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Abstract Non-dominated sorting is a crucial component of Pareto-based mul-
ti- and many-objective evolutionary algorithms. As the number of objectives
increases, the execution time of a multi-object-ive evolutionary algorithm in-
creases, too. Since multi-objective evolutionary algorithms normally have a low
data dependency, research-ers have increasingly adopted parallel programming
techniques to reduce their execution time. Evidently, it is also desirable to par-
allelize non-dominated sorting. There are some recent proposals which focus
on the parallelization of non-dominated sorting, with a particular emphasis on
a very well-known approach called fast non-dominated sorting. In this paper,
however, we explore the scope of parallelism in an approach called Divide-
and-Conquer based Non-dominated Sorting (DCNS), which we recently intro-
duced. This paper explores the parallelism from a theoretical point of view.
The parallelization of the DCNS approach has been explored considering the
PRAM-CREW (Parallel Random Access Machine, Concurrent Read Exclu-
sive Write) model. The analysis of parallel algorithms is usually carried out
under the assumption that an unbounded number of processors are available.
So, in our analysis, we have also considered the same assumption. The time
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and space complexities of the parallel version of the DCNS approach is ob-
tained in different scenarios. The time complexity of the parallel version of
the DCNS approach in different scenarios is proved to be O(logM + N). We
have also obtained the maximum number of processors which can be required
by the parallel version of the DCNS approach. The comparison of the parallel
version of the DCNS approach with respect to some other approaches is also
performed.

Keywords Non-dominated sorting · Dominance · Parallelism

1 Introduction

Non-dominated sorting is one of the most important components of Pareto-
based multi- and many-objective evolutionary algorithms. Additionally, non-
dominated sorting has applications in other domains such as economics, datab-
ases, game theory and computational geometry. In non-dominated sorting, the
set of solutions known as population is divided into different non-dominated
fronts. Let P = {sol1, sol2, . . . , solN} be a set of N solutions which are in an M -
dimensional space. In evolutionary algorithms, M is the number of objectives
associated with each solution. We represent a solution soli(1 ≤ i ≤ N) in M -
dimensional objective space as soli = {f1(soli), f2(soli), . . . , fM (soli)} where
fm(soli), 1 ≤ m ≤ M is the value of soli for the mth objective. In this paper,
we assume (without loss of generalization) that all the objectives are to be
minimized. In non-dominated sorting, the dominance relation between the
solutions are considered, so we first discuss the dominance relation between
the solutions.

Definition 1 (Dominance) A solution soli is said to dominate another so-
lution solj denoted as soli ≺ solj iff the two following conditions are satisfied:

1. fm(soli) ≤ fm(solj),∀m ∈ {1, 2, . . . ,M}
2. fm(soli) < fm(solj),∃m ∈ {1, 2, . . . ,M}.

The notation soli ⊀ solj is used to represent that solution soli does not
dominate solution solj . Two solutions soli and solj are said to be non-dominated
when neither dominates the other, i.e., soli ⊀ solj and solj ⊀ soli. Now, we
formally define non-dominated sorting.

Definition 2 (Non-dominated sorting) Non-dominated sorting divides the
set of solutions {sol1, sol2, . . . , solN} in different non-dominated fronts {F1, F2,
. . . , FK} which are arranged in decreasing order of their dominance such that

1. ∪Ki=1Fi = P
2. ∀soli, solj ∈ Fk: soli ⊀ solj and solj ⊀ soli (1 ≤ k ≤ K)
3. ∀sol ∈ Fk, ∃sol ′ ∈ Fk−1: sol ′ ≺ sol (2 ≤ k ≤ K)

In these sorted fronts, F1 has the highest dominance, F2 has the second highest
dominance and so on. The last front FK has the lowest dominance.
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Nowadays, several researchers have focused on the parallel implementation
of evolutionary algorithms [31], as different operations of the evolutionary al-
gorithms are independent from each other. Many of the approaches have been
recently proposed which focus on the parallelization of non-dominated sort-
ing [8, 16, 21, 24, 28]. Some of these approaches [8, 24, 28] focus on Fast
Non-dominated Sorting [4] for exploring the parallelism. Recently, Moreno
et al. [21] proposed the parallelization of Best Order Sort (BOS) [26]. Two
versions – a multicore based version and a GPU based version of BOS are
presented. The parallel version of Efficient Non-dominated Sorting (ENS) [32]
has been presented in [16]. The time complexity of the parallel version of ENS
has also been obtained considering the PRAM-CREW model. However, there
are other approaches which also have the parallelism property such as the
naive approach [29], Jensen’s Approach [11], Fang approach [6], DCNS [17],
T-ENS [33] and ENS-NDT [9], among others.

Divide-and-conquer based algorithms are easy to parallelize [5] and there
have been several approaches [2, 6, 7, 11, 17, 20] based on a divide-and-conquer
strategy for non-dominated sorting. Some of these approaches [2, 7, 11] are
based on the algorithm of Kung et al. [13]. Fortin et al. [7] has modified
Jensen’s algorithm [11] to remove its limitation and then a slightly modified
version of Fortin et al. [7] is presented by Buzdalov et al. [2]. In Fortin’s algo-
rithm, there are two main procedures – NDHelperA and NDHelperB. Also,
there are two splitting procedures – SplitA and SplitB. The NDHelperA
procedure splits the problem into three sub-problems which need to be solved
in a particular order. So, there is a sequential dependence in the NDHelperA
procedure. The NDHelperB procedure also creates three sub-problems. How-
ever, in contrast to NDHelperA, these three sub-problems can be executed
simultaneously. The approaches [2, 7, 11] are based on a divide-and-conquer
strategy, however these have sequential dependency in the NDHelperA pro-
cedure.

Fang et al. [6] also developed a divide-and-conquer based algorithm. The
dominance relationship among the solutions is hierarchical in nature [6], so a
hierarchical data structure (a tree) is used in the approach. The dominance
tree is adopted in this approach in which the population is recursively divided
into two populations by the midpoint until the population contains only one
solution. At this point, each of the single solutions can be considered as a
dominance tree which has a single node. These dominance trees are merged
to form a new dominance tree. The dominance tree of the entire population is
formed when all the dominance trees are merged. From this final dominance
tree, the non-dominated fronts of the population is obtained. In the approach,
dividing the population is recursive in nature and also the process of merging
the dominance trees is recursive. The dominance trees are merged in different
rounds. Merging of different dominance trees in the same round can be per-
formed simultaneously. So, parallelism is possible in this approach. However,
the main concern is to have parallelism when merging two dominance trees.

DCNS [17] is an approach which is also based on a divide-and-conquer
strategy. This approach works in two phases. In the first phase, the solutions
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are sorted based on the first objective. The first phase can be implemented in
a parallel manner considering a parallel sorting algorithm like parallel merge
sort [3]. In the second phase, the solutions are assigned to different fronts
considering a divide-and-conquer strategy. In the second phase, each solution
is considered as a set of fronts which are merged at different levels. The second
phase also has the parallelism property because different merge operations
at the same level can be performed simultaneously. However, the parallelism
of this kind in the DCNS approach is unimpressive. This is because of the
serial merge procedure. However, the merge procedure is intrinsically prone to
parallelization. In the DCNS approach, parallelism is possible in both phases.
Also, the merge procedure itself has the parallelism property. So, we have lot of
potential for parallelism in the DCNS approach. This motivated us to explore
parallelism in the DCNS approach.

Parallelism has been explored considering the PRAM (Parallel Random
Access Machine) model which is a natural extension of RAM (Random Access
Machine). The RAM model is used for the analysis of sequential algorithms
and PRAM is used for the analysis of parallel algorithms. In the case of the
PRAM model, each processor is a Random Access Machine and these pro-
cessors operate synchronously (i.e., all processors follow a global clock). This
model is the earliest as well as the best-known model of parallel computa-
tion [10, 12]. The analysis of parallel algorithms is usually carried out under
the assumption that an unbounded number of processors is available [15, 22].
So, in our analysis, we have also considered the same assumption. In the anal-
ysis of the parallel approach, we obtain the maximum number of processors
which can be required.

The main contributions of this paper are the following:

– The parallelism in the DCNS approach is explored in four different sce-
narios and those are theoretically analyzed in a thorough way. The time
complexity of the serial and the parallel version of the DCNS approach is
also analyzed in these scenarios. The maximum number of processors is
also obtained.

