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Abstract

In recent years, the research community has witnessed an explosion of literature deal-
ing with the adaptation of behavioral patterns and social phenomena observed in nature
towards efficiently solving complex computational tasks. This trend has been espe-
cially dramatic in what relates to optimization problems, mainly due to the unprece-
dented complexity of problem instances, arising from a diverse spectrum of domains
such as transportation, logistics, energy, climate, social networks, health and industry
4.0, among many others. Notwithstanding this upsurge of activity, research in this vi-
brant topic should be steered towards certain areas that, despite their eventual value and
impact on the field of bio-inspired computation, still remain insufficiently explored to
date. The main purpose of this paper is to outline the state of the art and to identify
open challenges concerning the most relevant areas within bio-inspired optimization.
An analysis and discussion are also carried out over the general trajectory followed in
recent years by the community working in this field, thereby highlighting the need for
reaching a consensus and joining forces towards achieving valuable insights into the
understanding of this family of optimization techniques.
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1. Introduction

Over millions of years, Nature has evolved to give rise to intelligent behavior char-
acteristics and biological phenomena, where adaptability, self-learning, robustness, and
efficiency enable biological agents (such as insects and birds) to undertake complex
tasks. While cases exemplifying these capabilities are truly multi-fold, the most illus-
trative ones revolve around the social behavior of animals such as ant colonies, beehives
and bird flocks, where concepts such as stigmergy and the collective swarming move-
ment of organisms often lead to the so-called Swarm Intelligence (SI), where improved
exploration mechanisms over complex search spaces can be achieved by agents obey-
ing local rules without any central control. The overall functionalities of the swarm
are much richer than the simple sum of individual actions. Similarly, other renowned
examples arise from the genetic inheritance process, the immune system of the human
body or the neural activity of the brain. We refer to [1] for a comprehensive material
summarizing these inspirational sources found in Nature.

Inspired by different behaviors observed in biological systems, many researchers
in the research community investigating on computational paradigms have emulated
intelligent bio-inspired processes in the form of computational algorithms, in an at-
tempt to mimic the inherent advantages of such biological systems to address complex
modeling, simulation, and optimization problems. In this regard, special attention has
been paid to optimization problems, whose complexity has unleashed a rich substratum
where to grow many bio-inspired population-based heuristic approaches, each differ-
ently balancing between computational efficiency and optimality of solutions. While
the first contributions in this area are largely based on observation and emulation of
Darwinian evolutionary principles, nowadays the number of bio-inspired solvers in the
literature has increased dramatically, with very diverse inspirational rationale under-
neath their algorithmic design. This spotted flourishing of novel bio-inspiration opti-
mization methods becomes even more intense when shifting the focus on other aspects
related to optimization, such as multi-objective criteria, evolving (dynamic) optimiza-
tion problems or distributed computing schemes, to mention a few.

However, quantity and diversity do not necessarily involve scientific value when it
comes to science. The development of the field has lately undergone a gold rush for
bio-inspired streamlines that stimulate new algorithmic strands, around which some
controversy has sprung regarding their relevance and novelty [2]. Debates around this
topic are counterproductive, for which they waste efforts towards research directions
with scarce – or even null – added scientific value. The same may occur in other
research subareas as the ones exemplified above, where most algorithmic contributions
build upon empirical performance observations rather than upon a deep, thoughtful
and rigorous analysis of their design and internal operation. Futile debates should set
aside to allow the entire community to start over with a clean common ground on
the key research directions to be pursued in the future. We must ally to focus our
efforts on important unresolved questions that can potentially produce greater insights
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into bio-inspired optimization techniques, ultimately leading to valuable advances and
improved methods. Without a consensus, research niches of acknowledged relevance
in the field will remain largely unexplored and unfairly dominated by controversial
discussions, subtle and incremental algorithmic proposals, and a worrying lack of fresh
breezes and fertile prospects.

