criteria Decision Making (MCDM) approach to 

generate a singular value representing the project’s quality, ii) 

utilized to categorize the project within a set of ordered 

classes, iii) employed to rank the projects from best to worst; 

or iv) employed to ascertain the project’s contribution to the 

portfolio. When feasible, the latter can be accomplished 

straightforwardly by summing the scores of the projects 

endorsed by the portfolio. 

A common approach to produce a single value of the project’s 

quality is the weighted sum function (e.g., [12], [13], [14]). It 

has been widely used to create a ranking of the projects or to 

assign projects to preferentially ordered classes. The main 

reason to use this approach is its simplicity; it only requires 

defining the importance and the value that the DM assigns to 

each criterion. Moreover, it fulfills several appealing 

theoretical properties such as independence with respect to 

irrelevant alternatives, comparability, and transitivity. 

Nevertheless, this approach does not allow the explicit 

consideration of interactions among criteria, veto situations, or 

other threshold effects that are very important for a holistic 

project evaluation. Additionally, it requires cardinal 

information and enforces constant tradeoff rates between 

criteria. The latter requires that any decrease in one criterion 

be exactly offset by a proportional increase in another 

direction, which often does not align with real-world projects. 

Another multiple criteria decision-making approach employed 

to derive values representing the quality of projects or their 

rankings is PROMETHEE (Preference Ranking Organization 

METHod for Enrichment of Evaluations) [6], [10], [15]. 

PROMETHEE, an outranking-based method, is not confined 

to working exclusively with cardinal information; it can also 

accommodate qualitative data and non-compensatory effects. 

Nevertheless, the rankings generated by this method are 

susceptible to be influenced from irrelevant alternatives. 

Other outranking methods can be used to assign projects to 

classes or to generate a ranking. Outranking methods represent 

one of the main schools of thought of MCDM. Such methods 

build and exploit an outranking relation between pairs of 

decision alternatives (also called actions in the related 

literature). Given alternatives x and y, the outranking relation 

considers arguments to approve and disapprove the assertion 

“x is at least as good as y”. When this assertion is accepted, it 

is said that “x outranks y”. Exploitation of the outranking 

relation can be performed for choosing, ranking and for 

ordinal classification purposes.  

The ELECTRE family contains most of the outranking 

methods used to address the PPS problem (e.g., [16], [17], 

[18], [19], [20], [21]). ELECTRE methods can handle ordinal 

information, threshold effects, incomparability and non-

transitivity situations when aggregating the criteria scores. 

ELECTRE methods can also cope with imperfect knowledge 

(zones of uncertainty) in the preferences of the DM through 

several ways, such as discriminating thresholds (so-called 

pseudo-criteria) (e.g., [22]) and interval numbers (e.g., [23]). 

However, traditional ELECTRE methods are limited in that 

they do not accommodate interacting criteria or criteria that 
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are hierarchically structured. These limitations can hinder the 

decision-making process in complex scenarios where the 

interplay between criteria and their structural dependencies 

significantly impact outcomes. For a detailed exploration of 

these challenges, refer to the illustrative example in Section 

III. 

ELECTRE methods for addressing interacting criteria have 

been expanded upon in [24], criteria have been organized 

hierarchically in [25], and hierarchical assessments of 

alternative performances on interacting criteria are discussed 

in [26]. Corrente et al. [27] introduced a multiple criteria 

hierarchy process for categorizing alternatives into 

preferentially ordered classes (i.e., sorting alternatives). 

Drawing inspiration from ELECTRE, Fernández et al. [28] 

presented two multi-criteria sorting methods capable of 

handling imperfect knowledge regarding the preferences of 

the decision-maker, imprecise, vague, or even missing values 

in criteria scores, and resource requirements. Moreover, this 

proposal is adept at evaluating alternatives (projects or 

portfolios) based on hierarchically structured criteria and 

assigning alternatives to ordered classes at the level of any 

non-elementary criterion [29]. In spite of the benefits of 

ELECTRE, it hardly handles compensatory preferences and 

situations where the intensity of the preference in favour of the 

outranking relation is relevant; furthermore, it is not able to 

consider situations where only cardinal information is treated, 

and compensation is allowed in a wide range. 

Some other well-known methods for dealing with interacting 

criteria have also been proposed outside of the outranking 

approach (Choquet, 1954; Sugeno, 1974; Ramedani et al., 

2024; Xing et al., 2022), the same is true for handling 

uncertainty [31]. 

B. BUILDING PROJECT PORTFOLIOS 

The second stage involves constructing the project 

portfolio, determining which projects will receive support. In 

this phase, considerations extend beyond the criteria used in 

the first stage to build the portfolio. New criteria related to the 

decision-maker’s alignment with the portfolio (conformity 

criteria) are taken into account, along with various constraints. 

The available options for executing this stage are contingent 

upon the actions undertaken in the preceding stage, such as 

how project impacts were aggregated in the initial phase. 

If a single value representing each project’s quality was 

determined, then the portfolio value can be calculated as the 

aggregated value of its supported projects, and an optimization 

of the portfolio value should be performed. This approach is 

very simple and easy to explain, however, it neglects that 

criteria can be hierarchically structured, that there can be 

interactions between criteria and between projects, and it 

requires cardinal information which may be a serious practical 

limitation. 

If an MCDM approach is utilized in the initial stage (e.g., 

[21], [32], [33]), the projects can be arranged in a ranking or a 

set of ordered categories. In this manner, the most preferred 

projects are supported until resources are depleted. 

Alternatively, the requirements of the projects in the top 

classes can be adjusted to align with the available resources 

(e.g., [34]). This approach to building portfolios is 

straightforward and ensures support for the highest-quality 

projects. However, it does not consider interdependence 

between projects. The interactions (synergies) between 

projects were studied more intensively from the work of 

Stummer and Heidenberger [35] (see e.g., [36], [37], [38], 

[39], [40]) and continue to be addressed by recent papers [5], 

[41]. Typical implications of project interaction often include 

increasing/decreasing the criteria scores of synergetic projects 

and modifying the total resources consumed by these projects. 

Typically, this cannot handle segmentation constraints 

directly. Such constraints require, for example, that specific 

proportions of resources be allocated or restricted to segments 

of the portfolio. For example, “no more than 15% of the total 

budget should be allocated to projects from private 

organizations”. 

Another option is to aggregate the criteria scores of the 

supported projects to produce criteria scores now at portfolio 

level. After defining the, say, N scores of the projects in the 

first stage, the scores of the potentially supported projects can 

be combined (e.g., through summation) to define the N scores 

at portfolio level. Assessing portfolios this way provides the 

DM with an easy way to measure the levels of impact on 

his/her objectives; thus, allowing the DM to create balanced 

portfolios with acceptable impact levels on objectives. 

Nevertheless, in this scenario, the intricacy of the problem can 

pose a significant challenge, particularly when handling even 

a few objectives and several dozen projects due to the 

following reasons: i) the cognitive limitations of the decision-

maker in expressing preferences, which may restrict them to 

working with only a few objectives [11], ii) the computational 

complexity, making it highly challenging to employ exact 

methods, and iii) the vast number of non-dominated portfolios 

(in accordance with Pareto optimality), making the 

identification of the portfolio that best represents a 

compromise among objectives a challenging task. 

Strong and complex nonlinear combinatorial optimization 

search spaces often characterize project portfolio selection 

problems. Many authors have advanced in the design of 

metaheuristics to address these problems (e.g., [38], [42], [43], 

[44], [45], [46]). Of these works, evolutionary algorithms, 

particularly genetic algorithms (GAs), stand out mainly 

because of their robustness to deal with diverse shapes of 

complex nonlinear search spaces [45], [47] and because their 

characteristics (selection, crossover and mutation operators) 

make them able to explore the search space reducing risks of 

getting stuck in local optimums [48], [49]. Furthermore, they 

allow for flexible representations of solutions, which is very 

convenient to deal with a 1–0 combinatorial approach as the 

required to represent projects in or out the portfolio. GAs 

support hierarchical decision-making, integrating both 

cardinal and ordinal data, essential for reflecting varied project 
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information accurately [29], [50], [51]. Their iterative nature 

adapts to changes in strategic priorities or project 

environments, making it indispensable for dynamically 

optimizing portfolios to align closely with organizational 

goals and decision-maker preferences [49]. 

