
Parallel Multi-Objective Evolutionary Algorithms: A
Comprehensive Survey

Jesús Guillermo Falcón-Cardonaa,∗, Raquel Hernández Gómeza, Carlos A.
Coello Coelloa,b, Ma. Guadalupe Castillo Tapiac

aCINVESTAV-IPN, Department of Computer Science, Av. IPN No. 2508, Col. San Pedro
Zacatenco, Mexico City, Mexico, 07300

bBasque Center for Applied Mathematics (BCAM) & Ikerbasque, Spain.
cUAM Azcapotzalco, Departamento de Administración, Av. San Pablo No. 180, Mexico

City, Mexico, 02200

Abstract

Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search tech-

niques that have been extensively used to solve difficult problems in a wide

variety of disciplines. However, they can be very demanding in terms of compu-

tational resources. Parallel implementations of MOEAs (pMOEAs) provide con-

siderable gains regarding performance and scalability and, therefore, their rele-

vance in tackling computationally expensive applications. This paper presents

a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of

methods and the key contributions to the field. Furthermore, some of the open

questions that require further research are also briefly discussed.

Keywords: Multi-objective optimization, evolutionary algorithms, parallel

computing

2010 MSC: 00-01, 99-00

⋆The first and second authors acknowledge support from CONACyT to pursue graduate
studies in computer science at CINVESTAV-IPN. Carlos A. Coello Coello acknowledges sup-
port from the CONACyT project no. 1920, from a 2018 SEP-Cinvestav grant (application
no. 4), and the Basque Government through the BERC 2018-2021 program by the Spanish
Ministry of Science.

∗Corresponding author
Email addresses: jfalcon@tec.mx (Jesús Guillermo Falcón-Cardona),

rhernandez@computacion.cs.cinvestav.mx (Raquel Hernández Gómez),
ccoello@cs.cinvestav.mx (Carlos A. Coello Coello), mgct@azc.uam.mx (Ma. Guadalupe
Castillo Tapia)

Preprint submitted to Journal of LATEX Templates August 2, 2021

1. Introduction

Many real-world applications can be formulated as multi-objective optimiza-

tion problems (MOPs), which involve the simultaneous optimization of several,

often conflicting, objective functions. The solution to an MOP consists in find-

ing, not one, but rather a set of incomparable solutions, which cannot be im-5

proved in one objective without deteriorating at least another one. A very

popular and effective way to cope with MOPs is by means of multi-objective

evolutionary algorithms (MOEAs) [1] because they can find nearly optimal so-

lutions in a single run without imposing any particular assumptions such as

continuity or differentiability. Instead, these methods are based on randomized10

search strategies that mimic Darwin’s principle of natural selection. However,

and despite their evident advantages, MOEAs require a significant number of

objective function evaluations, becoming unaffordable for certain applications

that demand an intensive use of computational resources.

The computational cost of an MOEA at each iteration is affected by two15

factors: 1) the computational complexity of evaluating the objective functions,

and 2) the scalability of the input parameters. In the first case, a vast majority

of MOPs cannot be expressed in an algebraic form. Thus, their evaluation is

conducted by time-consuming simulators. Although some attempts have been

made to reduce the execution time of MOEAs by exploiting knowledge acquired20

during the search [2, 3], the quality of the final solutions often worsens. Ex-

amples of the second case include applications that deal with high dimensional

spaces, i.e., MOPs having four or more objectives, or having hundreds, even

thousands of decision variables. These kind of MOPs, also known as many-

objective optimization problems (MaOPs) [4] and large-scale multi-objective25

optimization problems [5], respectively, considerably increase the running time

of MOEAs [6, 7, 8]. Some other applications need a large population size for im-

proving accuracy [9] or covering more regions of the search space [10]. Though

most MOEAs run in expected polynomial time regarding their population size,

the storage limit also becomes an issue.30

2

Parallel MOEAs (pMOEAs) are an attractive option to address the above

mentioned issues, where the basic idea is to sub-divide the operation of the

MOEA into several tasks. Each of these tasks is solved simultaneously on a dif-

ferent processing unit or deme1 and, once all of them have been completed, the

results are combined to provide a solution to the MOP [11]. Moreover, process-35

ing units can be on the same machine, or distributed in a collection of machines

interconnected by a network [12]. The wide acceptance of pMOEAs is mainly

because they can produce substantial gains in terms of execution time and, in

some cases, they can also improve the accuracy of the results with respect to

their serial counterparts [13]. Throughtout the years, several pMOEAs have40

been proposed (see [14] and [15] for a condensed list of approaches), aiming to

advance the state-of-the-art or to tackle a specific problem. However, a constant

factor has been the use of the four main types of parallel models: master-slave,

island, diffusion, and hybrid models [16, 13] (see Figure 1). The master-slave

model is one the of the simplest ways to parallelize MOEAs. Its backbone idea45

is the parallelization of the operations of an MOEA that do not require informa-

tion about all the individuals. The island model takes inspiration from nature

where populations evolve simultaneously in isolation. Hence, several indepen-

dent MOEAs could be executed in different processors. The diffusion model,

also known as fine-grained parallelization, spatially distributes a single popula-50

tion among several processing units, i.e., employing a neighborhood structure.

This paradigm is well-suited for massively parallel computers. Finally, hybrid

models come from the combination of the three previous models. These four

parallel models have promoted the design and implementation of most of the

currently available pMOEAs.55

To date, several tutorials and surveys on pMOEAs have been published, aim-

ing to provide the basics on the matter and describe the most recent approaches

[17, 14, 18, 1, 19, 16, 15, 13]. In 2003, Van Veldhuizen et al. [17] published a

1A Deme is a subgroup of individuals of the population (or even one individual), which

explores the search space, using a search engine.

3

journal paper which not only gives useful guidelines for the design and imple-

mentation of pMOEAs, but also makes observations about parallel architectures,60

benchmarks, performance metrics, and estimations of their computational time.

Furthermore, the authors introduced innovative concepts for the migration and

replacement schemes, as well as a generic pseudocode for different parallel mod-

els, using for this purpose a specialized notation. However, no taxonomy was

proposed and they only provided the review of four approaches. An extended65

version of this work, published in a book chapter [1, p.443] in 2007, included a

comprehensive literature review of more than 40 implementations of pMOEAs,

dating back to 1992. In 2005, Nebro et al. [14] published a book chapter

where they proposed one of the first taxonomies of pMOEAs and a wide review

of approaches, considering features such as programming language, connection70

topology, parallel model, and application domain. In spite of providing a review

of more than 40 pMOEAs (from 1993 to 2004), no specific discussion on the

advantages and drawbacks of the approaches is provided. Later on, Luna et

al [18] and Luna and Alba [15], in 2006 and 2015, respectively, extended the

work of Nebro et al. [14] by refining their taxonomy and aggregating the char-75

acteristics of up to 80 pMOEAs from 1993 to 2011. Nevertheless, the review

of approaches is exclusively focused on reporting their main features (according

to the taxonomies) without a discussion of properties and performances. On

the other hand, López Jaimes and Coello [16] presented a review of modern

parallel platforms and the way in which they can be exploited to implement80

pMOEAs. Additionally, an explanation of the four parallel models and a review

of five approaches from 2000 to 2007 is included. Last but not least, Talbi et

al. [19] published a general overview of pMOEAs, providing a taxonomy for

parallel meta-heuristics and exact methods. The authors discussed parallel and

distributed architectures and estimated the computational time for the master-85

slave model. The literature review provided in this case includes more than

30 pMOEAs published between 1995 and 2007, covering their design and im-

plementation. Finally, in 2019, Talbi [13] extended this work by refining the

proposed taxonomy and by analyzing the implementation issues of pMOEAs.

4

However, a review of recent approaches was not incorporated.90

Due to the critical impact of pMOEAs and the continued development of

more sophisticated proposals, this paper aims to provide a comprehensive review

of approaches. To this aim, we propose a refinement of Talbi’s taxonomy [13],

considering different characteristics of pMOEAs. Hence, we aim to propose here

a unified taxonomy. Based on the taxonomy, we analyze in detail the advantages95

and drawbacks of several pMOEAs published from 2002 until 2020. Hence, this

is first survey that reviews pMOEAs published from 2011 until 2020. We include

approaches in the review that introduce new ideas on the design of pMOEAs

that push forward the state-of-the-art. Additionally, we briefly describe some

pMOEAs that have been applied to solve real-world problems. Finally, some100

future research trends in the area are outlined.

The remainder of this paper is organized as follows. Section 2 introduces

the basic concepts that will be used throughout the rest of the paper as well

as the parallel models that have been utilized for the design of pMOEAs. Sec-

tion 3 is devoted to present our proposed taxonomy as well as a comprehensive105

review of state-of-the-art pMOEAs. Section 5 describes some real-world ap-

plications where pMOEAs have been used. Section 6 proposes some possible

future research trends. Finally, our main conclusions are provided in Section 7.

2. Background

This section is devoted to provide some basic definitions to make the paper110

self-contained. First, we define the general multi-objective optimization prob-

lem. Then, we outline the basics of multi-objective evolutionary algorithms

(MOEAs). Finally, we describe the general parallelization models of MOEAs,

i.e., master-slave, island, diffusion, and hybrid models.

2.1. Multi-Objective Optimization115

According to Coello et al. [1], the formal definition of an MOP is as follows:

5

Minimize f(x⃗) = (f1(x⃗), f2(x⃗), . . . , fm(x⃗)) (1)

subject to gj(x⃗) ≥ 0, j = 1, 2, . . . , p, (2)

hk(x⃗) = 0, k = 1, 2, . . . , q, (3)

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , n, (4)

where x⃗ = (x1, x2, . . . , xn)
T ∈ X is a decision vector, X ⊆ Rn is the decision

space, f(x⃗) ∈ Y is an objective vector of m (≥ 2), normally conflicting, objective

functions fi : X → R, i = 1, . . . ,m, and Y ⊆ Rm is the objective space. The

constraints (2)-(4) determine the set of feasible solutions.120

When tackling an MOP, an order relation is necessary to compare solutions.

The Pareto dominance relation, which is a binary relation that imposes a strict

partial order in Rm, has been commonly employed. Given two vectors x⃗, y⃗ ∈ Rn,

it is said that x⃗ Pareto dominates y⃗ (denoted by x⃗ ≺ y⃗), if fi(x⃗) ≤ fi(y⃗) for

all i = 1, 2, . . . ,m and ∃j ∈ {1, 2, . . . ,m} such that fj(x⃗) < fj(y⃗). In multi-125

objective optimization, the common optimality criterion is defined in terms of

the Pareto dominance relation as follows: a vector of decision variables x⃗∗ ∈ X

is Pareto optimal if there does not exist another x⃗ ∈ X such that x⃗ ≺ x⃗∗. Due

to the conflicting nature of the objective functions, the solution to an MOP is

the set of all Pareto optimal solutions, known as the Pareto set. The image130

of the Pareto set is the Pareto front (PF) whose elements represent the best

possible trade-offs among the objectives.

2.2. Multi-Objective Evolutionary Algorithms

In the last 20 years, MOEAs have become a popular choice for tackling com-

plex MOPs [1, 20, 21, 22]. MOEAs are stochastic black-box metaheuristics based135

on the principles of Darwin’s natural evolution that can approximate the Pareto

front in one execution due to their population-based nature. The main goals of

MOEAs are to produce solutions as close as possible to the Pareto front, hav-

ing good diversity and covering the whole Pareto front. MOEAs are set-based

methods that at each iteration t maintain a population Pt =
{
x⃗1, x⃗2, . . . , x⃗µ

}
140

6

that has to be evolved, using a set of evolutionary operators: mating or parent

selection (π), variation (ν), and survival selection (σ). In the following, let AN

represent a subset of size N of the set A and let (A,M) be a multiset of the set

A, whereM : A→ N.

1. π : X µ → (X µ,M). This operator chooses from X µ, µ solutions that145

will shape the mating pool, i.e., the parent solutions employed to create

new ones via the variation operators. Since a solution can be chosen zero

or more times, the mating pool is represented as the multiset (X µ,M).

In the literature, there are several mating selection mechanisms, but the

common strategies are random sampling and binary tournament [1].150

2. ν : (X µ,M) → X λ. Variation operators produce λ new individuals

from the mating pool. Variation operators aim to explore and exploit the

decision variable space. A wide range of variation operators have been

proposed to handle different encodings of the decision vector. Regarding

real-numbers encoding, the most common choices are: simulated binary155

crossover (SBX) and polynomial-based mutation (PBX) [23].

3. Survival selection σ determines the solutions that will shape the next

generation. This selection function has two variants: (1) σ(µ,λ) : X λ →

X µ in which the best µ (µ ≤ λ) solutions from X λ replace the parent

population, and (2) σ(µ+λ) : (X µ∪X λ)→ X µ where the best µ individuals160

from the union of parents and offspring solutions are chosen. Regarding

the latter selection scheme, the simplest case is the steady-state selection,

which refers to σµ+1. However, σ(µ+λ) is preferred to incorporate elitism

which is an important strategy of MOEAs to guide the population towards

the true Pareto front of an MOP [1].165

Based on its evolutionary operators, an MOEA can be defined by the itera-

tive rule: Pt+1 = σ {Pt ∪ ν[π(Pt)]}. Additionally, some MOEAs use a secondary

population (also known as archive) A that keeps the non-dominated solutions

found so far as a way to introduce elitism. At the end, the final population

or the archive is returned as the approximation set. The general framework170

7

of an MOEA is shown in Algorithm 1. First, the main population Pt=0 and

the archive A are initialized in lines 1 and 2, respectively. Lines 4 to 11 show

the main loop of an MOEA. At each iteration, mating selection is performed

to select µ parent solutions from either Pt or A. Variation operators (e.g.,

crossover and mutation) further explore this set M of parent solutions to create175

the set O of λ offspring solutions. Then, the archive A is updated using the

non-dominated offspring solutions in line 7. The next step involves performing

the survival selection strategy, using either a (µ, λ) or a (µ+λ) selection rule, to

shape the next generation Pt+1. Finally, an MOEA returns Pt or A, depending

on its specific design. However, both of them contain an approximation to the180

Pareto optimal front. Table 1 presents a summary of the most representative

MOEAs, briefly describing which operators π, ν, and σ they use as well as some

additional observations.

ALGORITHM 1: MOEA’s general framework

1 Generate initial population P0 of size µ;

2 Initialize A with the non-dominated solutions from P0 ;

3 t← 0;

4 while stopping criterion is not fulfilled do

5 M ← Select µ parents from Pt or A;

6 O ←Generate a set of λ offspring solutions based on M , using

variation operators;

7 Update archive A using O;

8 S ← Select survival solutions using a σ(µ,λ) or σ(µ+λ) strategy;

9 Pt+1 ← S;

10 t← t+ 1;

11 end

12 return Pt or A

The MOEAs presented in Table 1 (and, in general, all the MOEAs designed

so far) have a remarkable aspect in common: they were designed to tackle com-185

8

Table 1: Features of the most representative MOEAs

Year
Optimizer/

Full Name Parent Selection (π) Variation (ν) Survival Selection (σ) Observations
Reference

1994

NSGA Nondominated Stochastic remainder selection. Computational complexity

[24] Sorting Genetic Dummy fitness based on non- Binary Non-elitist of O(|P |3m).

Algorithm dominated fronts and sharing operators. approach: (µ, µ). Performance sensitive

in decision variable space. to σshare parameter.

1998

SPEA Strength Pareto Tournaments (including exter- Single-point Elitist scheme External archive pruned to a

[25] Evolutionary nal solutions). Fitness based crossover and with selection limit size using a clustering

Algorithm on Pareto dominance. binary mutation. (µ, µ). method (average linkage).

1999

Not applicable, except for Elitist (1 + 1), compa- External archive truncated to a

Pareto the variant (µ+ λ), Random risons are made using fixed size by an adaptive grid,

PAES Archived whith µ > 1 or λ > 1. mutation Pareto dominance and which recursively splits the

[26] Evolution In this case the selection (similar to a a degree of crowding, objective space in O(2lm)

Strategy is performed via hill-climber). which is estimated from subdivisions, where l is a

tournaments. an external archive. user defined parameter.

2000

Nondominated Tournaments based on a pre- Simulated binary Elitist scheme Computational complexity of

NSGA-II Sorting Genetic ference relation (≺n), which crossover (SBX) (µ+ µ), based O(|P |2m). Constraint han-

[20] Algorithm II considers non-dominated fronts and Polynomial- on ≺n. dling by modifying Pareto

and crowding distance. based mutation. dominance.

2001

SPEA2 Strength Pareto Tournaments. Fitness based Depending on the Elitist scheme (µ+ λ), Boundary points are preserved.

[27] Evolutionary on Pareto dominance and den- problem, same as truncation considers distan- Computational complexity of

Algorithm 2 sity information (kNN method). SPEA or NSGA-II. ces among individuals. O(|P |2(log |P |+m)).

2004

Binary tournaments. Fitness is Elitist scheme (µ+ µ), Framework of binary indicators,

IBEA Indicator-Based given by an exponential func- Depending on the which iteratively removes compliant with Pareto dominance.

[28, 29] Evolutionary tion, which calculates the per- problem, same as the worst individual, Required scaling factor κ > 0,

Algorithm formance indicator of each SPEA or NSGA-II. updating fitness values. dependent on the problem and

distinct pair of individuals. the indicator used.

2005

S-metric Simulated Elitist (µ+ 1). The Expensive computational

SMS-EMOA Selection binary crossover solution with the worst complexity of O(|P |m−1).

[30] Evolutionary Random sampling. (SBX) and hypervolume contribution Hypervolume is maximized

Multi-Objective Polynomial- of the last non-dominated through generations.

Optimization based mutation. front is removed.

2007

Multi-Objective Sampling from Elitist scheme µ(1 + λ). Invariant against rotation, sca-

Covariance In the scheme λ(≥ 1) a multi-variate Population is ranked ling and translation of the search

MO-CMA- Matrix every individual in normal distribution according to the non- space. Parameter adaptation of

ES [31] Adaptation the population is with the parent as dominated fronts and the mutation distribution per

Evolution mutated. the mean vector the contributing hyper- individual. Computationally

Strategy and an adaptive volume (or crowding expensive for problems with

covariance matrix. distance). many variables or objectives.

2007

Multi-Objective Random sampling from the Only one offspring Elitist scheme (µ+ µ). A Framework of scalarizing func-

MOEA/D Evolutionary neighborhood Ti of each is created. Same as child i replaces solutions tions with a complexity of

[32] Algorithm i-th individual, associated SPEA2, including from Ti if its correspon- O(|P ||T |m). Required set of

based on with a scalar optimization differential ding scalarizing function weight vectors and neighbor-

Decomposition problem. evolution. is equivalent or better. hood size (|T | ≪ |P |).

2011

Hypervolume Binary tournaments Depending on the Elitist scheme (µ+ µ). If m ≤ 3 the exact hypervolume

HypE Estimation using the hypervolume problem, SBX Solutions with the worst is calculated, otherwise it is esti-

[33] Algorithm for contributions of the and Polynomial- hypervolume contributions mated using Monte Carlo simula-

Multi-Objective population. based mutation. of the last non-dominated tion, where a large number of

Optimization front are discarded. sampling points is required.

2014

Binary tournaments Elitist (µ+ µ), crowding Computational complexity

NSGA-III Nondominated for constraint MOPs, SBX and Polyno- distance is replaced by a of O(|P |2m).

[34, 35] Sorting Genetic otherwise mial-based niching strategy, which Algorithm designed for

Algorithm III random sampling. mutation requires a set of well solving MOPs up to

spread reference points. 15 objectives.

9

plex MOPs. Unlike mathematical programming techniques proposed by the

Multi-Criterion Decision Making community, MOEAs are flexible techniques

that can be easily applied on a plethora of nonlinear MOPs without additional

requirements and assuming less strict mathematical properties [1]. However,

an important drawback of MOEAs is that they normally require a considerably190

large number of objective function evaluations to obtain good results. More-

over, many of the real-world MOPs are computationally expensive since they

depend on time-consuming methods for computing the objective functions and

constraints. Hence, the application of sequential MOEAs may be limited. In

this context, parallelism appears as an alternative to design MOEAs such that195

they can solve complex MOPs in a reasonable amount of time [17]. In contrast

to sequential MOEAs, parallel MOEAs are attractive for the following reasons

(among others) [16]: (1) pMOEAs can improve the search ability of sequential

MOEAs, (2) due to this improved search ability, the possibility to get stuck in

suboptimal solutions is reduced, (3) pMOEAs allow the use of larger population200

sizes, (4) they tend to enhance the properties of the Pareto front approximations,

and (5) pMOEAs are more suitable to solve large-scale MOPs and MaOPs. In

the next section, we present the main parallel models that can be used to define

pMOEAs.

2.3. Parallel Models of MOEAs205

Parallel paradigms can be utilized to decompose some problem (task and/or

data) in order to decrease the execution time. These paradigms may also allow

for exploring more of the solution space, potentially finding better solutions in

the same amount of time as when using a serial implementation. A pMOEA

seeks to find as good or better MOP solutions in less time than its serial MOEA210

counterpart and/or searching more of the solution space in the same amount

of execution time (i.e., the goals are to increase efficiency and effectiveness).

However, the use of parallel methodologies generally implies the utilization of

additional computational resources. pMOEAs have followed four main paral-

lelization models that have been inherited from single-objective metaheuristics215

10

Master-slave model Island model Diffusion model

Island/Diffusion model Island/Diffusion/Master-slave

model

Migration

Master

Slave

Slave Slave

Slave

Island/Master-slave model

Island

Slave

Slave Slave

Slave

Island

Slave

Slave Slave

Slave

Island

Slave

SlaveSlave

Slave

Island

Slave

SlaveSlave

Slave

Master

Slave

Slave Slave

Slave

Figure 1: Classical parallel models: master-slave, island model, diffusion, and different hybrid

models.

[16]: (1) master-slave or global parallelization, (2) the island model, also known

as coarse-grained parallelization, (3) the diffusion model that is also denoted as

fine-grained parallelization, and (4) hybrid models which are based on combi-

nations of the three previous models. These parallel models are illustrated in

Figure 1. In the following, these four parallel models will be broadly described.220

Master-slave. The master-slave model is suitable to parallelize the operations

of an MOEA that do not require information about all individuals [15]. Thus,

a single population is managed by a master and the evaluation of the objective

functions and the application of the variation operators2 are done simultaneously

by the slaves. The master-slave model does not alter the search behavior of the225

2Normally, the parallelization of these operators is omitted, since they may introduce a

high communication overhead when parents are sent to slaves. A better practice is to perform

tournament selection among the subset of individuals.