This work responds to this need for a common meeting point by suggesting the
audience to pause and reflect on which research directions should be pursued in the fu-
ture in regards to bio-inspired optimization and related areas. For this purpose we pay
special attention to numerical optimization, which was underneath the advent of the
first bio-inspired solvers that were later adapted to combinatorial optimization. In this
manuscript we provide an informed insight of the status of this field from both descrip-
tive (where we stand) and prescriptive (what’s next) points of view. This manuscript
suggests and highlights several key research challenges that should captivate newcom-
ers and experienced researchers for years to come, with scientific soundness at the core
of their raison d’être. We hope that our envisioned future for bio-inspired computa-
tion acts as a suggestive guiding light for the community, bringing together different
views that have remained so far quite different from each other to date, and potentially
unifying them into a comprehensive multi-disciplinary view of the field.

The remainder of the paper is structured as follows: first, Section 2 provides a brief
albeit informative overview of the history of bio-inspired computation. Section 3 and
subsections therein undertake a comprehensive analysis of several areas of the field,
stressing on their current status, trends, and open challenges. Section 4 elaborates on
the general issues and research niches of bio-inspired computation, and finally Section
5 concludes this paper.

2. Recent History of Bio-inspired Computation

Bio-inspired computation has emerged as one of the most studied branches of Arti-
ficial Intelligence during the last decades. Hundreds of novel approaches have been re-
ported along the years, showcasing the adaptability of different bio-inspired behaviors
and characteristics to yield a near-optimal performance over a wide range of complex
academic and real-world paradigms. This growing attention has led to a continuous
increase in the number of publications related to the field, mainly focusing on the anal-
ysis, adaptation and/or improvement of different heuristic solvers.

Over the past, a diversity of optimization problems has been tackled using differ-
ent bio-inspired techniques. According to the practical concerns of the time, the first
ones addressed with this algorithmic portfolio were continuous and combinatorial opti-
mization problems, which hinged on seminal formulations such as the Traveling Sales-
man Problem (TSP) or the Knapsack Problem (KP). In the late 60s and 70s, Fogel,
Rechenberg and Schwefel reported their first pioneering studies related to Evolution-
ary Programming (EP, designed to optimize the behavioral linkage between solutions
to a problem and their offspring) and Evolution Strategies (ES, conceived for numerical
optimization since its very inception), laying the first compounding bricks of an incipi-
ent community that revolved around these concepts [3, 4, 5]. Another ground-breaking
contribution was made by Holland with the publication of his seminal book in 1975 [1]
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on Genetic Algorithms (GA). This optimization method impacted deeply on the com-
munity at that time, unleashing a flurry of activity and a vast area of research that gave
birth to what would be subsequently coined as bio-inspired computation. These three
streams developed in isolation until the early 90s, when they came to be the corner-
stone of a unified algorithmic branch denoted as Evolutionary Computation (EC, [6]).
A special mention should be also given to Differential Evolution (DE) by Storn and
Price [7], which embodied another breakthrough achievement within the EC commu-
nity. Several other milestones in the EC realm were reported to the community in years
thereafter, with emphasis on improved versions of nominal EC solvers (e.g. CMA-ES
[8], IPOP-CMA-ES [9] or the more recent SHADE approach [10]).

Simultaneously to the forge of the EC field, the availability of more computational
resources made it possible to cope with more complex and diverse optimization prob-
lems, especially those for which an analytical formulation cannot be stated mathemat-
ically (as occurs in e.g. simulation-based or black-box optimization). New problem
flavors such as multi-modal and multi-objective optimization paved their way within a
research community eager to delve into the benefits of bio-inspired computation. As for
multi-modal optimization (i.e., problems where most of its multiple optimal solutions
must be found), several studies have evinced that bio-inspired computation approaches
can perform extremely well in practice [11, 12, 13], as opposed to classical optimiza-
tion methods. In regards to problems comprising several conflicting objectives, the rise
and development of this subarea has gone side by side with multi-objective optimiza-
tion methods relying on bio-inspired processes (e.g. NSGA-II [14], MOEA/D [15],
SMPSO [16] and others proposed along the years [17, 18]). Recently, this stream has
evolved to what is now referred to as many-objective optimization, an emerging topic
where bio-inspired computation still prevails [19]. Another class of optimization prob-
lems gaining momentum today is Large-Scale Global Optimization (LSGO), which
aims at dealing efficiently with the ever-growing complexity of real-world problems
in any of its design dimensions (number of objectives, variables and/or constraints).
LSGO techniques are designed to capitalize on the higher availability of computa-
tional resources and the emergence of new computing paradigms for massively parallel
processing, which unleashes a very suitable scenario for the design and development
of parallel or multi-population bio-inspired approaches. Some comprehensive com-
pendiums on this noted suitability can be found in [20]. In addition, another class of
optimization problems with the assumption that fitness function(s) and constraints can
be unstable and varying over the period in which the produced solution is applied. As
such, dynamic optimization techniques are designed to deal with problems that evolve
along time, a more realistic setup when the problem is defined over non-stationary
scenarios [21].

