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Abstract 

The approach proposed here uses evolutionary algorithms combined with interval analysis to 

optimize the allocation of resources in portfolio optimization. The proposal uses probabilistic 

confidence intervals to characterize the solutions. Such characterization allows the investor 

to consider not only the expected impact of the portfolios but also the risk of not obtaining 

that expected impact. This approach identifies the behavior of the investor in the face of risk 

and gives her/him support depending on her/his own preferences. Portfolio optimization is 

performed through one of the most outstanding evolutionary multi-objective approaches, the 

so-called Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D). To 

the best of our knowledge, this algorithm has not been used in the context of interval analysis. 

In this work, MOEA/D has been enhanced so that it can deal with chromosomes and fitness 

values described as interval numbers. 

In order to evaluate the proposed approach, an illustrative application in stock portfolio 

selection is included. We use as our dataset 13 years of historical monthly prices of stocks in 

the Dow Jones Industrial Average index (DJIA), including those of the 2008 crisis. Besides, 

we have carried out an extensive evaluation comparing the performance of the proposed 

approach with respect to the DJIA index, the Markowitz’s mean-variance approach, and other 

more recent approaches. The results show that the proposed approach outperforms the other 

ones and allow us to conclude that, within the context of our experiments, i) the proposal was 

effective in the allocation of resources in most of the periods considered (156 scenarios), ii) 

the approach is appropriate to find portfolios by explicitly considering the DM’s attitude 

facing risk, and iii) interval analysis was a robust measure of risk even for the 2008 crisis. 
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1. Introduction 
From the 1970s we saw an accelerated evolution in several fields of science, such as finance, 

computing and decision making. This evolution has resulted in the selection of investment 

objects modelled as optimization problems which have attracted a lot of interest within 

operations research. The selection of objects optimizing the impact in the investor's 

objectives is a multifaceted problem that raises a number of interesting algorithmic and 

modeling challenges (e.g., risk modeling and multi-criteria optimization). This task is 

relevant in a variety of contexts, including resources allocation to non-financial market 

assets, as well as in the context of financial objects such as the selection of stock portfolios. 

Even when formulations of stock portfolio selection with multiple objectives are mentioned 

in the literature (see e.g., Steuer et al., 2007; Qi et al., 2017; and Saborido, 2016), the 

conventional stock portfolio selection has as the investor's (decision maker, DM) only 

objective the maximization of return (profit). A formulation with multiple criteria is usually 

used in order to maximize this single objective (e.g., Agarwal, 2017). The need for multiple 

criteria originates from the DM being unwilling to accept that the uncertainty of the return 

can be fully encompassed in a single real criterion. Not even through a common way of 

estimating the return such as the expected value. Therefore, the decision maker would want 

to select the best alternative based on the evaluation of additional information such as the 

volatility around the expected return (Markowitz, 1952). 

The most commonly used measures of this type of uncertainty in the allocation of resources 

belongs to probability theory (e.g., Markowitz, 1968; Leavens, 1945; Artzner et al., 1999; 

and Rachev et al., 2008). The main idea is that uncertainty can be represented by volatility. 

However, even with the same expected return and volatility, decision makers with different 

attitudes facing risk can select different alternatives. This implies that, in order to select 

alternatives that are satisfactory for the DM, his/her attitude facing risk must be explicitly 

considered. Many of the measures of uncertainty in probability theory do not allow this in a 

straightforward manner. 
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The goal of this paper is to propose and validate a portfolio selection approach that overcomes 

this limitation and offers satisfactory solutions from the DM’s perspective. To achieve this, 

we propose a novel way of modeling both risk and subjectivity of the DM in terms of 

significant confidence intervals. In this proposal, intervals around the expected return 

characterize portfolios during the optimization. The optimization is performed through a 

widely accepted decomposition-based evolutionary algorithm, MOEA/D. This algorithm is 

modified so that it can deal with chromosomes and fitness values described as interval 

numbers. Furthermore, we use some ideas from the literature to enhance the algorithm’s 

solutions diversity. The performance of the approach is evaluated in the context of stock 

portfolio optimization. The dataset used in the validation consists in the return of stocks in 

the Dow Jones Industrial Average index during the period 1998-2016. Results show clear 

advantages of the new method with respect to the market index and other approaches from 

the literature. 

The paper is structured as follows: Section 2 offers a background theory that sustains the 

developed work, namely, portfolio selection theory, interval theory and the description of 

MOEA/D. Also, this section briefly mentions different methodologies that address the 

portfolio selection decision. Section 3 describes the approach proposed in this paper. Its 

validation is carried out in Section 4 through an illustrative application in stock portfolio 

optimization. Section 5 concludes this work. 

2. Some background 

2.1. Portfolio selection 
The portfolio selection may be divided into two stages. “The first stage begins with 

observation and experience, and ends with beliefs about the future results of investment 

objects. While the second stage begins with beliefs about future outcomes and ends with the 

choice of objects and the proportion of resources allocated to each of them” (Markowitz, 

1952). This work deals with the second stage. 

A portfolio is a vector 𝑥  𝑥 , 𝑥 , … , 𝑥  in the decision space that specifies the 

proportions of money to invest in 𝑛 investment proposals, such that 𝑥  is the proportion to 

invest in the 𝑖-th investment proposal. The image of a portfolio in the criteria space is a vector 

that represents the impact on 𝑘 criteria established by the investor (Decision Maker). The 
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portfolio problem is to select the feasible portfolio that maximizes the impact on the criteria, 

formally: 

 maximize
∈ 

𝐼 𝑥 𝐼 , 𝐼 , ⋯ , 𝐼  (1)

where 𝐼 𝑥  is the impact of portfolio 𝑥 on criterion 𝑗 and Ω is the set of feasible portfolios 

(set of portfolios that fulfill the constraints). 

Some common constraints of (1) are the following. 

∑ 𝑥 1 ⟶ Budget constraint. 

𝑥 0 𝑗 1, ⋯ , 𝑛 ⟶ Non-negativity/No short sales constraint. 

𝑙 𝑦 𝑥 𝑢 𝑦  𝑗 1, ⋯ , 𝑛 ⟶ Bounds on individual proposal constraint. 

∑ 𝑦 𝑁 ⟶ Cardinality constraint. 

𝑦 ∈ 0,1 𝑗 1, ⋯ , 𝑛 ⟶ Auxiliary variables. 

where 𝑦 1 if 𝑥 0 and 𝑦 0 otherwise, and 𝑙 , 𝑢  are the minimum and maximum 

proportion that should be assigned to investment proposal 𝑗. 

Because of imprecision, vagueness, and/or ill definition, the “true” value of 𝐼 𝑥  (if we 

accept the premise that it exists) cannot be accurately known. So, we actually optimize 

estimations of 𝐼 𝑥 . Nevertheless, when estimating 𝐼 𝑥  we incorporate uncertainty into the 

selection process given that it is possible that portfolio 𝑥 does not generate the expected 

impact. The literature offers several ways to consider this uncertainty. 

Addressing the problem of maximization of return, in 1952 the now called modern portfolio 

theory was founded by Markowitz in (Markowitz, 1952). The major contribution of that 

paper was the formalization of the portfolio problem as a multi-criteria problem and the 

argument that for any expected return, the decision maker should prefer the portfolio with 

the lowest uncertainty1. Particularly, the idea stated in (Markowitz, 1952) to maximize the 

return of the portfolio is to use two underlying criteria: maximize the expected return and 

                                                            
1 Although some authors refer to uncertainty and risk as synonyms, in this work we will treat the concept of 
risk as the uncertainty that negatively affects the decision maker. 
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minimize the variance of the portfolio. Actually, many forms of the mean-variance 

optimization exist; for example, the classic formulation is the bi-criteria problem 

optimization: 

max
∈

𝐸 𝑅 𝑥 , 𝜎 𝐸 𝑅 𝑥 . 

Whereas the so-called risk aversion formulation is defined as a single-objective- optimization 

problem: 

max
∈

𝐸 𝑅 𝑥
𝛾
2

𝜎 𝐸 𝑅 𝑥 . 