All the cited works focus only on some of the characteristics 

of the PPS problem, lacking the flexibility and robustness to 

deal with more complex and realistic scenarios. Furthermore, 

they suffer from several limitations, since they do not allow to: 

- Contemplate many criteria and/or projects, which avoids 

contemplating conformity criteria. 

- Reflect synergies between projects. 

- Build the portfolio by optimizing objectives at different 

levels of a hierarchical structure. 

- Handle uncertainty on the criteria scores caused by 

imprecision, vagueness, arbitrariness, or even missing values. 

- Consider ill-defined preferences of the DM caused, for 

example, by a fuzzy entity representing the real DM or 

because the DM is a rather heterogeneous group. 

- Deal with interacting criteria. 

- Ponder and select tradeoffs between improving the overall 

quality of the portfolio and supporting better projects. 

- Provide information to the DM regarding the classification 

of the projects/portfolios on other criteria besides the overall 

criterion. 

- Incorporate preferences regarding the balance of the 

portfolio. 

III. AN ILLUSTRATIVE EXAMPLE IN R&D PROJECT 
PORTFOLIO SELECTION 

In the PPS problem, a first assessment is performed at a project 

level where the criteria scores are defined for each project. 

Subsequently, some (most) of the criteria used at project level 

can now be considered at a portfolio level. At this new level, 

the criteria scores of the projects supported by the portfolio are 

aggregated to produce the criteria scores now at a portfolio 

level. Additional criteria and constraints may be considered 

when assessing portfolios (such as conformity criteria and 

conformity constraints). 

We present an example that uses the two levels of assessment. 

The example, while illustrative and not directly extracted from 

real-world data, is meticulously constructed based on 

scenarios discussed in published research [29]. Note that the 

‘experts’ in this example should be understood as 

hypothetical, since they are not real individuals but are instead 

fabricated personas created to demonstrate the application and 

potential outcomes of the proposed methodology in a 

simulated scenario. 

A. ASSESSING R&D PROJECTS 

 

Let’s assume the case of a large organization interested in 

supporting Research and Development projects. A set of 

criteria has been defined and structured as a hierarchy. Given 

the number of project proposals and criteria, a group of expert 

evaluators has been consulted to define the criteria scores of 

the projects and resource requirements; imprecise and vague 

information was provided by several evaluators. Multiple 

interactions have been found between pairs of criteria and 

between pairs of projects. Also, the DM is interested in 

supporting the best projects but does not discard supporting 

some average projects if doing so implies improving portfolio-

level objectives (see next subsection). However, the DM is 

unwilling to support bad projects regarding some non-

elementary criteria. 

The root node of the hierarchy represents the overall quality 

of the project (H0), comprised of three direct sub-criteria (refer 

to Figure 1): project impact (H1), probability of success of the 

project (H2), and cost of the project (h3). Some of these criteria, 

referred to as non-elementary criteria, are composed of sets of 

criteria, while others are considered elementary criteria. For 

instance, the cost of projects (h3) is directly measured in 

monetary terms, while the project impact (H1) and the 

probability of success (H2) are complex and require definition 

in terms of other sub-criteria. (Note that the use of upper- and 

lower-case notation corresponds to non-elementary and 

elementary criteria, respectively.) 

 

FIGURE 1. Hierarchy of the criteria used to assess projects. H0 is the 
overall quality of the project but, since it is a complex (also called non-
elementary) criterion, it is decomposed on several other criteria which, in 
turn, can also be complex.   

 

The project impact (H1) is dependent on five direct sub-

criteria: economic impact (H1,1), scientific impact (H1,2), 

development of human resources (H1,3), capacity to make 

positive synergy with other projects (h1,4), and the quality of 

the project’s deliverables (h1,5). Economic impact (H1,1) 

consists of three criteria: the number of patents generated 

(h1,1,1), the number of innovative processes generated (h1,1,2), 

and the number of prototypes generated (h1,1,3). Scientific 

impact (H1,2) is based on three criteria: the number of papers 

to be published by first quartile JCR journals (h1,2,1); the 

number of papers to be published by other JCR journals 

(h1,2,2); and the number of papers contributed to international 

conferences (h1,2,3). Lastly, the development of human 

resources (H1,3) includes three criteria: the number of new 
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PhDs to be generated by the project (h1,3,1); the number of post-

PhDs (h1,3,2 and the number of new master graduates (h1,3,3). 

The probability of success of the project (H2) relies on six 

direct sub-criteria: quality of the leader’s curriculum (H2,1), 

likelihood of meeting the deadline (h2,2), difficulty of the 

research problem (h2,3), strength of the research collaborator 

group (h2,4), appropriateness of the institutional environment 

(h2,5), and quality of the research design (h2,6). The quality of 

the leader’s curriculum (H2,1) is influenced by ten elementary 

criteria: number of relevant awards obtained by the leader 

(h2,1,1), number of papers published by 3-top rated journals  

(h2,1,2), number of papers published by JCR first quartile 

journals (h2,1,3), numbers of papers published by JCR journals 

(h2,1,4), number of books published by top-rated editorials 

(h2,1,5), number of PhD students advised by the leader (h2,1,6), 

number of citations to his/her scientific works (h2,1,7), number 

of projects successfully led (h2,1,8), national level of 

collaboration (h2,1,9), international level of collaboration 

(h2,1,10).  

Tables I-III show the non-elementary criteria and their 

direct sub-criteria for the different levels of the hierarchy. 

These tables also show the impact scales used by the 

elementary criteria and the preference direction of these 

impacts. The impact scales are cardinal (CS) or a six-level 

ordinal scale (OS), except for the case of criterion h1,5 whose 

values are binary denoting relevance (1) or not (0). Note that, 

if evaluated, the impact scales of non-elementary criteria 

would always be ordinal. The criteria scores in the case of the 

six-level OS are denoted by 0-5 where: Nothing = 0, Very low 

= 1, Low = 2; Medium = 3, High = 4, Very high = 5. The 

preference direction can be decremental (DP) or incremental 

(IP). Of course, the experts’ opinions often diverge creating 

imperfect knowledge about the actual impacts of the projects. 

This knowledge can be effectively managed through the use 

of pseudo-criteria or interval numbers. Utilizing pseudo-

criteria may be more suitable when the criterion is represented 

by an ordinal scale (e.g., h1,4 and h2,2). On the other hand, 

employing interval numbers may be more fitting for cardinal 

scales (e.g., h3 and h2,1,7). 
TABLE I 

NON-ELEMENTARY CRITERIA AND THEIR DIRECT SUB-CRITERIA IN THE 

FIRST LEVEL OF THE HIERARCHY 

Overall quality of the project (H0) 

Project 
impact 

(H1) 

Probability of success 

of the project (H2) 
Cost of the project (h3): DP, CS 

 

 

TABLE II 
NON-ELEMENTARY CRITERIA AND THEIR DIRECT SUB-CRITERIA IN THE 

SECOND LEVEL OF THE HIERARCHY 

Project impact (H1) 

Economic (H1,1) Scientific (H1,2) Human resources (H1,3) 

Positive synergy 
(h1,4): IP, OS 

The deliverables 

are relevant 

(h1,5): IP, OS 

 

   

Probability of success of the project (H2) 

Leader curriculum 

(H2,1) 

Likelihood of 

meeting the 

deadline 
(h2,2): IP, OS 

Difficulty of the 
research problem (h2,3): 

DP, OS 

Research group 

(h2,4): IP, OS 

Institutional 

environment 
(h2,5): IP, OS 

Research design (h2,6): 

IP, OS 

 

 
TABLE III 

THIRD LEVEL OF THE HIERARCHY 

Economic impact (H1,1) 

Patents generated 

(h1,1,1): IP, CS 

         Innovative 

processes 

generated 
(h1,1,2): IP, 

CS 

Prototypes generated 

(h1,1,3): IP, CS 

   

Scientific impact (H1,2) 

Papers to be 
published in Q1 JCR 

journals (h1,2,1): IP, 

CS 

Papers to be 
published in other 

JCR journals 

(h1,2,2): IP, CS 

Papers contributed to 
international 

conferences (h1,2,3): IP, 

CS 

   

Development of human resources (H1,3) 

Number of PhD 
generated (h1,3,2): IP, 

CS 

Number of post-
PhD (h1,3,2): IP, 

CS 

Number of master 
(h1,3,3): IP, CS 

   

Quality of the leader curriculum (H2,1) 

Number of awards 
(h2,1,1): IP, CS 

Number of papers 

in 3-top journals 

(h2,1,2): IP, CS 

Number of papers in Q1 

JCR journals (h2,1,3): IP, 

CS 

Number of papers in 

other JCR journals 

(h2,1,4): IP, CS 

Number of books 

in top-rated 
editorials (h2,1,5): 

IP, CS 

Number of PhD students 
advised (h2,1,6): IP, CS 

Number of citations 
(h2,1,7): IP, CS 

Number of 

projects led 

(h2,1,8): IP, CS 

National level of 
collaboration (h2,1,9): IP, 

OS 

 

International level of 

collaboration (h2,1,10): 
IP, OS 

  

 

Several pairs of criteria show some kind of interaction (cf. 