– The best case time complexity of the serial version of the approach is proved
to be O(N logN + MN). In general, M << logN , so we can say that the
best case time complexity is O(N logN).

– The time complexity of the parallel version is proved to be O(logM +N).

The rest of this paper is organized as follows. The related work on non-
dominated sorting is discussed in Section 2. The computing environment for
parallelization is discussed in Section 3. The DCNS approach and the scope of
parallelism in the approach are described in Section 4. The time complexities
of the serial and parallel versions of DCNS in four different scenarios are
obtained in Sections 5 – 8. The space complexity of the parallel version of
DCNS is discussed in Section 9. The comparison of the parallel version of the
DCNS approach with respect to the parallel version of some of other existing
approaches is described in Section 10. Finally, Section 11 concludes the paper
and provides some possible paths for future research.
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2 Related Work

In this section, we discuss some of the approaches for non-dominated sorting
that have been proposed so far. In the naive approach [29], a solution can
be compared with respect to other solutions multiple times. The worst case
time complexity of the naive approach is O(MN3) and the best case time
complexity is O(MN2) with a space complexity O(N). In the naive approach,
the dominance relation between different solutions can be computed simulta-
neously and stored in a matrix known as dominance matrix. A solution can
also be compared with other solutions simultaneously. So, this approach also
has the parallelism property. To reduce the worst case time complexity of the
naive approach, fast non-dominated sorting [4] has been proposed with a time
complexity O(MN2) and a space complexity O(N2). This approach also has
the parallelism property which is discussed in [8, 24, 28]. A recursive approach
is proposed by Jensen et al. [11]. The time complexity of this approach is
O(N logM−1 N) and the space complexity is O(MN). This approach is based
on a divide-and-conquer strategy so it also has the parallelism property [5].
However, this approach is not applicable in the cases where two solutions share
the same value for a particular objective. The best case time complexity of
Jensen’s approach is O(N logN) which occurs when the number of objectives
is two.

An approach based on a divide-and-conquer strategy was proposed by Fang
et al. [6] with a worst case time complexity O(MN2) and a best case time
complexity O(MN logN). The space complexity of this approach is O(MN).
In case of duplicate solutions, one solution is considered as dominated by
another. An approach based on arena’s principle was proposed by Tang et
al. [30] with a worst case time complexity O(MN2). In some cases, the time
complexity of this approach is O(MN

√
N)[32].

Climbing sort and deductive sort were proposed by McClymont et al. [14].
Deductive sort reduces the number of dominance comparisons by inferring
the dominance relationship between the solutions. The worst case time com-
plexity of deductive sort is O(MN2) and the best case time complexity is
O(MN

√
N) with O(N) space complexity. The limitation of Jensen’s approach

was removed by Fortin et al. [7]. The worst case time complexity of this
approach is O(MN2). However, the average case time complexity remains
O(N logM−1 N).

Zhang et al. [32] developed an efficient non-dominated sorting (ENS) ap-
proach which consists of two phases. In the first phase, the solutions are sorted
based on the first objective. In the second phase, the solutions are assigned
to their respective fronts based on two different search techniques: sequential
and binary. ENS-SS is based on sequential search and ENS-BS is based on bi-
nary search. The worst case time complexity of both ENS-SS and ENS-BS is
O(MN2). However, the best case time complexity of ENS-SS is O(MN

√
N)

and for ENS-BS is O(MN logN). In this approach, the first phase has the
parallelism property if parallel merge sort [3] or some other parallel sorting
algorithms can be used to sort the solutions. In the second phase, a solution
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can be compared with respect to all the solutions of a particular front simul-
taneously. However, when each front has a single solution, then this kind of
parallelism cannot be achieved. The time complexity of non-dominated sorting
was proved to be O(N logM−1 N) by Buzdalov et al. [2]. Bao et al. [1] proposed
a Hierarchical Non-dominated Sorting (HNDS). This approach also sorts the
solutions based on the first objective, and then the solutions are assigned to
their respective front as in ENS [32]. The best case time complexity of HNDS
is O(MN

√
N) and the worst case time complexity is O(MN2) with space

complexity O(N).

In many of the existing approaches, for a solution to be inserted into a
front, it needs to be compared and non-dominated with respect to all the so-
lutions in that front. Some of the approaches [9, 26, 33] that have been recently
proposed do not have this requirement. Best order sort (BOS) [26] is one of
such approaches which first sorts the solutions based on each objective. Then,
the solutions are taken from this sorted list of solutions based on each objec-
tive to assign the rank. The worst case time complexity is O(MN2) and the
best case time complexity is O(MN logN). This approach reduces the number
of dominance comparisons to a great extent. This approach has been recently
updated by the authors to handle duplicate solutions1. This approach has also
been independently updated in [19]. There have been some approaches based
on BOS. Generalized Best Order Sort (GBOS) [18] and Bounded Best Order
Sort (BBOS) [27] are such approaches. In BOS, the sorting of solutions based
on the second to the last objectives can be performed simultaneously. Also,
when the solutions are sorted based on a particular objective, this process can
be performed in parallel using parallel merge sort. In BOS, the solutions can
be ranked based on different objectives simultaneously. While assigning a rank
to a solution, a solution can be compared simultaneously with all the solutions
that have been assigned the same rank based on a particular objective.

Zhang et al. [33] developed an approach known as T-ENS. Like ENS [32],
here also, in the first phase, the solutions are sorted based on the first ob-
jective. In the second phase, the solutions are assigned to their respective
fronts. A front is represented as a tree to avoid many comparisons. The worst
case time complexity of T-ENS is O(MN2) and the best case time complex-
ity is O(MN log N/log M). However, this approach is not suitable for the cases
where the solutions share identical values for any of the objectives [9]. By
extending ENS-BS [32], an approach known as ENS-NDT [9] was developed
which works in three phases. Here, in the first phase the solutions are sorted
based on the last objective. In the second phase, prebalanced splits are created
and in the third phase, solutions are assigned to their corresponding front.
In this approach, duplicate solutions are handled efficiently. The best case
time complexity of ENS-NDT is O(MN logN) when M > logN ; otherwise,
it is O(N log2 N). The worst case time complexity is O(MN2). Few other
approaches like [25, 27, 34] have been recently proposed for non-dominated
sorting.

1 https://github.com/Proteek/Best-Order-Sort/
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3 Computing Environment

This paper considers the PRAM CREW (Parallel random-access machine with
Concurrent Read, Exclusive Write) model as considered in [28]. Thus, the same
memory location can be read by multiple processors simultaneously. However,
the same memory location cannot be written at the same time by multiple
processors. As simultaneous write operations are not allowed, so there will be
no concurrent write operation in our parallel version. The analysis of parallel
algorithms is usually carried out under the assumption that an unbounded
number of processors is available [15, 22]. So, in our analysis we have also
considered the same assumption. In the analysis of the parallel approach, we
obtain the maximum number of processors which can be required.

4 The DCNS Approach and its Parallelization

In this section, we discuss the DCNS approach and we also explore the scope of
parallelism within this approach. DCNS is a two-phased approach. In the first
phase, the solutions are sorted based on the first objective as in [7, 9, 11, 32, 33].
After this sorting, the solution which comes later in the sorted list will never
dominate the former solutions [32]. So, when two solutions are compared, there
are only two possibilities. In the second phase, the actual sorting is performed.

In the second phase, initially, each solution in the sorted list of solutions is
considered as a set of fronts, i.e., initially, each set of fronts has a single front
which has a single solution. So, initially we get N sets of fronts corresponding
to N solutions. The approach is based on a divide-and-conquer strategy. So,
these sets of fronts are merged at L = logN different levels like in merge sort.
However, the merging will be different than in the normal merge sort. At the
first level, N/2 merge operations are performed where N/2 pairs of the sets of
fronts are merged. At the second level, N/4 merge operations are performed
where N/4 pairs of the sets of fronts are merged. In general, at the lth level,
N/2l merge operations are performed.