Where 𝐸 𝑅 𝑥  is the expected return of portfolio 𝑥, 𝜎 𝐸 𝑅 𝑥  is its variance, and 𝛾 is 

a parameter for risk aversion, balancing investor trade-offs in mean-variance space. For most 

portfolio allocation decisions in investment management applications, the risk aversion is 

somewhere between 2 and 4 (Fabozzi et al., 2007; and Das et al., 2010). 

The mean-variance approach has been the main idea in most of the theoretical research on 

the portfolio problem. However, its application in practice has been rather scarce (Kolm et 

al., 2014). The lack of applicability of the Markowitz model in practice is due mainly to the 

following limitations (see Artzner et al., 1999; Greco et al., 2013; and Black and Litterman, 

1992): 

  The model requires the impacts on the objectives to be distributed in a normal way, 

or the DM to present a utility function that can be described by a quadratic function 

(Harvey and Siddique, 2000). Yet, empirical evidence suggests that the distributions 

of the returns typically have heavier tails than those that are implied by the normal 

distribution, and are often not symmetric with respect to the mean (cf. Kon, 1984; 

Mills, 1995; Peiro, 1999; and Tay and Premaratne, 2002). 

  The risk measure used by the model has some undesirable characteristics. One of 

them is lack of monotonicity. The mean-variance approach can select as the best 

alternative a portfolio that is dominated in the return’s states of the nature; that is, 

portfolio 𝑦 can be selected over portfolio 𝑥 even when in all possible scenarios the 

return of 𝑥 is not worse than the return of 𝑦 (Greco et al., 2013). 
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  The model presents a high sensitivity to errors in the estimations (Fabozzi et al., 

2007; Tüntücü and Konig, 2004). Estimation error has always been acknowledged as 

a substantial problem in portfolio construction (Scherer, 2007). There are several 

alternative methodologies to approach the problem. These methodologies range from 

Bayesian techniques (Black and Litterman, 1992; Frost and Savarino, 1986; Jorion, 

1991) to portfolio resampling (Medaglia et al., 2007; Greco et al., 2013; Jorion, 

2007). 

  The model makes a poor modeling of the DM's attitude facing risk. Given the 

possibility of not obtaining the expected return, the model must incorporate the DM’s 

subjectivity in the selection process. 

Several authors have proposed different alternatives to overcome the limitations of the mean-

variance model. For example, Markowitz (1968) proposed to substitute the variance for the 

semi-variance. This way, some drawbacks related to the variance as the measure of risk are 

discarded from the model. Nonetheless, other limitations continue present, such as the lack 

of robustness with respect to the values of the parameters. 

Robust optimization (see Ben-Tal et al., 2009; and Soyster, 1973) has been applied by some 

authors (e.g., Ghaoui et al., 2003; Quaranta and Zaffaroni, 2008; see Kolm et al., 2014) with 

the intention of solving some problems caused by imperfect knowledge on the values of the 

criteria. Robust optimization implicitly considers that these values have been estimated with 

errors and uses an interesting concept called uncertainty set to protect the results of the model 

against the worst scenarios. This way, the resultant portfolio tends to be more stable and less 

sensitive to changes of the model’s parameters (cf. Fabozzi et al., 2007). Nevertheless, such 

protection could be considered by the DM as too pessimistic and can result in under 

performance of the portfolios when the values of the parameters tend to the “true” parameters 

and/or in situations where the returns of the stocks in the portfolio tend to grow. 

With respect to the risk of not achieving the expected returns of the portfolios, some authors 

have proposed to incorporate higher statistical moments, such as skewness and kurtosis, in 

order to better describe the probability distribution of the portfolio’s return (e.g., Saranya and 

Prasanna, 2014; Scott and Horvath, 1980; Dittmar, 2002; and Harvey and Siddique, 2000). 

However, the incorporation to the model of the DM’s risk attitude using such statistical 
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specific-knowledge tools is too complicated. To surpass this situation, some authors have 

used probabilistic quantiles to provide valuable information to the DM (see e.g., Jorion, 2007; 

Artzner et al., 1999; Greco et al., 2013). These kinds of approaches can deal with virtually 

any probability distribution, consider higher statistical moments and use many quantiles in 

order to better describe the probability distribution of the portfolio’s return. However, in the 

pursuit of a better description of this probability distribution, the quantity of criteria could be 

so high that it exceeds the cognitive limitations of the DM (cf. Miller, 1956). 

In this work, we intend to overcome these limitations by characterizing the portfolios’ 

performance as confidence intervals. This way, the DM can express her/his attitude facing 

risk in a straightforward and understandable manner, the uncertainty of not achieving the 

expected return is considered, and there is no need of using many underlying criteria to 

describe the probability distribution of the returns. Let us now briefly describe the so-called 

interval theory. 

2.2. Interval-based decision aid 
The so-called interval analysis theory was originated independently by Sunaga (1958) and 

Moore (1962). Interval theory's principal concept is the interval number. Such a number 

represents a numerical quantity whose exact value is unknown. Given this imperfect 

knowledge about the quantity, a range of numbers is used to encompass all the possible 

values that the quantity could obtain. In this way, an interval number stands for an 

indeterminate number that takes its possible value within a set of numbers. Let us consider 

the quantity 𝜄 whose real value lies between bounds 𝑖  and 𝑖 . The interval number for such 

quantity is set then as 𝐼 𝑖 , 𝑖 . Any 𝑟 ∈ 𝑖 , 𝑖  is called a realization of 𝐼. We can also 

translate a real number, 𝑞, into an interval number as 𝑞, 𝑞 . 

In what follows, let us look at the basic operations of interval numbers. Given the interval 

numbers 𝐼 𝑖 , 𝑖  and 𝐽 𝑗 , 𝑗 , the following equations represent the addition, 

subtraction, multiplication and division, of 𝐼 and 𝐽, respectively. 

𝐼 𝐽 𝑖   𝑗 , 𝑖   𝑗 , 

 𝐼 𝐽 𝑖   𝑗 , 𝑖   𝑗 , 

𝐼 𝐽 min 𝑖  𝑗 , 𝑖  𝑗 , 𝑖  𝑗 , 𝑖  𝑗 , max 𝑖  𝑗 , 𝑖  𝑗 , 𝑖  𝑗 , 𝑖  𝑗 , 



8 
 

 𝐼 𝐽 𝑖 , 𝑖
1
𝑗

,
1

𝑗
. 

More recently, Shi et al. (2005) proposed a way to determine the order of interval numbers. 

For instance, suppose we want to determine the order of 𝐼 𝑖 , 𝑖  and 𝐽 𝑗 , 𝑗 . First, 

we need to find the possibility of 𝐼 being greater than or equal to 𝐽. The possibility function 

proposed in (Shi et al., 2005) is given by 

 
𝑝 𝐼 𝐽

1 if 𝑝 1,
𝑝 if 0 𝑝 1,

0 if 𝑝 0.
 

(2)

Where 𝑝  

  
 . 

Furthermore, if 𝑖 𝑖   and 𝑗 𝑗 , then  

𝑝 𝐼 𝐽 1       if 𝐼 𝐽,
     0      otherwise.

 

Let 𝑖 and 𝑗 be two currently undetermined realizations from 𝐼 and 𝐽, respectively; 𝑝 𝐼  𝐽  

can be interpreted as a degree of credibility of the statement “once both realizations are 

determined, 𝑖 will be greater than or equal to 𝑗”. This helps the DM to ensure the robustness 

of 𝐼  𝐽, that is, to have a strong belief on 𝐼 being not less than 𝐽 when they are instanced as 

real numbers (Fernandez et al., 2018). 