[52]). For instance, since it is expected that good leaders 

design good proposals, quality of the leader curriculum (H2,1) 

and research design (h2,6) exhibit an antagonism interaction; 

that is, when comparing two projects, say a and b, to assess the 

credibility of “a is at least as good as b”, the credibility that 
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H2,1 can generate in favor of that assessment when the quality 

of the leader curriculum of a is high enough is reduced when 

the research design (h2,6) of a is bad enough.  

A strengthening interaction (positive synergy) is 

appreciated between quality of the leader curriculum (H2,1) 

and the research problem difficulty (h2,3), between quality of 

the leader curriculum (H2,1) and the strength of the research 

group (h2,4), and between research problem difficulty (h2,3) and 

the strength of the research group (h2,4); thus, for example, a 

high enough quality of the leader curriculum (H2,1) makes 

more credible the assertion “a is at least as good as b” when 

the difficulty of the research problem (h2,3) is low enough. 

Finally, since higher ranked journals and editorials usually 

imply a higher number of citations of published works, some 

redundancy (that is, weakening interaction or negative 

synergy) is identified between numbers of papers in other JCR 

journals (h2,1,4) and number of citations (h2,1,7), also between 

number of papers in 3-top journals (h2,1,2) and number of 

citations (h2,1,7). 

 

B. ASSESSING PORTFOLIOS 

 

As stated above, most of the criteria used to assess projects are 

also used to assess portfolios; thus, some scores of the projects 

supported by a portfolio need to be aggregated to define the 

scores on these portfolio-level criteria; moreover, additional 

criteria are also used to encompass a wider perspective on the 

overall quality of a portfolio. Let us mention the criteria 

considered here to assess portfolios. 

The quality of the portfolio (G0) is assessed considering the 

portfolio impact (G1) and the DM’s conformity with the 

portfolio (G2), as seen in Figure 2. The portfolio impact (G1) 

is assessed by aggregating the scores of the projects supported 

by the portfolio, while the DM’s conformity with the portfolio 

(G2) is assessed by considering other criteria that are not 

impact measures. 

G1 comprises economic impact (G1,1), scientific impact (G1,2), 

development of human resources (G1,3), and number of 

relevant deliverables (g1,4). Economic impact (G1,1) is further 

broken down into the number of patents to be generated (g1,1,1), 

the number of innovative processes to be generated (g1,1,2), and 

the number of prototypes to be generated (g1,1,3). Scientific 

impact (G1,2) is dependent on three criteria: the expected 

number of papers that the projects in the portfolio will publish 

in first quartile JCR journals (g1,2,1); number of papers to be 

published in other JCR journals (g1,2,2); number of papers 

contributed to international conferences (g1,2,3). Development 

of human resources (G1,3) consists of the number of new PhDs 

to be generated (g1,3,2); the number of post-PhDs to be 

generated (g1,3,2); and the number of new master graduates to 

be generated (g1,3,3). 

The DM’s conformity with the supported portfolio (G2) is 

assessed through three sub-criteria: the number of projects 

with good scientific impact (g2,1), the total cost incurred by the 

portfolio (g2,2), and the quantity of supported projects with a 

quality lower than that of non-supported projects (g2,3). The 

portfolio score on g2,3 is measured by comparing the class of 

overall quality to which each supported project was assigned 

with that of each non-supported project. If the supported 

project was assigned to a class worse than that of at least one 

of the non-supported projects, then this is counted as an 

inconsistency for the supported project (i.e., each supported 

project can increase the number of inconsistencies in one). We 

denote by g2,3 the number of inconsistencies for all the projects 

supported by the portfolio. 

Note that the scores on all elementary criteria descending from 

G1 are imprecise, as well as g2,2. 

Also note that, to assess g2,3, the projects must be assigned to 

preferentially ordered classes of overall quality a priori (H0). 

Assume that there are three possible classes of overall quality: 

Bad, Acceptable, and Good. Furthermore, a project can also 

be assigned to any set of preferentially ordered classes 

regarding any of the other non-elementary criteria. Assume 

that each project is also sorted regarding its impact (H1), its 

probability of success (H2), and its scientific impact (H12). 

Therefore, a set of constraints that the portfolios must fulfill is 

that the supported projects are at least Acceptable regarding 

their overall quality and their impact, and that they have a 

Good probability of success. 

Finally, the supported portfolio must be balanced; that is, the 

DM requires the supported portfolio to create Acceptable 

scientific, economic and human resources impact.  

IV. THE PROPOSED METHODOLOGY 

As stated before, the proposal aims to consider the two stages 

of portfolio management, individual project selection and 

portfolio construction. The proposed methodology introduces 

a new approach to represent the preferences of the decision-

maker, utilizing the HI-INTERCLASS-nC method for sorting 

alternatives. This comprehensive framework enhances PPS by 

characterizing and selecting the best compromise portfolio, 

aligning individual project evaluations with strategic 

objectives to optimize portfolio synergy. The proposal 

  
 
 
 
 
 

  
 

  
 

  
 

  
 
 
 
 
 

  
 
 
 
 
 

  
 
 
 
 
 

  
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

  
 
 
 
 
 

FIGURE 2. Hierarchy of the criteria used to assess portfolios 
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addresses complex interdependencies and ensures operational 

efficacy and strategic congruence. 

This section presents first the notation and a succinct 

explanation of the proposed methodology mentioning its main 

components; after that, a deeper description of the 

methodology is provided. 

For homogeneity purposes, we will use here part of the 

notation adopted by Fernández et al. [29]. 

• Let A be the set of alternatives (potential actions). 

• Let Ig be the set of indices of all criteria in the 

hierarchy. 

• Let  = g0, g1, … gcard(Ig) be the set of all the criteria 

in the hierarchy. Without loss of generality, we 

assume that the preference increases in the sense of 

the values of the criteria. 

• Let EL be the set of indices of all elementary criteria. 

• Let Nh be the number of immediate sub-criteria of a 

non-elementary criterion gh. 

• Let Gh = gh1, … ghNh be the set of immediate sub-

criteria of a non-elementary criterion gh. If gj  Gh, 

then it is said that gj is an immediately descending 

criterion from gh, and this one is an immediately 

ascending criterion of gj. 

• Let IGh be the set of indices of all the criteria in Gh. 

• Let Wh = {(i,j)  IGh  IGh such that the pair (gi, gj) 

produces mutual weakening effect with respect to 

gh}, that is, the pair of criteria where the DM would 

consider the combined importance to be smaller than 

the sum of the individual contributions, which 

indicates certain redundancy between both criteria; 

• Let Sth = {(i,j)  IGh  IGh, such that the pair (gi, gj) 

produces mutual strengthening effect with respect to 

gh}, that is, the DM would consider that the 

combined importance of these two criteria is greater 

than the total importance of the criteria when they are 

considered separately; this means that there is 

cooperation between these cri- teria; 

• Let Anth = {(i,j)  IGh  IGh, such that gj produces 

antagonistic effect to gi with respect to gh}, that is, the 

impact of a given action is high on a given criterion 

(say, gj), but the importance of the criterion is 

actually decreased in the mind of the DM when the 

impact of that action on another criterion (say, gi) is 

low enough; 

• Let EL(h) be the set of indices of all elementary 

criteria which influence a non-elementary criterion 

gh; 

• Let D(h) is the set of indices of all criteria which 

influence a non-elementary criterion gh from a lower 

hierarchical level;  

When jD(h), then it is said that gj is descending from gh. 