Let the merge operation be performed between two sets of fronts F and
F ′ where F = {F1, F2, . . . , FP } and F ′ =

{
F ′1, F

′
2, . . . , F

′
Q

}
. In the merge

operation, all the solutions from F ′ are inserted into their respective position
in F . At each moment, all the solutions in a set of fronts are arranged in
decreasing order of their dominance. Also, the solutions of the (k + 1)th set of
fronts cannot dominate the solutions of the kth set of fronts. This is because,
initially, different sets of fronts are created from the sorted solutions and in
the sorted list, a solution which comes later cannot dominate the previous
solutions. So, when two sets of fronts F and F ′ are merged, then the solutions
of F ′ cannot dominate the solutions in F .

The working flow of the DCNS framework is shown in Fig. 1. Let’s assume
that we have eight solutions {sol1, sol2, . . . , sol8}. Initially, there are eight sets
of fronts {F1,F2, . . . ,F8} corresponding to eight sorted solutions in the first
phase. At the first level, four merge operations are performed. The sets of
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1,2 3,4 5,6 7,8

1,3 5,7

1,5

F1 F2 F3 F4 F5 F6 F7 F8

Level-1

Level-2

Level-3

Insert all the solutions from
Fj to Fi in their respective
positions

i,j

Fig. 1 Flow of the DCNS Framework

fronts at index positions 1 and 2 are merged. Similarly, the set of fronts at
index positions 3 and 4 are merged. The set of fronts at index positions 5 and
6 are merged and also the set of fronts at index positions 7 and 8 are merged.
At the second level, two merge operations are performed. The sets of fronts at
index positions 1 and 3 are merged and the set of fronts at index positions 5
and 7 are merged. At the third level, only one merge operation is performed.
The sets of fronts at index positions 1 and 5 are merged to get the final sorted
set of fronts.

The merge operation is shown in Fig. 2. In this operation, all the solutions
from F ′ are inserted into their respective position in F . When the solutions
from F ′ are inserted in F , then initially the solutions of F ′1 are inserted, then
the solutions of F ′2 are inserted and so on. When the solutions of a front
F ′ ∈ F ′ are inserted into F , the three dominance relationships are used as
discussed in [17] to avoid unnecessary dominance comparisons. There are two
ways to insert a solution in F : sequential search based insertion and binary
search based insertion as in [32], [17]. Depending on the type of insertion,
there are two approaches: DCNS-SS (DCNS based on sequential search) and
DCNS-BS (DCNS based on binary search).

In general, the recurrence relation of the second phase of the DCNS ap-
proach is defined by Eq. (1). As the approach is based on a divide-and-conquer
strategy, so the problem of size N is divided into two equal sized sub-problems
which are then solved. Tdom(N,M) represents the time spent to perform the
dominance comparisons when the solutions from F ′ are inserted into F while
solving the problem of size N where both sets of fronts have N/2 solutions.
Tinsert(N) represents the time to add N/2 solutions in F from F ′ while solving
the problem of size N .

T1(N,M)=

{
M+1 if N=2

2T1 (N/2,M) +Tdom(N,M)+Tinsert(N) otherwise
(1)

In general, the value of Tdom(N,M) changes depending on the dominance rela-
tion between the solutions. In a merge operation where F and F ′ have N/2 solu-
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F 0
1

F 0
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F 0
3

F 0
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F1

F2

F3
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Compare the solutions
of F 0

1
with F1, then with

F2, then with F3 and so
on untill its positon has
been obtained.

Compare the solu-
tions of F 0

2
with the

solutions of fronts in
F sequentially. How-
ever, the compar-
isn of the solutions
of F 0

2
do not strat

from F1 because of
dominanec relation-
sip which saves un-
necssary dominanec
comparisons.F F

0

Fig. 2 Working of the Merge procedure

tions, all the solutions from F ′ need to be inserted into F so, Tinsert(N) = N/2.

Parallelism in the First Phase: In the first phase, the solutions are sorted
based on the first objective. For sorting the solutions, parallel merge sort can be
used where different merge sort procedures can be performed simultaneously.
Using parallel merge sort, the worst case time complexity of the first phase is
O(MN) and the best case time complexity is O(N). To further improve the
performance of the first phase, the merge operation in parallel merge sort can
also be performed in a parallel manner as discussed in [3]. By doing this, the
best case time complexity of the first phase will become O(log3 N). Merge sort
is used in the first phase, so the space complexity of the first phase is O(N).

In parallel merge sort, different merge operations at the same level can be
performed simultaneously. So, the maximum number of processors required
to perform the merge operation at the first level is N/2, at the second level
it is N/4 and so on. At the last level, the number of processors required is
one. To further speed up parallel merge sort, the merge operation can itself
be implemented in a parallel manner. The maximum number of processors
required to perform a merge operation where the size of both arrays is N/2,
is N . So, the maximum number of processors required to perform the merge
operation at each level is N when the merge operation is itself implemented
in a parallel manner. Thus, the maximum number of processors required to
perform parallel merge sort is N .

Parallelism in Dominance Comparisons: In general, the dominance re-
lation between two solutions can be obtained in O(M) time. The dominance
relation between each pair of solutions can be obtained in parallel, so the
dominance matrix which contains the dominance relation between each pair
of solutions can be obtained in O(M) time in parallel. The dominance matrix
in this manner is obtained in [28]. However, this O(M) time complexity can
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be further improved if the dominance relation between a pair of solutions can
be obtained in less time than O(M).

To compare two solutions soli and solj , we create two Boolean arrays of
size M . The first array (say Di) stores whether soli is better than solj for
each of the M objectives. The second array (say Dj) stores whether solj is
better than soli for each of the M objectives. If the objective value of soli is
better than (less than) the objective value of solj for the same objective, then
the corresponding cell of the array Di is set to ‘True’; otherwise, it is set to
‘False’. Similarly, the Boolean array Dj is also filled.

We process arrays Di and Dj simultaneously. These arrays are processed
at logM levels. At each level, we perform an ‘OR’ operation between two
consecutive array cells. At the lth level, M/2l ‘OR’ operations are performed.
After the ‘OR’ operation at the last level, either a ‘True’ or ‘False’ value
is obtained. So, we get two Boolean values corresponding to both arrays. Let
the final value obtained after processing Di be denoted by Difinal and the final
value obtained after processing Dj be denoted by Djfinal. With the help of
these two values Difinal and Djfinal, the dominance relationship between the
solutions is obtained as follows.

1. Difinal = Djfinal = False: Solutions soli and solj are the same (in terms
of objective values).

2. Difinal = Djfinal = True: Solutions soli and solj are non-dominated.
3. Difinal = True and Djfinal = False: Solution soli dominates solj .
4. Difinal = False and Djfinal = True: Solution soli is dominated by solj .

Both Boolean arrays Di and Dj can be filled in O(1) time in parallel. As
different ‘OR’ operations at the same level can be performed simultaneously
in these two Boolean arrays, so the time complexity of processing these arrays
in a parallel manner is O(logM). Thus, the dominance relationship between
a pair of solutions can be obtained in O(logM) time. Hence, the dominance
matrix can be obtained in O(logM) time in parallel as the dominance relation
between each pair of solutions can be obtained simultaneously. After obtaining
the dominance matrix, it requires O(1) time to find whether a solution is
dominated by another solution or not, as only a lookup in the dominance
matrix is required.

The maximum number of processors required to fill Boolean array Di is
M and the maximum number of processors required to fill Boolean array Dj

is also M . Both these Boolean arrays are filled simultaneously, so the number
of processors required to fill both Boolean arrays is 2M . These two Boolean
arrays are processed simultaneously at logM levels. The number of processors
required to process a Boolean array at the first level is M/2, at the second
level it is M/4 and so on. At the last level, the number of processors required
is one. So, the number of processors required to process both Boolean arrays
simultaneously is M/2+M/2 = M . Thus, the total number of processors required
to obtain the dominance relationship between two solutions is 2M which is
O(M). The dominance relationship between each pair of solutions can be
obtained simultaneously. There are N2 pairs of solutions so the maximum
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2 1 3 4

1 1 2 3

1 1 2 3

2 1 3 4

soli

solj

solj

soli

F F F FDi T F T TDj

F F

F

T T

T

T: True

F: False

OR OR

OR

OROR

OR

soli is dominated by solj

Fig. 3 The process to obtain the dominance relationship between the two solutions soli
and solj in a parallel manner.

number of processors required to obtain the dominance matrix simultaneously
is 2MN2 or O(MN2).