It is easily proved (see Fernandez et al., 2018) that Eq. (2) (2)fulfills some interesting 

properties: let 𝐼 𝑖 , 𝑖 , 𝐽 𝑗 , 𝑗 , and 𝐾 𝑘 , 𝑘 , then: 

i. 𝑝 𝐼 𝐽 0 if 𝑗 𝑖  and 𝑝 𝐼 𝐽 1 if 𝑗 𝑖 .  

ii. If 𝑗 𝑖  and 𝑗 𝑖 , it is said that 𝐼 is equal to 𝐽, denoted as 𝐼 𝐽. Then 

𝑝 𝐼 𝐽  0.5. 

iii. If 𝑖 𝑗 , it is said that 𝐼 is strictly greater than 𝐽, denoted as 𝐼 𝐽. Then  

𝑝 𝐼 𝐽 1. 

iv. If 𝑖 𝑗 , it is said that 𝐼 is strictly lower than 𝐽, denoted as 𝐼 𝐽. Then  

𝑝 𝐼 𝐽 0. 

v. When 𝑝 𝐼 𝐽 0.5, it is said that 𝐼 is strictly greater than 𝐽, denoted as 𝐼 𝐽. 

When 𝑝 𝐼 𝐽 0.5, it is said that 𝐼 is strictly lower than 𝐽, denoted as 𝐼 𝐽. 
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vi. If 𝑝 𝐼 𝐽 𝛼 0.5 and 𝑝 𝐽 𝐾 𝛼 0.5 then 𝑝 𝐼 𝐾

min 𝛼 , 𝛼 . 

vii. If  𝚤̂ and 𝚥̂ are respectively the middle points of the confidence intervals 𝐼 and 𝐽, 

we have 𝐼 𝐽 if and only if 𝚤̂ 𝚥̂ and 𝐼 𝐽 if and only if 𝚤̂ 𝚥̂. 

viii. If 𝑝 𝐼 𝐽 𝛼 0.5 then 𝑝 𝐽 𝐼 1 𝛼 0.5. 

Finally, we define the concept of a maximum among a set of interval numbers as follows. 

Let ℬ be a set of interval numbers, 𝑏∗ ∈ ℬ is the maximum of ℬ, denoted by 𝑚𝑎𝑥 ℬ , if and 

only if 𝑝 𝑏∗ 𝑏 0.5 for all 𝑏 ∈ ℬ. 

 

2.3. MOEA/D 
The conflictive character of criteria in (1) leads to that no point in Ω optimizes all criteria 

simultaneously. One common way to deal with this situation is through the so-called multi-

objective evolutionary algorithms (MOEAs). Most MOEAs are based on the concept of 

Pareto Dominance (Srinivas and Deb, 1994; Li and Zhang, 2009). Let 𝑢, 𝑣 ∈ ℝ , we say that 

𝑢 dominates 𝑣 if and only if 𝑢 𝑣 , 𝑖 1, ⋯ , 𝑘 , and 𝑢 𝑣  for at least one 𝑖. A portfolio 

𝑥∗ ∈ Ω is Pareto Optimal to (1) if there is no portfolio 𝑥 ∈ Ω such that 𝐼 𝑥  dominates 𝐼 𝑥∗ . 

𝐼 𝑥∗  is then called a Pareto Optimal (criteria) vector. The set of all the Pareto Optimal 

portfolios is called the Pareto Set (PS) and the set of all the Pareto Optimal criteria vectors is 

the Pareto Front (PF).  

Recently, Fernandez et al. (2018)  proposed an approach in which Eq. (2) is used to state if 

there is dominance between two solutions when the values of the criteria are imprecise. In 

their approach, criteria are described by interval numbers instead of real numbers. Thus, 

dominance is not crisp, but there is a “degree of credibility”, 𝛼, of the dominance. Let 𝑥 and 

𝑦 be two solutions and  a real number; 𝑦 is 𝛼-dominated by 𝑥 if and only if 

min 𝑝 𝐼 𝑥  𝐼 𝑦 𝛼 0.5. 

With the goal of aiding in the selection process, MOEAs find only a subset of the PS. Later, 

the subset is presented to the DM who is in charge of selecting the best alternative according 

to her own preferences. In order to present a representative subset of alternatives, MOEAs 

look for a manageable number of Pareto Optimal vectors which are evenly distributed along 

the PF, and thus are good representatives of the entire PF. The fitness measure in MOEAs 
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based on the Pareto Dominance concept is determined by the individual’s Pareto Dominance 

relations with respect to other individuals. Using this fitness measure alone discourages the 

diversity of the search (Li and Zhang, 2009). Several other efforts have been made in order 

to discover complementary fitness measures. 

One of the lines in this context is the aggregation of criteria. The idea is that a solution to the 

original problem could be an optimal solution of a single criterion optimization problem in 

which the criterion is an aggregation function of all the original criteria. Therefore, the 

approximation to the PF can be decomposed into a number of single objective optimization 

subproblems. MOEA/D (Zhang and Li, 2007) is a MOEA that implements this idea. The 

objective in each of the subproblems that MOEA/D optimizes is an aggregation of all the 

criteria. Neighborhood relations among these subproblems are defined based on the distances 

between their aggregation coefficient vectors. Each subproblem (i.e., scalar aggregation 

function) is optimized in MOEA/D by using information mainly from its neighboring 

subproblems. 

MOEA/D requires a decomposition technique for converting the approximation of the PF of 

Problem (1) into a number of single objective optimization problems. In principle, any 

decomposition approach can serve for this purpose. A common approach used in the 

MOEA/D context is the Tchebycheff method (Miettinen, 1999). A single objective 

optimization subproblem in this approach is 

 minimize
∈

𝑔 𝑥 𝜆 , 𝑧∗ max 𝜆 |𝐼 𝑥 𝑧∗|  (3)

where 𝜆 𝜆 , ⋯ , 𝜆  is a weight vector of the criteria that satisfies 𝜆 0 for all 𝑖

1, ⋯ , 𝑘 and ∑ 𝜆 1. 𝑧∗ 𝑧∗, ⋯ , 𝑧∗  is the reference point, that is, 𝑧∗ max 𝐼 𝑥 |𝑥 ∈

Ω  for each 𝑖 1, ⋯ , 𝑘. And 𝐼 𝑥  is the impact in the 𝑖-th objective, as specified in Problem 

(1). 

Following (Li and Zhang, 2009), it is well known that, under mild conditions, for each Pareto 

optimal portfolio there exists a weight vector such that it is the optimal solution of (3) and 

each optimal solution of (3) is a Pareto optimal solution of problem (1).  
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If 𝜆 , ⋯ , 𝜆  is a set of weight vectors, then we have 𝑁 single objective optimization 

subproblems. If 𝑁 is reasonably large and 𝜆 , ⋯ , 𝜆  are properly selected, then the optimal 

solutions to these subproblems will provide a good approximation to the PF or PS of Problem 

(1) (Zhang and Li, 2007). 

In the experiments performed in Section 4 we use normalized values of 𝐼 𝑥 . We now show 

a simple pseudocode of MOEA/D. 

Input. 𝑁, 𝑇 

Output. A final population, 𝑥 , ⋯ , 𝑥 . 

1. For each 𝑖 1, ⋯ , 𝑁, set the indexes of the 𝑇 closest weight vectors to 𝜆  (computed 

through the Euclidean distance) as 𝐵 𝑖 𝑖 , ⋯ , 𝑖 ; where 𝜆 , ⋯ , 𝜆  is known as 

the neighborhood of 𝜆 .   

2. Generate an initial population 𝑥 , ⋯ , 𝑥 . 

3. Initialize 𝑧∗ 𝑧∗, ⋯ , 𝑧∗ , or a corresponding approximation. 

4. For 𝑖 1, ⋯ , 𝑁, do 

a. Randomly select two indexes 𝑘, 𝑙 from 𝐵 𝑖 , then generate a new solution 𝑦 

from 𝑥  and 𝑥  by using genetic operators, and apply a mutation operator to 

𝑦. 

b. Apply a problem-specific repair/improvement heuristic on 𝑦 to produce 𝑦. 

c. For each 𝑗 1, ⋯ , 𝑘, if 𝑧∗ 𝐼 𝑦 , then set 𝑧∗ 𝐼 𝑦 . 

d. For each index 𝑗 ∈ 𝐵 𝑖 , if 𝑔 𝑦 𝜆 , 𝑧∗ 𝑔 𝑥 𝜆 , 𝑧∗ , then set 𝑥 𝑦. 