For more detailed information about the interactions among 

criteria, the reader is referred to [53]. 

A. OVERALL FRAMEWORK 

Figure 3 shows the overall framework of the proposed 

methodology. 

Once the problem is defined, the proposed methodology 

models the decision-maker’s preferences by a novel eclectic 

approach that merges hierarchical interval outranking with the 

value function method. This new framework aggregates the 

criteria scores for comparing i) individual projects or ii) 

projects against reference profiles. This is the process that 

involves the DM’s preferences and, therefore, dictates the 

projects’ evaluation to assign them into preferentially ordered 

classes. 

Furthermore, this approach transforms a multi-objective 

optimization problem into a single-objective one by using the 

DM’s preferences, in a novel manner. This transformation 

uses selective pressure to focus the search for the most 

preferred portfolio within a region of interest. A canonical 

genetic algorithm is adapted, aimed at identifying the best 

project portfolio. 

The balance in the selected portfolio is maintained through 

a two-step process. Firstly, the DM creates a portfolio 

prototype by either directly inputting acceptable scores for the 

criteria based on his/her experience or, otherwise, through 

some interaction process. This prototype plays the role of a 

benchmark with respect to balance that needs to be 

outperformed. Secondly, the outranking of this prototype will 

guarantee the balanced criteria scores of the portfolio in 

FIGURE 3. Framework of the proposed methodology 
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situations where some of the criteria have veto power. A 

portfolio that does not outrank this prototype will be vetoed. 

The need for outrank ensures that the integrity and balance of 

the supported portfolio are maintained. 

B. A NEW APPROACH TO REPRESENT THE 
PREFERENCES OF THE DECISION-MAKER 

Here, we introduce a generalization of the method proposed 

in [29]. This novel method adheres to the same principle for 

comparing alternatives as its predecessor: evaluating the 

credibility of “a is at least as good as y” on a given non-

elementary criterion necessitates an assessment of such an 

assertion on the criterion’s immediate descendants. However, 

recognizing that descendants are occasionally measured on a 

cardinal scale and may require compensation, the new method 

incorporates capabilities to aggregate scores on the 

corresponding non-elementary criterion using a function 

value. The function value employed in this method can also 

accommodate imperfect knowledge, similar to the approach in 

[54], by utilizing interval numbers. Additionally, based on the 

preferences of the decision-maker, it can limit compensatory 

effects by considering veto thresholds. 

1) Handling qualitative and ordinal criteria scores with 

the outranking approach 

If the information that must be handled at the level of a 

given non-elementary criteria is qualitative and/or ordinal, the 

aggregation should be done through the outranking approach. 

We now explain how it can be done. 

The following concepts are added to the notation: 

• Let ELp ⊆ EL be the set of indices of all the criteria 

which are pseudo-criteria. 

• Let ELI ⊆ EL be the set of indices of all the criteria 

which are interval numbers. 

Interval numbers also allow dealing with ill-defined scores. 

They are defined using an upper and a lower bound that 

identify the range where an imprecise quantity is believed to 

be [55]. Thus, a quantity i believed to be in the range i- (lower 

bound) and i+ (upper bound) can be denoted by the interval 

number i = [i-, i+]. We will use boldface to denote an interval 

number. Interval numbers extend real numbers in the sense 

that any real number r can be defined as an interval number as 

r = [r-, r+], which is known as a degenerate interval number. 

On the other hand, some mathematical properties have been 

developed in the context of interval numbers; these properties 

allow to address an important question in the context of 

interval numbers: how to determine if an interval number is 

not lower than another, even when their ranges intersect. 

Fernández et al. [56] used the following function to define the 

possibility that the interval number i is not lower than j: 

 
1 Other veto thresholds, vjr, can also be defined for criteria gj that do not 

immediately descend from gr, that is, j  D(r). These must fulfill that vjh  

vjr for gj  Gh. 

𝑝(𝒊 ≥ 𝒋) = {

1 if 𝑝{𝒊𝒋} > 1,

0 if 𝑝{𝒊𝒋} < 0,

𝑝{𝒊𝒋} otherwise.

        (1) 

Where 𝑝{𝒊𝒋} =
𝑖+− 𝑗−

(𝑖+− 𝑖−)+(𝑗+− 𝑗−)
 . 

Furthermore, if 𝑖+ = 𝑖−  and 𝑗+ = 𝑗−, then  

𝑝(𝒊 ≥ 𝒋) = {
1 if 𝑖− ≥ 𝑗−,
0 otherwise.

 

Fernández et al. [29] suggest employing a partial outranking 

relation. Sj ⊂ A×A associated to each criterion gj  EL to 

denote that “a is at least as good as b from the perspective of 

gj” (a, b  A×A), and a degree of the credibility that aSjb is 

fulfilled, δj(a, b). Calculating δj(a, b) depends on gj being a 

pseudo-criterion or an interval number. Thus, when gj is an 

interval number, i.e. gj ∈ ELI: 

                       δj(a, b) = P(gj(a) ≥ gj(b)).  

And when gj ∈ ELP: 

δj(𝑎, 𝑏) =

{
 
 

 
 

1              if               
j
(b) –  

j
(a) ≥ p

j
,

 
 

j
(a) –  

j
(b) + p

j

p
j
 – q

j

     if     
j
(b) – p

j
≤  

j
(a) <  

j
(b) – q

j
,

0               if              
j
(a) –  

j
(b) ≥ –q

j
.

 

where pj and qj represent the preference and indifference 

thresholds for criterion gj. The former builds a range where the 

DM has a strict preference for one of the alternatives; the latter 

builds a range where the DM is indifferent given that the 

performances of the alternatives are similar enough. 

Now, the credibility degree of aShb when h ∉ EL, denoted 

by σh(a, b), can be recursively calculated by aggregating all the 

σj(a, b) values for gj  Gh (note that σj(a, b) = δj(a, b) when gj 

 EL). Such an aggregation requires a criterion weight 

(considered as a coefficient of relative importance) to be 

defined for each gj  Gh; let us denote by kjh this weight. Other 

parameters associated to gj  Gh can also be defined; these 

parameters are (i) a veto threshold1, vjh (rejecting any 

credibility of aShb if gj(b) exceeds gj(a) by an amount greater 

than vjh); (ii) a value to be subtracted from kjh to model the 

mutual weakening effect between gj and gi in Gh, ki,j
W,h

; (iii) a 

value to be added to kjh to model the mutual strengthening 

effect between gj and gi in Gh, ki,j
S,h

; (iv) a value to be subtracted 

from kjh to take into account the antagonistic effect between gj 

and gi in Gh, ki,j
A,h

. Parameters (ii)-(iv) allow to model 

interactions between criteria and, together with the criteria 

weights kjh, they allow to calculate a γ-Concordance index 

related to Sh, ch(a,b,γ). This value represents the support of the 

coalition of criteria in concordance with aShb, where γ is the 

highest credibility value of these criteria supporting the 

assertion. The credibility degree of the statement “the 

considered γ-concordance coalition is sufficiently strong” is 

then calculated as P(ch(a,b,γ) ≥ λh), where λh is a threshold set 
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by the DM for establishing what a strong majority is. The 

reader is referred to [56] to see the details in the calculation of 

ch(a,b,γ), as well as some constraints that the parameters 

mentioned above must fulfill. 

Regarding the veto power that gj  Gh may exert to aShb, if 

j  ELI or if vjh is an interval number, djh(a, b) is calculated by 

P(gj(a) ≥ gj(b) + vjh); if gj  ELP and vjh is a well-defined value, 

djh(a, b) is calculated by: 

 

𝑑𝑗ℎ(𝑎, 𝑏) =

{
 
 

 
 

1                             if         
j
(b) –  

j
(a) ≥ 𝑣jh,

 
 

j
(𝑏) –  

j
(𝑎) - 𝑢jh

𝑣jh – 𝑢jh
    if   𝑢jh <  j

(b) –  
j
(a) < 𝑣jh,

0                             if        
j
(b) –  

j
(a) ≤ 𝑢jh.