Example 1 Let’s assume that we want to find the dominance relationship
between two solutions soli = {2, 1, 3, 4} and solj = {1, 1, 2, 3} which are in 4-
dimensional space. For this purpose, we compare soli with solj to fill array Di

and compare solj with soli to fill array Dj. These two arrays are processed in
a parallel manner using ‘OR’. After processing Di, we are getting ‘False’ and
after processing Dj, we are getting ‘True’ which means that soli is dominated
by solj. The complete process to obtain the dominance relationship between the
two solutions is shown in Fig. 3.

Parallelism in the Second Phase: To obtain the parallelism in the second
phase, all the merge operations at the same level can be performed simulta-
neously. Along with this, the position of different solutions of a front F ′ ∈ F ′
are identified in F simultaneously. In the process of identifying the position of
a solution sol ′ ∈ F ′ in F , the solution sol ′ is compared with respect to all the
solutions of a front F ∈ F simultaneously. After obtaining the position of each
solution of F ′ in F , these solutions are added to their corresponding front in
F in a sequential manner to avoid write collisions as we are considering the
PRAM CREW model.

Let the number of solutions in a front F ∈ F be nf . A particular solution
sol ′ ∈ F ′ will be compared with all nf solutions of F simultaneously. The
dominance relation of sol ′ with respect to all the solutions of F is stored in
an array named as dominance array of size nf . ‘True’ in this array denotes
that sol ′ is dominated by a solution of F and ‘False’ denotes that sol ′ is non-
dominated with respect to a solution of F . The time to obtain the dominance
relation of sol ′ with respect to all the solutions of F in a parallel manner is
O(1) as only the lookup in the dominance matrix is required.

Now, we check whether sol ′ is non-dominated with respect to all the so-
lutions of F or not. For this purpose, the dominance array is processed in a
parallel manner using an ‘AND’ operation. As the size of the array is nf , the
array is processed in a parallel manner at log nf levels. At each level, the con-
secutive array cells are processed using an ‘AND’ operation. So, at the lth level
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nf/2l ‘AND’ operations are performed. Thus, the time complexity of processing
this array in a parallel manner is O(log nf ). Thus, the overall time complexity
to compare sol ′ with respect to all the solutions of F and knowing whether
sol ′ is non-dominated with respect to all the solutions of F in a parallel man-
ner is O(1 + log nf ). As all the solutions of F ′ are simultaneously compared
with respect to the solutions of F , so the time to obtain the dominance re-
lation of all the solutions of F ′ with respect to all the solutions of F is also
O(1 + log nf ).

At the ith level, there are N/2i merge operations. The number of solutions
in the set of fronts which take part in the merge procedure at the ith level is
2i−1. In the parallel merge procedure, the position of different solutions of a
front F ′ ∈ F ′ is identified in F simultaneously. As the maximum number of
solutions in a front F ′ ∈ F ′ at ith level can be 2i−1 (which occurs when all the
solutions are in the same front in F ′), so the maximum number of processors
required to find the position of each solution of F ′ in F is 2i−1. Also, in the
process of identifying the position of a particular solution sol ′ ∈ F ′ in F , the
solution sol ′ is compared with respect to all the solutions of a front F ∈ F
simultaneously. The maximum number of solutions in a front F ∈ F can also
be 2i−1 (which occurs when all the solutions are in a single front in F), so the
maximum number of processors required to find the position of a solution sol ′

in F is also 2i−1. Thus, the maximum number of processors required to merge
two set of fronts at the ith level is 2i−1 · 2i−1 = 22i−2. Thus, the maximum
number of processors required at the ith level is given by Eq. (2).

Maximum number of processors =

(
N

2i

)(
22i−2

)
=

1

4
N2i (2)

The maximum value of Eq. (2) can be obtained when the value of 2i is maxi-
mum and this occurs at the last level. Thus, the maximum value of Eq. (2) is
1/4N2. Thus, the maximum number of processors required is N2

/4.
The maximum number of processors required to sort the solutions based on

a particular objective using parallel merge sort is N . The maximum number of
processors required to obtain the dominance matrix simultaneously is 2MN2.
The maximum number of processors required to perform different merge op-
erations is N2

/4. Thus, the overall maximum number of processors required to
perform DCNS approach in parallel is 2MN2 or O(MN2).

Example 2 Let’s assume that two sets of fronts F and F ′ need to be merged.
Consider a front F ∈ F and F ′ ∈ F ′ where F = {s1, s2, s3, s4} and F ′ =
{s5, s6, s7, s8}. These two fronts are shown in Fig. 4. To obtain the parallelism,
all the solutions in F ′ are simultaneously compared with all the solutions in
F . Solutions s5, s6, s7, s8 are compared simultaneously. Each of these solutions
are also compared with respect to four solutions in F simultaneously. Fig. 4
shows the parallel comparisons of all the solutions of F ′ with all the solutions
of F .

Now, we discuss the parallelism in the second phase in the following four
scenarios:
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All these solutions are com-

pared simultaneously.

s1 s2 s3 s4 s5 s6 s7 s8

Compare s8 with solu-

tions of F simultaneously

Compare s7 with solu-

tions of F simultaneously

Compare s6 with solu-

tions of F simultaneously

Compare s5 with solu-

tions of F simultaneously

F 2 F F
0 2 F 0

Fig. 4 Parallelism in the DCNS based approach.

1. All the solutions are in a single front.
2. All the solutions are in different fronts.
3. N solutions are equally divided in

√
N fronts such that each solution in a

front is dominated by all the solutions in its preceding front.
4. N solutions are equally divided in

√
N fronts such that each solution in a

front is dominated by only one solution in its preceding front.

We establish the recurrence relation for the serial and parallel version of the
second phase. As the approach is based on a divide-and-conquer strategy, we
are assuming N to be a perfect square.

5 Scenario – I

The number of fronts is one, so both the sequential and the binary search
based approaches perform the same. As all the solutions are non-dominated
so there will be only a single front in both sets of fronts F and F ′ in the merge
operation.

5.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (3). In a merge op-
eration where both sets of fronts have N/2 solutions, each solution of F ′ is com-

pared with respect to all N/2 solutions in F . Thus, Tdom(N,M) = M (N/2)
2
.

T1(N,M)=

{
M+1 if N=2

2T1 (N/2,M) +M (N/2)
2

+N/2 otherwise
(3)

The recurrence relation in Eq. (3) is solved by Eq. (4).

T1(N,M)=
[
M (N/2)

2
+N/2

]
+2
[
M (N/4)

2
+N/4

]
+ . . .+N/2

[
M (N/N)

2
+N/N

]
=1/2MN(N−1)+1/2N logN (4)



14 Sumit Mishra, Carlos A. Coello Coello

5.2 Parallel Approach

In the parallel version, all the merge operations are performed simultaneously.
Also, the position of each solution in F ′ is identified in F simultaneously.
In a merge operation where both sets of fronts have N/2 solutions, the time
complexity to know whether a particular solution of F ′ is non-dominated with
respect to all the solutions of F is O(1 + log (N/2)). As all the solutions of F ′
are simultaneously compared with all the solutions of F so the time to obtain
the dominance relation of all the solutions of F ′ with all the solutions of F
is also O(1 + log (N/2)). Thus, Tdom(N,M) = 1 + log (N/2). The recurrence
relation of the parallel version is given by Eq. (5).

T∞(N)=

{
1+1 if N=2

T∞ (N/2,M) +1+ log (N/2) +N/2 otherwise
(5)

The recurrence relation in Eq. (5) is solved by Eq. (6).

T∞(N)= [1+ log (N/2) +N/2] + [1+ log (N/4) +N/4] + . . .+ [1+ log (N/N) +N/N]

=1/2(2N+ log2 N+ logN−2) (6)

6 Scenario – II

In this scenario, the number of fronts is more than one, so sequential and
binary search based approaches perform differently. In this scenario, as all the
solutions are in different fronts, so in a merge operation where both sets of
fronts have N/2 fronts which contain a single solution, only the solution in the
first front in F ′ is compared and dominated by the solutions of all the fronts in
F . The solutions of the remaining fronts in F ′ are directly added to F without
performing dominance comparisons because of the dominance relationship as
discussed in [17].