5. If the stopping criterion is satisfied, then stop and output 𝑥 , ⋯ , 𝑥 . Otherwise, go 

to Step 4. 

3. Our proposal 

3.1 Problem formalization 

Let 𝐸 𝑅 𝑥  be a random variable that represents the expected return of portfolio 𝑥 and 𝑃 𝜔  

the likelihood that event 𝜔 will occur. Then, 𝜃 𝑥 𝛼, 𝛽 : 𝑃 𝛼 𝐸 𝑅 𝑥 𝛽 𝛾 is 

called the confidence interval around the expected return. Now, let us suppose that it is 

possible to consider multiple confidence intervals 𝜃 𝑥 . In this proposal, each 𝛾  is selected 
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by the DM according to her own preferences. This allows us to incorporate her attitude facing 

risk in the following manner. First, suppose a highly risk-averse DM2. This DM would feel 

more satisfied of making a decision based on intervals with a high probability of containing 

the real return. That is, she considers more valuable the information about the worst scenarios 

that could happen when selecting 𝑥. So, she would select high values for 𝛾  looking for 

protection against those scenarios, see Figure 1 (a). On the other hand, if the DM is lowly 

risk-averse, she would prefer to make a decision based on intervals that tend to the expected 

return, see Figure 1 (b). 

Figure 1. a) Representation of an interval with a high value of 𝛾 ; information required by a 
highly risk-averse DM. b) Representation of an interval with a small value of 𝛾 ; information 
required by a lowly risk-averse DM. 

 

Thus, our proposal is to select the feasible portfolio that maximizes a set of confidence 

intervals around the expected return: 

 maximize
∈

𝜃 𝑥 𝜃 𝑥 , ⋯ , 𝜃 𝑥 . (4)

where 𝜃 𝑥  𝛼 , 𝛽 : 𝑃 𝛼 𝐸 𝑅 𝑥 𝛽 𝛾 , and Ω is the set of feasible 

portfolios. 𝑃 𝜔  is the likelihood that event 𝜔 will occur and can be approximated through 

the frequentist approach. 

                                                            
2 Without loss of generality, we say that a DM is risk‐averse when she is reluctant to support an alternative 
that has uncertain expected return instead of supporting an alternative with less uncertainty but with possible 
expected minor consequences. 
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It is important to note that the maximization referred to in Problem (4) is not necessarily 

related to the wideness of the intervals, but it is based on the possibility function defined in 

(2). That is, portfolios with the rightmost confidence intervals are preferred. 

Each 𝜃 𝑥  is easily understandable even for an investor (DM) without a sophisticated 

technical preparation, since it represents the probability that the return of portfolio 𝑥 actually 

lies within interval 𝛼 , 𝛽 . This is not the case if one considers the technical criteria used in 

the mean-variance approach (Markowitz, 1952) or higher statistical moments (Saranya and 

Prasanna, 2014; Scott and Horvath, 1980; Dittmar, 2002; Harvey and Siddique, 2000). 

Moreover, the investor has the capability of defining as many criteria per objective as (s)he 

wishes; thus, the information describing the distribution is enough to satisfy his/her 

requirements. Nevertheless, we believe that no more than one or two criteria are sufficient to 

satisfy his/her requirements for information. This is because of the definition of each 𝜃 𝑥 , 

which allows the approach to encompass multiple points of the probability distribution in a 

single criterion. That is, in a single criterion we know with a given probability that the 

portfolio’s return can be any of the values within the corresponding interval. This is not 

possible in point estimators, where the statistical information relies on only one point. In 

some approaches (see e.g., Greco et al., 2013; Markowitz, 1952; Markowitz, 1968) each 

criterion represents a single point of the probability distribution, so a better description of the 

distribution requires a higher number of criteria. 

3.2 Interval-based portfolio optimization system 

3.2.1 Algorithm 

Considering several confidence intervals as evaluation criteria leads to a multi-criteria 

optimization problem that can be solved using a multi-criteria decision aiding method. We 

use MOEA/D in our system to find acceptable solutions to Problem (4). Nevertheless, even 

when MOEA/D is widely recognized as the most prominent MOEA based on aggregation of 

criteria, it has a poor diversity when dealing with instances having complicated PFs (Li and 

Zhang, 2009). To overcome this shortcoming, we use some improvements introduced by Li 

and Zhang in (Li and Zhang, 2009); namely, the setting of a maximal number of solutions 

replaced by each child solution, a selection of parents involving not necessarily only the 
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neighborhood of the candidate solution, and a crossover that involves more than two parents. 

By using these new mechanisms, the exploration ability of the search can be improved. 

Moreover, an enhancement of the original algorithm needs to be performed in order to deal 

with parameters described as interval numbers. We present now the characterization of the 

system implemented in this work, which is inspired on (Zhang and Li, 2007) and (Li and 

Zhang, 2009). 

Input: 

 Problem (4), see Section 4 for an illustrative application; 

 100 generations as the stopping criterion; 

 𝑛 2: the maximal number of solutions replaced by each child solution; 

 𝛿 0.9: probability of selecting parents only from the neighborhood (instead of the 

whole population); 

 𝑁 100: the number of the subproblems; 

 𝑇 20: the number of weight vectors in the neighborhood of each weight vector. 

Output: 

 Approximation to the PS: 𝑥 , 𝑥 , ⋯ , 𝑥 ; 

 Approximation to the PF: 𝜃 𝑥 , 𝜃 𝑥 , ⋯ , 𝜃 𝑥 . 

Step 1 Initialization 

Step 1.1. Work out the 𝑇 closest weight vectors to each weight vector. (Recall that a weight 

vector is a vector 𝜆 𝜆 , ⋯ , 𝜆  that allows to weigh the 𝑘 criteria in the 𝑖-th subproblem 

and satisfies 𝜆 0 for all 𝑗 1, ⋯ , 𝑘 and ∑ 𝜆 1.) For each 𝑖 1, ⋯ , 𝑁, set 𝐵 𝑖

𝑖 , ⋯ , 𝑖  where 𝜆 , ⋯ , 𝜆  are the closest weight vectors to 𝜆 . 

Step 1.2 Generate an initial population 𝑥 , 𝑥 , ⋯ , 𝑥  by uniformly randomly sampling from 

Ω. Set 𝐹𝑉 𝜃 𝑥  for 𝑖 1, ⋯ , 𝑁. 

Step 1.3 Initialize 𝑧 𝑧 , ⋯ . 𝑧  by setting 𝑧 min 𝛼 , and 𝑧 𝑧 , ⋯ . 𝑧  

by setting 𝑧 max 𝛽 . Where 𝛼  and 𝛽  are the lowest and highest attainable return of 
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solution 𝑖 in the 𝑗-th criterion; that is, 𝜃 𝑥 𝛼 , 𝛽 . 𝑧  and 𝑧 are used in the update 

step in order to normalize the fitness values of the criteria. 

Step 2 Update 

For 𝑖 1, ⋯ , 𝑁, do 

Step 2.1 Selection of Mating/Update Range: 

Define the population 𝑃, from where the offspring will be produced, as the 

neighborhood of 𝜆  (with a probability of 𝛿) or as the whole population (with a 

probability of 1 𝛿): uniformly randomly generate a number 𝑟𝑎𝑛𝑑 from [0, 1], then 

set 

𝑃
        𝐵 𝑖        if 𝑟𝑎𝑛𝑑 𝛿

1, ⋯ , 𝑁    otherwise
 

Step 2.2 Reproduction: Set 𝑟 𝑖 and randomly select two indexes 𝑟  and 𝑟  from 

𝑃, then generate a solution 𝑦 from 𝑥 , 𝑥  and 𝑥  using genetic operators, finally 

perform a mutation operation on 𝑦 with probability 𝑝 0.01 to produce a new 

solution 𝑦.  

Step 2.3 Repair: If an element of 𝑦 is out of the boundary of Ω, go to step 2.1. 