 

The credibility index of “a is at least as good as b with 

respect to gh” is then defined for a given γ as h = min, 

P(ch(a,b,)  h), 1 - max
j  D(h)

djh(a, b)} and, comprehensively, as 

h(a, b) = max{h} with γ  Γ and  = j(a, b) > 0; gj  

Gh. Note that this form of calculating h(a, b) assumes that at 

least one of the following conditions is fulfilled: 

i) At least one criterion in Gh is ordinal or qualitative. 

ii) There is interaction between some criteria in Gh. 

iii) The preferences of the DM over the criteria in Gh are 

non-compensatory. 

Now, let β be a real number in (0.5, 1] considered as a 

credibility threshold to establish the flowing crisp preference 

relations: 

Hierarchical outranking: aS(β)b  h(a, b)  β. 

Hierarchical preference: aPr(β)b  h(a, b)  β and h(b, 

a) < β. 

Hierarchical indifference: aI(β)b  h(a, b)  β and h(b, 

a)  β. 

Hierarchical incomparability: aR(β)b  h(a, b) < β and 

h(b, a) < β. 

Finally, it is said that a dominates b if gj(a) ≥ gj(b) for all gj 

∈ ELP and P(gi(a) ≥ gi(b)) ≥ 0.5 for all gi ∈ ELI. 

 

2) An interval value function to aggregate cardinal 

immediate descending criteria 

On the other hand, if the immediate descendants of a given 

non-elementary criterion gh fulfill the following 

characteristics: 

i) are elementary criteria measured on a cardinal 

scale, 

ii) preference intensity is important on them, 

iii) compensation between their scores is possibly 

allowed, and 

iv) there is no interaction between them, 

then a value function h(a, b) should be used to assess the 

credibility of “a is at least as good as b”. Now h(a, b) can be 

exploited by the procedure described in the previous section to 

assess r(a, b) such that gh  Gr. 

Value functions constitute a traditional paradigm to address 

multi-criteria decision problems; they are of special 

significance in the presence of cardinal information. A value 

function maps the objective space to the expected reward. 

One of the most popular forms of value functions, U(a), is 

the normalized weighted sum, which is defined as follows: 

U(a) =  kih (gi(a) – gi
min)/ (gi

max
 - gi

min)  

where gi
max (resp. gi

min) is the maximum (resp. minimum) 

value attainable by alternatives on criterion gi (or an estimate 

of it), and kih is the weight of criterion i. Each weight expresses 

the importance of its related criterion. 

A preference function defined this way models fully 

compensatory and transitive preferences. Nevertheless, it can 

be extended to handle partially compensatory preferences and 

veto effects as suggested by Fernández et al [57]. Let vi be the 

veto threshold associated to criterion gi, and S be the binary 

reflexive preference relation defined below: 

aSb  U(a)  U (b)  gi(b) – gi(a) < vi for all gi.  

The presence of veto conditions converts S into a non-

transitive relation. Compensation is possible within the ranges 

allowed by the veto thresholds. 

Imprecisions in setting the weights in U and the veto 

thresholds are, to a great extent, unavoidable. Sometimes, the 

DM should handle imprecisions in criteria performance levels 

and parameters gimin and gimax. Here, following [57], we will 

use interval numbers to model such imprecisions: 

U(a) =  wi (gi(a) – gi
min)/(gi

max
 - gi

min)  

The outranking relation is: 

aSb  U(a)  U (b)  there is no veto 

The credibility degree of the assertion “a is at least as good 

as b” is calculated as the degree of truth of a conjunction of 

two predicates. So, using h(a, b) to denote this credibility 

degree and with gi ∈ Gh, we have: 

 h(a, b) = Min P(U(a)  U(b)),  1-Poss(gi(b) – gi(a)  

vi) 

C. SORTING ALTERNATIVES USING THE HI-
INTERCLASS-nC METHOD 

Fernández et al. [56] also presented a novel method to 

assign alternatives to preferentially ordered classes called HI-

INTERCLASS-nC. Such assignments can be performed at the 

level of any non-elementary criterion gh. Let Ch be a finite set 

of classes Ch = C1, …, Cki, …, CMh, M  2, ordered with 

increasing preference concerning gh. Let Rk = rk,j, j = 1, …, 

card(Rk) denote the subset of reference alternatives 

introduced to characterize Ck, k = 1, …, M. Let r0, R1, …, RM, 

rM+1 be the set of all reference alternatives, where r0 and rM+1 

are the anti-ideal and the ideal alternatives. See [56] for the 

conditions that should be fulfilled by the reference set. 

The credibility indices between alternative a and the class 

Ck are defined as: 

 h({a}, Rk) =  max
j=1,…,card(Rk)

{h(a  rk j)}  

 h(Rk,{a})= max
j=1,…,card(Rk)

{h(rk j a)}.  
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Therefore, the hierarchical categorical crisp outranking 

relations are defined as: 

a) aSh()Rk  h(a,Rk)  ;  

b) RkSh()a  h(Rk,a)  . 

The selection function is defined as ih(a, Rk) = 

minh(a,Rk), h(Rk,a). 

Similarly to ELECTRE TRI-nC, to suggest assignments, 

the HI-INTERCLASS-nC uses two joint rules, namely the 

descending rule and the ascending rule, which should be 

employed conjointly. Each of these rules selects only one class 

for a potential assignment of an alternative. 

Descending assignment rule: 

Set β and . Define the set of classes Ch and the 

representative subsets of alternatives r0, R1, …, RM, rM+1. 

i. Compare a to Rk for k = M, …, 0, until the first 

value, k, such that aSh()Rk. 

ii. For k = M, select CM as a possible category to 

assign alternative a. 

iii. For 0 < k < M, if ih(a, Rk) ≥ ih(a, Rk+1), then 

select Ck as a possible category to assign a; 

otherwise, select Ck+1. 

iv. For k = 0, select C1 as a possible category to 

assign a. 

 

Ascending assignment rule: 

Set β and . Define the set of classes Ch and the 

representative subsets of alternatives r0, R1, …, RM, rM+1. 

i. Compare a to Rk for k = 1, …, M+1, until the 

first value, k, such that RkSh()a. 

ii. For k = 1, select C1 as a possible category to 

assign alternative a. 

iii. For 1 < k < M+1, if ih(a, Rk) ≥ ih(a, Rk− ), 

then select Ck as a possible category to assign a; 

otherwise, select Ck−1. 

iv. For k = M + 1, select CM as possible category to 

assign a. 

D. CHARACTERIZING THE BEST COMPROMISE 
PORTFOLIO 

The intricacy of the problems outlined in Section II renders 

it impractical for exhaustive optimization methods to 

determine the best portfolio. Therefore, resorting to 

evolutionary algorithms seems plausible to tackle the problem. 

However, the many-objective nature inherent in portfolios (as 

depicted in Fig. 2) causes evolutionary algorithms to generate 

numerous non-dominated Pareto optimal solutions, which can 

be counterproductive for decision support. Hence, we present 

a novel approach to leverage the preferences of the decision-

maker, modeled by the hierarchical interval outranking 

approach, to exert selective pressure towards the so-called 

region of interest within the Pareto front. This selective 

pressure aims to yield a more focused set of recommended 

solutions. 

Let Ω be the set of feasible portfolios and A a given subset 

of portfolios (e.g., the population of an evolutionary 

algorithm). Following recommendations from Balderas et al. 

[18], we consider that the best compromise portfolio (in terms 

of the DM’s preferences) within A must be a feasible portfolio 

a* such that: i) there is not b  Ω that is preferred to a* (see the 

definition of hierarchical preference above), and ii) the 

number of portfolios b for which a*S0b holds is high enough. 

Measuring the credibility degree that “a is preferred to b”, θ(a, 

b), as the conjunction of “a is at least as good as b” and “b is 

not at least as good as a” in terms of the hierarchical interval 

outranking approach and assuming that σ(b, a) = 0 when a 

dominates b, we have θ(a, b) = σ(a, b) ˄ (1- σ(b, a)). 

Therefore, the best compromise portfolio in A is defined by 

maximizing the truth degree that a is preferred to all b  A, 

denoted by Θ(a, A) and calculated by: 

Θ(a, A) = ∀ bi  A: θ(a, bi) ⇔ θ(a, b1) ˄ θ(a, b1) ˄ …    (2) 

E. SELECTING THE BEST COMPROMISE PORTFOLIO 

We will now outline our approach for selecting the best 

portfolio concerning the DM’s preferences as expressed in Eq. 