11

underlying sequential MOEAs, but instead, it makes them faster, especially

when computationally expensive objective functions are tackled [16, 15].

The master-slave model, also known as global parallelization, can be imple-

mented either on shared or on distributed memory computers. In the former

case, the population is stored in a shared memory and each slave processor reads230

the individuals assigned to it and writes the results back. On the latter, a master

processor stores the population and is responsible for sending the individuals

to the slave processors and collecting the results. The number of individuals

assigned to any slave may be constant, but in some cases it may be necessary to

balance the computational load among the available processors. Furthermore,235

it is possible to disseminate objective function evaluations across the slaves, in-

stead of population members, and even more, it is possible to let some slaves

specialize in the evaluation of a specific objective function [36, 37, 38, 39]. It

is worth noting that if the evaluations have a very low computational cost, the

time spent in the communications could be easily higher than the time required240

for performing any computation. This is specially true in distributed memory

machines where the overhead produced by each message might be considerable.

The master-slave model can be implemented following a synchronous or

asynchronous strategy [13]. In a synchronous master-slave pMOEA, the mas-

ter waits to receive the results of all the population before proceeding to the245

next generation. Here, the search behavior is conceptually identical to a serial

MOEA, with its execution time being the only difference. One disadvantage of

this approach in distributed memory environments is that synchronization may

cause a waste of resources, since slave processors sit idle while the master is

doing its work and this is accentuated when the machines are not homogeneous.250

On the other hand, in an asynchronous master-slave pMOEA, the master does

not stop to wait for any slow slave and thus, the search space exploration is

different from a MOEA being executed on a serial processor. In the case of

shared memory architectures, the master must lock individuals until they are

ready to be incorporated in the population.255

12

Island model. This model is inspired by the natural phenomenon of popula-

tions evolving in relative isolation, such as might happen within some oceanic

chain of islands [1, 16]. Sometimes this approach has been called distributed

model as it is usually implemented on distributed memory computers. Further-

more, it has also been called coarse-grained model or cooperative parallelism260

[13], since islands contain a large number of individuals. In technical terms, the

island model divides the overall population into a number of independent sub-

populations that live in islands (processors) and evolve through the execution of

a serial MOEA. Islands are connected in a physical or logical topology, such as

a star, line, tree or ring (just to name a few). Occasionally, neighboring islands265

interact with each other, exchanging some individuals as shown in Figure 1.

This operation is known as migration and it introduces extra parameters: the

number of solutions to migrate, how often migration occurs, and the migration

policy that determines which individuals migrate and which are replaced in the

receiving subpopulation [1]. These parameters along with the topology play an270

important role in the performance of an island pMOEA, because they deter-

mine how fast (or how slow) a good solution spreads to other subpopulations.

Additionally, an island pMOEA can manage the Pareto front approximation

either in a centralized way (i.e., by a master island that maintains the global

nondominated solutions) or locally (i.e., managed by each sub-MOEA during275

the computation).

Sometimes, island pMOEAs with a star topology and high migration rates

are mistaken with master-slave algorithms. The difference lies in that islands

evolve subpopulations during a certain number of generations (called epochs),

applying all the steps of an MOEA and after this period, they migrate individu-280

als. If the communication is synchronous, islands have to wait until they receive

their corresponding individuals from the central island, and in the same way,

the central island will be idle while peripheral islands are working. When the

central island performs steps in addition to those performed by the other islands

(like keeping an external archive of non-dominated solutions), this pMOEA is285

considered heterogeneous. On the other hand, master-slave pMOEAs keep one

13

population that is distributed among processors at each generation, with the

purpose of being reproduced and/or evaluated. The remaining steps of the al-

gorithm are performed by the master. Finally, as can be noticed, communication

rates are higher in the master-slave model than in the island model.290

Island pMOEAs are very popular because they are a simple extension of

serial MOEAs and few changes are needed to implement a migration operator

[16]. Furthermore, their behavior differs from their serial counterpart, allowing

the formation of niches, which can improve the search. Algorithms based on this

model can considerably reduce the execution time and its use is recommended295

for clusters of computers with very limited communication among them. They

are also suitable for problems with large search spaces where a large population

size is required. A disadvantage of island pMOEAs is that their diversity may

be poor, since some parts of the Pareto front could be missed by its islands.

Diffusion. Unlike island pMOEAs where the population is divided into sub-300

populations of a considerable size, the diffusion model or cellular MOEA typi-

cally considers subpopulations composed of one individual [16, 15]. Hence, this

has led some people to use the term fine-grained parallelism for this sort of ap-

proach. A neighborhood structure is imposed on the processors that hold the

subpopulations such that each subpopulation can only interact with its nearest305

neighbors. The neighborhood structure is shown in Figure 1 with a dashed line,

covering the involved processors. Variation operators are applied only within

these (possibly) overlapping neighborhoods. The neighborhood geometry could

be a square, a rectangle, a cube, or any other shape depending upon the num-

ber of dimensions associated with the diffusion algorithm’s topological design.310

Each geometry reflects some associated number and arrangement of neighbors

within a multi-dimensional grid. As good solutions arise in different areas of the

local topology, the aim is that they spread or diffuse slowly throughout the en-

tire population due to the overlapping or dynamically changing neighborhoods

that it adopts. According to Luna and Alba [15], this model is well suited for315

massively parallel computers. However, it can be used sequentially on a regular

14

computer or using graphics processing units (GPUs). In this model, there is

no migration per se and communication costs may then be very high within a

neighborhood.

Hybrid models. Few researchers have attempted to combine different methods320

to parallelize MOEAs, producing the so-called hybrid or hierarchical pMOEAs

[16, 15]. Some of these hybrid algorithms add an additional degree of complex-

ity to the already complicated scene of parallel approaches, but other hybrids

manage to keep the same complexity as one of their components. When two

or more methods for parallelizing MOEAs are combined, they form a hierarchy.325

At the upper level most hybrid pMOEAs implement a coarse-grained parallel

model and at the lower level they can adopt a coarse-grained model or a fine-

grained strategy. For instance, considering an island model in the upper level,

it could be combined with a master-slave, island model or diffusion model in

the lower level as depicted in Figure 1.330

3. Parallel Multi-Objective Evolutionary Algorithms

This section is devoted to introduce our refined taxonomy. Then, we present

a review of pMOEAs which have been proposed from 2002 to 2020, analyz-

ing their main design properties, advantages and drawbacks. The selection of

pMOEAs is based on their contributions to push forward the state-of-the-art.335

3.1. Our Proposed Taxonomy

In 2019, Talbi [13] presented a taxonomy that classifies pMOEAs in three lev-

els of parallelization: (1) algorithmic-level, (2) iteration-level, and (3) solution-

level. The algorithmic-level encompasses the parallel execution of either inde-

pendent or cooperative MOEAs, i.e., pMOEAs following the master-slave model340

or the island model, respectively. In this level of parallelization, Talbi indicates

that pMOEAs could handle the current Pareto front in a centralized or dis-

tributed way, and the objective and decision spaces could be managed following

a global or partitioned approach. Unlike the algorithmic-level where multiple

15

Master

NSGA-II MOEA/D

SMS-EMOA

Global

Pareto

Front

Algorithmic-level Iteration-level

Processor 1 Processor 2 Processor k

NSGA-II

Sequential execution of

Non-dominated sorting

Parallel calculation

of objective functions

Parallel execution

of crowding distances

Solution-level

Figure 2: Examples of the three levels of parallelization.

MOEAs are executed in parallel, the iteration-level focuses on parallelizing the345

main loop of a single MOEA. This level gives special attention to handle the

population in parallel since a CPU-time consuming component of any MOEA is

the evaluation of the objective functions. Hence, the author indicates that the

population can be divided into a number of subsets according to different crite-

ria (for instance, by objective functions). It is worth noting that these two levels350

of parallelization are not dependent on the target MOP which implies that only

problem-independent components are parallelized. In contrast, the solution-

level focuses on the parallelization of a single solution that involves the calcula-

tion of the objective functions and/or the constraints. Two types of strategies

are considered: decomposition of data where the calculation of functions is done355

in parallel for each partition of the data; and, function decomposition, where

a single function can be decomposed into many sub-functions. Figure 2 shows

examples of the three levels of parallelization. The algorithmic-level depicts the

parallel execution of NSGA-II, SMS-EMOA, and MOEA/D as slave nodes and

a master node having the global Pareto front. Regarding the iteration-level, it is360

shown the parallel execution of some of its mechanisms, namely, the evaluation

of objective functions and the calculation of the crowding distances. Finally,

the iteration-level example illustrates a function decomposition calculated in

parallel.

In Figure 3, we present our taxonomy which refines the one proposed by365

16

Talbi [13]. The refinements were done based on a comprehensive review of

pMOEAs. Our taxonomy keeps the three levels of parallelization mentioned

before. However, the main difference is the addition of new properties (shown in

boxes in the figure) for the three levels: we added the subcategory parallelism of

mechanisms to the iteration-level, and we considered the Predator-Prey parallel370

model [40] that has not been broadly studied and we also added the Consumer-

Producer parallel model [41] which has not been used in pMOEAs but we think

it has a great potential. We should emphasize that this taxonomy does not aim

to categorize a whole pMOEA, but instead, it focuses on the different levels

of parallelization. It is possible that a pMOEA uses different parallel levels375

which will produce a multi-level scheme (also known as hybrid model). The

algorithmic-level and iteration-level represent the main categories since they

are problem-independent classes. We propose that the iteration-level is divided

into two subclasses: parallelism of population in which the population is split

and distributed among different processors and parallelism of mechanisms where380

MOEAs’ mechanisms such as the selection schemes or the update of the external

archives are to be parallelized. The property parallel model is the backbone of

both the algorithmic-level and the iteration-level. This property encompasses

the well-known master-slave, island model, and diffusion model but we also

include the predator-prey and consumer-producer models. The parallel model385

is characterized by six additional properties:

1. Pareto front : it determines if the Pareto front approximation is managed

in a centralized or distributed way during the evolutionary process.

2. Decision space: a pMOEA can explore the decision space in a global or

in a partitioned way, where the latter has been especially employed when390

dealing with large-scale MOPs.

3. Objective space: as in the previous property, the parallel components of

a pMOEA can explore the objective space in an unrestricted way or they

can be focused on specific regions of the objective space.

4. Nodes: this category indicates if the processors execute homogeneous or395

17

heterogeneous algorithmic components, for instance, MOEAs with the

same mechanisms and parameters. It is not related to the hardware char-

acteristics.

5. Distribution: it determines if the assigned processors of a pMOEA are

static throughout the evolutionary process or if they dynamically change,400

depending, for instance, on load-balancing conditions.

6. Communication: it dictates how the different processors that execute the

pMOEA communicate with each other. Typically, synchronous and asyn-

chronous communication schemes have been implemented. However, a

recent study [42] proposes to have semi-asynchronous communication or405

even an adaptive communication scheme switching between synchronous

and asynchronous strategies, depending on the execution conditions.

These six categories characterize in a better way the parallel model of both

the algorithmic-level and the iteration-level. However, the solution-level, which

was directly taken from Talbi’s taxonomy, is only related to the communication410

property. This is because this parallel level is just in charge of parallelizing

the calculation of a single solution which requires a communication scheme to

compute the whole solution.

In the following sections, we provide a comprehensive review of state-of-the-

art pMOEAs that have been published from 2002 to 2020. The proposals are415

presented according to the parallelization levels that they use. In this light,

Tables 2, 4, and 6 show the algorithmic-, iteration-, and multi-level pMOEAs,

respectively. All these tables summarize the main characteristics, according

to the taxonomy, of the approaches. On the other hand, Tables 3, 5, and

7 include information about their implementation, i.e., parallel architecture,420

communication library, programming language, and operating system.

3.2. Algorithmic-level Parallelization

In this section, we describe the algorithmic-level pMOEAs that have been

published so far. Table 2 summarizes the proposals according to the properties

18

pMOEAs

Algorithmic-level Iteration-level Solution-level

Parallelism of

population
Parallelism of

mechanisms

Decomposition

of data

Decomposition

of function

Parallel model

Master-slave

Island model

Diffusion

Pareto front

Centralized

Distributed Partitioned

Objective space

Global

Decision space

Global

Partitioned

Nodes

Homogeneous

Heterogeneous

Communication

Synchronous

Asynchronous

Semi-asynchronous

Adaptive

Distribution

Static

Dynamic

Predator-prey

Consumer-producer

Figure 3: Proposed taxonomy of pMOEAs.

shown in our taxonomy in Figure 3 and Table 3 shows their implementation425

features.

In 2002, Kamiura et al. [43] introduced the Multi-Objective Genetic Algo-

rithm with Distributed Environment Scheme (MOGADES) which is an island

pMOEA with static homogeneous nodes that borrows some ideas from SPEA2

and NSGA-II. Here, the fitness is given by a weighted sum. Thus, to derive430

Pareto optimal solutions, each deme has a different search direction (weight

vector) within the global decision space. Furthermore, two archives are main-

tained in each island and both participate during the offspring generation. One

preserves solutions with the best fitness values and the other keeps the non-

dominated individuals. When the latter exceeds its allowable size, fitness shar-435

ing is performed without requiring any extra parameter. After synchronous

migration, weight vectors are updated taking into account the distance between

neighboring islands (two islands are neighbors only if they have contiguous

search directions). MOGADES was compared with SPEA2 and NSGA-II on

two test problems, using bit flip mutation and two point crossover. Good re-440

19

Table 2: Algorithmic-level proposals: main characteristics. The following terms are employed:

master-slave model (MS), island model (IM), synchronous (Sync), asynchronous (Async),

global (G), partitioned (P), centralized (C), distributed (D), homogeneous (Ho), heterogeneous

(He), static (St) and dynamic (Dyn).

N
a
m
e

B
a
se
li
n
e

A
lg
o
ri
th

m

P
a
ra

ll
e
l
m
o
d
e
l

C
o
m
m
u
n
ic
a
ti
o
n

D
e
c
is
io
n

S
p
a
c
e

O
b
je
c
ti
v
e
S
p
a
c
e

P
a
re

to
F
ro

n
t

N
o
d
e
s

D
is
tr
ib
u
ti
o
n

Y
e
a
r

R
e
fe
re

n
c
e

MOGADES
NSGA-II &

SPEA2
IM Sync G P D Ho St 2002 [43]

DCMOGA
MOGA &

SOGA
IM Sync G P C He St 2002 [44]

AsyncMOGA MOGA IM Async G G D Ho St 2002 [45]

SIM
NSGA &

SOGA
IM Sync G P C He St 2003 [46]

pPAES
PAES &

MOGA
MS Sync P G C He Dyn 2004 [47]

Cone-separated

NSGA-II
NSGA-II IM Sync G P D Ho St 2004 [48]

kosMOEA NSGA-II IM Sync G P C Ho St 2005 [49]

kssMOEA NSGA-II IM Sync P G C Ho St 2005 [49]

MRMOGA MOGA IM Sync P G D He St 2005 [50]

MFED SPEA IM Sync G G D Ho St 2006 [51]

Parallel

Hyper-heuristic

SPEA, SPEA2

& NSGA-II
IM Async G G C He St 2008 [52]

PNSGA NSGA-II IM Sync G G C He St 2009 [53]

SMPGA PNSGA IM Sync G G C He St 2010 [54]

AEMOA
NSGA-II &

MO-CMA-ES
MS Async G G C He St 2011 [55]

EMaOEA
GrEA, SPEA2+SDE

& NSGA-III
MS Sync G G D He St 2017 [56]

PasMoQAP Memetic MOEA IM Async G G D Ho St 2017 [57]

MOEA/D
pe
sp MOEA/D MS Sync G G C Ho St 2017 [58]

PEA Own approach MS Sync P G C Ho St 2018 [59]

PCPMOEA Own approach MS Async G P C Ho St 2019 [60]

S-PAMICRO SMS-EMOA IM Async G G D Ho St 2020 [61]

IMIA Indicator-based MOEAs IM Sync G G D He St 2021 [62]

20

Table 3: Algorithmic-level proposals: implementation characteristics.

N
a
m

e

P
a
r
a
ll
e
l

a
r
c
h
it

e
c
t
u
r
e

C
o
m

m
u
n
ic

a
t
io

n

li
b
r
a
r
y

P
r
o
g
r
a
m

m
in

g

la
n
g
u
a
g
e

O
p
e
r
a
t
in

g

s
y
s
t
e
m

R
e
fe

r
e
n
c
e

MOGADES Not defined Not defined Not defined Not defined [43]

DCMOGA Not defined Not defined Not defined Not defined [44]

asyncMOGA
Multi-computer

(PC-Cluster)
Not defined Not defined Not defined [45]

SIM
Parallel virtual

machines
MPI Not defined Not defined [46]

pPAES
Multi-core

(4 cores)

pThreads and

MPI
C Linux [47]

Cone-separated

NSGA-II

Multi-computer

(PC-Cluster)
MPI C Linux [48]

kosMOEA
Multi-core

(1 to 6 cores)
Not defined Not defined Not defined [49]

kssMOEA
Multi-core

(1 to 6 cores)
Not defined Not defined Not defined [49]

MRMOGA
Multi-computer

(16-node PC-Cluster)
MPI C

Linux

Red Hat
[50]

MFED
Multi-computer

(5-node PC-Cluster)
MPI C++ Windows XP [51]

Parallel

Hyper-heuristic
Not defined Not defined Not defined Not defined [52]

PNSGA Not defined Not defined Not defined Not defined [53]

SMPGA Not defined Not defined Not defined Not defined [54]

AEMOA

Multi-computer

(40- and 100-node

PC-Cluster)

Not defined Not defined Not defined [55]

EMaOEA Not defined Not defined Not defined Not defined [56]

PasMoQAP
Multi-computer

(32-node Grid)

ParadisEO

framework
C++ Not defined [57]

MOEA/D
pe
sp

Multi-computer

(2-node PC-Cluster)

MapReduce and

Spark
Java Not defined [58]

PEA Not defined Not defined Not defined Not defined [59]

PCPMOEA Multi-core Java threads Java Not defined [60]

S-PAMICRO
Multi-computer

(10-node PC-Cluster)
MPI C Linux [61]

IMIA
Multi-core

(5 cores)
OpenMP C RedHat [62]

21

sults were derived with widespread solutions. One drawback of this approach

is that the assignment of weight vectors is not generalized for more than two

objectives. Also, additional processing is required for normalizing the objective

functions.

The Distributed Cooperation model of Multi-Objective Genetic Algorithm445

(DCMOGA) [44] is an example of the island model with a star topology. It has

m + 1 nodes where the central node executes a MOEA (e.g., MOGA, SPEA2

or NSGA-II) and each of the remaining m nodes optimizes a designated ob-

jective function by means of any single-objective genetic algorithm (SOGA).

This approach is considered heterogeneous with global decision space and par-450

titioned objective space, since one deme behaves different from the others and

m demes specialize their search in disjoint regions. The central nodes maintains

the global nondominated solutions while the other nodes have archives of best

solutions and the stopping criterion is given by a predefined number of function

evaluations. At each epoch, extreme solutions3 are synchronously interchanged455

between the central and the peripheral nodes. If the migrated solution is better

in the ith objective either in the central node or in the ith peripheral node, the

local population is decreased and more solutions are migrated. When there is

no increase in quality in any of the peripheral nodes from one epoch to the next

one, all of them replace the SOGA by an MOEA. DCMOGA was compared460

with respect to basic MOEAs on different test problems, using binary encoding,

two-point crossover and bit flip mutation. Its authors concluded that DCMOGA

produced better spread Pareto fronts. One shortcoming of this approach is that

the workload is not well distributed after the migration process, because sub-

populations may have different sizes. Also, processors may become idle when465

the computation time of the algorithms is not equivalent.

Horii et al. [45] presented an island pMOEA, where asynchronous migration

is launched in a deme until solutions have converged. Furthermore, diversity is

maintained introducing migrants from the subpopulation which has the most

3Individuals that optimize an specific objective function.

22

different individuals. The rationale behind this scheme relies on the assump-470

tion that dissimilar genotypes of good quality promote higher schemata during

recombination. Therefore, two measures are introduced: one for convergence,

which is based on the covariance matrix of individuals’ objective functions and

another for estimating discrepancy, which uses Euclidean distances of average

genotypes between subpopulations. Each processor executes an independent475

MOGA [63] with global decision and objective spaces, employing real-valued

encoding, BLX-α and tournament selection. The proposal is homogeneous and

the Pareto front approximation is distributed all over the nodes. Authors com-

pared the proposed approach with respect to its synchronous version in four

bi-objective problems, concluding that the asynchronous version was better in480

a multi-frontal problem. Moreover, the algorithm does not require migration

parameters, but instead, the criterion for convergence needs a threshold which

must be established a priori. This threshold is problem-dependent, and it is

also sensitive to the scaling of the objective functions.

In the Specialized Island Model (SIM) [46] every deme is responsible for op-485

timizing a subset of the original objective functions with global decision space.

Hence, it is possible to have islands optimizing both multiple objectives or a

single objective function. All islands employ two selection techniques: roulette

and tournament. Those islands specialized in single-objective optimization ap-

ply a sharing technique with elitism, while the remaining use the non-dominated490

sorting approach of NSGA. Synchronous Migration is conducted by binary tour-

naments, and the replacement policy is random. The island optimizing all the

objective functions maintains the global non-dominated individuals. The au-

thors tested seven scenarios of SIM, varying the topology, specialization and

number of demes on an three-objective artificial problem. Their experimental495

results showed that the connected models always outperformed their isolated

counterparts, ensuring a large number of non-dominated solutions. Some open

issues were the optimum values of the migration parameters, the radius for shar-

ing, and that some processors could be idle due to to the heterogeonous nature

of SIM.500

23

Coello and Reyes [47] present the parallelization of a coevolutionary algo-

rithm that adopts the master-slave model, uses the Pareto ranking scheme of

MOGA and the adaptive grid of PAES. In this approach, the search space is

divided into regions (as many as the decision variables of the problem) and such

regions are assigned to demes for independent exploration. At each generation,505

an analysis of each region is performed in order to determine if some intervals of

the variables are discardable or divisible, thus deleting or creating more demes,

respectively. In this way, demes cooperate for obtaining the Pareto front and

compete for individuals, in such a way that the size of each subpopulation is

adjusted based on their contribution to the non-dominated set. Two imple-510

mentations were considered, one using shared memory (threads) and another

one using distributed memory (MPI). They were compared with respect to the

serial version of the same MOEA and with respect to PAES on two bi-objective

problems. The results indicated that both parallel implementations produced

important gains in execution time while maintaining the quality of the results515

with respect to the serial version. One disadvantage of this approach is that is

not scalable neither in variable space nor in objective space.