Step 2.4 Update of 𝑧: For each 𝑗 1, ⋯ , 𝑘, if 𝑧 𝛼  , then set 𝑧 𝛼 ; and if 

𝑧 𝛽 , then set 𝑧 𝛽 , where 𝜃 𝑦 𝛼 , 𝛽 . 

Step 2.5 Update of Solutions: Set 𝑐 0 and do the following: 

1) If 𝑐 𝑛  or 𝑃 is empty, go to Step 3. Otherwise, randomly pick an index 

𝑖 from 𝑃. 

2) Normalize 𝜃 𝑥 𝛼 , 𝛽  for 𝑗 1, ⋯ , 𝑘, such that 𝜃 𝑥

𝛼 , , 𝛽 , : Make 𝛼 ,  and 𝛽 , . 

3) Calculate 𝑔 𝑥 𝜆 max 1 𝛽 , , 1 𝛼 , 𝜆 . 
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4) If 𝑝 𝑔 𝑦 𝜆 𝑔 𝑥 𝜆 0.5 then set 𝑥 𝑦, 𝐹𝑉 𝜃 𝑦  

and 𝑐 𝑐 1. 

5) Remove 𝑖 from 𝑃 and go to 1). 

Step 3 Stopping Criterion If the stopping criterion is satisfied, namely the number 

of iterations is 100, then stop and output 𝑥 , 𝑥 , ⋯ , 𝑥  and 

𝐹 𝑥 , 𝐹 𝑥 , ⋯ , 𝐹 𝑥 . Otherwise go to Step 2. 

Since it is often computationally expensive to find the exact ideal point 𝑧∗, we use 𝑧, which 

is initialized in Step 1.3 and updated in Step 2.4 of the algorithm, as a substitute for 𝑧∗ in 

(3). Furthermore, we use a nadir point, 𝑧 , to perform the normalization. Given that our 

implementation of MOEA/D has to deal with interval numbers instead of real numbers, we 

consider the lower and upper bound of the intervals to define 𝑧  and 𝑧. We update this 

reference through the lowest and highest possible value attainable by the confidence interval. 

We use 100 generations given previous experience of some of the authors in similar 

optimization problems. Finally, the individuals present in the population at the last generation 

are considered as the result of one run. The individuals generated in 20 runs are introduced 

in a pool, from where the non α-dominated solutions are selected as the final approximation 

to the PF (see Section 2.2 to see the definition of α-dominance). 

3.2.2 Chromosome representation 

In this work, the chromosomes or individuals (alternatives of solution) in the population are 

represented by a string of 𝑛 real numbers; that is, each gene in the chromosome is a real 

number. This is a common way of representing portfolios given its practicality in the 

representation of the resources assigned to stocks. The 𝑖-th gene in the chromosome specifies 

the proportion of resources assigned to stock 𝑖. Individuals are represented by a string 

composed of 𝑛 positions as shown in Figure 2. 

Figure 2. Individual encoding 

𝑥  𝑥  ⋯ 𝑥  𝑥  
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3.2.3 Selection 

Since 𝑔, as defined in (3), is continuous on 𝜆, the optimal solutions of the neighboring 

subproblems should be close in the decision space. MOEA/D exploits the neighborhood 

relationship among the subproblems for making its search effective and efficient (Zhang and 

Li, 2007). Nevertheless, as stated above, MOEA/D shows poor diversity in its solutions when 

facing complicated PFs (Li and Zhang, 2009). One reason of this problem is that the maximal 

number of solutions replaced by a child solution could be as large as 𝑇, the neighborhood 

size. This implies that a single solution may replace most of the current solutions to its 

neighboring subproblems. As a result, diversity in the population could be significantly 

reduced. In this work we intend to overcome this limitation by, as was done in (Li and Zhang, 

2009), letting the child solution replace no more than 𝑛  solutions of the current population. 

Furthermore, the solutions replaced may not necessarily be in the neighborhood of the child 

solutions. But the proposed approach allows three different parent solutions to be randomly 

selected from the whole population with a probability of 1 𝛿. The values  𝑇,  𝑛  and 𝛿 are 

20, 2 and 0.9, respectively, as in (Li and Zhang, 2009). 

3.2.4 Crossover 

We create one child solution from the information contained in the three parents selected. 

The crossover procedure works as follows. Let 𝑞𝐺 , 𝑞𝐺 , 𝑞𝐺  be the quantity of genes 

satisfying 𝑥 0 in parent 1, parent 2 and parent 3, respectively. The idea is that the parents 

provide similar proportions of gene material to the offspring. So, the number of genes 

satisfying 𝑥 0 in the child solution is up to 𝑞𝐺   and each parent gives  

randomly chosen genes to the child solution. 

3.2.5 Mutation 

The mutation operation simply consists in swapping two randomly chosen genes of the child 

solution. With the intention of a further improvement in the search exploration phase, the 

probability of mutation is 𝑝 0.01. 

3.2.6 Repairing process 
In Section 2.1, we mentioned that the DM can consider several types of constraints during 

the optimization process, depending on her own preferences. The illustrative application 

shown in the next section considers only three of these constraints; namely, the budget 
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constraint, the non-negativity constraint and the bounds on individual stocks constraint. We 

can ensure fulfillment of the last two constraints easily in the chromosomes construction 

(e.g., gene 𝑗 is randomly selected in 𝑙 , 𝑢  if 𝑙 0). Nevertheless, the fulfillment of the 

budget constraint is not straightforward. The following techniques have been revised here 

with this goal, see (Consigli et al., 2017; Gill et al., 1981). 

 Discard infeasible solutions. Given that our approach has only few constraints that 

are not often hit, the simplest approach is to ‘throw away’ new infeasible solutions. 

That is, if a solution violates a constraint, we just select another one.  

 Normalization. We can introduce mechanisms to correct solutions that violate 

constraints. For example, dividing every element in 𝑥 by the sum of the elements of 

𝑥 ensures that all weights sum to unity. 

 Ordering. Add the value of the ordered elements of 𝑥 until the sum, 𝜎, is greater or 

equal to one. Assign to the last element considered in the previous sum the value 𝜎

1. Finally, assign zero to the elements not considered in the sum. 

 Penalization. Whenever a constraint is violated, we add a penalty term to the objective 

function and we consequently degrade the quality of the solution. 

In preliminary experiments, we have found that simply discarding the infeasible solutions is 

the most suitable method in terms of time performance and quality of the solutions. Hence, 

this is the method we use to satisfy the constraints in the experiments shown below. 

3.2.7 Fitness evaluation 

As stated above, the Tchebycheff method is used to aggregate the criteria (see Section 2.3), 

its computation is given in (3). In Step 2.5 of the algorithm we use this aggregation as the 

fitness of the solutions. In order to estimate the value of each criterion before the aggregation, 

a Montecarlo simulation is performed. This simulation allows us to find an approximation to 

the probability distribution of a given portfolio’s return.  

A simulation point consists in the random generation of the portfolio’s return. This return is 

calculated as the weighted sum of the return of the stocks in the portfolio. Whereas the return 

of a stock is generated also in a random process where the historical returns of the stock are 

sampled. The “actual” return of the stock is randomly generated from a sample of the 
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historical returns of the stock, where the probability of obtaining the actual return is given by 

the sample. The distribution of one thousand simulation points is assumed to be the real 

probability distribution of the return of the portfolio, and the confidence intervals are taken 

from this distribution according to the preferences expressed by the DM (see Section 3.1). 

A pseudo-random numbers generator known as Mersenne Twister (MT) is used (Matsumoto 

and Nishimura, 1998) in the simulation. The algorithm of the generator has the following 

characteristics (Matsumoto and Nishimura, 2004): 

 A period of 2 , . 

 An equidistribution property of 623 dimensions. 

 Quick generation. (Although dependent of the system architecture, the authors report 

that MT is sometimes faster than the ANSI-C standard library.) 

3.2.8 Final selection 

The number of solutions in the generated approximation to the PF may still be high enough 

to make the decision difficult. Thus, a final selection procedure needs to be performed.  