(7). Our proposal relies on a canonical genetic algorithm, with 

the initial population being augmented with specific 

knowledge pertaining to the problem. Through preliminary 

experiments, we observed a substantial enhancement in the 

algorithm’s performance by incorporating this knowledge into 

the search procedure. The primary aim of this genetic 

algorithm is to identify the region of interest within the Pareto 

front. 

1) Components of the search procedure 

We describe here the input and output required and 

generated by the proposal. 

 Input data 

The input data for the search procedure must be provided 

for both project and portfolio levels. For both levels it is 

necessary to specify the parameters of the hierarchical interval 

outranking approach. These parameters are: 

• A threshold for the crisp outranking relations, β. It 

sets the minimum threshold for determining when 

one alternative is considered at least as good as 

another in outranking relations. 

• A threshold for defining what a strong majority is λ. 

It defines the level of agreement that the criteria must 

fulfill for the superiority of one action over the other 

to be sufficiently supported. 

• The hierarchy of criteria. 

• The performance matrix that contains the scores of 

the projects on the elementary criteria. 

• The set of non-elementary criteria gh  /EL where 

the project scores on gj  Gh must be aggregated 

through a value function. 

• For each non-elementary criterion gh  /EL: 

o The criteria weights kjh (j = 1, 2, …, 

card(Gh)); these weights are coefficients of 

relative importance in the context of the 

outranking approach, and compensatory 

factors in the context of value functions. 
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o The pairs of criteria (gi, gj) showing 

weakening effect and the weight of such an 

effect ki,j
W,h

. This weight quantifies the 

important of the antagonistic effect, which 

is vital for managing trade-offs and 

conflicts within the portfolio. 

o The pairs of criteria (gi, gj) showing 

strengthening effect and the weight of such 

an effect ki,j
S,h

. 

o The pairs of criteria (gi, gj) showing 

antagonistic effect and the weight of such 

an effect ki,j
A,h

. 

o An indifference threshold qj for each 

elementary pseudo-criterion gj  Gh. This 

threshold determines the level at which 

differences between project scores on 

criterion gj are considered negligible, 

effectively making them indifferent in 

terms of impact on the decision-making 

process. 

o An preference threshold pj for each 

elementary pseudo-criterion gj  Gh. This 

sets the level at which differences between 

scores on criterion gj are significant enough 

for one alternative to be considered 

preferable over others. 

o A (possibly empty) set of veto and pre-veto 

thresholds vjh and ujh (j = 1, 2, …, card(Gh)). 

These thresholds represent conditions 

under which a particularly high difference 

between scores on one criterion can 

completely override (veto) or significantly 

influence (pre-veto) the decision-making 

process about two alternatives, despite 

other criteria scores. 

• For each non-elementary criterion gh  /EL, where 

sorting must be performed: 

o A set of classes Ch = C1,…,Cki,…,CMh, M 

 2, ordered with increasing preference. 

o The set of all reference alternatives, r0, R1, 

…, RM, rM+1 used to characterize the 

classes. 

Output of the search procedure 

The output of the search procedure is a single (or 

sufficiently small set of) portfolio(s). The output portfolio 

represents the best compromise portfolio in the sense that it 

maximizes the DM’s overall satisfaction by fulfilling all the 

constraints that the portfolio must satisfy; the output portfolio 

gives priority to the most important criteria considering some 

relevant thresholds and interactions. 

2) A genetic algorithm to select the best compromise 

portfolio 

The canonical version of the genetic algorithm (GA) has 

been adjusted here to address the project portfolio 

optimization problem. This choice is strategic, given the GA’s 

robustness in managing vast and intricate search spaces, 

crucial for evaluating numerous project combinations and 

criteria interdependencies in PPS [49]. The GA supports 

hierarchical decision-making, integrating both cardinal and 

ordinal data, essential for reflecting varied project information 

accurately [29], [50], [58]. Its iterative nature, which exploits 

crossover and mutation, adapts to changes in strategic 

priorities or project environments, making it indispensable for 

dynamically optimizing portfolios to align closely with 

organizational goals and decision-maker preferences [5], [49]. 

Hereon, we will use the concepts “portfolio”, “solution”, 

“individual” and “chromosome” interchangeably. 

 Solution representation 

Given the specific characteristics of the project portfolio 

selection problem, the genetic algorithm utilizes a 

straightforward yet powerful representation where the 

genotype and phenotype are identical. Each chromosome 

within the genetic algorithm is structured as a binary string, 

each position of which directly corresponds to a potential 

solution to the problem. In this binary representation, a ‘1’ in 

the ith position of the string indicates the inclusion of the ith 

project in the portfolio, whereas a ‘0’ denotes its exclusion. 

This direct mapping simplifies the genetic manipulation 

processes such as crossover and mutation, enhancing the 

algorithm’s efficiency in evaluating and evolving the portfolio 

configurations. 

 Initialization scheme 

The random initialization of the canonical genetic algorithm 

has been adapted to consider some context-specific 

knowledge. 

First, since the preferences of the DM have already been 

modeled, it is relatively straightforward to produce a ranking 

of the projects; for example, using the so-called net flow score 

[59]. If σ(a, b) is a fuzzy relation on a set A, the net flow score 

related to a  A is defined as NFs(a) = Σ𝑏𝐴/{𝑎} [σ(a, b) - σ(b, 

a)]. This ranking of course will present many of the problems 

described in the introductory sections. However, it can ensure 

that some aspects required by the DM are fulfilled while 

defining the best overall projects. Then, by following the 

paradigm of supporting the best projects, an accumulation of 

the required budgets is performed until exhausting the 

monetary resources. Now the supported projects form a 

portfolio that is introduced as part of the initial population of 

the genetic algorithm, while the rest of the individuals in that 

population are randomly created. Experimentally, we noted 

that the performance of the algorithm is evidently increased 

when introducing this “seed” into the initial population. For 

assessing this genetic algorithm (see Section V), we used two 

hundred individuals. 

Fitness function 

In Subsection IV.D, we explore the adaptability of the 

genetic algorithm to the project portfolio selection problem by 

identifying the best compromise portfolio within a set A of 

portfolios. This optimal portfolio is defined as the one that 

maximizes its credibility of being preferred to all other 
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portfolios in the set, as specified by Equation (2). This fitness 

function highlights the genetic algorithm’s flexibility in 

adapting to varying decision criteria and complex portfolio 

configurations.  

Parent selection 

A binary tournament selection is employed here to 

determine the parents to be crossed and form the child 

population. In this approach, each individual in the population 

is randomly selected to compete against another individual. 

Following the recommendation of Deb et al. [60], a constraint 

handling approach is utilized with the following rules: 

i) If both parents are feasible, then choose the one with the 

highest fitness. 

ii) If only one parent is feasible, choose this one. 

iii) If both parents are infeasible, choose the parent with the 

lowest constraint violation value. 

Crossover operator 

The best individual in a tournament is chosen to be crossed 

with another best individual and produce two offspring 

individuals. The offspring individuals are created by 

exploiting the single-point crossover operator. So, the 

algorithm takes a random value s  [1, m] (where m is the 

number of projects and length of the chromosome) that will be 

the crossover point. Then, from a pair of fitted parents, form 

one child individual by taking genes from 1 to s of parent 1 

and genes from s + 1 to m of parent 2 to combine the genetic 

information from both parents and create the first child. 

Similarly, the second new child is created with the union of 

the second part of parent 1 and the first part of parent 2. The 

crossover operation is performed for each pair of criteria with 

a given p_cross probability. In the experiments described in 

Section V, we used p_cross = 0.8. 

 Mutation operator 

The mutation operator simply consists of interchanging an 

allele for its complement. That is, if the randomly selected 

allele is zero, then it is changed to one and viceversa. The 

mutation operation is performed for each individual with a 

given p_mut probability. In the experiments of Section V, we 

used p_mut = 0.1. 

 Restart of the generational process 

The algorithm intends to exploit elitism and reduce 

randomness effects by restarting its generational process. This 

process is composed of the initialization scheme, the parent 

selection method, and crossover and mutation operators. Thus, 

after evolving the initial solutions during several generations, 

the best solution is determined for the generational process; 

this best solution is now considered as a new “seed” for the 

initial population of the following generational process. The 

best overall solution is determined as the best solution of the 

final generational process. We used two hundred individuals 

per generational process and thirty generational restarts in the 

experiments in the following section. 