The cone-separated NSGA-II [48], inspired by an island model, divides the

objective space into several equal regions with global decision space, using hy-

perplanes passing through a reference point. Each region is assigned to one pro-520

cessor for exploration and the borders of the regions are treated as constraints.

Thus, solutions outside the designated region are dominated by solutions within

it. Individuals that violate constraints are candidates to be migrated into demes

that are valid. Moreover, at each epoch, subpopulations synchronize in order to

normalize objective functions, partition the search space and share extreme so-525

lutions to neighborhood demes. On problems with two objectives, this pMOEA

showed to be more efficient than the standard island model with and without

migration. However, on problems with three objectives, the distribution of indi-

viduals was poor, forming accumulations at the borders between regions. Two

main shortcomings of this pMOEA are that processors may have idle time when530

Pareto fronts are not evenly distributed. Also, partitioning into cones becomes

24

complicated as the number of objectives increases.

Streichert et al. [49] proposed an island model for parallelizing NSGA-II

[20] with a partitioning technique based on K-Means clustering applied in both,

variable and objective spaces, giving rise to the kssMOEA and kosMOEA, re-535

spectively, both with and without zone constraints.4 At every epoch, solutions

are gathered, partitioned and redistributed back to processors. All demes use

real-valued representation, one-point crossover and self-adaptive mutation. The

four variants were compared with the cone-separated NSGA-II [48] and the stan-

dard island NSGA-II with and without migration. Experimental evidence did540

not support that the two variants with zone constraints were able to perform

well on the test problems. On the other hand, the approaches without zone

constraints performed as well or better as the island model of NSGA-II with

migration. Moreover, these two approaches can solve problems of high dimen-

sionality or problems which have contiguous search spaces. One disadvantage of545

this approach is that the mutation probability is too high (1.0), which indicates

that the exploration of the search space is not guided by selection, but by a

random process.

Thre Multiple Resolution Multi-Objective Genetic Algorithm (MRMOGA)

[50] is an island model pMOEA with heterogeneous nodes. Since Pareto opti-550

mal solutions are found in fewer iterations using low resolution representations

than using higher resolution ones, MRMOGA divides the decision space into

hierarchical levels with well-defined overlaps. Hence, each island has its own

encoding with a different resolution. The low-resolution islands have the pur-

pose of approaching quickly towards the Pareto front. Afterwards, high-quality555

individuals stored in local archives of these islands are synchronously migrated

into high-resolution islands, replacing the worst solutions in terms of Pareto

dominance, in order to exploit the regions nearby these solutions. The migra-

tion process is performed only if the ratio of replacements in the last k iterations

in the external archive is less than a user-supplied threshold. MRMOGA was560

4Demes are limited to their specific region based on a constrained dominance principle.

25

compared with respect to an island model-based NSGA-II with a star topology

on the bi-objective Zitzler-Deb-Thiele (ZDT) [64] and Osyczka [1] test prob-

lems. The authors indicated that MRMOGA has more merit in problems with

large-scale search spaces since the division of the decision space allows it to find

nearly optimal solutions in regions that otherwise would be difficult to find. A565

drawback of this proposal is the criterion to execute the migration process which

is only based on the counting of replacements and it requires a parameter that

seems to be problem-dependent.

The Multi-Front Equitable Distribution (MFED) [51] parallelizes SPEA [25]

on a distributed memory, using the island model with a star topology. Each570

deme is assigned to one processor and evolves independently a population with

global decision and objective spaces and it has an external archive. At every

epoch, the k first fronts of each deme are gathered by the central deme. Then,

the first k global fronts are equally redistributed among demes adopting for this

purpose a clustering technique. Each deme replaces its population and exter-575

nal archive. At the end, the non-dominated solutions are extracted from the

archives. This approach ensures that non-dominated solutions are never lost

and each deme will receive a diversified approximate Pareto front created from

all the clusters. The disadvantage of this approach is that two new parameters

are introduced: the number of clusters and the number k of fronts to be dis-580

tributed. For the latter, the authors conclude that a small number is better in

order to preserve convergence.

León et al. [52] presented a new island scheme based on the cooperation of a

set of MOEAs and a hyper-heuristic, that grants more computational resources

to those algorithms that show a more promising behavior. A coordinator node585

is in charge of maintaining the global solution and selecting the configurations5

that are executed on the demes. The global solution set is obtained by merging

the local results achieved by each of the demes and its size is limited using the

5A configuration consists of an MOEA plus the variation operators and the set of user-

supplied parameters which define them (population size, mutation and crossover rates, etc.).

26

crowding distance operator [20]. Besides the global stopping criterion, a local

stopping criterion is defined for the execution of the MOEAs on the demes.590

When the local stopping criterion is reached, the configuration is scored using

a performance indicator. Then, the coordinator applies the hyper-heuristic, se-

lecting the configuration that will continue executing on the idle deme. If the

configuration has changed, the subpopulation is replaced by a random subset of

the current global solution. The scheme was tested on the ZDT and Walking-595

Fish-Group (WFG) [65] test problems for instances with two objectives, using

SPEA, SPEA2, NSGA-II, IBEA and four variation operators. In total, six-

teen configurations were considered for four islands using an all-to-all topology,

asynchronous communication and elitist migration. The proposal was among

the best pMOEAs when compared with an algorithm that randomly changes600

the configuration on demes and the homogeneous islands of each of the sixteen

configurations. One disadvantage of this approach is that is not scalable for

problems with more than three objectives.

In 2009, Wang and Ju [53] proposed an island model version of NSGA-II

denoted as PNSGA. PNSGA employs only two self-evolving islands: an elite605

population island (EP) that stores the global non-dominated individuals and

the search population island (SP) whose purpose is to explore the search space.

PNSGA implements a synchronous migration scheme where SP firstly sends to

EP its current non-dominated individuals after crossover and mutation opera-

tions. Then, EP divides its population (which includes the recenlty immigrant610

solutions) into non-dominated individuals and dominated ones where the latter

are migrated to SP. In consequence, the best individuals are further optimized

in EP and the dominated individuals are sent to SP in order to increase the

diversity which could improve the exploration of the decision space. PNSGA

was mainly tested on the ZDT benchmark and it was compared with respect615

to NSGA-II and MOCLPSO [66]. Experimental results based on the Genera-

tional Distance (GD) indicator [67] showed that PNSGA outperforms NSGA-II

and MOCLPSO. PSNSGA has three important drawbacks: the high overhead

related to the migration process which is executed at every generation, the

27

proposal inherits from NSGA-II its bad performance on MaOPs [4], and the di-620

versity of solutions in EP (which is the final Pareto front approximation) could

be very poor.

The Selective Migration Parallel Genetic Algorithm (SMPGA) [54] improves

the migration strategy of PNSGA, aiming to improve the diversity of the final

Pareto front approximation. Similarly to PNSGA, SMPGA is an island model625

pMOEA using the EP and SP islands. However, each island adopts different

crossover strength according to their roles. Unlike PNSGA, in SMPGA not

all the non-dominated individuals in SP are sent to EP but just the ones that

meet a migration qualification. If a candidate solution in SP is mutually non-

dominated with respect to all the solutions in EP, then, a grid-based strategy630

is performed to determine if the candidate solution would improve the diversity

of EP. If so, the solution in EP in the most crowded grid-location is replaced.

SMPGA outperformed both NSGA-II and PNSGA regarding GD and a diversity

quality indicator proposed in [20]. Although SMPGA generates Pareto front

approximations with better diversity than PNSGA, it preserves the other two635

drawbacks of the latter, i.e., the high overhead in the migration process and its

bad performance on MaOPs.

Yagoubi et al. [55] suggest an asynchronous master-slave algorithm (AE-

MOA) for optimizing the combustion of a diesel engine. In this approach, the

authors independently parallelize MO-CMA-ES [31] and NSGA-II, in such a640

way that as soon as a slave becomes available, the master sends an offspring

to be evaluated and, then, it is inserted back in the population on a first-come

first-served basis. This scheme is recommended for costly problems, where the

time required to evaluate individuals may be different due to heterogeneous

hardware or numerical simulations. Nonetheless, a region of the Pareto front645

may be missed when this region requires a higher computational cost [68]. In

such context, the authors modified the mating selection scheme, introducing

a predefined probability Ps for choosing between the standard selection of the

algorithm at hand, and a tournament selection solely based on the duration of

the individuals’ evaluation. An open issue is how to define an appropriate value650

28

of Ps. The pMOEAs obtained better results, in terms of both convergence and

runtime, than their generational and synchronized versions on the ZDT and

IHR test functions.

Currently, there is wide range of many-objective evolutionary algorithms

(MaOEAs) [4] exhibiting specific convergence and diversity properties. Zhou655

et al. [56] proposed an ensemble of MaOEAs (denoted as EMaOEA) following

the master-slave strategy. Each slave node executes an independent MaOEA.

At each iteration, the offspring populations created by all the MaOEA are syn-

chronously sent to the master node where they are merged and a copy of the

whole set of offspring solutions is sent back to the slaves. Then, each slave660

executes the selection mechanism of the associated MaOEA to shape the pop-

ulation for the next iteration. In the end, the populations of all slaves are

collected to form the final Pareto front approximation. EMaOEA was imple-

mented using three MaOEAs: GrEA [69], SPEA2+SDE [70] and NSGA-III [34].

Its performance was compared with the three baseline MaOEAs using the Deb-665

Thiele-Laumanns-Zitzler (DTLZ) [71] and WFG benchmark problems with 4,

5, 6, 8, and 10 objective functions. SPEA2+SDE was the best algorithm for

DTLZ problems regarding the Inverted Generational Distance (IGD) indicator

[72] while EMaOEA outperforms all the algorithms on the WFG problems using

the HV indicator. Since EMaOEA is a heterogeneous approach due to the use of670

multiple MaOEAs, it produces idle times in slaves since the execution times of

them are not homogeneous. Furthermore, the communication with the master

node at each iteration implies a high overhead.

The multi-objective quadratic assignment problem is a time-consuming com-

binatorial problem that was tackled by Sanhueza et al. using a parallel asyn-675

chronous memetic algorithm, denoted as PasMoQAP [57]. This proposal uses

that island model to independently evolve several subpopulations using a me-

metic algorithm. The connection topology is represented by a complete graph

where migration is done asynchronously and the solutions are selected using a

tournament selection and a Pareto-based elitist replacement. Each island has680

an external archive to store the local non-dominated solutions. A local search

29

procedure is launched for a given time to explore the nearby regions of the solu-

tions in each archive. PasMoQAP was compared with an island-based version of

NSGA-II using 22 problems with 2, 3 and 4 objective which were produced using

an instance generator. Both pMOEAs were configured to use 5, 8, 11, 16, and685

21 islands. PasMoQAP consistently outperformed, based on the hypervolume

indicator (HV) [73], the island-based version of NSGA-II when using 11 islands.

The experimental results showed that increasing the number of islands does not

necessarily imply a higher quality of the results. In fact, this may degrade the

performance of PasMoQAP.690

MOEA/D [21] has a great potential to be parallelized because of the division

of an MOP into many single-objective optimization problems (SOPs). In 2017,

Ying et al. proposed to parallelize MOEA/D using the Spark technology [74].

The proposal, denoted as MOEA/D
pe
sp, generates a population in a master node

that is completely copied to the N slaves, where N corresponds to the number of695

weight vectors used by MOEA/D. These copies are evolved during a given num-

ber of generations and, then, the best solution for each weight vector is identified.

These best solutions are sent to the master node so that there are N solutions

for each weight vector. From all these solutions, the best N ones are determined

using the standard MOEA/D selection to shape the global population for the700

next batch of generations. According to the IGD indicator, MOEA/D
pe
sp per-

forms similarly to MOEA/D using the three-objective DTLZ1-DTLZ4 problems.

When dealing with time-consuming objective functions, MOEA/D
pe
sp would be

a very bad option since it consumes a lot of function evaluations. Furthermore,

as the master node is processing all the solutions coming from the slaves, these705

ones will be idle due to the use of a synchronous strategy.

The existing selection mechanisms of MOEAs need to collect and compare all

the candidate solutions to balance both convergence and diversity. This implies

a series of dependent subprocesses. To overcome this issue, Chen et al. intro-

duced a new master-slave parallel evolutionary algorithm (PEA) [59]. The slaves710

are in charge of achieving convergence while diversity is emphasized in the exter-

nal archive of the master node that stores the global non-dominated solutions.

30

PEA classifies the decision variables into two categories: convergence-related

and diversity-related variables. Slaves evolve solutions using only convergence-

related variables. At the end of each generation, slaves check if the variance715

of the fitnesses of all their solutions is less than a given threshold. If so, the

solution having the best fitness value in each slave is sent to the master node,

and a new population is generated, using the convergence- and diversity-related

variables, on the basis of the global external archive. In the external archive,

the dominated individuals are first removed and if the number of non-dominated720

individuals exceeds the allowable size, a steady-state selection based on dissimi-

larity values is performed, retaining the extreme solutions. PEA was compared

with respect to several MOEAs (from which the most relevant are NSGA-II

and MOEA/D) on the MaF test instances [75] with 3, 5, 8, and 10 objective

functions. The experimental results, based on IGD, showed that PEA out-725

performed the selected MOEAs, producing well-diversified approximation sets.

Additionally, PEA showed significant speed ups using 2, 4, 6, and 8 cores.

Kantour et al. proposed the Parallel Criterion-based Partitioning MOEA

(PCPMOEA) [60] whose main idea is to launch multiple asynchronous MOEAs

with different populations. Each slave processor independently executes an730

MOEA that aims to minimize the distance between the current Pareto front

and the ideal point. Additionally, each MOEA targets a specific region of the

objective space by using a two-stage selection mechanism. First, a Pareto-

based selection is performed to keep the multi-objective character and, then, a

criterion-based selection gives preponderance to a given objective function. On735

the other hand, the master entity periodically adjusts and redirects the search

process in real time of all the slaves. In order to do so, the master performs a

global selection among the elite individuals generated by the slaves, and, then, it

partitions the individuals according to the objective functions in order to update

the local archives of the slaves which are focused on a given objective function740

as well. In this way, the master process helps the slaves to keep them enclosed

and dedicated to their allocated objective space. PCPMOEA was tested on the

multi-objective knapsack problem (MOKP) with 250, 500, and 750 items and 2

31

and 3 objective functions. Its performance was compared with respect to that of

NSGA-II, SPEA2, MOEA/D, and NSGA-III, using multiple quality indicators,745

emphasizing the use of HV and IGD. PCPMOEA showed competitive HV and

IGD values but it couldn’t outperform NSGA-III. A reason for this behavior is

the asynchronous updating of the archives in the slaves, which could produce

outdated results. Additionally, PCPMOEA loses diversity since each slave is

mostly focused on a given objective function due to the use of criterion-based750

selection.

As the dimensionality of the objective space increases, the computation of

the individual contributions to the hypervolume indicator becomes very expen-

sive [76]. Hence, SMS-EMOA becomes unaffordable for MaOPs. Hernández

and Coello [8] observed that regardless of the number of objectives, execution755

time of SMS-EMOA was almost negligible when using small populations (less

than 12 invididuals). This observation promoted the design of the Parallel Mi-

cro Optimizer based on the S metric (S-PAMICRO) [61] which employs the

island model to split the population into many micro-populations (of at most

12 individuals) that are independetly evolved by a serial SMS-EMOA with an760

external archive and global decision and objective spaces. Each island performs

asyncronous uniform-random migration, following an unidirectional ring topol-

ogy. The individuals to be migrated are randomly chosen from the archive and

a copy of them are sent to the destination island where an elitist-ranking re-

placement is executed. If the number of solutions in each archive exceeds its765

allowable size, an image-analysis pruning technique [77] is executed to reduce

the archive’s size. The execution time of S-PAMICRO is significantly less than

that of SMS-EMOA. For the DTLZ and WFG problems with 2, 3, 4, 6, 8, and

10 objectives, S-PAMICRO generates Pareto front approximations with high-

quality HV values which are similar to those produced by the standard island770

version of SMS-EMOA.

Motivated by the critical issue of performance dependence of several MOEAs,

Falcón-Cardona et al. [62] proposed the island-based multi-indicator algorithm

(IMIA). IMIA employs an island model to simultaneously execute five steady-

32

state indicator-based MOEAs (IB-MOEAs) based on the quality indicators HV,775

R2 [78], IGD+ [79], ϵ+ [80], and ∆p [81]. The core idea of IMIA is to compensate

for the weaknesses of a given IB-MOEA with the strengths of the others. Here, a

weakness is referred to the inability of an IB-MOEA to produce well-diversified

solutions on MOPs with irregular Pareto front shapes. IMIA uses an all-to-

all connection topology, synchronously migrating solutions at a user-supplied780

number of function evaluations. Furthermore, every IB-MOEA has a Pareto

front approximation in an external archive and a centralized Pareto front is

maintained, gathering solutions from all the IB-MOEAs and using a Riesz s-

energy-based [82] selection criterion. The experimental results showed that due

to the cooperation of the multiple IB-MOEAs, IMIA presents a Pareto-front-785

shape invariant behavior which makes it suitable to solve MOPs with regular

and irregular Pareto front geometries. Moreover, the study revelead patterns

on the discovery of solutions. In other words, depending on the Pareto front

shape, one IB-MOEA may consistenly produce more (and better) solutions than

another one.790

3.2.1. Discussion

The design of algorithmic-level approaches has significantly changed along

the years. Currently, due to the advances in the design of MOEAs and the new

technological tools, we have very effective algorithmic-level pMOEAs. From the

approaches in Table 2, EMaOEA, S-PAMICRO, and IMIA present important795

performance results. A common design strategy of these three approaches is

the execution of multiple MaOEA that have different search properties, result-

ing in the generation of Pareto front approximations with good convergence

and diversity. Moreover, these approaches are, overall, the best ones when tack-

ling many-objective optimization problems. Due to the employment of micro-800

populations, S-PAMICRO allows the use of multiple instances of SMS-EMOA

to tackle MaOPs which has been commonly prohibitive when using a panmictic

sequential SMS-EMOA. On the other hand, it is worth noting that IMIA is the

only pMOEA (taking into account the three different levels of parallelization)

33

that presents an invariance property to the Pareto front shapes. In other words,805

IMIA can produce Pareto front approximations with high diversity regardless

of the geometrical shape of the Pareto front. IMIA has this invariance prop-

erty due to the cooperation of multiple IB-MOEAs (with different search skills)

on an island model, using micro-populations as S-PAMICRO. This aspect is re-

markable since in recent years we have faced an overspecialization problem when810

designing MOEAs [83]. Other approaches have followed the direction of balanc-

ing convergence and diversity, for example, PEA, PNSGA and SMPGA. The

difference between these approaches is that PEA divides the decision space by

analyzing which decision variables impact the convergence property and which

ones are reflected on the diversity in objective space. PNSGA and SMPGA815

implement two archives, one oriented to convergence and the other one to di-

versity, in a similar way to the Two Arch2 algorithm [84]. If the aim is to tackle

large-scale MOPs, MRMOGA is the only algorithmic-level pMOEA that has

been proposed. MRMOGA defines different levels of precision of the decision

variables, where low-resolution variables look at rapidly approaching the pop-820

ulation towards the Pareto front while high-resolution variables aim to exploit

the previously found solutions, refining the Pareto front approximation. Fi-

nally, AEMOEA adopts a first-come first-served scheme to assign work load to

the nodes. This is specially useful when dealing with the calculation of hetero-

geneous objective functions, alleviating idle times in the processors.825

Regarding the theoretical computational complexity of the approaches, it is

difficult to analyze it due to the heterogenous design strategies, communication

schemes, and paralel architectural aspects. Overall, IMIA is the only proposal

where the theoretical runtime complexity is described. IMIA is governed by the

computational cost of executing SMS-EMOA with a micro-population. Since830

S-PAMICRO also uses multiple instances of SMS-EMOA, we could conclude

that S-PAMICRO and IMIA have similar runtime complexities. However, the

former was designed to be executed in a massively parallel way, i.e., under a

cluster of computers while IMIA uses a multi-core architecture. For the remain-

ing algorithms, all of the them present distinct execution times (and speed ups).835

34

MRMOGA presents sublinear (and linear) speed ups on certain cases although

it was tested on two-objective problems. S-PAMICRO produces significant re-

ductions in execution time in comparison with a panmictic sequential and an

standard island-based SMS-EMOA. Regarding PEA, as the number of cores in-

creases, it showed a consistent reduction in execution time. However, it remains840

unclear which is the maximum number of cores for which this behavior is kept.

3.3. Iteration-level Parallelization

This section is devoted to describe representative approaches of iteration-

level pMOEAs. Table 4 presents the main characteristics of these proposals and

Table 5 summarizes their implementation details. Then, we further explain the845

details of each pMOEA.

Grimme et al. proposed in [85, 40] the use of a Predator-Prey paralleliza-

tion model of MOEAs. In this parallel model, the population is structured

usually in a toroidal grid which is populated by both predator and prey indi-

viduals. In this model, prey individuals are nodes in the grid. Preys correspond850

to solutions to the MOP and predators may define selection criteria, variation

operators, among others, such that they apply pressure to the preys to reach

Pareto optimal solutions (for further information see [40]. Based on this parallel

model, the authors proposed a parallel Predator-Prey MOEA (pPPMOEA) [85]

to tackle a multi-objective job shop scheduling problem. In order to employ855

pPP-MOEA using a specific target objective function, it is necessary to define a

set of variation operators, a neighborhood structure for determining the individ-

uals that are exposed to selection and reproduction, as well as a walking func-

tion for the movement pattern on the spatial structure. Theoretically, predators

are independent agents which implies an asynchronous communication model.860

However, the authors do not explain what kind of communication strategy they

followed. Due to the recent use of the predator-prey parallel model, pPP-MOEA

represents an academic approach to solve the considered problem and further

research is needed to improve the results and to get a better understanding of

the predator-prey model. The current results just showed that the approach is865

35

Table 4: Iteration-level proposals: main characteristics. The following terms are employed:

population (Pop), mechanisms (Mech), master-slave model (MS), island model (IM), predator-

prey (PP), diffusion (Diff), synchronous (Sync), asynchronous (Async), global (G), partitioned

(P), centralized (C), distributed (D), homogeneous (Ho), heterogeneous (He), static (St),

dynamic (Dyn), and not defined (N/D).