Let portfolios 𝑥 and 𝑦 be two points in the PF of problem (4). Furthermore, let’s assume3 

𝜃 𝑥 0.0171,0.0479 , 𝜃 𝑥 0.1067,0.0553 , and 

𝜃 𝑦 0.0004,0.0220 , 𝜃 𝑦 0.0428,0.0311 . 

Hence, 𝑝 𝜃 𝑥 𝜃 𝑦 0.91 and 𝑝 𝜃 𝑥 𝜃 𝑦 0.42. Though both 𝑥 and 𝑦 

are non 𝛼-dominated (in the sense described in Sections 2.2 and 2.3), portfolio 𝑥 is arguably 

better than portfolio 𝑦. The final selection procedure followed here is based on the previous 

argument: let 𝐴 be the set of solutions’ performances in the approximation to the PF, similarly 

to the 𝛼-dominance concept described in Sections 2.2 and 2.3, we say that 𝑥 is non-dominated 

in 𝐴 with degree 𝛽 if and only if4 min
𝑦∈  

max 𝑝 𝜃 𝑥 𝜃 𝑦 𝛽. The proposed 

                                                            
3 Portfolios 𝑥 and 𝑦 are two actual portfolios obtained in the experiments below. 
4 Here, we consider the minimum to represent conjunction, and the maximum to represent disjunction. In 

this sense, max 𝑝 𝜃 𝑥 𝜃 𝑦  is interpreted as the credibility of 𝑥 being no worse than 𝑦. Then, 

min
∈ /  

max 𝑝 𝜃 𝑥 𝜃 𝑦  is interpreted as the credibility of 𝑥 being non‐dominated by any 

solution in the PF. 
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approach takes the portfolio that maximizes 𝛽 as the best portfolio among the portfolios in 

the approximation to the PF. 

4. System validation 

The selection of financial portfolios refers to the analysis of financial objects (e.g., stocks, 

funds, bonds) to allocate resources that maximize the impact on the objectives of the decision 

maker. Let us show now an application of the proposed approach to the allocation of 

resources among a set of stocks with the objective of maximizing the return. 

4.1 Selecting confidence intervals 

Stock portfolio selection consists of two stages (see Zopounidis et al., 2015; Kiris and Ustun, 

2012; and Xidonas et al., 2009): stock valuation and portfolio optimization. The first stage 

chooses “the best” subset of stocks, while the second stage assigns a proportion of money to 

each of the chosen stocks. Here, we focus on the second stage. 

Let 𝑝 , 𝑝 , 𝑝 , ⋯ , 𝑝  be the historical prices of stock 𝑖 in 𝑇 1 periods of time (we use 

monthly prices here), the 𝑇  historical rate of returns (returns in the consecutive) of the stock 

are given by 𝑟   𝑝 𝑝 /𝑝 ;  𝑡  1, 2, ⋯ , 𝑇 . It is relatively easy to construct an 

approximation to the probability distribution of the stock’s return through 𝑟 . Several authors 

(e.g., Markowitz, 1952; Markowitz, 1968; Greco et al., 2013) use this probability distribution 

to forecast the return of the portfolio in the period 𝑇   1 and a risk measure representing 

the uncertainty of not achieving the forecasted return. Although there are different ways of 

forecasting the return of the portfolio, the most common approach in the literature is the 

expected return, 𝐸 𝑅 𝑥 . While the most commonly used risk measures are based on the 

volatility around 𝐸 𝑅 𝑥 . 

Following Section 3.1, once the approximation to the distribution has been constructed we 

can obtain as many confidence intervals around the expected return as needed. For this 

illustrative example, we simulate a highly risk-averse DM that requests information on two 

intervals, one having 70% and the other 99% probability around the expected return. For this 

case, the approach must solve the problem given by 

 maximize
∈

𝜃 𝑥 , 𝜃 𝑥  (5)

subject to 
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∑𝑥 1 ⟶ Budget constraint. 

𝑥 0 ⟶ Non-negativity conditions 

𝑥 0.4 ⟶ Bounds on individual stocks. 

𝑗 1, ⋯ , 𝑛 . 

Where 

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.70 , and  

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.99 . 

Later, we compare the solutions to Problem (5) with the solutions obtained by a less risk-

averse DM. Thus, we now simulate a lowly risk-averse DM that requests information on 

intervals having 30% and 50% probability around the expected return. For this case, the 

approach must solve the problem given by 

 maximize
∈

𝜃 𝑥 , 𝜃 𝑥  (6)

subject to 

∑𝑥 1 ⟶ Budget constraint. 

𝑥 0 ⟶ Non-negativity conditions 

𝑥 0.4 ⟶ Bounds on individual stocks. 

𝑗 1, ⋯ , 𝑛 . 

Where 

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.30 , and  

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.50 . 

4.2 Experimental design 

A market index is a way of measuring the value of a section of the stock market. More 

specifically, it is an aggregated value that is produced by combining various stocks of the 

market section. Since the market indexes arise from a mathematical construction, it is not 
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possible to invest directly in them. However, it is a tool used by investors to describe the 

market and compare the performance of the portfolios.  

There are two streams of thought to create stocks portfolios (Soe and Poirier, 2016; Gorgulho 

et al., 2011; Maginn et al., 2007): passive management and active management. The first 

stream states that “the past movement or direction of return of a stock, or of the market in 

general, cannot be used to predict its future movement” (Malkiel, 1973). And that in trying, 

the DM spends resources that in the long run can be rather detrimental. As a result, “there 

has been an accelerating trend in recent decades to invest in passively managed investment 

funds based on market indexes, known as index funds” (Soe and Poirier, 2016). As index 

funds try to replicate index holdings, they eliminate the need -and therefore many costs- for 

the research involved in active management. This makes indexes one of the main benchmarks 

in the selection of stock portfolios (see e.g., Gorgulho et al., 2011; Xidonas et al., 2009; Lim 

et al., 2014). 

On the other hand, active management depends on analytical research, estimations, and the 

judgment and experience of the decision maker to form portfolios. The objective of active 

management is to outperform a reference index (Gorgulho et al., 2011). It can be done 

through the incorporation of decision-maker preferences, estimation of portfolio return (e.g., 

expected return), measurement of risk of not obtaining the return estimated (e.g., standard 

deviation), and the purchase of undervalued stocks (e.g., through financial indicators).  

4.2.1 Dataset 

We describe in this section the dataset used in our experiments. In these experiments, the 

performance of the approach is compared with that of a highly important market index, 

namely, the Dow Jones Industrial Average, DJIA. The DJIA index contains the stocks of 30 

of the largest companies in the United States. 

Following (Soe and Poirier, 2016), the main contraindication of using market indexes as 

benchmarks is that the profitability of portfolios is often compared to popular indexes such 

as DJIA, regardless of portfolio size or classification of its stocks. Most investors expect to 

reach or exceed the yields of these indexes over time. The problem with this expectation is 

that they are at a disadvantage because they are not “comparing apples to apples”. That is, 

there is no guarantee that the characteristics of the stocks in the portfolio coincide with the 
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characteristics of the stocks contained in the index. We avoid this trap by incorporating into 

the portfolio only the stocks of the index being considered as benchmark. 

We use the historical monthly returns of the stocks in the DJIA index for the period April 

1998-March 2016 (see e.g., Xidonas et al., 2009) to perform a back-testing strategy (cf. Ni, 

and Zhang, 2005). Each investment horizon goes from April of the current year to March of 

the following year because the yearly financial information is publicly available for the stock 

market in March (Lim, 2014). The reason for using this particular period is because the index 

shows upward and downward trends, so there are multiple scenarios to validate the approach. 

While the duration of the period is an approximate average of the horizons used in several 

articles of the literature revised. Finally, similarly to (Lim et al., 2014) and (Gorgulho et al., 

2011), we use a sliding time window of 60 months/1 month. That is, we use five years for 

model training (e.g., we obtain metrics of the data set from April 1998 to March 2003) and 

one month for validation (e.g., we use the metrics obtained to create a portfolio and estimate 

its monthly performance in April 2003). The process is then repeated for each period of one 

month (in a sliding window manner) until the end of the evaluation period (see e.g., Gorgulho 

et al., 2011). In other words, we consider a buy and hold strategy (B & H), where we select 

the best stock portfolio of the current month by solving Problem (5) or Problem (6) and using 

the historical metrics of the previous five years. This portfolio is maintained over a one-

month investment horizon. Each time we start a new investment horizon, we review the stock 

portfolio (i.e., select a new distribution of resources among the stocks) according to the 

corresponding horizon's valuation. 