V. EXPERIMENTAL DESIGN 

In this section, we demonstrate the capability of the 

proposed approach to tackle the entire complexity of a realistic 

illustrative example. To achieve this, we revisit the problem of 

R&D project portfolio selection outlined in Section III. It is 

crucial to emphasize that, to the best of our knowledge, no 

published work has comprehensively addressed the entire 

complexity of this problem. 

A. INPUT DATA 

We follow the specifications of Subsection IV.E.1 and 

describe the data used as input for the experiments. As 

specified in that subsection, first we provide the input data at 

a project level and, later, at a portfolio level. 

1) Project level 

• The threshold for the crisp outranking relations is 

defined as β = 0.75. 

• The strong majority threshold is defined as λ = [0.51, 

0.75]. 

• The hierarchy of criteria is given in Fig. 1. 

• The project scores for the elementary criteria 

described in Subsection III.A are randomly created 

for one thousand projects according to the domains 

shown in the third column of Table IV. 

• Only the project’s economic (H11) and scientific 

(H12) impacts are defined by aggregating their sub-

criteria scores through a value function. Note that 

these sub-criteria are all defined using a cardinal 

scale. 

• The criteria weights are shown in the fourth column 

of Table IV for all criteria but H0. 

• As stated in Section III, (h214, h217) and (h212, h217) 

show weakening effects; the weights reflecting such 

effects are k214,217
W,ℎ21  = [0.04, 0.06], and k212,217

W, 21  = [0.06, 

0.08], respectively. 

• Also stated in Section III, (h21, h23), (h21, h24) and (h23, 

h24) show strengthening effects; the weights 

reflecting such effects are k21,23
S,ℎ2  = [0.02, 0.05], k21,24

S, 2  

= [0.05, 0.08], and k23,24
S, 2  = [0.1, 0.15], respectively. 

• The pair of criteria (h21, h26) shows an antagonistic 

effect whose weight is k21,26
W, 2  = [0.05, 0.08]. 

• The indifference thresholds for those elementary 

criteria defined as pseudo-criteria are shown in 

column five, while the preference thresholds are 

shown in column six of Table IV. 

• The criteria exerting veto power regarding their 

immediate ascending criterion are shown in column 

seven of Table IV. 

• According to the discussion in Section III, each 

project will be assigned to one of three classes: Bad 

(C1), Average (C2), and Good (C3) regarding each of 

four non-elementary criteria, H0, H1, H2, and H12. 

• Each class will have one characteristic alternative 

according to Table V. 

 
TABLE IV 
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PROBLEM INFORMATION AT PROJECT LEVEL 

Criterion Not. Domain wj qj pj vjh 

Overall quality H0      

Project impact H1  [0.25, 

0.4] 
   

Economic impact H11  [0.2, 

0.4] 
   

Number of patents to be generated h111 [0, 4] 
[0.3, 

0.45] 
- - [2, 3] 

Number of innovative processes to be 

generated 
h112 [0, 4] 

[0.125, 

0.35] 
- - [2, 3] 

Number of prototypes to be generated h113 [0, 4] 
[0.25, 

0.4] 
- - [2, 3] 

Scientific impact H12  [0.25, 

0.45] 
   

Number of papers to be published by first 

quartile JCR journals 
h121 [0, 10] 

[0.35, 

0.45] 
- - [3, 5] 

Number of papers to be published by other 

JCR journals 
h122 [0, 10] 

[0.3, 

0.4] 
- - [3, 5] 

Number of papers to be contributed to 

international conferences 
h123 [0, 10] 

[0.2, 

0.25] 
- - [3, 5] 

Development of human resources H13  [0.15, 

0.3] 
   

Number of new PhD to be generated by 

the project 
h131 [0, 5] 

[0.35, 

0.45] 
- - [2, 3] 

Number of post-PhD to be generated by 

the project 
h132 [0, 4] 

[0.2, 

0.25] 
- - - 

Number of new master graduates to be 

generated by the project 
h133 [0, 8] 

[0.3, 

0.4] 
- - [3, 5] 

Capacity to make positive synergy with 

other projects (ordinal) 
h14 [1, 5] 

[0.1, 

0.2] 
- - - 

If the project’s deliverables are relevant or 

not (ordinal) 
h15 {0, 1} 

[0.15, 

0.2] 
0 0 - 

Probability of success H2  [0.3, 

0.4] 
   

Quality of the leader curriculum H21  [0.2, 

0.25] 
   

Number of relevant awards obtained by 

the leader 
h211 [0, 30] 

[0.05, 

0.1] 
- - - 

Number of papers published by 3-top 

rated journals 
h212 [0, 50] 

[0.15, 

0.2] 
5 8 - 

Number of papers published by JCR first 

quartile journals 
h213 [0, 100] 

[0.12, 

0.15] 
10 15 - 

Numbers of papers published by JCR 

journals 
h214 [0, 200] 

[0.08, 

0.12] 
20 31 - 

Number of books published by top-rated 

editorials 
h215 [0, 10] 

[0.05, 

0.1] 
1.2 1.8 - 

Number of PhD students advised by the 

leader 
h216 [0, 50] 

[0.1, 

0.15] 
5 7.5 - 

Number of citations to his/her scientific 

works 
h217 [0, 20000] 

[0.15, 

0.2] 

20

54 

30

82 
- 

Number of projects successfully led h218 [0, 20] 
[0.2, 

0.3] 
2.2 3.3 - 

National level of collaboration (ordinal) h219 [1, 5] 
[0.01, 

0.05] 
0.4 0.6 - 

International level of collaboration 

(ordinal) 
h2110 [1, 5] 

[0.02, 

0.08] 
0.4 0.6 - 

Likelihood of meeting the deadline 

(ordinal) 
h22 [1, 5] 

[0.1, 

0.2] 
- - [2, 3] 

Difficulty of the research problem (ordinal 

& to minimize) 
h23 [1, 5] 

[0.15, 

0.25] 
- - - 

Strength of the research collaborator 

group (ordinal) 
h24 [1, 5] 

[0.15, 

0.2] 
- - - 

Appropriateness of the institutional 

environment (ordinal) 
h25 [1, 5] 

[0.05, 

0.15] 
- - [2, 3] 

Quality of the research design (ordinal) h26 [1, 5] 
[0.15, 

0.2] 
- - [2, 3] 

Cost of the project (dollars) h3 
[100 000, 

400 000] 

[0.2, 

0.3] 
- - 

[46 000, 

68 000] 

 
TABLE V 

CRITERIA SCORES OF THE CHARACTERISTIC ALTERNATIVES 

USED FOR SORTING. 

Criterion r0 R1 R2 R3 r4 

h111 [0, 0] [0, 1] [1, 2] [2, 3] [4, 4] 

h112 [0, 0] [0, 1] [1, 2] [2, 3] [4, 4] 

h113 [0, 0] [0, 1] [1, 2] [2, 3] [4, 4] 

h121 [1, 1] [1, 2] [4, 6] [7, 8] [10, 10] 

h122 [2, 2] [3, 4] [5, 6] [8, 9] [10, 10] 

h123 [1, 1] [2, 3] [4, 5] [7, 8] [10, 10] 

h131 [0, 0] [0, 1] [2, 3] [3, 4] [5, 5] 

h132 [0, 0] [0, 1] [1, 2] [2, 3] [4, 4] 

h133 [1, 1] [1, 2] [3, 4] [4, 7] [8, 8] 

h14 [1, 1] [1, 2] [2, 3] [3, 4] [5, 5] 

h15 0 0 1 1 1 

h211 [1, 1] [6, 7] [12, 18] [18, 27] [30, 30] 

h212 0 5 19 36 50 

h213 2 11 36 62 100 

h214 10 26 72 135 200 

h215 0 1 3 6 10 

h216 1 8 15 26 50 

h217 20 1250 4250 15250 20000 

h218 0 5 10 15 20 

h219 1 2 3 4 5 

h2110 1 2 3 4 5 

h22 [1, 1] [1, 2] [2, 3] [3, 4] [5, 5] 

h23 [5, 5] [3, 4] [2, 3] [1, 2] [1, 1] 

h24 [1, 1] [1, 2] [2, 3] [3, 4] [5, 5] 

h25 [1, 1] [1, 2] [2, 3] [3, 4] [5, 5] 

h26 [1, 1] [0, 1] [2, 3] [3, 4] [5, 5] 

h3 
[400 000, 400 

000] 

[370 000, 380 

000] 

[250 000, 260 

000] 

[195 000, 210 

000] 

[180 000, 180 

000] 

 

2) Portfolio level 

The specific information used in the experiments is as 

follows: 

• The threshold for the crisp outranking relations is 

defined as β = 0.75. 