N
a
m
e

B
a
se
li
n
e

A
lg
o
ri
th

m

P
a
ra

ll
e
li
sm

o
f

P
a
ra

ll
e
l
m
o
d
e
l

C
o
m
m
u
n
ic
a
ti
o
n

D
e
c
is
io
n

S
p
a
c
e

O
b
je
c
ti
v
e
S
p
a
c
e

P
a
re

to
F
ro

n
t

N
o
d
e
s

D
is
tr
ib
u
ti
o
n

Y
e
a
r

R
e
fe
re

n
c
e

pPP-MOEA Own approach
Pop and

Mech
PP N/D G G D He St 2008 [85]

GPU-MOEA NSGA-II
Pop and

Mech
MS Sync G G C Ho St 2009 [86]

pSMS-EMOA SMS-EMOA Pop MS Async G G C Ho St 2010 [3]

pMOEA/D MOEA/D Pop MS Sync G P C Ho St 2010 [87]

PMOPSO MOPSO Pop MS Sync G G C Ho St 2012 [88]

PQEA MOEA/D Pop MS Sync G P C Ho St 2012 [89]

AMS-DEMO DEMO Pop MS Async G G C Ho St 2013 [90]

GPU-MOEA/D-ACO MOEA/D-ACO Pop MS Sync G P C Ho St 2014 [91]

PaDe MOEA/D Pop IM Async G P D He St 2014 [92]

MP-MOEA/D MOEA/D Pop Diff
Sync or

Async
G P D Ho St 2015 [93]

GPU-NSGA-II NSGA-II Mech MS Sync G G C Ho St 2015 [94]

PMEA
MOEA/D, IBEAϵ+

SPEA2+SDE
Mech MS Sync G G C He St 2016 [95]

MOMA SMS-EMOA Mech MS Sync G G C Ho St 2016 [96]

CCSMPSO SMPSO Pop IM Sync P G D Ho St 2016 [97]

SCC-NSGA-II NSGA-II Pop MS Sync P G C Ho Dyn 2017 [98]

SA2EA SAEA Pop MS

Sync

Async

Semi-Async

Adaptive

G G C He St 2017 [42]

PDL-MOEA MOEA-DLA Pop IM Sync G G C Ho St 2017 [99]

pCMOEA/D-DMA CMOEA/D-DMA Pop Diff Sync G P C Ho St 2019 [100]

36

Table 5: Iteration-level proposals: implementation characteristics.

N
a
m

e

P
a
r
a
ll
e
l

a
r
c
h
it

e
c
t
u
r
e

C
o
m

m
u
n
ic

a
t
io

n

li
b
r
a
r
y

P
r
o
g
r
a
m

m
in

g

la
n
g
u
a
g
e

O
p
e
r
a
t
in

g

s
y
s
t
e
m

R
e
fe

r
e
n
c
e

pPP-MOEA Not defined Not defined Not defined Not defined [85]

GPU-MOEA CPU-GPU CUDA C
Windows XP

Professional
[86]

pSMS-EMOA
Multi-computer

(12-node Grid)

HTCondor

and MPI
C Linux [3]

pMOEA/D

Multi-core

(1 to 32

threads)

jMetal Java
Linux OpenSuse

and Ubuntu
[87]

PMOPSO Not defined Not defined Not defined Not defined [88]

PQEA Not defined Not defined Not defined Not defined [89]

AMS-DEMO
Multi-computer

(16-node PC-Cluster)
MPI C

Linux

Fedora
[90]

GPU-MOEA/D-ACO CPU-GPU CUDA C
Linux

Ubuntu
[91]

PaDe
Multi-core

(8 cores)
PaGMO C++ Not defined [92]

MP-MOEA/D
Multi-computer

(128-node PC-Cluster)
MPI C++ Not defined [93]

GPU-NSGA-II CPU-GPU CUDA C
Linux

Ubuntu
[94]

PMEA
Parallel virtual

machine
MPI C Not defined [95]

MOMA CPU-GPU CUDA C
Linux

Fedora
[96]

CCSMPSO Multi-core Not defined Not defined Not defined [97]

SCC-NSGA-II Multi-core Matlab M Windows 7 [98]

SA2EA Not defined Not defined Not defined Not defined [42]

PDL-MOEA
Multi-computer

(PC-Cluster)
MPI C++

Linux

Ubuntu
[99]

pCMOEA/D-DMA Not defined Not defined Not defined [100]

37

able to find nearly optimal solutions, but its performance is not as good as that

of other pMOEAs considered in this survey.

In 2009, Wong [86] punctualized that more than 99% of the execution time of

MOEAs is concentrated on performing dominance-checking and non-dominated

selection procedures. To overcome this issue, he proposed an implementation870

of a pMOEA based on the use of GPUs. This GPU-MOEA is an iteration-level

pMOEA that uses both parallelism of population and parallelism of mechanisms

adopting the master-slave model. The slaves are in charge of independently

evaluating the objective function values, of performing part of the stochastic

tournament to select parent solutions, and also of performing crossover and875

mutation. Additionally, the dominance-checking and non-dominated selection

are parallelized. The master node is focused only on collecting the global non-

dominated solutions. The ZDT and DTLZ benchmarks were employed to assess

the performance of this proposal using CPU and GPU configurations. As ex-

pected, the GPU-based version outperformed the CPU approach in terms of880

execution time, achieving speed ups of up to 14.6x. This approach is particu-

larly interesting since it can be considered as a fully-parallelized iteration-level

pMOEA because all the mechanisms as well as the population are processed in

parallel.

Klinkenberg et al. [3] parallelized a modified version of SMS-EMOA based885

on the master-slave model with the aim of handling bi-objective problems with

costly evaluations. For this purpose, two strategies are introduced. One replaces

the variation operators of NSGA-II by a new mutation that creates several off-

spring from an individual and self-adapts its step-sizes. The second one splits

the population into several slave nodes that evaluate their assigned solutions us-890

ing a surrogate model6 and filters out the most promising for being evaluated.

Additionally, slaves should share its meta-model with the peers. The authors

6A surrogate model approximates the function values of a new solution using the results of

previously evaluated solutions. The cost of training and using this model is relatively lower

than the exact evaluation.

38

implemented this approach using the MPI library on a grid of 12 PCs having

Intel Pentium 4 processors, and tested it on the Lamé superspheres benchmark

[101] and on a real-world problem. The authors showed that the parallelization895

in addition to the surrogate model had a big impact on performance, consid-

erably reducing the number of evaluations and achieving almost linear speed

ups.

Nebro and Durillo proposed a parallel version of MOEA/D (pMOEA/D)

[87] based on the master-slave model, targeting multi-core processors. The main900

population of pMOEA/D is partitioned among the threads, but the neighbor-

hoods overlap. In consequence, some elements belonging to a specific thread

could be modified by other thread when the population is updated. pMOEA/D

employs three synchronized regions: (1) when threads are executing the off-

spring generation process so that the parent solutions remain unchanged, (2)905

during the computation of the ideal point, and (3) when the whole population

is being updated using the neighborhood structure. Overall, pMOEA/D is exe-

cuting in parallel the generation and evaluation of offspring solutions, which is

useful when tackling time-consuming objective functions. pMOEA/D was com-

pared with a sequential MOEA/D using eight bi-objective problems and one910

with three objective functions, analyzing both final quality of the Pareto front

approximations and speed up. Although pMOEA/D was configured to use 1,

2, 4, 8, 16, and 32 threads, it was only able to produce Pareto fronts similar in

quality to MOEA/D when using up to 8 threads. The use of more than eight

threads made pMOEA/D not only to produce poor Pareto front approximations915

but also increased the execution time, i.e., no speed up was achieved. These

results were obtained using benchmark functions which are not time-consuming.

The authors also showed the results for a modified problem where they added

useless loops to imitate a time-consuming MOP. For this problem, pMOEA/D

was able to produce speed ups using eight or more threads. This observation920

emphasizes that it is necessary to test pMOEAs using time-consuming problems

such that it is possible to analyze their actual advantages in computationally

expensive MOPs.

39

Liu et al. [88] proposed the parallel multi-objective particle swarm opti-

mization algorithm (PMOPSO) as an alternative to solve a soil sampling op-925

timization model. PMOPSO uses the master-slave model to divide the set of

particles into subgroups. Slave nodes store the subgroups, calculate the fitness

values of the particles and change their locations. It is worth noting that only

particles belonging to the same group can communicate among themselves. The

master node holds the information from the slave nodes, searches for the best930

visited locations of the particles and for the global best visited location of the

swarm and synchronously shares this information with all the slaves. PMOPSO

was applied on a real-world bi-objective soil sampling problem related to the

Hengshan County, Shanxi Province, in China. A four-threaded configuration

was implemented to execute the proposal and it was compared with respect935

to a sequential MOPSO. Regarding the quality of solutions, both algorithms

behave similarly. However, the convergence rate of PMOPSO was relativily

slower which implies that it would need a large number of function evaluations

to converge.

The Parallel Quantum Evolutionary Algorithm (PQEA) [89] is a quantum940

MOEA/D based on the master-slave model. Each slave is associated with a set

of SOPs (defined by the weighted sum scalarizing function) which are grouped

according to their similarity, calculating the Euclidean distance between the

weight vectors. A q-bit individual is assigned to each slave to simultaneously

optimize the corresponding SOPs, taking advantage of the linear superposition945

of all possible states. At each iteration, the quantum individuals are observed

to obtain their corresponding values and, thus, update the approximate opti-

mal solutions per weight vector and neighborhood. PQEA was compared to

MOEA/D on the MOKP, using 250, 500, and 750 items with 2 and 3 objective

functions. Both the coverage of two sets indicator [64] and GD showed that950

PQEA was able to produce Pareto front approximations with higher quality

than MOEA/D and it exhibits a better convergence rate. Evidently, due to the

current developments on quantum computing, the implementation of PQEA

and its further utilization is not completely possible and affordable. However,

40

this is indeed an interesting path for future research on parallel MOEAs.955

Aiming to solve time-intensive MOPs, Depolli et al. [90] proposed the Asyn-

chronous Master-Slave Differential Evolution for Multi-Objective Optimization

Algorithm (AMS-DEMO). At each iteration, the master process executes the

variation operators to generate the offspring population which is then split into

several subpopulations. Each slave node receives in a non-blocking way, the960

individuals to calculate their objective functions. In order to use asynchronous

communication to its full extent, AMS-DEMO implements queues of solutions.

Hence, each slave continuously evaluates solutions as long as the master process

sends them, and it only briefly interrupts the chain of continuous evaluations

by sending the last evaluated solution to the master. It is worth emphasizing965

that due to its asynchronous nature, AMS-DEMO could be efficiently executed

on heterogenous computer architectures, computers with a varying background

load, and a dynamic number of processors. For every created solution, AMS-

DEMO needs to communicate twice with the slave. Hence, the use of AMS-

DEMO in MOPs whose evaluation time is comparable to the communication970

time will not produce any computational gains. Consequently, the real applica-

tion of AMS-DEMO is related to time-consuming MOPs.

MOEA/D-ACO [102] is a version of MOEA/D that replaces its genetic op-

erators by the main mechanisms of an ant colony optimization algorithm. In

[91], a MOEA/D-ACO exploiting the large-scale parallelization of the graph-975

ics processing units (GPUs) is introduced. This approach, denoted as GPU-

MOEA/D-ACO, takes advantage of the parallel nature of real-life ants which

act as independent agents. Since each thread in a GPU shares a limited memory,

it is not suitable to map an ant per thread. Instead, the authors decided to map

an ant (related to a specific subproblem) per block of threads. Hence, each ant980

is in charge of constructing a solution and updating the pheromone structures.

Additionally, when all the ants have generated their new solutions, the master

process is executed in the CPU to update the global archive of non-dominated

solutions. GPU-MOEA/D-ACO and MOEA/D-ACO were compared using nine

combinations of the multi-objective travelling salesman problem (MTSP) with 2,985

41

3, and 4 objective functions. GPU-MOEA/D-ACO was able to produce similar

HV values than MOEA/D-ACO but with speed ups of up to 8.5x. Similarly to

AMS-DEMO, the real usefulness of GPU-MOEA/D-ACO is clear when dealing

with time-consuming objective functions such that the synchronous communi-

cation overhead with the CPU is negligible. On the other hand, due to the990

physical characteristics of the limited GPU’s memory and registers, it is infea-

sible to handle a large number of subproblems using this approach.

The Parallel Decomposition (PaDe) [92] approach consists of a parallel scheme

for MOEA/D. PaDe uses the asynchronous generalized island model to effi-

ciently exchange chromosomic material among the islands. Hence, a fixed mi-995

gration topology is defined by the proximitity of the weight vectors. After

decomposing an MOP into N subproblems, each one is assigned to an island.

The evolution of the islands is executed by k threads, such that each one takes

care of N/k islands. The topology implemented in PaDe follows the logical

structure imposed by the neighborhoods created in MOEA/D. Hence, an island1000

is connected to the T islands that compose its neighborhood. Each island has a

population of size T + 1 that is evolved using the self-adaptive differential evo-

lution algorithm. Once an island evolves during a given number of iterations,

it performs its asynchronous migration process where its worst T solutions are

replaced using the best solutions in its neighbohood. A critical aspect of PaDe1005

is the definition of the ideal point which is employed to normalize the objective

values of the whole population. Currently, PaDe uses z⃗∗ = (0, . . . , 0) as the

ideal point which will only allow to normalize populations lying in the positive

orthant. The authors mentioned that an updating mechanism of the ideal vector

will break the island asynchronicity. The bi-objective ZDT problems and the1010

DTLZ test instances with 3, 4, and 5 objective functions were employed to com-

pare PaDe with MOEA/D (using the differential evolution variation operators).

Unfortunately, the authors only showed a comparison of a sequential PaDe with

MOEA/D in terms of solution qualtiy where, regarding the hypervolume indi-

cator, MOEA/D outperformed PaDe. In contrast, as it was expected, PaDe1015

had better CPU-times.

42

Derbel et al. [93] proposed the Message-Passing MOEA/D (MP-MOEA)

that implements a fine-grained pMOEA using the diffusion model. MP-MOEA

is based on µ processing units (pi, i = 1, . . . , µ), where each pi handles a single

subproblem related to the weight vector w⃗i. The neighborhood structure of each1020

weight vector defines the connections among the Processing Units (PUs), thus,

each PU communicates with its T closest neighbors. It is worth noting that each

PU stores its best solution found so far as well as a copy of the best solutions

of its neighbors. At each iteration, a PU first performs the mating selection,

variation, and, if necessary, it replaces its best solution and the local copy of its1025

neighbors’ solutions. If the best solution was replaced during the last tmax itera-

tions, the PU needs to distribute it among its neighbors so that all of them have

fresh information. The authors proposed both synchronous and asynchronous

distribution processes and, in order to reduce the communication latency, the

parameter tmax was introduced. Regarding the synchronous process, the PU dis-1030

tributes its best solution and, then, it waits to receive the best solutions from its

neighbors to update the local copies of solutions. Clearly, an advantage of this

type of communication mechanism is that all the PUs will have updated infor-

mation before executing the next batch of tmax iterations. However, idle times

may be introduced when a PU waits for the other ones to send a message and,1035

evidently, the communication overhead is high. On the other hand, when using

asynchronous communication, the PU distributes its best solution and, then, it

checks if there are pending messages containig best solutions from its neighbors.

This approach reduces both the communication overhead and the idle times.

However, the PUs could operate with outdated information. MP-MOEA/D1040

was tested on bi-objective ρMNK-landscapes with decision spaces of size 128,

256, 512, 1024, and 2048 (i.e, large-scale problems). The C++ MPI library

was employed to implement MP-MOEA/D. Synchronous MP-MOEA/D, Asyn-

chronous MP-MOEA/D, and the sequential MOEA/D were compared using HV

and the ϵ+ indicator [80]. Synchronous MP-MOEA/D showed to be better than1045

MOEA/D in 50% of the test instances but Asynchronous MP-MOEA/D is sig-

nificantly faster, where the acceleration depends on the neighborhood size and

43

the dimensionality of the problem. In consequence, there is a trade-off between

quality of the final approximation sets and the speed up that can be achieved.

Unlike the above described iteration-level proposals that parallelize the pop-1050

ulation, Gupta and Tan [94] proposed an iteration-level NSGA-II whose main

target is the parallelization of the non-dominated sorting algorithm [20]. When

the non-dominated sorting algorithm processes a population of N ∈ [102, 103]

solutions with 2 to 5 objective functions, the overall computational time is

small. However, when N ∈ [104, 105] and the dimensionality of the objective1055

space is greater or equal to 4, the targeted mechanism is time-consuming. In

consequence, a GPU-based non-dominated sorting algorithm is proposed. We

should emphasize that this approach does not reduce the number of Pareto dom-

inance comparisons. Instead, it performs the comparisons in parallel, making

NSGA-II computationally economical and fast. In addition to the GPU-based1060

non-dominated sorting, Gupta and Tan also introduced a GPU-based crowding

distance selection. Hence, this NSGA-II uses parallelized selection mechanisms.

This GPU-NSGA-II was compared to the sequential NSGA-II on the ZDT and

DTLZ problems, the latter ones using from 2 up to 10 objective functions. To

emphasize the advantages of the approach, both algorithms used populations of1065

20480, 25600, and 30720 individuals. In all cases, GPU-NSGA-II showed speed

ups from 4.5x up to 14.5x. Clearly, this approach is only useful when managing

large population sizes which could be beneficial when dealing with MaOPs that

need lots of individuals to approximate the Pareto front. However, when using

the commonly employed populations of hundreds of solutions, GPU-NSGA-II1070

could introduce a great overhead due to its use of synchronous communications.

The Parallel Multi-Strategy Evolutionary Algorithm (PMEA) [95] executes

in parallel three selection mechanisms over the main population. The underlying

idea of PMEA is to increase its exploration ability by using decomposition-

based [21], indicator-based (using the ϵ+ indicator [28]), and shift-based [70]1075

selection mechanisms. To this aim, the master-slave model is incorporated where

the master node controls the whole evolutionary process by performing mating

selection and variation operators to create an offspring population. Then, a copy

44

of the current population and the offspring population are distributed to the

slaves where the corresponding selection mechanisms are executed. Finally, the1080

survival solutions are sent back to the master using MPI. The communication in

both sides is done synchronously. It should be noted that the mating selection

aims to balance the utilization of the three subpopulations and, in contrast to

other pMOEAs, PMEA evaluates the objective functions of all the individuals

in the master node which would not be very efficient when considering time-1085

consuming objective functions. PMEA was mainly compared with MOEAs

using the adopted selection mechanisms, i.e., MOEA/D [21], IBEAϵ+ [28], and

SPEA2+SDE [70] adopting the DTLZ and WFG test problems with 3, 5, 8,

10, and 15 objective functions. Regarding the hypervolume indicator, PMEA

outperformed the baseline MOEAs with respect to which it was compared, which1090

implies that this strategy properly combines the strengths of the three selection

schemes while compensating for their respective weaknesses.

Manoatl Lopez and Coello proposed a Multi-Objective Memetic Algorithm

(MOMA) [96] that uses SMS-EMOA as the global optimizer and executes mul-

tiple local search processes based on the IGD+ indicator [79]. The authors1095

developed a version of SMS-EMOA that adopts a GPU-based computation of

the hypervolume contributions [7] and which evolves the population until a cer-

tain percentage of the maximum number generations has been executed. Then,

an IGD+-based local search is launched from each point of the reference set that

IGD+ needs, using the GPUs. Each thread determines the N closest solutions1100

to the reference vector using the modified Euclidean distance (d+) of the IGD+

indicator. Based on this neighborhood, the mating selection is applied to cre-

ate an offspring individual using the differential evolution operators, where one

of the three parents is selected using d+ and the other two are randomly cho-

sen. Each thread synchronously communicates its neighboorhod and offspring1105

solutions such that the next global population is formed, selecting the closest

solutions to the reference vectors. Furthermore, the reference set is created

using the technique proposed in [103] such that the current set of solutions is

adjusted to a convex, linear, or concave shape by applying a set-based version of

45

Newton’s method. It is worth emphasizing that the execution of the local search1110

mechanism is based on the use of fine-grained parallelism but instead of a dif-

fusion parallel model, MOMA follows the master-slave paradigm. MOMA was

compared with respect to SMS-EMOA, HypE, and a sequential MOMA using

the DTLZ and WFG test problems with 2 and 3 objective functions. Since all

the MOEAs being compared optimize the hypervolume indicator, this indicator1115

was utilized to assess their performance. MOMA was able to produce Pareto

front approximations with marginally inferior HV values than SMS-EMOA but

exhibiting the best execution times. The GPU-based computation of the hyper-

volume contributions helped MOMA to reduce its execution time and the use

of the IGD+-based local search engines improved the solution’s quality.1120

The Cooperative Coevolutionary MOEA (CCMOEA) [104] defines a frame-

work that evolves one population per objective function simultaneously. Tak-

ing advantage of its properties, Atashpendar et al. [97] proposed to couple

the Speed-Constrained Multi-Objective Particle Swarm Optimization Algorithm

(SMPSO) into CCMOEA, giving rise to CCSMPSO. The proposal breaks down1125

the main population into several subpopulations, each of which is in charge of

evolving a subset of the decision variables, using SMPSO via the island model.

At each iteration of CCSMPSO, the subpopulations are evolved in parallel dur-

ing one generation using SMPSO. Afterwards, each island broadcasts its best

local partial solutions to update the local archives of the islands. In other words,1130

all subpopulations evaluate complete solutions through a cooperative exchange

of individuals which implies a connection topology where each island is con-

nected to the remaining ones. When the stopping criterion is met, CCSMPSO

merges all the local archives to build the Pareto front approximation. CC-

SMPSO was compared with respect to SMPSO, and both NSGA-II and SPEA21135

under the CCMOEA framework on the bi-objective ZDT and DTLZ test suites.

Three evaluation criteria were adopted: (1) quality of the approximation sets,

using HV and the ϵ+ indicators, (2) computational time, and (3) convergence

speed. SMPSO outperformed CCSMPSO in terms of both the HV and the ϵ+

indicator. On the other hand, CCSMPSO obtained speed ups that ranged from1140

46

3.5x to 4.6x in comparison to SMPSO. Finally, the authors reported that CC-

SMPSO was the fastest algorithm to reach HV-based convergence through the

evolutionary process.

Dynamic multi-objective optimization problems (DMOPs) involve solving

an MOP where objectives, constraints, and/or decision variables change over1145

time. Xu et al. [98] proposed the Spearman rank Correlation-based Parallel

Cooperative Coevolutionary algorithm (SCC-NSGA-II) to handle DMOPs with

changing variables. SCC-NSGA-II dynamically groups the decision variables

using Spearman rank correlation analysis. Then, a subpopulation is employed

to evolve the decision variables in each group during one generation. To this1150

purpose, SCC-NSGA-II implements a master-slave model where the evaluation

of complete solutions is done in the master node. Hence, a synchronous com-

munication scheme is implemented to share the partial solutions. If the number

of variables changes, then the master node needs to reorganize the groups. In

order to assess the performance of SCC-NSGA-II, the authors employed the1155

ZDT1 and the three-objective DTLZ1 problems with changing-variables. Three

NSGA-II versions were employed in the comparative study: the original version,

one using random grouping and another one using uniform grouping. Accord-

ing to the different IGD variables averaged over T time scales, SCC-NSGA-II

outperformed the three adopted algorithms. However, no further performance1160

analysis was performed. Hence, there is a lack of results that allow to determine

the superiority of SCC-NSGA-II. This also calls for the need of a test suite of

dynamic MOPs for parallel MOEAs.