In case of the parallel version of this scenario, only different merge opera-
tions can be performed simultaneously. As each front has a single solution, so
a solution of front F ′ ∈ F is compared with a solution of F ∈ F in O(1) time.

6.1 Sequential Search based Approach

Here, the recurrence relation is established using a sequential search based
strategy.

6.1.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (7). In a merge
operation where both sets of fronts have N/2 solutions, only the solution of
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the first front in F ′ is compared with the solutions of all the fronts in F , so
Tdom(N,M) = M (N/2).

T1(N,M)=

{
M+1 if N=2

2T1 (N/2,M) +M (N/2) +N/2 otherwise
(7)

The recurrence relation in Eq. (7) is solved by Eq. (8).

T1(N,M)= [M (N/2) +N/2] +2 [M (N/4) +N/4] + . . .+N/2 [M (N/N) +N/N]

=1/2MN logN+1/2N logN (8)

6.1.2 Parallel Approach

In the parallel version, all the merge operations are performed simultaneously.
So, the recurrence relation of the parallel version is given by Eq. (9). Here,
only the solution of the first front in F ′ is compared with the solutions of all
the fronts in F , so Tdom(N) = (N/2).

T∞(N)=

{
1+1 if N=2

T∞ (N/2,M) + (N/2) +N/2 otherwise
(9)

The recurrence relation in Eq. (9) is solved by Eq. (10).

T∞(N)= [(N/2) +N/2] + [(N/4) +N/4] + . . .+ [(N/N) +N/N]

=2(N−1) (10)

6.2 Binary Search based Approach

Now, we obtain the recurrence relation using a binary search based strategy
for both the serial and the parallel version.

6.2.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (11). Here, only the
solution of the first front in F ′ is compared with the solutions of

⌈
log (N/2+1)

⌉
fronts in F , so Tdom(N,M) = M

⌈
log (N/2+1)

⌉
.

T1(N,M)=

{
M+1 if N=2

2T1 (N/2,M) +Mdlog (N/2+1)e+N/2 otherwise
(11)

The recurrence relation in Eq. (11) is solved by Eq. (12).

T1(N,M)=
[
M
⌈
log (N/2+1)

⌉
+N/2

]
+2
[
M
⌈
log (N/4+1)

⌉
+N/4

]
+ . . .

+N/2
[
M
⌈
log (N/N+1)

⌉
+N/N

]
=M(2N− logN−2)+1/2N logN (12)
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6.2.2 Parallel Approach

In the parallel version, all the merge operations are performed simultaneously.
So, the recurrence relation of the parallel version is given by Eq. (13). Here,
only the solution of the first front in F ′ is compared with the solutions of⌈
log (N/2+1)

⌉
fronts in F , so Tdom(N) =

⌈
log (N/2+1)

⌉
.

T∞(N)=

{
1+1 if N=2

T∞ (N/2,M) +dlog (N/2+1)e+N/2 otherwise
(13)

The recurrence relation in Eq. (13) is solved using Eq. (14).

T∞(N)=
[⌈

log (N/2+1)
⌉
+N/2

]
+
[⌈

log (N/4+1)
⌉
+N/4

]
+ . . .

+
[⌈

log (N/N+1)
⌉
+N/N

]
=1/2(2N+ log2 N+ logN−2) (14)

7 Scenario – III

We establish the recurrence relation for the serial and the parallel version when
N solutions are equally divided into

√
N fronts such that each solution in a

front is dominated by all the solutions in its preceding front. As the number
of fronts is more than one, so the sequential and the binary search based
approaches perform differently. Let us consider N ′ =

√
N .

7.1 Sequential Search based Approach

Now, we obtain the recurrence relation using a sequential search based strategy
for both the serial and the parallel version.

7.1.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (15). This recur-
rence relation is in two parts. The first part corresponds to the merge operation
from the first to the L/2

th level and the second part corresponds to the merge
operation from the L/2 + 1th to the last level.

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)︸ ︷︷ ︸

N>N ′

(15)

First Part of Recurrence Relation: In the final sorted fronts, each front
has
√
N(= 2L/2) solutions. So, in the merge operations from the first to the

L/2
th level, all the solutions are non-dominated. As all the solutions are non-

dominated till the L/2
th level, there will be only one single front in both the

set of fronts F and F ′ in the merge operations till the L/2
th level. Thus, in
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a merge operation where both sets of fronts have
√
N/2 solutions, each solu-

tion of F ′ is compared with respect to all the
√
N/2 solutions in F . Hence,

Tdom(
√
N,M) = M

(√
N/2
)2

. All the solutions from F ′ need to be inserted

into F . Thus, Tinsert(
√
N) =

√
N/2. So, the recurrence relation corresponding

to the first part is given by Eq. (16) which is solved using Eq. (17).

T11(
√
N,M)=

M+1 if
√
N=2

2T11

(√
N
2 ,M

)
+M

(√
N
2

)2

+
√
N
2 otherwise

(16)

T11(
√
N,M)=

[
M
(√

N/2
)2

+
√
N/2

]
+2
[
M
(√

N/4
)2

+
√
N/4

]
+ . . .

+
√
N/2

[
M
(√

N/
√
N
)2

+
√
N/
√
N

]
=1/2M

√
N(
√
N−1)+1/4

√
N logN (17)

Second Part of the Recurrence Relation: At the end of the merge op-
eration at the L/2

th level, each set of fronts has a single front which has
√
N

solutions. After the merge operation at the L/2
th level, each set of fronts has

more than one front and each front has
√
N solutions. Whenever a merge op-

eration is performed after the L/2
th level, only the solutions of the first front

in F ′ are compared with the solutions of F . The solutions of the remaining
fronts in F ′ are added directly to F because of the dominance relationship as
discussed in [17]. The solutions of the front F ′ ∈ F ′ are only compared and
dominated by a single solution in all the fronts in F because each solution in
a front is dominated by all the solutions in its preceding front.

In a merge operation where both sets of fronts have N/2 solutions, only√
N solutions in the first front in F ′ are compared with the first solution in

all N/2
√
N fronts in F . So, Tdom(N,M) = M (N/2

√
N)
√
N = M (N/2). All the

solutions from F ′ need to be inserted into F so, Tinsert(N) = N/2. Thus, the
recurrence relation corresponding to the second part is given by Eq. (18) which
is solved using Eq. (19).

T12(N,M)︸ ︷︷ ︸
N>N ′

=

{
MN ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

(
N

2N ′
)
N ′+

(
N

2N ′
)
N ′ otherwise

=

{
MN ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

(
N
2

)
+N

2 otherwise
(18)

T12(N,M)= [M (N/2) +N/2] +2 [M (N/4) +N/4] + . . .+N ′
/2 [M (N/N ′) +N/N ′]

=1/4MN logN+1/4N logN (19)

The solution to the recurrence relation in Eq. (15) is obtained by Eq. (20).

T1(N,M)=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+1/4MN logN+1/4N logN

=1/4MN(2
√
N+ logN−2)+1/2N logN (20)
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Consider Fig. 5 which shows the working of the DCNS approach when
sixteen solutions are equally divided into four fronts such that each solution in
a front is dominated by all the solutions in its preceding front. As the number
of solutions is 16, so the merge operations are performed in L = log 16 = 4
levels. Till the merge operations at the second level, all the solutions are non-
dominated, so the recurrence relation T11(

√
N,M) is used four times since the

initial input to this recurrence relation is four and there are a total of sixteen
solutions. After the merge operation at the second level, the recurrence relation
T12(N,M) is used.

From this figure, it is clear that at the end of the merge operation at the
second level, each set of fronts has a single front which has 4(=

√
16) solutions.

After the merge operation at the second level, each set of fronts has more than
one front and each front has 4(=

√
16) solutions. When the merge operation

is performed at the last level where F and F ′ both have two fronts, s9 is
compared and dominated by the first solution of F1, i.e., with s1. After this,
s9 is compared with the solution of F2. Now, s9 is compared and dominated
by the first solution of F2, i.e., with s5. So, s9 will make a new front. Similarly,
s10, s11 and s12 are also compared and dominated by the first solution of F1

and F2, i.e., with s1 and s5. After that, these three solutions s10, s11 and s12

will be inserted into the new front where s9 has been inserted.