As done in other works (see e.g., Lwin et al., 2017; Almahdi et al., 2017; Cesarone et al., 

2013; Gorgulho et al., 2011; Zhu et al., 2011), the historical monthly prices of the stocks and 

index were downloaded from the Yahoo! Finance database (Yahoo, 2017). DJIA index 

updated its listed stocks several times during the period considered. Thus, the data retrieving 

process starts by finding out the corresponding stocks to a specific year. The configuration 

of the historical data downloaded from the database is Date, Open, High, Low, Close, 

Volume, and Adj. Close. We use the Close parameter to calculate the returns. All data used 

in this work is available for consultation upon request. 
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4.3 Results 

In this section, the results of the proposed approach are shown. First, we provide the results 

obtained when solving Problem (5); that is, when the DM  is highly risk averse. Later, we 

show the results obtained when solving Problem (6); that is, when the DM is lowly risk 

averse. For both situations, we compare the solutions of the proposed approach using  three 

benchmarks: the DJIA index, the mean-variance model (see Subsection 2.1), and the results 

in (Gorgulho et al., 2011). The latter comparison is valid given that the dataset used in that 

work is a subset of the one used in this paper. 

4.3.1 Selecting portfolios with high risk aversion 

4.3.1.1 Comparing with Dow Jones Industrial Average index 
Tables 1 and 2 show the portfolios obtained by the approach that produce the most extreme 

returns when solving Problem (5); the worst return, obtained in February 2009, and the best 

return, obtained in July 2009. Both tables show the stocks in the portfolio, the actual return 

of these stocks and the proportion of resources assigned by the approach to each stock. 

Finally, both tables show also the return of the portfolio and the corresponding confidence 

intervals obtained in the simulation. The portfolio shown in Table 1 produces an actual return 

of 𝑅 𝑥 0.1243, while its 70% confidence interval is [0.0004, 0.0141] and its 99% 

confidence interval is [-0.0389, 0.0188]. Note how the actual return of the portfolio is far 

from being within the confidence intervals. This is due to the high volatility produced by the 

crisis. Interestingly, the worst return obtained by the approach was not during the market 

crisis of October 2008. The return of DJIA index in this month was -0.1406 (the lowest in 

the whole period considered) while the return obtained by the approach was 0.0797. We 

believe this situation is due to a consistency in the losses of the stocks before October 2008. 

That is, the stocks of the DJIA index with the greatest losses (AA, AIG, CAT, …) had 

presented highly negative returns before October 2008, making the confidence intervals of 

the portfolios containing those stocks to have low values and the approach to neglect most of 

them. It was not until February 2009 that the volatility and the lack of consistency in the 

historical returns of the stocks had repercussions on the performance of the approach. But 

even when this was the worst performance of the approach in the whole period, it was actually 

not too far from the return of the DJIA index in the corresponding month, 0.1172. The 

aggressive recovery of the stocks in the following months allowed the approach to find its 
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best performance of the entire period, 0.0986, in April 2009. This return was greater than 

each return produced by the index in the thirteen years. 

Table 1. Portfolio created by the proposed approach in February 2009 when solving 
Problem (5). 

𝑅 𝑥 0.1243 

𝑥 𝑥 0.0004, 0.0141         𝑋 𝑥 0.0389, 0.0188  

Stock Return 𝒙𝒊 

Alcoa Corp (AA) ‐0.2003 0 

American International Group Inc (AIG) ‐0.6719 0 

American Express Company (AXP) ‐0.2791 0 

Boeing Co. (BA) ‐0.2569 0 

Bank of America Corporation (BAC) ‐0.3997 0 

Citigroup, Inc (C) ‐0.5775 0 

Caterpillar Inc. (CAT) ‐0.2023 0 

Chevron Corporation (CVX) ‐0.1391 0.13 

EI du Pont de Nemours & Co (DD) ‐0.1829 0 

Walt Disney Company (DIS) ‐0.1891 0 

General Electric Company (GE) ‐0.2984 0 

Home Depot, Inc. (HD) ‐0.0297 0 

HP Inc. (HPQ) ‐0.1646 0.198 

International Business Machines 

Corporation (IBM) 

0.0041 0 

Intel Corporation (INTC) ‐0.0124 0 

Johnson & Johnson (JNJ) ‐0.1333 0 

JPMorgan Chase & Co. (JPM) ‐0.1043 0 

Coca-Cola Company (KO) ‐0.0438 0 

McDonald's Corporation (MCD) ‐0.0994 0.316 

3M Co. (MMM) ‐0.1549 0 

Merck & Co., Inc. (MRK) ‐0.1524 0.056 

Microsoft Corporation (MSFT) ‐0.0556 0 

Pfizer Inc. (PFE) ‐0.1557 0 

Procter & Gamble Co. (PG) ‐0.1161 0 

AT&T Inc. (T) ‐0.0345 0 

United Technologies Corporation (UTX) ‐0.1492 0 

Verizon Communications Inc. (VZ) ‐0.0449 0 

Wal-Mart Stores Inc. (WMT) 0.0450 0 

Exxon Mobil Corporation (XOM) ‐0.1122 0.3 
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Note:  The  actual  return  of  the  portfolio  in  the  above  Table,  𝑅 𝑥 , 
corresponds to the lowest return obtained in the whole period 2003‐2016.

Table 2. Portfolio created by the proposed approach in July 2009 when solving Problem 
(5). 

𝑅 𝑥 0.0986 

𝑥 𝑥 0.0214, 0.0488     𝑋 𝑥 0.1024, 0.1522  

Stock Return 𝒙𝒊 

Apple Inc. (AAPL) 0.1384 0 

American Express Company (AXP) 0.2190 0 

Boeing Co. (BA) 0.0096 0 

Caterpillar Inc. (CAT) 0.1205 0 

Cisco Systems, Inc. (CSCO) 0.3335 0.192 

Chevron Corporation (CVX) 0.1802 0 

EI du Pont de Nemours & Co (DD) 0.0486 0 

Walt Disney Company (DIS) 0.2073 0 

General Electric Company (GE) 0.0767 0 

Goldman Sachs Group Inc. (GS) 0.1433 0 

Home Depot, Inc. (HD) 0.0978 0 

International Business Machines 

Corporation (IBM) 

0.1203 0.395 

Intel Corporation (INTC) 0.1294 0 

Johnson & Johnson (JNJ) 0.1631 0 

JPMorgan Chase & Co. (JPM) 0.0720 0.039 

Coca-Cola Company (KO) 0.1331 0 

McDonald's Corporation (MCD) 0.0385 0 

3M Co. (MMM) ‐0.0423 0.374 

Merck & Co., Inc. (MRK) 0.1734 0 

Microsoft Corporation (MSFT) 0.0733 0 

Nike Inc. (NKE) ‐0.0105 0 

Pfizer Inc. (PFE) 0.0620 0 

Procter & Gamble Co. (PG) 0.0863 0 

Travelers Companies Inc. (TRV) 0.0560 0 

UnitedHealth Group Inc. (UNH) 0.0495 0 

United Technologies Corporation 

(UTX) 

0.0483 0 

Visa Inc. (V) 0.0436 0 

Verizon Communications Inc. (VZ) 0.0297 0 

Wal-Mart Stores Inc. (WMT) 0.0069 0 

Exxon Mobil Corporation (XOM) 0.1384 0 
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Note:  The  actual  return of  the portfolio  in  the  above  Table, 𝑅 𝑥 , 
corresponds to the highest return obtained in the whole 2003‐2016.

Figure 3 shows the returns obtained by the approach and by the Dow Jones Industrial Average 

index in the period 2003-2016. The difference between these results is shown in Figure 4. 