Conventional synchronous pMOEAs need to wait for evaluations of all solu-

tions in a population which causes to waste much idle time. To overcome this is-1165

sue, Harada and Takadama [42] proposed the Self-Adaptive Semi-Asynchronous

Evolutionary Algorithm (SA2EA) that continuously evolves solutions whenever

one solution completes its evaluation. SA2EA controls its degree of asynchrony

by changing the number of waited solutions based on the variance of their eval-

uation time. If the variance of the evaluation time is not large, it is more1170

efficient to evolve new solutions after waiting some or most evaluations to em-

47

ploy their information on the whole evolutionary process. In contrast, if the

variance is large, an asynchronous approach is still a good choice to reduce idle

times. Hence, the search ability of this proposal depends on the trade-off be-

tween idle times to wait for solution evaluations and search efficiency. SA2EA1175

is implemented under a master-slave model where the nodes communicate with

the master in an adaptive way, i.e., sometimes the communication could be

synchronous, asynchrnonous, or semi-asynchronous. Additionally, the master

node keeps the global non-dominated solutions. The authors employed NSGA-

II as the baseline algorithm to implement a complete synchronous NSGA-II1180

(CSNSGA-II), a semi-asynchronous NSGA-II (SANSGA-II), and a self-adaptive

semi-asynchronous NSGA-II (SA2NSGA-II). All algorithms employed 100 slave

nodes and the bi-objective ZDT and WFG test suites were adopted for compar-

ison. As expected, SANSGA-II and SA2NSGA-II were faster than CSNSGA-II

due to the reduction of idle times. Regarding the quality of approximation sets1185

based on HV, SA2NSGA-II produced similar results to CSNSGA-II while the

latter outperformed SANSGA-II. This is an insight that the exploitation of idle

times and its search ability allowed SA2NSGA-II not only to be faster than

CSNSGA-II but also to produce results of similar quality.

The application of pMOEAs is not only restricted to conventional MOPs1190

since they have also been applied to solve dynamic MOPs and robust opti-

mization problems. Such is the case of the Parallel Double-Level MOEA (PDL-

MOEA) [99] in which a single-objective uncertain optimization problem is trans-

lated into a bi-objective MOP by conserving the expectation and the variance

as two objectives. Hence, PDL-MOEA returns a set of solutions represent-1195

ing different stabilities. The double-level design is the master-slave parallel

model where the master level maintains the global non-dominated solutions

and at the slave level the problem is decomposed into a set of subproblems that

are solved in parallel. PDL-MOEA is based on the MOEA with double-level

archives (MOEA-DLA) [105] in which at the global level, a swarm works at1200

the MOP level while in the sub-problem level the MOP is decomposed and a

particle is in charge of a subproblem. Due to this scheme, the master node in

48

PDL-MOEA focuses on a well-diversified set of non-dominated solutions and

the slaves accelerate convergence towards the Pareto front by solving the re-

lated subproblems. PDL-MOEA was compared with respect to MOEA-DLA,1205

MOEA/D, and NSGA-II on the ZDT test problems, on DTLZ1-DTLZ3 and

WFG1-WFG3, and on seven robust optimization problems (ROPs). Regard-

ing HV, PDL-MOEA performed better than MOEA-DLA and it outperformed

MOEA/D and NSGA-II. On the other hand, for the ZDT, DTLZ, and WFG test

problems PDL-MOEA achieved speed ups of up to 1.22x and for the ROPs the1210

speed ups were of up to 8.68x with respect to MOEA-DLA. The reason for this

behavior is that conventional benchmarks are not time-consuming. Therefore,

the communication time is greater than the evaluation time of the objective

functions which produces no significant speed ups. However, the ROPs are time

consuming and, hence, the advantages of PDL-MOEA in this domain can be1215

clearly observed since in those cases, it achieves significant speed ups.

The Constrained MOEA/D with Directed Mating and Archives of Infeasible

Solutions (CMOEA/D-DMA) [106] was designed to tackle constrained MaOPs.

For this purpose, it maintains the best feasible solution for each subproblem

and a set of infeasible solutions. To generate new solutions, it employs directed1220

mating which requires the feasible solution and some of the infeasible solu-

tions. Hence, it does not employ neighborhood structures. In 2019, Miyakawa et

al. [100] proposed a parallel CMOEA/D-DMA, denoted as pCMOEA/D-DMA,

that launches a thread for each subproblem, i.e., a thread is associated with

a single solution. The neighboring relations associated to each weight vector1225

are employed to define the communication scheme, thus, an individual can only

communicate with its nearest neighbors. In consequence, pCMOEA/D-DMA

is a fine-grained pMOEA that uses the diffusion model. For each subprob-

lem, the best feasible solution is stored and an archive of infeasible solutions is

maintained so that directed mating can be performed. If there is enough in-1230

formation to execute the directed mating, an individual does not need to com-

municate with its neighbors which implies no communication overhead because

the offspring generation and the solution update can be performed in paral-

49

lel. Otherwise, the individual communicates with its neighbors to retrieve the

necessary information. To examine the potential of pCMOEA/D-DMA, it was1235

compared with CMOEA/D-DMA and MOEA/D on constrained bi-objective

knapsack problems with 500 items, focusing only on the final quality of the

approximation sets. Unfortunately, the authors just presented a reduced com-

parison that showed that the hypervolume values related to pCMOEA/D-DMA

remain constant as the granularity of the parallelization increases. However,1240

MOEA/D showed better HV values.

3.3.1. Discussion

Unlike algorithmic-level approaches that involve the parallelization of whole

algorithms, iteration-level proposals look at parallelizing either the evaluation of

individuals or complete mechanisms of an MOEA. In this level of parallelization,1245

the framework of MOEA/D has attracted a lot of attention due to its inherent

potential of parallelization, giving rise to pMOEA/D, PQEA, GPU-MOEA/D-

ACO, PaDe, MP-MOEA/D, and PMEA. From these approaches, pMOEA/D,

PQEA, and GPU-MOEA/D-ACO are similar according to our proposed tax-

onomy, being the partioning of the objective space and the use of a master-1250

slave model the two main characteristics. In contrast, PaDe and MP-MOEA/D

represent interesting approaches. PaDe is an asynchronous pMOEA based on

the island model which allows the maintenance of a distributed Pareto front.

As in the case of pMOEA/D, PQEA, and GPU-MOEAA/D-ACO, it uses a

partitioned objective space. MP-MOEA/D is one of few approaches that em-1255

ploys the diffusion model and has the capacity to perform asynchronous and

synchronous communication among the demes. Moreover, it was implemented

using MPI which encourages its execution in massively parallel architectures.

Regarding the communication strategy, SA2EA is the only pMOEA (taking into

account all the parallel levels) that has an adaptive communication scheme. The1260

demes of SA2EA can communicate in a synchronous, asynchronous, and semi-

asynchronous fashion depending on the worklod conditions. As in the case of

the parallel hyper-heuristic [52] in the previous section, SA2EA can be taken

50

as a cornerstone to the design of configurable pMOEAs. Another MOEA that

has been constantly parallelized is the SMS-EMOA. Regarding iteration-level1265

proposals of SMS-EMOA, pSMS-EMOA aims to tackle very expensive MOPs

by dividing the evaluation of individuals in several nodes. However, pSMS-

EMOA suffers from the high computational cost of computing the contribu-

tions to the hypervolume indicator which makes it prohibitive for MaOPs. In

contrast, MOMA is an approach that parallelizes two mechanisms: the com-1270

putation of the calculation of the hypervolume contributions and it launches

several IGD+-based local search mechanisms to improve the current solutions.

Nevertheless, neither pSMS-EMOA nor MOMA can obtain the quality results

of S-PAMICRO [61] at low execution times.

Regarding computational time, the authors of SA2EA provide a remarkable1275

study that analyzes the impact of both a synchronous and an asynchronous

communication scheme. Asynchronicity effectively reduces the overall computa-

tional time although it comprises the quality of the Pareto front approximation.

On the other hand, a synchronous communication implies slighty larger runtimes

at the expense of better Pareto front approximations. Hence, a multi-objective1280

optimization problem can be formulated based on the use of a synchronous or an

asynchronous scheme. SMPSO is able to obtain speed ups of up to 4x on solving

large-scale versions of ZDT and DTLZ problems, which makes it a promising

approach when dealing with large-scale MOPs. Regarding MOMA, the authors

presented two versions: a CPU-based MOMA and a GPU-MOMA. Both parallel1285

versions operate faster than the sequential MOMA but the results showed that

the use of GPU hardware considerably increases the speed ups. Overall, this

effect is consistent in the various GPU-based approaches such as GPU-NSGA-II,

GPU-MOEA/D-ACO, and GPU-MOEA. Regarding the MOEA/D approaches,

MP-MOEA/D presents promising results due to the massive use of parallel re-1290

sources (it was executed on a 128-node cluster). Moreover, MP-MOEA/D is able

to solve large-scale MOPs of up to 2048 variables. Nevertheless, MP-MOEA/D

was only tested on a bi-objective landscape problem. In contrast, PaDe presents

almost-linear speed ups on the three-, four-, and five-objective DTLZ problems.

51

Hence, PaDe rises as the fastest MOEA/D-like algorithm.1295

3.4. Solution-level Parallelization

Unlike the algorithmic- and iteration-levels that are problem independent,

the solution-level completely depends on the MOP being tackled. As initially

proposed by Talbi [13], solution-level focuses on the parallel evaluation of a sin-

gle solution, considering objective functions and constraints but they need to be1300

computationally expensive. The current state-of-the-art benchmark problems

do not include any time-consuming functions. At most, some researchers have

added useless loops to the test problems to emulate a time-consuming functions

[87]. Evidently, the real expensive MOPs can be found in real-world applications

[1]. In consequence, solution-level must be considered as a fundamental part in1305

our taxonomy (even though there are no current approaches that consider this

level to the best of the authors’ knowledge) since in real-world applications it is

much more likely to find time-consuming MOPs that require the parallelization

of their functions using either of the two proposed ways (i.e., decomposition of

data or decomposition of functions). Additionally, it is very important to pro-1310

pose benchmark problems that emulate or consider computationally expensive

functions.

3.5. Multi-level Parallelization

In this section, the multi-level pMOEAs (also known as hybrid approaches)

are described. The main characteristics of these proposals are summarized in1315

Table 6 while Table 7 shows the implementation details. It is worth noting in

the table the existence of solution-level proposals.

The Distributed Cooperation model of Multi-Objective Genetic Algorithm

with Environmental Scheme (DCMOGADES) [107] is a multi-level approach

that uses both algorithmic- and iteration-levels. It combines DCMOGA [44]1320

and MOGADES [43] where the former imposes the algorithmic-level structure

and the latter is in charge of the iteration-level. In this light, N + 1 islands

are initially created using a star topology (as employed in DCMOGA), where

52

Table 6: Multi-level proposals: main characteristics. The following terms are employed:

master-slave model (MS), island model (IM), parallelism of population (PPop), synchronous

(Sync), asynchronous (Async), global (G), partitioned (P), centralized (C), distributed (D),

homogeneous (Ho), heterogeneous (He), static (St), dynamic (Dyn), and not applicable (N/A)

when an approach does not use a parallel level.

N
a
m
e

A
lg
o
ri
th

m
ic
-l
e
v
e
l

It
e
ra

ti
o
n
-l
e
v
e
l

S
o
lu
ti
o
n
-l
e
v
e
l

C
o
m
m
u
n
ic
a
ti
o
n

D
e
c
is
io
n

S
p
a
c
e

O
b
je
c
ti
v
e
S
p
a
c
e

P
a
re

to
F
ro

n
t

N
o
d
e
s

D
is
tr
ib
u
ti
o
n

Y
e
a
r

R
e
fe
re

n
c
e

DCMOGADES IM
PPop

IM
N/A Sync G P C Ho Dyn 2002 [107]

Hierarchical approach in

distributed MOEAS
MS

PPop

IM
N/A

Sync

Async

G or

P

G or

P
D He St 2008 [108]

Multi-level NSGA-II N/A
PPop

IM

Decomposition of

functions
Sync G G D Ho St 2015 [38]

CPU-GPU NSGA-II N/A
PPop

MS

Decomposition of

data

Sync or

Async
G G C Ho Dyn 2018 [39]

Table 7: Multi-level proposals: implementation characteristics.

N
a
m
e

P
a
ra

ll
e
l

a
rc
h
it
e
c
tu

re

C
o
m
m
u
n
ic
a
ti
o
n

li
b
ra

ry

P
ro

g
ra

m
m
in
g

la
n
g
u
a
g
e

O
p
e
ra

ti
n
g

sy
st
e
m

R
e
fe
re

n
c
e

DCMOGADES Not defined Not defined Not defined Not defined [107]

Hierarchical approach in

distributed MOEAS

Multi-computer

(8-node PC-Cluster

and 24-node Grid))

Java MPI (Cluster)

gLite (for Grid)

Java

(Cluster and Grid)

Linux

Scientific Linux
[108]

Multi-level NSGA-II

Multi-computer and

multi-core (180-node

PC-Cluster, 8-core

nodes with 16

threads each one)

MPI and

OpenMP
C Not defined [38]

CPU-GPU NSGA-II
Multi-computer (4-node

PC-Cluster) and GPU

MPI and

OpenCL

C++ (MPI)

and C (OpenCL)

Linux

CentOS
[39]

53

N islands correspond to Single-Objective Genetic Algorithm (SOGA) groups

and the remaining one is a Multi-Objective Genetic Algorithm (MOGA) group.1325

Then, each group is structured using the island model, following the design

of MOGADES. Hence, there will be N + 1 groups connected by a star topol-

ogy, where each group is formed by an island model using an unidirectional ring

topology with random migration. Thus, the MOGA group runs MOGADES and

the peripheral nodes, related to the SOGA groups, perform a parallel genetic1330

algorithm (pGA) for single-objective optimization. Moreover, when extreme

solutions are interchanged and they are better in the corresponding objective,

one deme of the source node is migrated. This way, the most successful algo-

rithm obtains more resources. DCMOGADES performed better than NSGA-II,

SPEA2 and MOGADES on two bi-objective problems, producing widespread1335

solutions. However, more evidence is required to validate its performance. One

advantage of this scheme is that the number of demes is independent of the

number of objectives.

Zaharie et al. [108] proposed a framework for the parallel execution of

MOEAs, based on a layered structure, targetting different execution environ-1340

ments such as single computers, computer clusters and grid infraestructure.

In the upper layer, a master-slave structure is implemented to independently

evolve colonies of populations, each one being executed in a location of a grid

environment. The slaves only communicate with the master node at the end

of the evolutionary process to share the non-dominated individuals that they1345

found. Each slave is in turn structured using the island model, where the is-

lands implement sequential algorithms that explore the entire decision space or

a fragment of it. From a practical point of view, this layer is executed on a

cluster of computers so that each processor deals with the evolution of one or

several subpopulations from a colony. The authors implemented the approach1350

using eight independent pMOEAs (based on NSGA-II and island APDE [109])

running on a cluster, having different communication strategies. In the highest

level, a master process, hosted on a grid, collects all the results and constructs

the set of non-dominated solutions. The authors tested the proposal on the

54

ZDT test suite, observing that the best strategy was to use NSGA-II with a1355

population of 200 individuals and a crossover probability of 0.9. Moreover, the

collective step affects the speed up when the evaluation cost is negligible. The

main drawback of this approach is that the user must define the configuration

of each MOEA.

The design of digital circuits is a challenging application in which, besides1360

functionality, it is required to minimize the area of the circuit and the power

consumption. Hrbacek [38] proposed a multi-objective evolutionary approach

where the trade-off between error and efficiency of the circuit is exploited. The

proposal, denoted here as multi-level NSGA-II, combines an iteration-level de-

sign using the island model with a solution-level that aims to reduce the high1365

computational cost of evaluating the objective functions of the generated digital

circuits. To handle the design of digital circuits, the authors embedded a carte-

sian genetic programming (CGP) representation into NSGA-II. Due to the neu-

trality present in CGP, premature convergence is caused. In consequence, the

authors introduced a new equivalence rank which allows to place equivalent so-1370

lutions in a certain order that helps to preserve the neutrality character of CGP.

Hence, each island executes a NSGA-II algorithm using the above mentioned

modifications. The evaluation of each of the three objective functions (namely,

the mean squared error, area of the circuit based on the approximate number

of transistors, and latency) was performed in parallel using a decomposition of1375

function approach. The authors analyzed the performance of the approach and

the most relevant result was that the influence of the island model to reduce

the average error of the circuit has a good impact when the number of islands

increases. They also analyzed the effect of increasing the size of the offspring

population and the number of generations executed. Regarding the design of1380

two arithmetical circuits (a 4-bit multiplier and a 4-bit adder), the approach

was able to generate designs that could reduce the overall error.

Escobar et al. [39] introduced an MOEA for feature selection in electroen-

cephalogram (EEG) classification which takes advantage of the CPU-GPU tech-

nology. Specifically, this proposal deals with a multi-objective feature selection1385

55

problem (MOF) in unsupervised classification of patterns characterized by a

high number of features. Such a problem is tackled using as baseline NSGA-

II that is adapted to be executed in a CPU-GPU environment. In the upper

level, the iteration-level is implemented to split the population following the

master-slave model. The communication between the master and the slaves1390

is implemented using MPI to dynamically distribute the population, which re-

duces unbalanced loads. In consequence, the master asynchronously responds

to the requests for subpopulations of each slave until there is no more work to

do. Each slave evolves a subpopulation that encodes different feature selections.

Each individual performs a k-means algorithm to evaluate two objective func-1395

tions defined according to two clustering validation indices which correspond

to the minimization and maximization of the intra-cluster and the inter-cluster

distances. Due to these time-consuming functions, it is necessary to parallelize

them. The nature of the k-means algorithm allows to exploit the data paral-

lelism. Therefore, the solution-level uses the decomposition of data approach.1400

The proposed approach was tested on 178 EEG patterns with 3600 features per

pattern, varying the number of subpopulations from 1 to 32 subpopulations.

Both a sequential and the CPU-GPU approaches were compared and the ex-

perimental results showed that they are similar in terms of hypervolume values,

although the latter was faster as the number of subpopulations increased. With1405

32 subpopulations, it was possible to obtain speed ups of 70x.

3.5.1. Discussion

The design of multi-level approaches is a challenging and promising problem

research direction. As shown in Figure 1, one can produce several combina-

tions of parallel models, exploiting the advantages of them. Currently, due to1410

the available hardware, the design of multi-level pMOEAs can be easily accom-

plished, combining GPUs, multi-core and multi-computer systems. For example,

the Multi-level NSGA-II uses a 180-node PC-Cluster, where each computer has

a multi-core architecture. This architecture encourages a massive paralleliza-

tion. It is worth noting that both the Multi-level NSGA-II and the CPU-GPU1415

56

NSGA-II are iteration-level approaches that also support the parallelization of

the calculation of the objective functions. Hence, these approaches have great

potential to be used when dealing with expensive MOPs with heterogeneous ob-

jective functions. In contrast, DCMOGADES [107] and the proposal of Zaharie

et al [108] implement a more common structure oriented to the parallelization1420

of the population. In summary, multi-level parallelization is still a fertile re-

search field where algorithms with different characteristics can be constructed.

However, the few degrees of freedom available in these approaches is their main

drawback. For instance, it is necessary to analyze the overhead related to the

communication between the pieces of hardware. Furthermore, due to the utiliza-1425

tion of two or more parallel schemes, this involves a study of how the inherent

parameters affect the quality of the final approximation sets.

4. Potentially parallelizable MOEAs

In this section, we discuss two design strategies of multi-objective evolution-

ary algorithms: coevolution and decomposition. Both approaches are specially1430

relevant due to the wide variety of algorithms based on them and their poten-

tial to be parallelized. On the one hand, coevolutionary MOEAs (CMOEAs)

which are extensions of traditional MOEAs, have been effectively employed to

solve large-scale MOPs [110]. Large-scale MOPs involve decision spaces with

hundreds (or even thousands) of decision variables which makes them very com-1435

plex and computationally expensive. On the other hand, decomposition-based

MOEAs are a popular designing strategy where an MOP is decomposed into

several single-objective optimization problems (SOPs) which are simultaneously

solved by an MOEA [111, 112]. MOEAs based on these strategies have a great

potential to be parallelized.1440

4.1. Coevolutionary MOEAs

According to Miguel Antonio and Coello [110], coevolutionary MOEAs are

mainly divided into three main classes: cooperative CMOEAs, competitive

57

CMOEAs, and competitive-cooperative CMOEAs. From these classes, the coop-

erative CMOEAs (CCMOEAs) are noteworthy since they decompose either the1445

decision or the objective spaces (the reader is referred to [110] which presents a

survey of CCMOEAs). Hence, parallelization seems as a straightforward way to

improve these algorithms. Regarding the decomposition of the decision space,

CCMOEAs assign a species population to each subset of decision variables.