Once all the solutions of the first front in F ′ are inserted into F , then all
the solutions of the second front in F ′ are directly inserted into a new front
in F because of the dominance relationship as discussed in [17].

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

s1, s2 s3, s4 s5, s6 s7, s8 s9, s10 s11, s12 s13, s14 s15, s16 Level-1

s1, s2, s3, s4 s5, s6, s7, s8 s9, s10, s11, s12 s13, s14, s15, s16 Level-2

T11(
√
N,M) T11(

√
N,M) T11(

√
N,M) T11(

√
N,M)

s1, s2, s3, s4 s9, s10, s11, s12
s5, s6, s7, s8 s13, s14, s15, s16 Level-3

s1, s2, s3, s4
s5, s6, s7, s8

s9, s10, s11, s12
s13, s14, s15, s16 Level-4

T12(N,M)︸ ︷︷ ︸
N>N′

Fig. 5 Working procedure to sort sixteen solutions when those are equally divided into four
fronts and each solution in a front is dominated by all the solutions in its preceding front.
Down arrow indicates the merge operation between immediate left and right set of fronts.
si, . . . , sj represent that these solutions are non-dominated with respect to each other. Here,

up to the 2nd level, the recurrence relation
√
NT11(

√
N,M) is used and from the 3rd to the

last level, the recurrence relation T12(N,M) is used .
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7.1.2 Parallel Approach

The recurrence relation of the parallel version is given by Eq. (21).

T∞(N) = N ′T∞1(
√
N)+T∞2(N)︸ ︷︷ ︸

N>N ′

(21)

Till the L/2
th level, all the solutions are non-dominated. In the parallel version,

the position of a different solution of a front F ′ ∈ F ′ is identified in F simulta-
neously. In a merge operation where both sets of fronts have

√
N/2 solutions, the

time complexity to know whether a particular solution of F ′ is non-dominated
with respect to all the solutions of F is O(1 + log

(√
N/2
)
). As all the solutions

of F ′ are simultaneously compared with the solutions of F so the time to ob-
tain the dominance relation of all the solutions of F ′ with respect to all the
solutions of F is also O(1 + log

(√
N/2
)
). Thus, Tdom(

√
N) = 1 + log

(√
N/2
)
.

All the solutions from F ′ need to be inserted in F so Tinsert(
√
N) =

√
N/2. The

recurrence relation corresponding to the first part is given by Eq. (22) which
is solved using Eq. (23).

T∞1(
√
N)=

{
1+1 if

√
N=2

T∞1

(√
N
2

)
+1+ log

(√
N
2

)
+
√
N
2 otherwise

(22)

T∞1(
√
N)=

[
1+ log

(√
N/2
)

+
√
N/2
]

+
[
1+ log

(√
N/4
)

+
√
N/4
]

+ . . .

+
[
1+ log

(√
N/
√
N
)

+
√
N/
√
N
]

=1/8(8
√
N+ log2 N+2 logN−8) (23)

After the L/2
th level, each front has

√
N solutions. Whenever a merge operation

is performed after the L/2
th level, only the solutions of the first front in F ′ are

compared with the solutions of F . The solutions of the remaining fronts in F ′
are added directly to F because of the dominance relationship as discussed
in [17].

In a merge operation where both sets of fronts have N/2 solutions, only√
N solutions in the first front in F ′ are compared with respect to all the

solutions of front F ∈ F simultaneously. The time complexity of obtaining
the dominance relation of a solution of the front in F ′ with respect to all the
solutions of a front F ∈ F is O(1 + logN ′). As all the solutions of a front
F ′ ∈ F ′ are simultaneously compared with the solutions of a front F ∈ F , so
the time to obtain the dominance relation of all the solutions of a front F ′ ∈ F ′
with respect to all the solutions of a front F ∈ F is also O(1 + logN). Thus,
Tdom(N) = (N/2N ′) (1 + logN ′). All the solutions from F ′ need to be inserted
in F so Tinsert(N) = N/2. Hence, the recurrence relation corresponding to the
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second part is given by Eq. (24) which is solved using Eq. (25).

T∞2(N)︸ ︷︷ ︸
N>N ′

=

{
1+ logN ′+N ′ if N=2N ′

T∞2

(
N
2

)
+ N

2N ′ (1+ logN ′) +
(

N
2N ′
)
N ′ otherwise

=

{
1+ logN ′+N ′ if N=2N ′

T∞2

(
N
2

)
+ N

2N ′ (1+ logN ′) +N
2 otherwise

(24)

T∞2(N)= [N/2N ′ (1+ logN ′) +N/2] + [N/4N ′ (1+ logN ′) +N/4] +

. . .+ [N/N ′N ′ (1+ logN ′) +N/N ′]

=1/2(2N+
√
N logN− logN−2) (25)

The solution to the recurrence relation in Eq. (21) is obtained by Eq. (26).

T∞(N)=
√
N
[

1/8(8
√
N+ log2 N+2 logN−8)

]
+1/2(2N+

√
N logN− logN−2)

=2N+1/8

√
N log2 N+3/4

√
N logN−

√
N−1/2 logN−1 (26)

7.2 Binary Search based Approach

Here, the recurrence relation is established using a binary search based ap-
proach. In the binary search based approach, the merge operations up to the
L/2

th level remain the same as in the sequential search based approach be-
cause up to the L/2

th level all the solutions are in a single front. After the
L/2

th level, in a merge operation where both sets of fronts have N/2 solutions,√
N solutions in the first front in F ′ are compared with the first solution in
dlog (N/2

√
N + 1)e fronts in F .

7.2.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (15). The first part
of the recurrence relation, i.e., T11(

√
N,M) is the same as Eq. (16) so the

solution to Eq. (16) is obtained by Eq (17). The second part of the recurrence
relation is given by Eq. (27) which is solved using Eq. (28).

T12(N,M)︸ ︷︷ ︸
N>N ′

=


MN ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

⌈
log
(

N
2N ′ +1

)⌉
N ′+(

N
2N ′
)
N ′ otherwise

=


MN ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

⌈
log
(

N
2N ′ +1

)⌉
N ′+

+N
2 otherwise

(27)
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T12(N,M)=
[
M
(⌈

log (N/2N ′+1)
⌉
N ′
)

+N/2
]

+

2
[
M
(⌈

log (N/4N ′+1)
⌉
N ′
)

+N/4
]

+ . . .+

N ′
/2
[
M
(⌈

log (N/N ′N ′+1)
⌉
N ′
)

+N/N ′
]

=1/2M
√
N(4
√
N− logN−4)+1/4N logN (28)

The solution to the recurrence relation in Eq. (15) corresponding to binary
search is obtained by Eq. (29).

T1(N,M)=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+

1/2M
√
N(4
√
N− logN−4)+1/4N logN

=1/2M
√
N(N+3

√
N− logN−4)+1/2N logN (29)

7.2.2 Parallel Approach

The recurrence relation of the parallel version is given by Eq. (21). The first
part of the recurrence relation, i.e., T11(

√
N) is the same as Eq. (22) so the

solution to Eq. (22) is obtained by Eq. (23). The second part of the recurrence
relation is given by Eq. (30) which is solved using Eq. (31).

T∞2(N)︸ ︷︷ ︸
N>N ′

=


1+ logN ′+N ′ if N=2N ′

T∞2

(
N
2

)
+

⌈
log
(

N
2N ′ +1

)⌉
(1+ logN ′)

+
(

N
2N ′
)
N ′ otherwise

=


1+ logN ′+N ′ if N=2N ′

T∞2

(
N
2

)
+

⌈
log
(

N
2N ′ +1

)⌉
(1+ logN ′)+N

2 otherwise

(30)

T∞2(N)=
[⌈

log (N/2N ′+1)
⌉

(1+ logN ′) +N/2
]

+[⌈
log (N/4N ′+1)

⌉
(1+ logN ′) +N/4

]
+ . . .+[⌈

log (N/N ′N ′+1)
⌉

(1+ logN ′) +N/N ′
]

=1/16(16N−16
√
N+ log3 N+4 log2 N+4 logN) (31)

The solution to the recurrence relation in Eq. (21) corresponding to binary
search is obtained by Eq. (32).