Although this figure shows that there are several occasions where the difference is against 

the proposal (bars below zero), the number of times and magnitude of difference when the 

new approach outperforms the index is greater. Figure 5 confirms this through the 

accumulative return. Recall that the allocation of resources is performed on a monthly basis 

(the investment in maintained during one month and the returns are obtained and compared 

at the end of the month; later, the portfolio is reconfigured and a new allocation is performed), 

which implies that each of these figures actually provides 156 comparisons between the 

proposal and the reference index. 

Figure 3. Returns produced in the period 2003-2016 by the DJIA index and the proposed 
approach when solving Problem (5). 
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Figure 4. Difference of the returns obtained by the proposed approach when solving Problem 
(5) and the DJIA index in the period 2003-2016. 

 

Figure 5. Accumulative return produced in the period 2003-2016 by the DJIA index and the 
proposed approach when solving Problem (5). 

 

It is interesting to highlight that the decrease of the approach’s accumulative return in the 
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crisis of the last years. 
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With the aim of analyzing the quality of the PF, we show the performance of its extremes 

(i.e., the portfolio that maximizes criterion 𝜃  and the portfolio that maximizes criterion 𝜃 ) 

and the average of its solutions’ performances. Figure 6 shows i) the accumulative return of 

the DJIA index (DJIA); ii) the accumulative return of the portfolio maximizing criterion 𝜃  

(Model (70)); iii) the accumulative return of the portfolio maximizing criterion 𝜃  (Model 

(99)); and iv) the average accumulative return of the portfolios in the PF (Model (Average)). 

Figure 6. Description of the PF obtained by the proposed approach when solving Problem 
(5). 
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Figure 7. Accumulative return produced in the period 2003-2016 by the Mean-Variance 
model and the new approach when solving Problem (5). 

 

Figure 7 shows superiority of the proposed approach over the mean-variance when using the 

classical formulation. Nevertheless, it ends up being outperformed by the mean-variance 

when using the risk aversion formulation. An interesting result shown in this figure is the fall 

suffered by the mean-variance model during the 2008 crisis. In this period, its fall is 

appreciably steeper than that of our proposal. This, together with the also steeper rise of the 

mean-variance model, might indicate lack of representativeness of the DM’s risk behavior. 
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namely, (Gorgulho et al., 2011) whose dataset is a subset of the one used here. Particularly, 
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Figure 8. Accumulative return produced in the period 2003-2009 by (Gorgulho et al., 2011) 
and the proposed approach when solving Problem (5). 
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Figure 9. Performance of some solutions in the PF obtained by the proposed approach when 
solving Problem (6). 

 

4.3.2.2 Comparing with mean-variance model 
Figure 10 presents a comparison between the performance of the solutions found by the 

proposal when solving Problem (6) and the mean-variance model in its classic and risk 

aversion formulations. Here, similarly to (Das et al., 2010), we defined the low risk aversion 

as 𝛾 3. 

Figure 10. Accumulative return produced in the period 2003-2016 by the Mean-Variance 
model and the proposed approach when solving Problem (6). 
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4.3.2.3 Comparing with Gorgulho et al., 2011 
Figure 11 shows the comparison between the solutions of the proposal and the results 

provided by Gorgulho et al. (2011). 

Figure 11. Accumulative return produced in the period 2003-2009 by (Gorgulho et al., 2011) 
and the proposed approach when solving Problem (6). 
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 the accumulative return of the portfolio from the PF that maximizes the 50% 

confidence interval fell from 0.91 to 0.51 (a difference of 0.40); 

 the accumulative return of the portfolio from the PF that maximizes the 30% 

confidence interval fell from 0.90 to 0.49 (a difference of 0.41). 

From February 2009 to January 2010, 

 the accumulative return of the portfolio from the PF that maximizes the 99% 

confidence interval raised from 0.14 to 0.38 (a difference of 0.24); 

 the accumulative return of the portfolio from the PF that maximizes the 70% 

confidence interval raised from 0.17 to 0.58 (a difference of 0.41); 

 the accumulative return of the portfolio from the PF that maximizes the 50% 

confidence interval raised from 0.51 to 1.10 (a difference of 0.59); 

 the accumulative return of the portfolio from the PF that maximizes the 30% 

confidence interval raised from 0.49 to 1.08 (a difference of 0.59). 

(As a reference, the DJIA index fell 0.52 and raised 0.37.) 

Hence, in these periods there was, although not clearly, a tendency to decrease losses in the 

downtrend as the probability of the intervals increases, and to increase profits in the uptrend 

as the probability of the intervals decreases. This indicates a correct modeling of the DM’s 

conservativism.  

We also see that, in general, the solutions with the best performance are those with the highest 

non-dominance degree. 

Finally, we can see that the performance of the portfolios generated by the approach, and 

particularly those generated by solving Problem (6), clearly outperforms not just the Dow 

Jones Industrial Average index but also the performance of some portfolios built by other 

researchers in the literature (e.g., Markowitz, 1952; Gorgulho et al., 2011; Keçeci et al., 

2016; Hochreiter, 2015). 

5. Conclusions 

We presented here an approach where confidence intervals around the expected returns are 

used as criteria to select portfolios. The optimization procedure is performed on the basis of 
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the so-called interval analysis theory. Accordingly, we enhance a widely accepted multi-

objective evolutionary algorithm based on decomposition, MOEA/D, to deal with parameters 

defined as interval numbers. Furthermore, we implement some improvements to increase the 

diversity of the evolutionary algorithm. The results show that these enhancements allow the 

evolutionary algorithm to satisfactorily deal with parameters described as intervals. 

An extensive validation of the system was performed, where out-of-sample historical data 

from the stocks in the Dow Jones Industrial Average index was used to perform a back-

testing strategy. The system was compared in 156 scenarios against the index, the classical 

and risk aversion formulations of the mean-variance optimization, and a recently published 

work (Gorgulho et al., 2011). We used two confidence intervals in the optimization process 

as criteria to represent the investor’s behavior facing risk. And two different behaviors were 

simulated. First, a highly risk-averse investor, and later a lowly risk-averse investor. 

The results shown in Figures 4-11 allow to conclude that the approach is effective in the 

construction of portfolios when the objective is maximization of return. The approach 

outperformed all the benchmarks in most of the 156 scenarios, giving a considerably better 

accumulated return after an optimization with 13 years of historical data. These results are 

strong out-of-sample evidence that confidence intervals provide useful characterizations of 

the portfolios’ returns and their volatility. Furthermore, we confirm with these results that an 

active management can in fact be achieved and that greater advances should be sought in this 

stream of thought. 

Comparable with the importance of the previous results, the analysis performed in Subsection 

4.3.3 allows us to see that the approach presents robustness in the more critical period of the 

last years, specifically March 2008-February 2009. This is a crucial result in the experiments 

because the behaviors of the investors modeled are risk-averse. Our results confirm that i) 

the approach is adept to find portfolios by explicitly considering the DM’s attitude facing 

risk, being conservative when the behavior is highly risk averse and taking good advantage 

of the uptrends when the behavior is lowly risk averse; and ii) confidence intervals were a 

useful risk measure in the 2008 crisis, since they helped to reduce losses in the period.  

However, when considering the results of the whole period (156 months), we see that more 

actual returns of the portfolios than expected fell outside their respective confidence intervals, 
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thus reducing the performance of the approach. This effect might be mitigated when 

confidence intervals are around alternative estimators other than the expected return, or when 

a more precise analysis of the probability within the intervals is made. A validation of the 

approach using different types of estimators of return, their combination and a method to 

scrutinize the probability within the intervals is deferred as future work. 

Finally, even when the portfolios constructed by the approach offer acceptable confidence 

intervals, some of these portfolios are more preferred by the investor. The approach proposed 

in this work is not capable of identifying such portfolios, because the approximation to the 

Pareto Front gives us non-dominated solutions and we have not incorporated the investor’s 

preferences on the objectives of Problem (5) and Problem (6). Thus, a way to incorporate the 

investor’s preferences is also needed. This will be addressed in a new paper which is currently 

in preparation. 
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