Thus, a complete solution is partitioned into a given number of species popula-1450

tions. A CCMOEA makes the member of the species populations collaborate to

evaluate the objective functions. Some representative sequential CCMOEAs can

be found in [113, 114, 115, 116, 117, 6]. Due to the existence of multiple species

populations in charge of subsets of decision variables, the parallelization could

be a latent tool to improve these CCMOEAs. However, special attention should1455

be paid to these MOPs since sometimes there are highly complex interdependen-

cies which prevents their parallelization. In Section 3.2, we revised pPAES [47]

which is an algorithmic-level parallel CCMOEA and we also analyzed the func-

tioning of two iteration-level parallel CCMOEAs focused on the partitioning of

the decision space [98, 97] in Section 3.3. In the case of CCMOEAs focused1460

on the decomposition of the objective space, the species populations cooper-

ate with each other to approximate the whole Pareto front. In this case, each

objective function is assigned to a species population to be optimized (which

contrasts with the decomposition-based MOEAs where the SOPs are formed

by scalarizing functions). This scheme aims to improve the exploration of the1465

objective space. Recent proposals are the following: [118, 119, 117, 120]. Due to

the assigment of an objective function to a species population, the application

of the master-slave or the island model seems direct. However, an important

factor is the maintenance of diversity among the whole population since the

optimization of the objective functions in isolation may cause diversity loss.1470

4.2. Decomposition-based MOEAs

The Multi-Objective Evolutionary Algorithm based on Decomposition [21]

has deserved a lot of attention from the evolutionary multi-objective optimiza-

58

tion community due to is efficiency and good performance. The underlying idea

is the decomposition of the MOP into several SOPs by using scalarizing func-1475

tions. MOEA/D simultaneously optimizes the SOPs to push the population

closer to the Pareto front. Since MOEA/D manages multiple SOPs, this has

been exploited to generate several parallel versions of MOEA/D. In this paper,

we have analyzed several parallel versions of MOEA/D where most of them are

based on the iteration-level approach: pCMOEA/D-DMA [100], PMEA [95],1480

MP-MOEA/D [93], PaDe [92], GPU-MOEA/D-ACO [121], PQEA (which is a

quantum-based version of MOEA/D) [89], and pMOEA/D [87]. Regarding the

algorithmic-level approaches, to the best of our knowledge, MOEA/D
pe
sp [58]

is the only one under this parallelization level. In the specialized literature,

there are a plethora of sequential approaches following the MOEA/D frame-1485

work [111, 112]. Even though MOEA/D seems to be easily parallelizable due

to its use of multiple SOPs, there are several subtleties that should be taken

into account. First, much of the success of MOEA/D is due to its mechanism

to propagate solutions in the underlying neighborhood structure. Second, an

important aspect is the definition of the synchronicity or asynchronicity of the1490

communication. Depending on which one is adopted, this impacts the quality

of the final solution set as shown in [93, 92, 87].

5. Real-world Applications

Throughout the years, MOEAs have shown their value when solving real-

world problems. These problems, coming from different engineering, industrial,1495

and scientific areas, represent a challenge because they usually involve high di-

mensionality in both decision and objective spaces and the objective functions

are computationally expensive. In consequence, parallelization techniques have

emerged as an important tool to improve MOEAs and, thus, allowing them to

effectively tackle these real-world MOPs. In Table 8, we provide a few represen-1500

tative examples of real-world problems, indicating the parallel level(s) and the

corresponding parallel model to which they correspond in our taxonomy, as well

59

Table 8: Real-world applications of pMOEAs. The following terms are employed: master-

slave model (MS), island model (IM), parallelism of population (PPop), decomposition of

data (DD), decomposition of function(DF), synchronous (Sync), asynchronous (Async), global

(G), partitioned (P), centralized (C), distributed (D), homogeneous (Ho), heterogeneous (He),

static (St), dynamic (Dyn), and not applicable (N/A) when an approach does not use a parallel

level.

Problem Algorithmic-level Iteration-level Solution-level
Baseline

algorithm
nnn mmm Ref.

X-ray spectros-

copic analysis

N/A
PPop

MS
N/A NPGA 2 2 [122]

N/A
PPop

MS
N/A NSGA-II 2 3 [123]

Diesel engine

design

IM N/A N/A MOGADES 12 3 [124]

MS N/A N/A NSGA-II 10 3 [55, 68]

Airfoil design

N/A
PPop

MS
DD NSGA 14 2 [36]

N/A
PPop

Diff
N/A SPEA2 24 2 [125]

Portfolio

selection
IM N/A N/A NSGA-II, clustering 30 2 [49]

2D packing IM N/A Memetic NSGA-II 100 2 [126]

Antenna

positioning
IM N/A N/A NSGA-II 349 2 [127]

Mobile ad-hoc

networks

IM N/A N/A METCO 5 3 [128, 129]

N/A
PPop

Diff
N/A cMOGA 5 2, 3 [130], [131]

Calibration of

hydrologic models
N/A

PPop

MS
N/A AMALGAM 75 3 [132]

Photoinjector

beam design
IM N/A DFs MODE 10 2 [133]

Data mining
N/A

PPop

Parallelism of mechanisms

MS

N/A NSGA-II 17 2 [134]

MS
PPop

IM
N/A NSGA-II, PDE 10, 14 3 [108]

Protein structure

prediction
N/A

PPop

MS
N/A PAES, NSGA-II 1 3 [135, 136]

Job shop

scheduling
N/A

PPop

PP
N/A

Single-objective

heuristics
50 2 [85]

Dynamic molecular

alignment
N/A

PPop

MS
N/A SMS-EMOA 80 2 [3]

Vehicle

routing
N/A

PPop

IM
N/A NSGA-II 100 2, 3 [137]

Mesh

partitioning
IM N/A N/A SPEA2 7 2 [138]

Interplaneraty

trajectory design
IM N/A N/A NSGA-II 15, 19 2 [139]

Phylogenetic

inference
N/A

PPop

MS
DF PhyloMOEA 50, 250 2 [37]

Competitive facility

location
N/A

PPop

MS
N/A Memetic NSGA-II 10 2 [140]

60

as the baseline MOEAs used to solve instances with n decision variables and

m objective functions. We also include some combinatorial applications: job

shop scheduling, interplanetary trajectory design, phylogenetic inference, block1505

layout and the 2D packing problem.

The common characteristic in all these problems is that they are indeed

difficult, having multiple local Pareto fronts, constraints, expensive function

evaluations, non-uniform costs for the entire population, huge search spaces

and, in some cases, NP-completeness. The use of pMOEAs has produced a1510

considerable reduction in computational time, achieving almost linear [122, 123]

or sub-linear [55, 68], [108, 37] speed ups, and producing, in some cases, an

improvement in the quality of solutions [55, 68, 49].

A difficult problem that is usually tackled by pMOEAs is the multi-objective

portfolio selection problem. Streichert et al. [49] solved this problem using a1515

very interesting approach where the decision and objective spaces were parti-

tioned using a clustering technique. Regarding the problem, even though it is

not computationally expensive, the authors proposed to control the number of

assets such that the number of local Pareto fronts could be handled by the avail-

able processors. Hence, this is an insight for the design of benchmark problems1520

for pMOEAs where we can match the computational resources to the properties

of the problem. Sometimes, the objetive functions of real-world problems do not

have an analytical form as benchmark problems normally do. Thus, numerical

models are necessary as in the case of the shape of a laser pulse for precision

alignment of molecules [3]. Due to the high computational cost of this prob-1525

lem, Klinkenberg et al. proposed to use a surrogate model and, then, solve the

problem, using a parallel SMS-EMOA. The use of surrogate models and paral-

lel techniques represents a clear approach to reduce the runtime complexity of

solving a real-world problem. However, due to the use of the surrogate model,

precision aspects of the problem may be lost. NP-complete problems such as the1530

antenna positioning problem (APP) are remarkable approaches where the ad-

vantages of pMOEAs arise. Segredo et al. [127] tackled a multiobjectivized APP

using a parallel version of SGA-II. Moreover, the problem involved a dataset of

61

n = 349 candidate sites for the positioning of base stations. The use of NP-

complete problems to test pMOEAs is a noteworthy aspect to the design of1535

benchmark problems. In this case, the authors achieved superlinear speed ups

in comparison with the performance of a sequential version of NSGA-II. An-

other important aspect to take into account is the use of datasets in bechmark

problems. Currently, due to the success of machine learning techniques, datasets

are available for different applications. Hence, the evolutionary multi-objective1540

community could focus on these datasets to create new benchmark problems,

simulating real-world problems.

The parallel architectures employed to solve real-world problems range from

multi-core computers [49], multi-processor systems [127, 126] up to grids of

computers as in [3]. Furthermore, the parallel libraries commonly used in these1545

applications are MPI7 [141], [142], [36], [37], PVM8 [122] and Condor9 [125]

for computer clusters; OpenMP10 [37] and light weight processes of UNIX for

processor architectures; and gLite11 [108], GridWay12 and Globus Toolkit13

[125] for grids.

6. Some Future Research Trends1550

Currently, there are numerous pMOEAs that have achieved outstanding

quality results and that have helped to reduce the computational cost of se-

quential MOEAs. However, there are lots of room for improvement. Some

possible paths for future research in this area are summarized in the following

points:1555

7http://www.mpi-forum.org
8http://www.csm.ornl.gov/pvm
9http://research.cs.wisc.edu/htcondor

10http://openmp.org/wp
11http://glite.cern.ch
12http://www.gridway.org
13http://www.globus.org/toolkit

62

� A public-domain framework that includes the most representative pMOEAs

is necessary for both researchers and practitioners. Although such a frame-

work is a challenging project since it involves the management of differ-

ent parallel technologies, it would be a very useful tool for performing

comparative studies and/or solving real-world applications. Currently,1560

the PlatEMO framework [143] offers the possibility to execute in parallel

MOEAs that are related to an experimental setting. On the other hand,

the Pymoo framework [144] allows the parallelization of MOEAs by using

threads, processes, and distributed processes. Finally, the jMetal frame-

work [145] offers four parallel MOEAs as part of its suite of algorithms.1565

� Acoording to the No-Free Lunch Theorems for search [146, 147], a pMOEA

cannot show a good performance on all the possible MOPs. Hence, it is

important to generate comparative studies among different models and

pMOEAs, aiming to identify the classes of problems in which a partic-

ular type of parallel model or specific pMOEA has a particularly good1570

or bad performance. In this light, Falcón-Cardona et al. [62] proposed

an island-based multi-indicator algorithm where it is possible to observe

how different indicator-based MOEAs complement each other to produce

Pareto front approximations with better convergence and diversity prop-

erties. By following this research direction, researchers could improve the1575

robustness of pMOEAs, i.e., its good performance under MOPs with dif-

ferent search difficulties and Pareto front shapes.

� In [87], it was shown that the real advantages of pMOEA/D were only

observable when using MOPs to which a useless loop was added to emu-

late a time-consuming problem. This demonstrated that the use of classic1580

benchmarks such as the ZDT, DTLZ, and WFG test suites is not enough

to validate pMOEAs. Consequently, it is mandatory to develop test suites

specifically designed to test the properties of pMOEAs not only consid-

ering search difficulties but also incorporating computationally expensive

MOPs with heterogeneous times in their objective functions. In this re-1585

63

gard, a possibility is to conform a test suite based on some expensive

real-world problems tackled by the evolutionary multi-objective optimiza-

tion (EMOO) community, following a crowdsourcing style.

� As can be seen in Tables 2 and 4, most of the pMOEAs are based on

a small number of baseline MOEAs such as NSGA-II, MOEA/D, and1590

SMS-EMOA. However, currently, there is a plethora of recently proposed

MOEAs that outperform these MOEAs, having very good performance on

many-objective optimization problems [34, 148, 149] or even in large-scale

MOPs [6]. Hence, it is necessary to propose parallel versions of such new

MOEAs to determine their quality properties.1595

� In our proposed taxonomy (see Fig. 3), it is possible to see that a pMOEA

encompasses several properties such as the parallel mode, the type of com-

munication among the nodes and the distribution of the nodes, among oth-

ers. Currently, we do not completely understand the effect of each of these

properties. In consequence, a study that shows how these properties im-1600

prove or worsen the performance of a pMOEA is necessary. For instance,

the study of the impact of different topologies and migration schemes on

the performance of different pMOEAs was presented in [150, 151] and

[139], respectively. More recently, Hernández-Gómez et al. studied the

impact of the migration parameters of an island-based SMS-EMOA.1605

� Currently, algorithmic-level and iteration-level pMOEAs have been de-

signed under three main parallel models: master-slave, island model, and

diffusion. However, new parallel models could be proposed or taken from

the parallel single-objective evolutionary algorithms. Regarding the latter

case, one possibility is the predator-prey model that has been scarcely1610

exploited to design MOEAs [85, 40]. On the other hand, the consumer-

producer model should be deeply investigated and implemented on pMOEAs.

According to Roy et al. [41], in such a model, there are multiple proces-

sors, each running a copy of an evolutionary algorithm. Unlike the island

model, each processor is not confined to a set of individuals. Instead, there1615

64

is a common pool of individuals from which each processor picks up in-

dividuals for computing the next generation. Additonally, hybrid models

have been scarcely explored to design MOEAs and their utilization could

exploit the best properties of the three main parallel models. Finally, in

general, the EMOO community should look at parallel models proposed1620

in other disciplines and further exploit those utilized for single-objective

evolutionary algorithms.

� Commonly, pMOEAs have a trade-off between achieving good execution

times and producing high quality results. This fact is clear when testing

asynchronous pMOEAs which are faster than their synchronous counter-1625

parts, but they produce Pareto front approximations with less quality.

However, Harada and Takadama [42] showed that the use of an adaptive

semi-asynchronous communication strategy on a pMOEA can produce

outcomes similar in quality to synchronous MOEAs (or even similar to

sequential algorithms) but maintaining high speed ups. This is an insight1630

that the design of self-adaptive pMOEAs (not only taking into account

the communication strategy) could lead to high quality algorithms. A

possible research path is the implementation of a machine learning-based

method that predicts when to switch from synchronous to asynchrnous

communication and for how long. This can be done by means of a hyper-1635

heuristic.

� Another interesting research direction is the design of parallel MOEAs to

solve constrained MaOPs [152]. Currently, most of the pMOEAs have been

focused on the solution of unconstrained artificial MOPs (see Tables 2,

4, and 6) but real-world problems often contain complex constraints and1640

many objectives. The parallelization of objective functions and constraints

could encourage the design of more solution-level approaches which have

been scarcely explored by the EMOO community.

� There are several other topics that are also worth investigating, including:

theoretical aspects of pMOEAs (e.g., convergence and landscape analy-1645

65

sis), automated parameter tuning of pMOEAs, design of parallel hyper-

heuristics for multi-objective optimization, design of parallel memetic multi-

objective evolutionary algorithms, density estimators and archiving tech-

niques specially tailored for pMOEAs, as well as performance indicators

to assess performance of pMOEAs, among others.1650

7. Conclusions

The parallelization of MOEAs is recommended in problems that require a

very large population size, such as large scale optimization or many-objective

optimization. They are also advisable in difficult and complex problems where

it becomes necessary to find solutions in a fast manner, as well as in dynamic1655

problems, where an answer is required almost in real-time. pMOEAs are also

a good choice in problems in which it is very difficult to maintain diversity,

since some parallel models (e.g., the use of islands) are very suitable to enhance

diversity. In this paper, we presented a comprehensive review of publications

on parallel multi-objective evolutionary algorithms. A summary of popular1660

models of parallelization, including some recent innovations, has been provided.

We also proposed a taxonomy based on three main levels of parallelization,

emphasizing the properties that each pMOEA could have. Finally, we described

some possible future research paths on which researchers and practitioners could

focus.1665

References

[1] C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems, 2nd Edition, Springer,

New York, 2007, iSBN 978-0-387-33254-3.

[2] L. V. Santana-Quintero, A. Arias Montaño, C. A. Coello Coello, A Review1670

of Techniques for Handling Expensive Functions in Evolutionary Multi-

Objective Optimization, in: Y. Tenne, C.-K. Goh (Eds.), Computational

66

Intelligence in Expensive Optimization Problems, Springer, Berlin, Ger-

many, 2010, pp. 29–59, iSBN 978-3-642-10700-9.

[3] J.-W. Klinkenberg, M. T. Emmerich, A. H. Deutz, O. M. Shir, T. Bäck,1675

A Reduced-Cost SMS-EMOA Using Kriging, Self-Adaptation, and Paral-

lelization, in: M. Ehrgott, B. Naujoks, T. J. Stewart, J. Wallenius (Eds.),

Multiple Criteria Decision Making for Sustainable Energy and Transporta-

tion Systems, Springer, Lecture Notes in Economics and Mathematical

Systems Vol. 634, Heidelberg, Germany, 2010, pp. 301–311.1680

[4] B. Li, J. Li, K. Tang, X. Yao, Many-Objective Evolutionary Algorithms:

A Survey, ACM Computing Surveys 48 (1).

[5] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, Test Problems for Large-Scale

Multiobjective and Many-Objective Optimization, IEEE Transactions on

Cybernetics PP (99) (2016) 1–14.1685

[6] L. M. Antonio, C. A. Coello Coello, Use of Cooperative Coevolution

for Solving Large Scale Multiobjective Optimization Problems, in: 2013

IEEE Congress on Evolutionary Computation (CEC’2013), IEEE Press,

Cancún, México, 2013, pp. 2758–2765, iSBN 978-1-4799-0454-9.

[7] E. Manoatl Lopez, L. Miguel Antonio, Carlos A. Coello Coello, A GPU-1690

Based Algorithm for a Faster Hypervolume Contribution Computation, in:

A. Gaspar-Cunha, C. H. Antunes, C. Coello Coello (Eds.), Evolutionary

Multi-Criterion Optimization, 8th International Conference, EMO 2015,

Springer. Lecture Notes in Computer Science Vol. 9019, Guimarães, Por-

tugal, 2015, pp. 80–94.1695

[8] R. Hernández-Gómez, C. A. C. Coello, E. Alba, A Parallel Version of

SMS-EMOA for Many-Objective Optimization Problems, in: J. Handl,

E. Hart, P. R. Lewis, M. L.-I. nez, G. Ochoa, B. Paechter (Eds.), Parallel

Problem Solving from Nature – PPSN XIV, 14th International Conference,

Springer. Lecture Notes in Computer Science Vol. 9921, Edinburgh, UK,1700

2016, pp. 568–577, iSBN 978-3-319-45822-9.

67

[9] T. Glasmachers, Optimized Approximation Sets for Low-Dimensional

Benchmark Pareto Fronts, in: T. Bartz-Beielstein, J. Branke, B. Filipič,

J. Smith (Eds.), Parallel Problem Solving from Nature - PPSN XIII, 13th

International Conference, Springer. Lecture Notes in Computer Science1705

Vol. 8672, Ljubljana, Slovenia, 2014, pp. 569–578.

[10] H. Aguirre, A. Liefooghe, S. Verel, K. Tanaka, A Study on Popula-

tion Size and Selection Lapse in Many-objective Optimization, in: 2013

IEEE Congress on Evolutionary Computation (CEC’2013), IEEE Press,

Cancún, México, 2013, pp. 1507–1514, iSBN 978-1-4799-0454-9.1710

[11] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1989.

[12] G. Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed Systems:

Concepts and Design, 5th Edition, Addison-Wesley Publishing Company,

USA, 2011.1715

[13] E.-G. Talbi, A unified view of parallel multi-objective evolutionary algo-

rithms, Journal of Parallel and Distributed Computing 133 (2019) 349–

358.

[14] A. Nebro, F. Luna, E.-G. Talbi, E. Alba, Parallel Multiobjective Opti-

mization, in: E. Alba (Ed.), Parallel Metaheuristics, Wiley-Interscience,1720

New Jersey, USA, 2005, pp. 371–394, iSBN 13-978-0-471-67806-9.

[15] F. Luna, E. Alba, Parallel Multiobjective Evolutionary Algorithms, in:

J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Computational

Intelligence, Springer, Berlin, Germany, 2015, pp. 1017–1031, iSBN 978-

3-662-43504-5.1725

[16] A. López Jaimes, C. A. Coello Coello, Applications of Parallel Platforms

and Models in Evolutionary Multi-Objective Optimization, in: A. Lewis,

S. Mostaghim, M. Randall (Eds.), Biologically-Inspired Optimisation

68

Methods, Springer, Berlin, Germany, 2009, pp. 23–49, iSBN 978-3-642-

01261-7.1730

[17] D. A. Van Veldhuizen, J. B. Zydallis, G. B. Lamont, Considerations in En-

gineering Parallel Multiobjective Evolutionary Algorithms, IEEE Trans-

actions on Evolutionary Computation 7 (2) (2003) 144–173.

[18] F. Luna, A. J. Nebro, E. Alba, Parallel Evolutionary Multiobjective Opti-

mization, in: N. Nedjah, E. Alba, L. de Macedo Mourelle (Eds.), Parallel1735

Evolutionary Computations, Springer, Berlin Heidelberg, 2006, pp. 33–56.

[19] E.-G. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, G. Rudolph, C. A.

Coello Coello, Parallel Approaches for Multi-objective Optimization, in:

J. Branke, K. Deb, K. Miettinen, R. Slowinski (Eds.), Multiobjective Op-

timization. Interactive and Evolutionary Approaches, Springer. Lecture1740

Notes in Computer Science Vol. 5252, Berlin, Germany, 2008, pp. 349–

372.

[20] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiob-

jective Genetic Algorithm: NSGA–II, IEEE Transactions on Evolutionary

Computation 6 (2) (2002) 182–197.1745

[21] Q. Zhang, H. Li, MOEA/D: A Multiobjective Evolutionary Algorithm

Based on Decomposition, IEEE Transactions on Evolutionary Computa-

tion 11 (6) (2007) 712–731.

[22] N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selec-

tion based on dominated hypervolume, European Journal of Operational1750

Research 181 (3) (2007) 1653–1669.

[23] K. Deb, R. B. Agrawal, Simulated Binary Crossover for Continuous Search

Space, Complex Systems 9 (2) (1995) 115–148.

[24] N. Srinivas, K. Deb, Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms, Evolutionary Computation 2 (3) (1994)1755

221–248.

69

[25] E. Zitzler, L. Thiele, Multiobjective Evolutionary Algorithms: A Compar-

ative Case Study and the Strength Pareto Approach, IEEE Transactions

on Evolutionary Computation 3 (4) (1999) 257–271.

[26] J. D. Knowles, D. W. Corne, Approximating the Nondominated Front1760

Using the Pareto Archived Evolution Strategy, Evol. Comput. 8 (2) (2000)

149–172.

[27] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength

Pareto Evolutionary Algorithm, Tech. Rep. 103, Computer Engineering

and Networks Laboratory (TIK), Swiss Federal Institute of Technology1765

(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001).

[28] E. Zitzler, S. Künzli, Indicator-based Selection in Multiobjective Search,

in: X. Y. et al. (Ed.), Parallel Problem Solving from Nature - PPSN VIII,

Springer-Verlag. Lecture Notes in Computer Science Vol. 3242, Birming-

ham, UK, 2004, pp. 832–842.1770

[29] D. ung H. Phan, J. Suzuki, R2-IBEA: R2 Indicator Based Evolutionary

Algorithm for Multiobjective Optimization, in: 2013 IEEE Congress on

Evolutionary Computation (CEC’2013), IEEE Press, Cancún, México,

2013, pp. 1836–1845, iSBN 978-1-4799-0454-9.

[30] M. Emmerich, N. Beume, B. Naujoks, An EMO Algorithm Using the Hy-1775

pervolume Measure as Selection Criterion, in: C. A. C. Coello, A. H.

Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization.

Third International Conference, EMO 2005, Springer. Lecture Notes in

Computer Science Vol. 3410, Guanajuato, México, 2005, pp. 62–76.