• The strong majority threshold is defined as λ = [0.51, 

0.75]. 

• The hierarchy of criteria is given in Fig. 2. 

• The criteria scores of each portfolio are calculated 

from the portfolio’s supported projects according to 

Subsection III.A. 

• At this level, no criteria score is aggregated through 

a value function. 

• The criteria weights are shown in the fourth column 

of Table VI for all criteria but G0. 

• No criteria pair shows interaction effect. 

• The indifference thresholds for those elementary 

criteria defined as pseudo-criteria are shown in 

column five, while the preference thresholds are 

shown in column six of Table VI. 

• The criteria exerting veto power regarding their 

immediate ascending criterion are shown in column 

seven of Table VI. 

 
TABLE VI 

PROBLEM INFORMATION AT PORTFOLIO LEVEL 
Criterion Not. Weight qj pj vjh 

Overall quality G0 

    

Portfolio impact G1 [0.4, 0.6] 
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Economic impact G11 [0.2, 0.4] 
   

Number of patents to be generated g111 [0.2, 0.3] - - [25, 35] 

Number of innovative processes to 

be generated 

g112 [0.5, 0.6] - - [25, 35] 

Number of prototypes to be 

generated 

g113 [0.2, 0.3] - - [25, 35] 

Scientific impact G12 [0.25, 0.45] 
   

Number of papers to be published 

by first quartile JCR journals 

g121 [0.6, 0.6] - - [80, 115] 

Number of papers to be published 

by other JCR journals 

g122 [0.25, 0.3] - - [80, 115] 

Number of papers to be contributed 

to international conferences 

g123 [0.1, 0.15] - - [80, 115] 

Development of human resources G13 [0.15, 0.3] 
   

Number of new PhD to be generated 

by the project 

g131 [0.45, 0.6] - - [30, 45] 

Number of post- PhD to be 

generated by the project 

g132 [0.15, 0.3] - - - 

Number of new master graduates to 

be generated by the project 

g133 [0.1, 0.3] - - - 

Number of relevant deliverables g14 [0.1, 0.2] 0 0 [15, 20] 

DM’s conformity with the portfolio G2 [0.35, 0.55] 
   

Number of projects with high 

scientific impact 

g21 [0.2, 0.4] 0 0 - 

Total cost incurred by the portfolio g22 [0.2, 0.4] - - [1 000 0000, 

1 500 0000] 

Number of supported projects with a 

quality inferior to that of non-

supported projects 

g23 [0.4, 0.6] - - - 

 

B. RESULTS AND DISCUSSION 

The results of the experiments performed in this work can 

be accessed in the supplementary material provided here. The 

criteria scores of the thousand simulated projects are shown in 

the supplementary material. This material also shows the class 

to which each project was assigned regarding some non-

elementary criteria of interest. 

Subsection III.B mentions that the supported projects must 

be at least Acceptable regarding their overall quality (H0) and 

their impact (H1), and that they must have a Good probability 

of success (H2). 189 projects fulfill these constraints as shown 

in the online supplementary material. 

An additional constraint, now at portfolio level, considered 

by the genetic algorithm during optimization is that the 

required budget of the portfolio must not be greater than 

$35,000,000. Considering this amount, a ranking is built using 

the net flow score according to the description of the 

Initialization scheme in Subsection IV.E.2. This ranking of 

projects is used as a “seed” for the initial population of the 

algorithm and is considered as a benchmark for the results of 

the proposal. Another benchmark portfolio was built by 

supporting the projects with the best overall quality until 

exhausting resources (if two projects are equal regarding their 

quality, we chose the cheapest one). Note that these 

benchmarks form part of a paradigm when building project 

portfolios. The benchmark portfolios as well as the portfolio 

recommended by the proposal are shown in the online 

supplementary material. Table VII shows the criteria scores 

for these portfolios. 
TABLE VII 

PERFORMANCE OF THE BENCHMARK AND PROPOSED 

PORTFOLIOS 

Criterion Net flow score 

(y) 

Best overall 

quality (z) 

Our proposal 

(x) 

g111 [152, 237] [176, 280] [166, 266] 

g112 [149, 237] [167, 269] [204, 314] 

g113 [130, 217] [153, 257] [143, 243] 

g121 [418, 647] [494, 766] [545, 838] 

g122 [473, 709] [593, 891] [593, 890] 

g123 [453, 697] [530, 816] [554, 846] 

g131 [166, 272] [223, 359] [225, 358] 

g132 [132, 211] [144, 236] [154, 246] 

g133 [333, 536] [406, 648] [417, 664] 

g14 78 74 69 

g21 19 25 38 

g22 (M) [2.3, 3.5] [2.3, 3.5] [2.3, 3.5] 

g23 [-88, -88] [0, 0] [0, 0] 

 

Except for g14 (which has the lowest weight in its 

corresponding non-elementary criterion), the proposed 

portfolio dominates the portfolio built by using the net flow 

score. On the other hand, both the portfolio built considering 

the projects that were assigned to the best overall category and 

the proposed portfolio provide more competitive scores 

throughout the criteria; however, taking into consideration the 

preferences expressed by the DM, the proposed portfolio is 

superior as shown below. 

Assessing the credibility of outranking between the 

benchmark and proposed portfolios for the different non-

elementary criteria, we obtain the results shown in Table VIII. 
TABLE VII 

CREDIBILITY DEGREES OF THE OUTRANKING RELATION BETWEEN 

SOLUTIONS 

Criterion σ(x, y)/σ(y, x) σ(x, z)/σ(z, x) 

G0 0.75/0.2 0.58/0.39 

G1 0.75/0.2 0.58/0.39 

G2 0.95/0 0.94/0.5 

G11 0.75/0 0.58/0.31 

G12 0.8/0 0.61/0.39 

G13 0.74/0 0.51/0 

Note that if a marginal asymmetric preference relation is 

defined on each criterion with a threshold β = 0.51, we have 

“x is preferred to y” and “x is preferred to z” for all criteria in 

Table VIII. 

VI. CONCLUSIONS 

The proposed approach allowed detailed project 

evaluations consistent with strategic goals and reflecting 

decision-maker’s preferences for individual projects, as well 

as the whole portfolio. Also, with the addition of both 

https://docs.google.com/spreadsheets/d/1hxAx7bcgtX0pxJUgsbV1qiOzw7YWaABa/edit?usp=sharing&ouid=117301585515558395563&rtpof=true&sd=true
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conformity criteria and conformity constraints, the portfolios 

will not just meet traditional performance metrics but also 

satisfy broader qualitative organizational objectives vital in 

stakeholder buy-in and eventual successful implementation of 

projects. 

The proposal uses a dual assessment approach where both 

individual projects and overall portfolio impacts are assessed, 

which is not present in traditional PPS methods. This dual 

assessment ensures a more complete analysis, as the synergies 

of projects are considered, and overall optimal performance of 

the portfolio is not compromised by leaving out high-potential 

projects. It resolves interrelated and differing importance of 

decision criteria, incorporating well-known methodologies 

such as the outranking approach, functional paradigms, and 

evolutionary algorithms within a hierarchical decision-making 

framework to enhance clarity and efficacy. 

Extensive experiments in the context of R&D proposals 

demonstrated the method’s ability to consider hundreds of 

projects, constructing portfolios with zero project quality 

violations and achieving positive impacts on other critical 

objectives. The method optimizes project status information at 

various levels, such as overall quality, probability of success, 

and individual project impact. Results surpass benchmarks 

that support the best projects directly, indicating the 

effectiveness of the proposed methodology in addressing this 

complex project portfolio selection problem comprehensively. 

     Future research directions include evaluations in real 

scenarios with sophisticated optimization techniques, 

scalability studies, and robustness assessments. Additionally, 

exploring indirect elicitation procedures to define parameter 

values more intuitively is considered a necessary complement 

to this work. 
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