T∞(N)=
√
N
[

1/8(8
√
N+ log2 N+2 logN−8)

]
+

1/16(16N−16
√
N+ log3 N+4 log2 N+4 logN)

=2N−2
√
N+1/8

√
N log2 N+1/4

√
N logN+

1/16 log3 N+1/4 log2 N+1/4 logN (32)
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8 Scenario – IV

We establish the recurrence relation for the serial and parallel version when N
solutions are equally divided in

√
N fronts such that each solution in a front is

dominated by only one solution in its preceding front. As the number of fronts
is more than one, so the sequential and the binary search based approaches
perform differently. Let us consider N ′ =

√
N .

In this scenario, N solutions are equally divided into
√
N fronts. So, in

the final sorted fronts, each front has
√
N(= 2L/2) solutions, so in the merge

operation from the first to the L/2
th level, all the solutions are non-dominated.

So, the recurrence relation till the L/2
th level is the same as the recurrence

relation for the previous scenario till the L/2
th level.

8.1 Sequential Search based Approach

Now, we obtain the recurrence relation using a sequential search based strategy
for both the serial and the parallel version.

8.1.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (33). This recur-
rence relation is in two parts. The first part corresponds to the merge operation
up to the L/2

th level and the second part corresponds to the merge operation
from the L/2 + 1th to the last level.

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)︸ ︷︷ ︸

N>N ′

(33)

First Part of the Recurrence Relation: Each front in the final set of fronts
has
√
N solutions, so the first part of the recurrence relation is the same as

described by Eq. (16). The solution to Eq. (16) is obtained by Eq. (17).

Second Part of the Recurrence Relation: At the end of the merge op-
eration at the L/2

th level, each set of fronts has a single front which has
√
N

solutions. After the merge operation at the L/2
th level, each set of fronts has

more than one front and each front has
√
N solutions. Whenever a merge op-

eration is performed after the L/2
th level, only the solutions of the first front

in F ′ are compared with the solutions of F . The solutions of the remaining
fronts in F ′ are added directly to F because of the dominance relationship as
discussed in [17]. The solutions of a front F ′ ∈ F ′ are compared with respect
to all the solutions of each front in F and dominated by the last solution of
each front because each solution in a front is dominated by only one solution
in its preceding front.

In a merge operation where both sets of fronts have N/2 solutions, only
√
N

solutions in the first front in F ′ are compared with respect to all the solutions in
all N/2

√
N fronts in F . So, Tdom(N,M) = M (N/2

√
N)
√
N
√
N = M (N/2)

√
N .
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All the solutions from F ′ need to be inserted into F so, Tinsert(N) = N/2. Thus,
the recurrence relation corresponding to the second part is given by Eq. (34)
which is solved using Eq. (35).

T12(N,M)︸ ︷︷ ︸
N>N ′

=

{
MN ′N ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

(
N

2N ′
)
N ′N ′+

(
N

2N ′
)
N ′ otherwise

=

{
MN ′N ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

(
N
2

)
N ′+N/2 otherwise

(34)

T12(N,M)= [M (N/2)N ′+N/2] +2 [M (N/4)N ′+N/4] + . . .

+N ′
/2 [M (N/N ′)N ′+N/N ′]

=1/4MN
√
N logN+1/4N logN (35)

The solution to the recurrence relation in Eq. (33) is obtained by Eq. (36).

T1(N,M)=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+

1/4MN
√
N logN+1/4N logN

=1/4MN(
√
N logN+2

√
N−2)+1/2N logN (36)

The time complexity of the serial version (sequential search based) in this
scenario is O(MN

√
N logN) (see Eq. (36)) whereas the time complexity in

the previous scenario is O(MN
√
N) (see Eq. (20)). This is because, in the

current scenario, each solution in a front is dominated by only one solution in
its previous front. So, a solution is compared with respect to all the solutions
in its previous fronts. However, in the previous scenario, each solution in a
front is dominated by all the solutions in its previous front. So, a solution is
compared with only one solution in its previous fronts.

8.1.2 Parallel Approach

The time complexity of the parallel version in this scenario is the same as that
of the parallel version in the previous scenario which is given by Eq. (26).

Regardless of the difference in these two scenarios, the time complexity
of the parallel version is the same. The merge operation till the L/2

th level is
the same in both scenarios. After the merge operation at the L/2

th level, in
the parallel version in both scenarios, a solution sol ′ of the first front in F ′ is
simultaneously compared with respect to all the solutions of a front F ∈ F .
The dominance relation of sol ′ with respect to the solutions of F is stored in
an array and then, this array is processed in a parallel manner. So, the time
complexity in the second phase in both scenarios is also the same.
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8.2 Binary Search based Approach

Here, the recurrence relation is established using a binary search based strat-
egy. In the binary search based approach, the merge operations up to the L/2

th

level remain the same as in the sequential search based approach because up
to the L/2

th level all the solutions are in a single front. After the L/2
th level,

in a merge operation where both sets of fronts have N/2 solutions, only
√
N

solutions in the first front in F ′ are compared with respect to all the solutions
in dlog (N/2

√
N + 1)e fronts in F .

8.2.1 Serial Approach

The recurrence relation of the serial version is given by Eq. (33). The first
part of the recurrence relation, i.e., T11(

√
N,M) is the same as Eq. (16) so

the solution to Eq. (16) will be the same as Eq. (17). The second part of the
recurrence relation is given by Eq. (37) which is solved using Eq. (38).

T12(N,M)︸ ︷︷ ︸
N>N ′

=


MN ′N ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

⌈
log
(

N
2N ′ +1

)⌉
N ′N ′+(

N
2N ′
)
N ′ otherwise

=


MN ′N ′+N ′ if N=2N ′

2T12

(
N
2 ,M

)
+M

⌈
log
(

N
2N ′ +1

)⌉
N ′N ′

+N
2 otherwise

(37)

T12(N,M)=
[
M
⌈
log (N/2N ′+1)

⌉
N ′N ′+N/2

]
+

2
[
M
⌈
log (N/4N ′+1)

⌉
N ′N ′+N/4

]
+ . . .

+N ′
/2
[
M
⌈
log (N/N ′N ′+1)

⌉
N ′N ′+N/N ′

]
=1/2MN(4

√
N− logN−4)+1/4N logN (38)

The solution to the recurrence relation in Eq. (33) corresponding to binary
search is obtained in Eq. (39).

T1(N,M)=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+

1/2MN(4
√
N− logN−4)+1/4N logN

=1/2MN(5
√
N− logN−5)+1/2N logN (39)

8.2.2 Parallel Approach

The time complexity of the parallel version in this scenario is the same as
the time complexity of the parallel version in the previous scenario which is
given by Eq. (32). The merge operation till the L/2

th level is the same in both
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scenarios. After the L/2
th level, in the parallel version in both scenarios, a

solution sol ′ of a front F ′ ∈ F ′ is simultaneously compared with respect to
all the solutions of the first front in F . So, the time complexity in the second
phase in both scenarios is the same.

9 Space Complexity

In this section, we discuss the space complexity of the parallel version of the
approach. Merge sort is used in the first phase so the space complexity of the
first phase is O(N). To obtain the dominance matrix, a solution is compared
with another solution using a Boolean array of size M . The space required to
store this array is O(M). There are N2 pairs of solutions, so the space required
to obtain the dominance matrix is O(MN2). The size of the dominance matrix
is N ×N so the space required to store the dominance matrix is O(N2).

At each level, different merge operations took place simultaneously. A so-
lution of front F ′ ∈ F ′ is simultaneously compared with respect to all the
solutions of a front F ∈ F and the dominance relation of this particular solu-
tion with respect to all the solutions of F is stored in an array. The maximum
number of solutions in a front in both sets of fronts F and F ′ is N/2. So, when
a solution of front F ′ ∈ F ′ is simultaneously compared with respect to all the
solutions of a front F ∈ F , then the size of the array which stores the domi-
nance relationship of a solution of F ′ with respect to all the solutions of F is
N/2. Each solution of F ′ requires an array of size N/2 to store the dominance
relationship and there are maximum N/2 solutions in a front F ′ ∈ F ′, so the
space required for this array is N/2 × N/2 which is O(N2). Thus, the overall
space complexity of the parallel version of the approach is O(MN2).