[31] C. Igel, N. Hansen, S. Roth, Covariance Matrix Adaptation for Multi-1780

objective Optimization, Evolutionary Computation 15 (1) (2007) 1–28.

[32] Q. Zhang, H. Li, MOEA/D: A Multiobjective Evolutionary Algorithm

Based on Decomposition, IEEE Transactions on Evolutionary Computa-

tion 11 (6) (2007) 712–731.

70

[33] J. Bader, E. Zitzler, HypE: An Algorithm for Fast Hypervolume-Based1785

Many-Objective Optimization, Evolutionary Computation 19 (1) (Spring,

2011) 45–76.

[34] K. Deb, H. Jain, An Evolutionary Many-Objective Optimization Al-

gorithm Using Reference-Point-Based Nondominated Sorting Approach,

Part I: Solving Problems With Box Constraints, IEEE Transactions on1790

Evolutionary Computation 18 (4) (2014) 577–601.

[35] H. Jain, K. Deb, An Evolutionary Many-Objective Optimization Al-

gorithm Using Reference-Point Based Nondominated Sorting Approach,

Part II: Handling Constraints and Extending to an Adaptive Approach,

IEEE Transactions on Evolutionary Computation 18 (4) (2014) 602–622.1795

[36] N. Marco, S. Lanteri, J.-A. Desideri, J. Périaux, A Parallel Genetic Al-

gorithm for Multi-Objective Optimization in Computational Fluid Dy-

namics, in: K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, J. Périaux

(Eds.), Evolutionary Algorithms in Engineering and Computer Science,

John Wiley & Sons, Ltd, Chichester, UK, 1999, Ch. 22, pp. 445–456.1800

[37] W. Cancino, L. Jourdan, E.-G. Talbi, A. C. B. Delbem, Parallel Multi-

Objective Approaches for Inferring Phylogenies, in: C. Pizzuti, M. D.

Ritchie, M. Giacobini (Eds.), Evolutionary Computation, Machine Learn-

ing and Data Mining in Bioinformatics, 8th European Conference, Evo-

BIO 2010, Springer. Lecture Notes in Computer Science Vol. 6023, Istan-1805

bul, Turkey, 2010, pp. 26–37, iSBN 978-3-642-12210-1.

[38] R. Hrbacek, Parallel multi-objective evolutionary design of approximate

circuits, in: Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, GECCO’15, Association for Computing Ma-

chinery, New York, NY, USA, 2015, pp. 687–694. doi:10.1145/2739480.1810

2754785.

URL https://doi.org/10.1145/2739480.2754785

71

https://doi.org/10.1145/2739480.2754785
https://doi.org/10.1145/2739480.2754785
https://doi.org/10.1145/2739480.2754785
http://dx.doi.org/10.1145/2739480.2754785
http://dx.doi.org/10.1145/2739480.2754785
http://dx.doi.org/10.1145/2739480.2754785
https://doi.org/10.1145/2739480.2754785

[39] J. J. Escobar, J. Ortega, A. F. Dı́az, J. González, M. Damas, Multi-

objective feature selection for eeg classification with multi-level parallelism

on heterogeneous cpu-gpu clusters, in: Proceedings of the Genetic and1815

Evolutionary Computation Conference Companion, GECCO’18, Associa-

tion for Computing Machinery, New York, NY, USA, 2018, pp. 1862–1869.

doi:10.1145/3205651.3208239.

URL https://doi.org/10.1145/3205651.3208239

[40] C. Grimme, J. Lepping, A. Papaspyrou, Parallel Predator—Prey interac-1820

tion for Evolutionary Multi-Objective Optimization, Natural Computing

11 (3) (2012) 519–533.

[41] G. Roy, H. Lee, J. L. Welch, Y. Zhao, V. Pandey, D. Thurston, A

Distributed Pool Architecture for Genetic Algorithms, in: 2009 IEEE

Congress on Evolutionary Computation (CEC’2009), IEEE Press, Trond-1825

heim, Norway, 2009, pp. 1177–1184.

[42] T. Harada, K. Takadama, A Study of Self-Adaptive Semi-Asynchronous

Evolutionary Algorithm on Multi-Objective Optimization Problem, As-

sociation for Computing Machinery, New York, NY, USA, 2017, p.

1812–1819.1830

URL https://doi.org/10.1145/3067695.3084221

[43] J. Kamiura, T. Hiroyasu, M. Miki, S. Watanabe, MOGADES: Multi-

Objective Genetic Algorithm with Distributed Environment Scheme, in:

A. Abraham, B. Nath, M. Sambandham, P. Saratchandran (Eds.), Com-

putational Intelligence and Applications. 2nd International Workshop on1835

Intelligent Systems Design and Applications (ISDA 2002), Dynamic pub-

lishers, Atlanta, Georgia, USA, 2002, pp. 143–148, iSBN 0-9640398-0-X.

[44] T. Okuda, T. Hiroyasu, M. Miki, S. Watanabe, DCMOGA: Distributed

Cooperation Model of Multi-Objective Genetic Algorithm, in: J. Knowles

(Ed.), Proceedings of the PPSN/SAB Workshop on Multiobjective Prob-1840

lem Solving from Nature II (MPSN-II), Granada, Spain, 2002.

72

https://doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3205651.3208239
http://dx.doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3205651.3208239
https://doi.org/10.1145/3067695.3084221
https://doi.org/10.1145/3067695.3084221
https://doi.org/10.1145/3067695.3084221
https://doi.org/10.1145/3067695.3084221

[45] H. Horii, M. Miki, T. Koizumi, N. Tsujiuchi, Asynchronous Migration

of Island Parallel GA for Multi-Objective Optimization Problem, in:

L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, X. Yao (Eds.), Proceedings

of the 4th Asia-Pacific Conference on Simulated Evolution and Learning1845

(SEAL’02), Vol. 1, Nanyang Technical University, Orchid Country Club,

Singapore, 2002, pp. 86–90.

[46] N. Xiao, M. P. Armstrong, A Specialized Island Model and Its Application

in Multiobjective Optimization, in: E. C.-P. et al. (Ed.), Genetic and Evo-

lutionary Computation (GECCO’2003). Proceedings, Part II, Springer.1850

Lecture Notes in Computer Science Vol. 2724, Berlin, Germany, 2003, pp.

1530–1540, iSBN 978-3-540-40603-7.

[47] C. A. Coello Coello, M. Reyes Sierra, A Study of the Parallelization of a

Coevolutionary Multi-Objective Evolutionary Algorithm, in: R. Monroy,

G. Arroyo-Figueroa, L. E. Sucar, H. Sossa (Eds.), Proceedings of the Third1855

Mexican International Conference on Artificial Intelligence (MICAI’2004),

Springer Verlag. Lecture Notes in Artificial Intelligence Vol. 2972, Mexico

City, Mexico, 2004, pp. 688–697.

[48] J. Branke, H. Schmeck, K. Deb, M. Reddy, Parallelizing Multi-Objective

Evolutionary Algorithms: Cone Separation, in: 2004 Congress on Evolu-1860

tionary Computation (CEC’2004), Vol. 2, IEEE Service Center, Portland,

Oregon, USA, 2004, pp. 1952–1957.

[49] F. Streichert, H. Ulmer, A. Zell, Parallelization of Multi-objective Evolu-

tionary Algorithms Using Clustering Algorithms, in: C. A. Coello Coello,

A. Hernández Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion1865

Optimization. Third International Conference, EMO 2005, Vol. 3410,

Springer. Lecture Notes in Computer Science Vol. 3410, Guanajuato,

México, 2005, pp. 92–107.

[50] A. López-Jaimes, C. C. Coello, MRMOGA: Parallel Evolutionary Mul-

tiobjective Optimization using Multiple Resolutions, in: 2005 IEEE1870

73

Congress on Evolutionary Computation (CEC’2005), Vol. 3, IEEE Ser-

vice Center, Edinburgh, Scotland, 2005, pp. 2294–2301.

[51] A. Essabri, M. Gzara, T. Loukil, Parallel Multi-Objective Evolutionary

Algorithm with Multi-Front Equitable Distribution, in: 2006 Fifth In-

ternational Conference on Grid and Cooperative Computing (GCC’06),1875

IEEE Computer Society Press, Hunan, China, 2006, pp. 241–244.

[52] C. León, G. Miranda, C. Segura, Parallel Hyperheuristic: A Self-Adaptive

Island-Based Model for Multi-Objective Optimization, in: 2008 Genetic

and Evolutionary Computation Conference (GECCO’2008), ACM Press,

Atlanta, USA, 2008, pp. 757–758, iSBN 978-1-60558-131-6.1880

[53] Z. xin Wang, G. Ju, A parallel genetic algorithm in multi-objective op-

timization, in: 2009 Chinese Control and Decision Conference, IEEE,

Guilin, China, 2009, pp. 3497–3501.

[54] T. Qiu, G. Ju, A selective migration parallel multi-objective genetic algo-

rithm, in: 2010 Chinese Control and Decision Conference, IEEE, Xuzhou,1885

China, 2010, pp. 463–467.

[55] M. Yagoubi, L. Thobois, M. Schoenauer, Asynchronous Evolutionary

Multi-Objective Algorithms with Heterogeneous Evaluation Costs, in:

2011 IEEE Congress on Evolutionary Computation (CEC’2011), IEEE

Service Center, New Orleans, Louisiana, USA, 2011, pp. 21–28.1890

[56] Y. Zhou, J. Wang, J. Chen, S. Gao, L. Teng, Ensemble of many-objective

evolutionary algorithms for many-objective problems, Soft Computing 21

(2017) 2407–2419.

[57] C. Sanhueza, F. Jiménez, R. Berretta, P. Moscato, PasMoQAP: A Par-

allel Asynchronous Memetic Algorithm for Solving the Multi-Objective1895

Quadratic Assignment Problem, in: 2017 IEEE Congress on Evolutionary

Computation (CEC’2017), IEEE Press, San Sebastián, Spain, 2017, pp.

1103–1110, iSBN 978-1-5090-4601-0.

74

[58] W. Ying, S. Chen, B. Wu, Y. Xie, Y. Wu, Distributed Parellel MOEA/D

on Spark, in: 2017 International Conference on Computing Intelligence1900

and Information System (CIIS’2017), IEEE Press, Nanjing, China, 2017,

pp. 18–23.

[59] H. Chen, X. Zhu, W. Pedrycz, S. Yin, G. Wu, H. Yan, PEA: Paral-

lel Evolutionary Algorithm by Separating Convergence and Diversity for

Large-Scale Multi-Objective Optimization, in: 2018 IEEE 38th Inter-1905

national Conference on Distributed Computing Systems (ICDCS’2018),

IEEE Computer Society, Vienna, Austria, 2018, pp. 223–232, iSBN 978-

1-5386-6872-6.

[60] N. Kantour, S. Bouroubi, D. Chaabane, A parallel moea with criterion-

based selection applied to the knapsack problem, Applied Soft Computing1910

80 (2019) 358 – 373. doi:https://doi.org/10.1016/j.asoc.2019.04.

005.

URL http://www.sciencedirect.com/science/article/pii/

S1568494619301899

[61] R. Hernández Gómez, C. A. Coello Coello, E. Alba, A Parallel Is-1915

land Model for Hypervolume-Based Many-Objective Optimization, in:

P. p. Thomas Bartz-Beielstein, Bogdan Filipič, E.-G. Talbi (Eds.), High-

Performance Simulation-Based Optimization, Springer, Studies in Com-

putational Intelligence Vol. 833, Cham, Switzerland, 2020, pp. 247–273,

iSBN 978-3-030-18763-7.1920

[62] J. G. Falcón-Cardona, H. Ishibuchi, C. A. C. Coello, M. Emmerich, On the

Effect of the Cooperation of Indicator-based Multi-Objective Evolutionary

Algorithms, IEEE Transactions on Evolutionary Computation (2021) 1–

15doi:10.1109/TEVC.2021.3061545.

[63] C. M. Fonseca, P. J. Fleming, Genetic Algorithms for Multiobjective Op-1925

timization: Formulation, Discussion and Generalization, in: S. Forrest

75

http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2019.04.005
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2019.04.005
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2019.04.005
http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://www.sciencedirect.com/science/article/pii/S1568494619301899
http://dx.doi.org/10.1109/TEVC.2021.3061545

(Ed.), Proceedings of the Fifth International Conference on Genetic Al-

gorithms, University of Illinois at Urbana-Champaign, Morgan Kauffman

Publishers, San Mateo, California, 1993, pp. 416–423.

[64] E. Zitzler, K. Deb, L. Thiele, Comparison of Multiobjective Evolutionary1930

Algorithms: Empirical Results, Evolutionary Computation 8 (2) (2000)

173–195.

[65] S. Huband, P. Hingston, L. Barone, L. While, A Review of Multiobjective

Test Problems and a Scalable Test Problem Toolkit, IEEE Transactions

on Evolutionary Computation 10 (5) (2006) 477–506.1935

[66] V. L. Huang, P. N. Suganthan, J. J. Liang, Comprehensive learning par-

ticle swarm optimizer for solving multiobjective optimization problems,

International Journal of Intelligent Systems 21 (2) (2006) 209–226.

[67] D. A. V. Veldhuizen, Multiobjective Evolutionary Algorithms: Classifica-

tions, Analyses, and New Innovations, Ph.D. thesis, Department of Elec-1940

trical and Computer Engineering. Graduate School of Engineering. Air

Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (May

1999).

[68] M. Yagoubi, M. Schoenauer, Asynchronous Master/Slave MOEAs and

Heterogeneous Evaluation Costs, in: 2012 Genetic and Evolutionary Com-1945

putation Conference (GECCO’2012), ACM Press, Philadelphia, USA,

2012, pp. 1007–1014, iSBN: 978-1-4503-1177-9.

[69] S. Yang, M. Li, X. Liu, J. Zheng, A Grid-Based Evolutionary Algorithm

for Many-Objective Optimization, IEEE Transactions on Evolutionary

Computation 17 (5) (2013) 721–736.1950

[70] M. Li, S. Yang, X. Liu, Shift-Based Density Estimation for Pareto-Based

Algorithms in Many-Objective Optimization, IEEE Transactions on Evo-

lutionary Computation 18 (3) (2014) 348–365.

76

[71] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Test Problems

for Evolutionary Multiobjective Optimization, in: A. Abraham, L. Jain,1955

R. Goldberg (Eds.), Evolutionary Multiobjective Optimization. Theoret-

ical Advances and Applications, Springer, USA, 2005, pp. 105–145.

[72] C. A. Coello Coello, N. Cruz Cortés, Solving Multiobjective Optimization

Problems using an Artificial Immune System, Genetic Programming and

Evolvable Machines 6 (2) (2005) 163–190.1960

[73] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications, Ph.D. thesis, Swiss Federal Institute of Tech-

nology (ETH), Zurich, Switzerland (November 1999).

[74] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:

Cluster computing with working sets, in: Proceedings of the 2nd USENIX1965

Conference on Hot Topics in Cloud Computing, HotCloud’10, USENIX

Association, USA, 2010, p. 10.

[75] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, X. Yao, A bench-

mark test suite for evolutionary many-objective optimization, Complex &

Intelligent Systems 3 (1) (2017) 67–81.1970

[76] A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Theory of the Hypervolume

Indicator: Optimal {µ}-Distributions and the Choice of the Reference

Point, in: FOGA ’09: Proceedings of the tenth ACM SIGEVO workshop

on Foundations of genetic algorithms, ACM, Orlando, Florida, USA, 2009,

pp. 87–102.1975

[77] R. Hernández Gómez, C. A. Coello Coello, E. Alba Torres, A Multi-

Objective Evolutionary Algorithm based on Parallel Coordinates, in: 2016

Genetic and Evolutionary Computation Conference (GECCO’2016), ACM

Press, Denver, Colorado, USA, 2016, pp. 565–572, iSBN 978-1-4503-4206-

3.1980

77

[78] D. Brockhoff, T. Wagner, H. Trautmann, On the Properties of the R2

Indicator, in: 2012 Genetic and Evolutionary Computation Conference

(GECCO’2012), ACM Press, Philadelphia, USA, 2012, pp. 465–472, iSBN:

978-1-4503-1177-9.

[79] H. Ishibuchi, H. Masuda, Y. Tanigaki, Y. Nojima, Modified Distance Cal-1985

culation in Generational Distance and Inverted Generational Distance,

in: A. Gaspar-Cunha, C. H. Antunes, C. C. Coello (Eds.), Evolutionary

Multi-Criterion Optimization, 8th International Conference, EMO 2015,

Springer. Lecture Notes in Computer Science Vol. 9019, Guimarães, Por-

tugal, 2015, pp. 110–125.1990

[80] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. da Fonseca,

Performance Assessment of Multiobjective Optimizers: An Analysis and

Review, IEEE Transactions on Evolutionary Computation 7 (2) (2003)

117–132.

[81] O. Schütze, X. Esquivel, A. Lara, C. A. Coello Coello, Using the Averaged1995

Hausdorff Distance as a Performance Measure in Evolutionary Multiob-

jective Optimization, IEEE Transactions on Evolutionary Computation

16 (4) (2012) 504–522.

[82] D. P. Hardin, E. B. Saff, Discretizing Manifolds via Minimum Energy

Points, Notices of the AMS 51 (10) (2004) 1186–1194.2000

[83] H. Ishibuchi, Y. Setoguchi, H. Masuda, Y. Nojima, Performance of

Decomposition-Based Many-Objective Algorithms Strongly Depends on

Pareto Front Shapes, IEEE Transactions on Evolutionary Computation

21 (2) (2017) 169–190.

[84] H. Wang, L. Jiao, X. Yao, Two Arch2: An Improved Two-Archive Al-2005

gorithm for Many-Objective Optimization, IEEE Transactions on Evolu-

tionary Computation 19 (4) (2015) 524–541. doi:10.1109/TEVC.2014.

2350987.

78

http://dx.doi.org/10.1109/TEVC.2014.2350987
http://dx.doi.org/10.1109/TEVC.2014.2350987
http://dx.doi.org/10.1109/TEVC.2014.2350987

[85] C. Grimme, J. Lepping, A. Papaspyrou, The Parallel Predator-Prey

Model: A Step towards Practical Application, in: G. Rudolph, T. Jansen,2010

S. Lucas, C. Poloni, N. Beume (Eds.), Parallel Problem Solving from Na-

ture–PPSN X, Springer. Lecture Notes in Computer Science Vol. 5199,

Dortmund, Germany, 2008, pp. 681–690.

[86] M. L. Wong, Parallel multi-objective evolutionary algorithms on graphics

processing units, in: Proceedings of the 11th Annual Conference Compan-2015

ion on Genetic and Evolutionary Computation Conference: Late Breaking

Papers, GECCO ’09, Association for Computing Machinery, New York,

NY, USA, 2009, p. 2515–2522. doi:10.1145/1570256.1570354.

URL https://doi.org/10.1145/1570256.1570354

[87] A. J. Nebro, J. J. Durillo, A study of the parallelization of the multi-2020

objective metaheuristic moea/d, in: C. Blum, R. Battiti (Eds.), Learning

and Intelligent Optimization, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2010, pp. 303–317.

[88] D. Liu, Y. Liu, Y. Liu, X. Zhao, A Parallelized Multi-Objective Par-

ticle Swarm Optimization Model to Design Soil Sampling Network, in:2025

2012 20th International Conference on Geoinformatics, IEEE Press, Hong

Kong, 2012.

[89] X. Wei, S. Fujimura, Parallel quantum evolutionary algorithms with

Client-Server model for multi-objective optimization on discrete problems,

in: 2012 IEEE Congress on Evolutionary Computation (CEC’2012), IEEE2030

Press, Brisbane, Australia, 2012, pp. 3183–3190.

[90] M. Depolli, R. Trobec, B. Filipič, Asynchronous master-slave paral-

lelization of differential evolution for multi-objective optimization, Evo-

lutionary Computation 21 (2) (2013) 261–291, pMID: 22452341. doi:

10.1162/EVCO_a_00076.2035

URL https://doi.org/10.1162/EVCO_a_00076

79

https://doi.org/10.1145/1570256.1570354
https://doi.org/10.1145/1570256.1570354
https://doi.org/10.1145/1570256.1570354
http://dx.doi.org/10.1145/1570256.1570354
https://doi.org/10.1145/1570256.1570354
https://doi.org/10.1162/EVCO_a_00076
https://doi.org/10.1162/EVCO_a_00076
https://doi.org/10.1162/EVCO_a_00076
http://dx.doi.org/10.1162/EVCO_a_00076
http://dx.doi.org/10.1162/EVCO_a_00076
http://dx.doi.org/10.1162/EVCO_a_00076
https://doi.org/10.1162/EVCO_a_00076

[91] M. Z. de Souza, A. T. Ramirez Pozo, A GPU Implementation of

MOEA/D-ACO for the Multiobjective Traveling Salesman Problem, in:

2014 Brazilian Conference on Intelligent Systems, IEEE, Sao Paulo,

Brazil, 2014, pp. 324–329, iSBN 978-1-4799-5618-0.2040

[92] A. Mambrini, D. Izzo, Pade: A parallel algorithm based on the moea/d

framework and the island model, in: T. Bartz-Beielstein, J. Branke, B. Fil-

ipič, J. Smith (Eds.), Parallel Problem Solving from Nature – PPSN XIII,

Springer International Publishing, Cham, 2014, pp. 711–720.

[93] B. Derbel, A. Liefooghe, G. Marquet, E.-G. Talbi, A Fine-Grained Mes-2045

sage Passing MOEA/D, in: 2015 IEEE Congress on Evolutionary Com-

putation (CEC’2015), IEEE Press, Sendai, Japan, 2015, pp. 1837–1844,

iSBN 978-1-4799-7492-4.

[94] S. Gupta, G. Tan, A Scalable Parallel Implementation of Evolutionary

Algorithms for Multi-Objective Optimization on GPUs, in: 2015 IEEE2050

Congress on Evolutionary Computation (CEC’2015), IEEE Press, Sendai,

Japan, 2015, pp. 1567–1574, iSBN 978-1-4799-7492-4.

[95] Z.-J. Wang, Z.-H. Zhan, J. Zhang, Parallel multi-strategy evolutionary

algorithm using massage passing interface for many-objective optimiza-

tion, in: 2016 IEEE Symposium Series on Computational Intelligence2055

(SSCI’2016), IEEE, Athens, Greece, 2016.

[96] E. Manoatl Lopez, C. A. Coello Coello, A Parallel Multi-objective

Memetic Algorithm Based on the IGD+ Indicator, in: J. Handl, E. Hart,

P. R. Lewis, M. L.-I. nez, G. Ochoa, B. Paechter (Eds.), Parallel Prob-

lem Solving from Nature – PPSN XIV, 14th International Conference,2060

Springer. Lecture Notes in Computer Science Vol. 9921, Edinburgh, UK,

2016, pp. 473–482, iSBN 978-3-319-45822-9.