10 Comparison With Some Other Approaches

Various approaches for non-dominated sorting have the parallelism property as
explained in Section 1. We obtain the worst case time complexity of the parallel
version of some of the approaches considering the PRAM-CREW model so that
a comparison can be made.

CNS (Constraint Non-dominated Sorting) [23] is used to assign a rank
which is called the constrained non-dominated rank (CNR). In general, the
rank which we obtained after applying various non-dominated sorting ap-
proaches [2, 4, 6, 7, 9, 11, 14, 26, 27, 29, 30, 32, 33] is called Pareto rank [23].
CNR considers Pareto rank and constraint rank to obtain its value. So, the
time complexity of CNS depends on the time complexity of the algorithm
which is used to obtain the Pareto rank. If we use parallel approach to find
the CNR of the solutions in a population, then also the time complexity of
the parallel version depends on the time complexity of the parallel version of
the Pareto ranking approach. So, the time complexity of the parallel version
of CNS cannot be better than the time complexity of the Pareto ranking ap-
proach which is used to obtain the Pareto rank of the solutions. Thus, until or
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unless we propose a new efficient non-dominated sorting approach to obtain
the Pareto rank of the solutions, CNS cannot perform better than the existing
non-dominated sorting approaches.

T-ENS (Tree based Efficient Non-dominated Sorting Approach) [33] works
in two phases. When parallelism is considered in T-ENS, the time complexity
of the parallel version of the first phase is O(M log3 N) using parallel merge
sort where the merge operation is itself implemented in a parallel manner. The
maximum number of processors required in the first phase is N . In case of T-
ENS, when solution solj is compared with soli, then we find the minimal index
m(1 ≤ m ≤ M) of the objective for which the value of solj is smaller than
soli. For example, let’s assume that we have two solutions soli = {1, 3, 4, 2}
and solj = {6, 4, 2, 1}. In this case, the minimum index m for which solj has
a smaller value than soli is 3. This index is obtained so that the solutions in
a front can be represented as a tree. This index between two solutions can be
obtained in O(M) time by comparing each objective sequentially. This type of
index value between each pair of solutions can be obtained in parallel. Similar
to the dominance matrix which stores the dominance relationship between
all pairs of solutions, we can have a matrix which stores the minimum index
value when all pairs of solutions are compared. Let us call this matrix Index
Matrix. The index matrix can be obtained in O(M) time in parallel. From the
index matrix, the minimum index value, when comparing two solutions can be
obtained in O(1) time. As there are N2 pairs of solutions, so the maximum
number of processors required to obtain index matrix is N2. In the worst
case of T-ENS, all the solutions are in different fronts and the ith solution is
compared with the solutions of all the previous fronts sequentially. Thus, the
time complexity of the parallel version in the worst case is given by Eq. (40).

TT-ENS rank parallel = 1 +
∑N

i=2
[(i− 1) + 1]

= 1 +
1

2
N(N − 1) + (N − 1)

= O(N2) (40)

In the worst case of T-ENS, each front has a single solution so, the parallel
version also behaves as its sequential counterpart except for obtaining the
minimum index value while comparing two solutions in O(1) time considering
index matrix. So, only a single processor is required. Thus, the overall worst
case time complexity of the parallel version is O(M log3 N)+O(M)+O(N2) =
O(N2). The maximum number of processors required by T-ENS is N2.

ENS-NDT (Efficient Non-dominated Sort with Non-Dominated Tree) [9]
works in three phases. When parallelism is considered in ENS-NDT, the time
complexity of the parallel version of the first phase is O(M log3 N) using paral-
lel merge sort where the merge operations are itself implemented in a parallel
manner. The maximum number of processors required to sort the solutions
based on the last objective in a parallel manner is N . The method to create
the prebalanced split is recursive in nature so parallelism is possible in this
method, too. The time complexity of the parallel version of the prebalanced
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split is obtained by Eq. (41). The maximum number of processors required for
the prebalance is 1

2N .

Tsplits parallel = N logN +

(
N

2
log

N

2

)
+

(
N

4
log

N

4

)
+ . . . +

(
N
N/2

log
N
N/2

)
=

[
N logN +

N

2
logN +

N

4
logN + . . . +

N
N/2

logN

]
−[

N

2
log 2 +

N

4
log 4 + . . . +

N
N/2

log
N

2

]
= 2(N logN −N + 1)

= O(N logN) (41)

In the last phase, the solutions are assigned to their respective front. In the
worst case, the number of fronts is one. In the worst case, the first M − 2 ob-
jective values of all the solutions are the same and the last two objective values
are such that they fulfill the non-dominated criteria [9]. To achieve parallelism
in the third phase, the solution which needs to be assigned to a front, can be
compared with respect to all the solutions of a particular front simultaneously
and then it can be decided whether that solution can be inserted into the
particular front or not. In the case of the parallel version of ENS-NDT, the
dominance matrix is obtained so that the dominance relationship between two
solutions can be obtained in O(1) time. The time complexity of obtaining the
dominance matrix in a parallel manner is O(logM). The maximum number
of processors required to obtain the dominance matrix in a parallel manner is
2MN2.

In the worst case, the first solution is assigned to the first front without
comparing with respect to any other solution. The ith solution which needs
to be ranked, is compared with all the i− 1 solutions of the first front simul-
taneously. This can be performed in O(1) time in a parallel manner as the
dominance relation between two solutions can be obtained in O(1) time using
the dominance matrix. After comparing the ith solution with respect to all the
i − 1 solutions simultaneously, the dominance nature of the ith solution with
all the solutions is obtained. As the ith solution is compared with respect to
i− 1 solutions, so the dominance nature can be obtained in a parallel manner
in O(log i) time. After deciding that the ith solution is non-dominated with
respect to all the i−1 solutions, it is added to the front in O(1) time. The time
complexity of the parallel version in the third phase is given by Eq. (42). The
maximum number of processors required to assign rank to all the solutions in
the third phase is N − 1.

TENS-NDT rank parallel = 1 +
∑N

i=2

[
1 +

⌈
log i

⌉
+ 1
]

= 1 + (N − 1) + N logN − (N − 1) + (N − 1)

= N logN + N = O(N logN) (42)
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Thus, the overall time complexity of the parallel version of ENS-NDT is
O(M log3 N)+O(N logN)+O(logM)+O(N logN) = O(N logN). The max-
imum number of processors required by ENS-NDT is 2MN2.

The worst case time complexity of the parallel version of ENS isO(N2) [16].
From this analysis it is clear that the worst time complexity of the parallel
version of DCNS is better than the worst case time complexity of the parallel
version of some of the other approaches.

11 Conclusions & Future Work

In this paper, we have thoroughly explored and analyzed the parallelism in
the DCNS approach considering the PRAM CREW model. The parallelism
is discussed in both phases of the DCNS approach. The best case time com-
plexity of the serial version of the DCNS approach (based on binary search) is
O(N logN +MN). This happens when all the solutions are in different fronts.
Here, the values of the first objective for each of the solutions are different.
This best case time complexity is better than the best case time complexity
of the previous approaches for M > 3. The worst case time complexity of the
serial version is O(MN2) when all the solutions are non-dominated.

The time complexity of the parallel version of the second phase is O(N).
The time required to compute the dominance matrix is O(logM) and the time
complexity of the first phase is O(log3 N). Thus, the overall time complexity
of the parallel version of the approach is O(log3 N) + O(logM) + O(N) =
O(logM + N). The space complexity of the parallel version of our approach
is O(MN2). The time complexity of the parallel version of non-dominated
sorting is proved to beO(M+N) in [28]. We have analyzed the time complexity
of the serial and parallel version in four different scenarios. In the last two
scenarios, the time complexity of the serial version differs; however, the time
complexity of the parallel version remains the same. The maximum number of
processors required for the parallel version of the DCNS approach is 2MN2.

In this paper, we have performed a theoretical analysis, so as part of our
future work, we would like to implement the parallel version of the approach
and to measure the actual speedup. It would also be interesting to use the
divide-and-conquer based approach in BOS and other approaches for non-
dominated sorting to achieve the parallelism if possible. The incremental non-
dominated sorting problem can also be a potential area of future work. It would
be really interesting to compare different non-dominated sorting approaches
based on their parallel version. In this way, we can analyze which algorithm is
better in a parallel environment as compared to others.
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