[97] A. Atashpendar, B. Dorronsoro, G. Danoy, P. Bouvry, A parallel cooper-

ative coevolutionary SMPSO algorithm for multi-objective optimization,

80

in: 2016 International Conference on High Performance Computing &2065

Simulation (HPCS), IEEE, Innsbruck, Austria, 2016, pp. 713–720, iSBN

978-1-5090-2089-8.

[98] B. Xu, Y. Zhang, D.-w. Gong, L. Wang, A Parallel Multi-Objective Coop-

erative Co-Evolutionary Algorithm with Changing Variables, Association

for Computing Machinery, New York, NY, USA, 2017, p. 1888–1893.2070

URL https://doi.org/10.1145/3067695.3084222

[99] W.-J. Yu, J.-Z. Li, W.-N. Chen, J. Zhang, A parallel double-

level multiobjective evolutionary algorithm for robust optimiza-

tion, Applied Soft Computing 59 (2017) 258 – 275. doi:https:

//doi.org/10.1016/j.asoc.2017.06.008.2075

URL http://www.sciencedirect.com/science/article/pii/

S1568494617303514

[100] M. Miyakawa, H. Sato, Y. Sato, A study for parallelization of multi-

objective evolutionary algorithm based on decomposition and directed

mating, in: Proceedings of the 2019 3rd International Conference on Intel-2080

ligent Systems, Metaheuristics and Swarm Intelligence, ISMSI 2019, As-

sociation for Computing Machinery, New York, NY, USA, 2019, p. 25–29.

doi:10.1145/3325773.3325790.

URL https://doi.org/10.1145/3325773.3325790

[101] M. T. Emmerich, A. H. Deutz, Test Problems Based on Lamé Super-2085

spheres, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Mu-

rata (Eds.), Evolutionary Multi-Criterion Optimization, 4th International

Conference, EMO 2007, Springer. Lecture Notes in Computer Science Vol.

4403, Matshushima, Japan, 2007, pp. 922–936.

[102] L. Ke, Q. Zhang, R. Battiti, MOEA/D-ACO: A Multiobjective Evolution-2090

ary Algorithm using Decomposition and Ant Colony, IEEE Transactions

on Cybernetics 43 (6) (2013) 1845–1859.

81

https://doi.org/10.1145/3067695.3084222
https://doi.org/10.1145/3067695.3084222
https://doi.org/10.1145/3067695.3084222
https://doi.org/10.1145/3067695.3084222
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.06.008
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.06.008
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.06.008
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
http://www.sciencedirect.com/science/article/pii/S1568494617303514
https://doi.org/10.1145/3325773.3325790
https://doi.org/10.1145/3325773.3325790
https://doi.org/10.1145/3325773.3325790
https://doi.org/10.1145/3325773.3325790
https://doi.org/10.1145/3325773.3325790
http://dx.doi.org/10.1145/3325773.3325790
https://doi.org/10.1145/3325773.3325790

[103] E. Manoatl Lopez, C. A. Coello Coello, IGD+-EMOA: A Multi-Objective

Evolutionary Algorithm based on IGD+, in: 2016 IEEE Congress on

Evolutionary Computation (CEC’2016), IEEE Press, Vancouver, Canada,2095

2016, pp. 999–1006, iSBN 978-1-5090-0623-9.

[104] I. C. Parmee, A. H. Watson, Preliminary airframe design using co-

evolutionary multiobjective genetic algorithms, in: Proceedings of the 1st

Annual Conference on Genetic and Evolutionary Computation - Volume

2, GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA,2100

USA, 1999, p. 1657–1665.

[105] N. Chen, W. Chen, Y. Gong, Z. Zhan, J. Zhang, Y. Li, Y. Tan, An

evolutionary algorithm with double-level archives for multiobjective opti-

mization, IEEE Transactions on Cybernetics 45 (9) (2015) 1851–1863.

[106] M. Miyakawa, H. Sato, Y. Sato, Directed mating in decomposition-based2105

moea for constrained many-objective optimization, in: Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO ’18, Associ-

ation for Computing Machinery, New York, NY, USA, 2018, p. 721–728.

doi:10.1145/3205455.3205554.

URL https://doi.org/10.1145/3205455.32055542110

[107] T. Okuda, T. Hiroyasu, M. Miki, J. Kamiura, S. Watanabe, DCMO-

GADES: Distributed Cooperation Model of Multi-objective Genetic Al-

gorithm with Distributed Scheme, in: Second International Workshop on

Intelligent Systems Design and Application, Dynamic Publishers, Atlanta,

Georgia, USA, 2002, pp. 143–148.2115

[108] D. Zaharie, D. Petcu, S. Panica, A Hierarchical Approach in Distributed

Evolutionary Algorithms for Multiobjective Optimization, in: I. Lirkov,

S. Margenov, J. Waśniewski (Eds.), Large-Scale Scientific Computing, 6th

International Conference, LSSC 2007, Springer. Lecture Notes in Com-

puter Science Vol. 4818, Sozopol, Bulgaria, 2008, pp. 516–523.2120

82

https://doi.org/10.1145/3205455.3205554
https://doi.org/10.1145/3205455.3205554
https://doi.org/10.1145/3205455.3205554
http://dx.doi.org/10.1145/3205455.3205554
https://doi.org/10.1145/3205455.3205554

[109] D. Zaharie, D. Petcu, Adaptive Pareto Differential Evolution and Its Par-

allelization, in: R. Wyrzykowski, J. Dongarra, M. Paprzycki, J. Was-

niewski (Eds.), Parallel Processing and Applied Mathematics, Springer,

Lecture Notes in Computer Science, Vol. 3019, Heidelberg, Germany,

2004, pp. 261–268.2125

[110] L. Miguel Antonio, C. A. Coello Coello, Coevolutionary Multiobjective

Evolutionary Algorithms: Survey of the State-of-the-Art, IEEE Trans-

actions on Evolutionary Computation 22 (6) (2018) 851–865. doi:

10.1109/TEVC.2017.2767023.

[111] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A Survey of Multiobjective2130

Evolutionary Algorithms Based on Decomposition, IEEE Transactions on

Evolutionary Computation 21 (3) (2017) 440–462. doi:10.1109/TEVC.

2016.2608507.

[112] Q. Xu, Z. Xu, T. Ma, A Survey of Multiobjective Evolutionary Algo-

rithms Based on Decomposition: Variants, Challenges and Future Direc-2135

tions, IEEE Access 8 (2020) 41588–41614. doi:10.1109/ACCESS.2020.

2973670.

[113] L. M. Antonio, C. A. C. Coello, M. A. R. Morales, S. G. Brambila, J. F.

González, G. C. Tapia, Coevolutionary Operations for Large Scale Multi-

objective Optimization, in: 2020 IEEE Congress on Evolutionary Com-2140

putation (CEC), 2020, pp. 1–8. doi:10.1109/CEC48606.2020.9185846.

[114] M. Li, J. Wei, A Cooperative Co-Evolutionary Algorithm for Large-Scale

Multi-Objective Optimization Problems, in: Proceedings of the Genetic

and Evolutionary Computation Conference Companion, GECCO ’18, As-

sociation for Computing Machinery, New York, NY, USA, 2018, pp. 1716–2145

1721. doi:10.1145/3205651.3208250.

URL https://doi.org/10.1145/3205651.3208250

[115] Z. Zhang, C. Zhong, Z. Xu, H. Teng, A Non-Dominated Sorting Co-

operative Co-Evolutionary Differential Evolution Algorithm for Multi-

83

http://dx.doi.org/10.1109/TEVC.2017.2767023
http://dx.doi.org/10.1109/TEVC.2017.2767023
http://dx.doi.org/10.1109/TEVC.2017.2767023
http://dx.doi.org/10.1109/TEVC.2016.2608507
http://dx.doi.org/10.1109/TEVC.2016.2608507
http://dx.doi.org/10.1109/TEVC.2016.2608507
http://dx.doi.org/10.1109/ACCESS.2020.2973670
http://dx.doi.org/10.1109/ACCESS.2020.2973670
http://dx.doi.org/10.1109/ACCESS.2020.2973670
http://dx.doi.org/10.1109/CEC48606.2020.9185846
https://doi.org/10.1145/3205651.3208250
https://doi.org/10.1145/3205651.3208250
https://doi.org/10.1145/3205651.3208250
http://dx.doi.org/10.1145/3205651.3208250
https://doi.org/10.1145/3205651.3208250

Objective Layout Optimization, IEEE Access 5 (2017) 14468–14477.2150

doi:10.1109/ACCESS.2017.2716111.

[116] W. Zhao, S. Alam, H. A. Abbass, MOCCA-II: A multi-objective co-

operative co-evolutionary algorithm, Applied Soft Computing 23 (2014)

407–416. doi:https://doi.org/10.1016/j.asoc.2014.06.011.

[117] L. M. Antonio, C. A. C. Coello, A non-cooperative game for faster conver-2155

gence in cooperative coevolution for multi-objective optimization, in: 2015

IEEE Congress on Evolutionary Computation (CEC), 2015, pp. 109–116.

doi:10.1109/CEC.2015.7256881.

[118] A. Menchaca-Méndez, E. Montero, L. M. Antonio, S. Zapotecas-Mart́ınez,

C. A. Coello Coello, M. Riff, A Co-Evolutionary Scheme for Multi-2160

Objective Evolutionary Algorithms Based on ϵ -Dominance, IEEE Access

7 (2019) 18267–18283. doi:10.1109/ACCESS.2019.2896962.

[119] J. Wang, W. Zhang, J. Zhang, Cooperative Differential Evolution With

Multiple Populations for Multiobjective Optimization, IEEE Transactions

on Cybernetics 46 (12) (2016) 2848–2861. doi:10.1109/TCYB.2015.2165

2490669.

[120] R. Wang, R. C. Purshouse, P. J. Fleming, Preference-inspired co-

evolutionary algorithms using weight vectors, European Journal of Op-

erational Research 243 (2) (2015) 423–441. doi:https://doi.org/10.

1016/j.ejor.2014.05.019.2170

[121] M. Z. de Souza, A. T. R. Pozo, Parallel moea/d-aco on gpu, in: A. L. Baz-

zan, K. Pichara (Eds.), Advances in Artificial Intelligence – IBERAMIA

2014, Springer International Publishing, Cham, 2014, pp. 405–417.

[122] I. E. Golovkin, S. J. Louis, R. C. Mancini, Parallel Implementation of

Niched Pareto Genetic Algorithm Code for X-ray Plasma Spectroscopy,2175

in: Congress on Evolutionary Computation (CEC’2002), Vol. 2, IEEE

Service Center, Piscataway, New Jersey, 2002, pp. 1820–1824.

84

http://dx.doi.org/10.1109/ACCESS.2017.2716111
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.06.011
http://dx.doi.org/10.1109/CEC.2015.7256881
http://dx.doi.org/10.1109/ACCESS.2019.2896962
http://dx.doi.org/10.1109/TCYB.2015.2490669
http://dx.doi.org/10.1109/TCYB.2015.2490669
http://dx.doi.org/10.1109/TCYB.2015.2490669
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.05.019
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.05.019
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.05.019

[123] K. Xu, S. J. Louis, R. C. Mancini, A Scalable Parallel Genetic Algorithm

for X-ray Spectroscopic Analysis, in: H.-G. B. et al. (Ed.), 2005 Genetic

and Evolutionary Computation Conference (GECCO’2005), Vol. 1, ACM2180

Press, New York, USA, 2005, pp. 811–816.

[124] T. Hiroyasu, M. Miki, J. Kamiura, S. Watanabe, H. Hiroyasu, MO-

GADES: Multi-Objective Genetic Algorithm with Distributed Environ-

ment Scheme, in: A. Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary

Multiobjective Optimization: Theoretical Advances And Applications,2185

Springer-Verlag, London, 2005, pp. 201–227, iSBN 1-85233-787-7.

[125] V. Asouti, I. Kampolis, K. Giannakoglou, A Grid-Enabled Asynchronous

Metamodel-Assisted Evolutionary Algorithm for Aerodynamic Optimiza-

tion, Genetic Programming and Evolvable Machines 10 (4) (2009) 373–

389.2190

[126] C. Segura, E. Segredo, C. León, Parallel Island-Based Multiobjectivised

Memetic Algorithms for a 2D Packing Problem, in: 2011 Genetic and Evo-

lutionary Computation Conference (GECCO’2011), ACM Press, Dublin,

Ireland, 2011, pp. 1611–1618.

[127] E. Segredo, C. Segura, C. León, On the Comparison of Parallel Island-2195

Based Models for the Multiobjectivised Antenna Positioning Problem,

in: A. König, A. Dengel, K. Hinkelmann, K. Kise, R. J. Howlett, L. C.

Jain (Eds.), Knowledge-Based and Intelligent Information and Engineer-

ing Systems, 15th International Conference, KES 2011, Springer. Lecture

Notes in Computer Science Vol. 6881, Kaiserslautern, Germany, 2011, pp.2200

32–41.

[128] C. León, G. Miranda, C. Segura, METCO: A Parrallel Plugin-Based

Framework for Multi-Objective Optimization, International Journal on

Artificial Intelligence Tools 18 (04) (2009) 569–588.

[129] C. Segura, A. Cervantes, A. J. Nebro, M. D. J. ı́z Simón, E. Seg-2205

redo, S. Garćıa, F. Luna, J. A. Gómez-Pulido, G. Miranda, C. Luque,

85

E. Alba, M. Ángel Vega-Rodŕıguez, C. León, I. M. Galván, Optimiz-

ing the DFCN Broadcast Protocol with a Parallel Cooperative Strat-

egy of Multi-Objective Evolutionary Algorithms, in: M. Ehrgott, C. M.

Fonseca, X. Gandibleux, J.-K. Hao, M. Sevaux (Eds.), Evolutionary2210

Multi-Criterion Optimization. 5th International Conference, EMO 2009,

Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France,

2009, pp. 305–319.

[130] E. Alba, B. Dorronsoro, F. Luna, P. Bouvry, A Cellular Multi-objective

Genetic Algorithm for Optimal Broadcasting Strategy in Metropolitan2215

MANETs, in: Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, IEEE Computer Society, Denver, Col-

orado, USA, 2005, iSBN 0-7695-2312-9.

[131] E. Alba, B. Dorronsoro, F. Luna, A. Nebro, P. Bouvry, L. Hogie, A cel-

lular multi-objective genetic algorithm for optimal broadcasting strategy2220

in metropolitan MANETs, Computer Communications 30 (4) (2007) 685–

697.

[132] J. A. Vrugt, P. H. Stauffer, T. Wöhling, B. A. Robinson, V. V. Vesselinov,

Inverse Modeling of Subsurface Flow and Transport Properties: A Review

with New Developments, Vadose Zone 7 (2) (2008) 843–864.2225

[133] J. Qiang, Y. Chao, C. Mitchell, S. Paret, R. Ryne, A Parallel Multi-

objective Differential Evolution Algorithm for Photoinjector Beam Dy-

namics Optimization, in: Proceedings of the 4th International Particle

Accelerator Conference (IPAC’2013), JACoW, Shanghai, China, 2013, pp.

1031–1033.2230

[134] M.-L. Wong, G. Cui, Data mining using parallel Multi-Objective Evo-

lutionary algorithms on graphics hardware, in: 2010 IEEE Congress on

Evolutionary Computation (CEC’2010), IEEE Press, Barcelona, Spain,

2010, pp. 1812–1819.

86

[135] J. C. Calvo, J. Ortega, M. Anguita, A Hybrid Scheme to Solve the Protein2235

Structure Prediction Problem, in: M. P. Rocha, F. Fernández Riverola,

H. Shatkay, J. M. Corchado (Eds.), Advances in Bioinformatics, 4th In-

ternational Workshop on Practical Applications of Computational Biology

and Bioinformatics 2010 (IWPACBB 2010), Advances in Intelligent and

Soft Computing Vol. 74, Springer, Berlin, Germany, 2010, pp. 233–240,2240

iSBN 978-3-642-13213-1.

[136] J. C. Calvo, J. Ortega, M. Anguita, Comparison of Parallel Multi-

Objective Approaches to Protein Structure Prediction, The Journal of

Supercomputing 58 (2) (2011) 253–260.

[137] I.-D. Psychas, M. Marinaki, Y. Marinakis, A Parallel Multi-Start NSGA II2245

Algorithm for Multiobjective Energy Reduction Vehicle Routing Problem,

in: A. Gaspar-Cunha, C. H. Antunes, C. C. Coello (Eds.), Evolutionary

Multi-Criterion Optimization, 8th International Conference, EMO 2015,

Springer. Lecture Notes in Computer Science Vol. 9018, Guimarães, Por-

tugal, 2015, pp. 336–350.2250

[138] A. Rama Mohan Rao, Distributed Evolutionary Multi-Objective Mesh-

Partitioning Algorithm for Parallel Finite Element Computations, Com-

put. Struct. 87 (23-24) (2009) 1461–1473.

[139] M. Märtens, D. Izzo, The Asynchronous Island Model and NSGA-II:

Study of a New Migration Operator and Its Performance, in: Proceedings2255

of the 15th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’13, ACM, New York, NY, USA, 2013, pp. 1173–1180.

[140] A. Lančinskas, J. Žilinskas, Parallel Multi-objective Memetic Algorithm

for Competitive Facility Location, in: R. Wyrzykowski, J. Dongarra,

K. Karczewski, J. Waśniewski (Eds.), Parallel Processing and Applied2260

Mathematics, 10th International Conference, PPAM 2013, Springer. Lec-

ture Notes in Computer Science Vol. 8385, Warsaw, Poland, 2014, pp.

354–363, iSBN 978-3-642-55194-9.

87

[141] R. Mäkinen, P. Neittaanmäki, J. Periaux, M. Sefrioui, J. Toivanen, Par-

allel genetic solution for multiobjective MDO, in: A. Schiano, A. Ecer,2265

J. Périaux, N. Satofuka (Eds.), Parallel CFD’96 Conference, Elsevier,

Capri, 1996, pp. 352–359.

[142] B. R. Jones, W. A. Crossley, A. S. Lyrintzis, Aerodynamic and Aeroa-

coustic Optimization of Airfoils via a Parallel Genetic Algorithm, in: Pro-

ceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-2270

disciplinary Analysis and Optimization, AIAA-98-4811, AIAA, St. Louis,

Missouri, USA, 1998, pp. 1088–1096.

[143] Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: A MATLAB platform

for evolutionary multi-objective optimization, IEEE Computational Intel-

ligence Magazine 12 (4) (2017) 73–87.2275

[144] J. Blank, K. Deb, Pymoo: Multi-objective optimization in python, IEEE

Access 8 (2020) 89497–89509.

[145] J. J. Durillo, A. J. Nebro, jmetal: A java framework for multi-objective

optimization, Advances in Engineering Software 42 (10) (2011) 760–771.

doi:https://doi.org/10.1016/j.advengsoft.2011.05.014.2280

URL https://www.sciencedirect.com/science/article/pii/

S0965997811001219

[146] D. H. Wolpert, W. G. Macready, No Free Lunch Theorems for Optimiza-

tion, IEEE Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[147] D. W. Corne, J. D. Knowles, No Free Lunch and Free Leftovers Theorems2285

for Multiobjective Optimisation Problems, in: C. M. Fonseca, P. J. Flem-

ing, E. Zitzler, K. Deb, L. Thiele (Eds.), Evolutionary Multi-Criterion

Optimization. Second International Conference, EMO 2003, Springer. Lec-

ture Notes in Computer Science. Volume 2632, Faro, Portugal, 2003, pp.

327–341.2290

88

https://www.sciencedirect.com/science/article/pii/S0965997811001219
https://www.sciencedirect.com/science/article/pii/S0965997811001219
https://www.sciencedirect.com/science/article/pii/S0965997811001219
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
https://www.sciencedirect.com/science/article/pii/S0965997811001219
https://www.sciencedirect.com/science/article/pii/S0965997811001219
https://www.sciencedirect.com/science/article/pii/S0965997811001219

[148] R. Hernández Gómez, C. A. Coello Coello, A Hyper-Heuristic of Scalar-

izing Functions, in: 2017 Genetic and Evolutionary Computation Confer-

ence (GECCO’2017), ACM Press, Berlin, Germany, 2017, pp. 577 –584,

iSBN 978-1-4503-4920-8.

[149] J. G. Falcón-Cardona, C. A. C. Coello, M. Emmerich, CRI-EMOA: A2295

Pareto-Front Shape Invariant Evolutionary Multi-Objective Algorithm,

in: K. Deb, E. Goodman, C. A. C. Coello, K. Klamroth, K. Miettinen,

S. Mostaghim, P. Reed (Eds.), Evolutionary Multi-Criterion Optimiza-

tion, 10th International Conference, EMO 2019, Springer. Lecture Notes

in Computer Science Vol. 11411, East Lansing, Michigan, USA, 2019, pp.2300

307–318, iSBN 978-3-030-12597-4.

[150] E. Szlachcic, W. Zubik, Parallel distributed genetic algorithm for expen-

sive multi-objective optimization problems, in: R. Moreno-Dı́az, F. Pich-

ler, A. Quesada-Arencibia (Eds.), Computer Aided Systems Theory - EU-

ROCAST 2009, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp.2305

938–946.

[151] M. Garza-Fabre, C. A. C. C. Gregorio Toscano-Pulido, E. Rodŕıguez-Tello,

Effective Ranking + Speciation = Many-Objective Optimization, in: 2011

IEEE Congress on Evolutionary Computation (CEC’2011), IEEE Service

Center, New Orleans, Louisiana, USA, 2011, pp. 2115–2122.2310

[152] R. Jiao, S. Zeng, C. Li, S. Yang, Y. S. Ong, Handling constrained many-

objective optimization problems via problem transformation, IEEE Trans-

actions on Cybernetics (2020) 1–14doi:10.1109/TCYB.2020.3031642.

89

http://dx.doi.org/10.1109/TCYB.2020.3031642

	Introduction
	Background
	Multi-Objective Optimization
	Multi-Objective Evolutionary Algorithms
	Parallel Models of MOEAs

	Parallel Multi-Objective Evolutionary Algorithms
	Our Proposed Taxonomy
	Algorithmic-level Parallelization
	Discussion

	Iteration-level Parallelization
	Discussion

	Solution-level Parallelization
	Multi-level Parallelization
	Discussion

	Potentially parallelizable MOEAs
	Coevolutionary MOEAs
	Decomposition-based MOEAs

	Real-world Applications
	Some Future Research Trends
	Conclusions