In parallel to the maturity reached by EC, bio-inspired solvers evolved to algo-
rithms with a higher level of sophistication, embracing the emulation of other pro-
cesses and behaviors observed in Nature. The most acknowledged milestone in this
regard is the birth of what is currently known as Swarm Intelligence (SI, [22]), a
branch of bio-inspired computation based on the emergence of collective intelligence
from large populations of agents with simple behavioral patterns for communication
and interaction. This is essentially the fundamental principle behind Ant Colony Op-
timization (ACO, [23]) and Particle Swarm Optimization (PSO, [24]), arguably the
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first bio-inspired methods that fell within the SI umbrella. A myriad of bio-inspired
SI methods have been proposed ever since, with inspirational motifs found in phe-
nomena observed in Nature. two branches tie together within this category. The first
one relates to biological processes, such as the geographical distribution of biological
organisms (Biogeography-Based Optimization [25]) or the chemotactic movement of
bacteria (Bacterial Foraging [26]). The second inspirational motivation is the behav-
ioral patterns of animals, such as bees (Artificial Bee Colony [27]) or fireflies (Firefly
Algorithm [28]). The current list of bio-inspired SI is huge and grows almost on a daily
basis. Exhaustive compendiums can be found in [29, 30].

Social and political behaviors have also served as an inspiration for the proposal
of many heuristic solvers; for instance, adaptations of political practices such as impe-
rialism (Imperialist Competitive Algorithm [31]) or anarchy (Anarchic Society Opti-
mization [32]). On the other hand, social attitudes have also inspired several methods,
such as Society and Civilization [33] or hierarchies in which human organizations and
structures are often arranged [34]. Likewise, physical processes have also laid the
foundation for several optimization approaches, such as the dynamics of water (Water
Cycle Algorithm [35] or Hydrological Cycle Algorithm [36]), gravitational kinematics
(Gravitational Search Algorithm, [37]) or optics systems [38]. A recent survey provides
a thorough overview of this literature strand which, jointly with biologically inspired
solvers, gave birth to the immense field of nature-inspired optimization [39]. We note,
however, that solvers inspired by physical processes or social behaviors have been re-
markably outnumbered by those with a biological simile at their core. This being said,
even though most conclusions, drawn in this manuscript also hold for optimization
algorithms inspired in Physics or social behavioral patterns, we will concentrate our
discussion on bio-inspired optimization techniques due to their higher prominence and
relative maturity in current research.

Apart from bio-inspired EC and SI methods, which are monolithic approaches with
their own intrinsic characteristics, an uprising trend has lately protruded over the lit-
erature mainstream: the hybridization of different algorithms. Since the dawn of bio-
inspired computation, many researchers have focused their efforts on combining dif-
ferent methods and functionalities into a single solver in order to overcome the dis-
advantages and/or improve the performance shown by off-the-shelf methods. In this
regard, Memetic Algorithms (MA) spearhead this design principle by exploiting the
synergy between a bio-inspired global optimization approach with local search proce-
dures tightly coupled to the problem at hand [40]. The intense activity around MA
has made them constantly grow to furnish more complex solvers characterized by ex-
tremely sophisticated cooperative mechanisms. In addition, Cooperative Coevolution
(CC, [41]) has also played a historical role in the bio-inspired realm for its notable per-
formance in highly complex problems, mainly by virtue of its capability to divide them
into subcomponents (species) that are solved independently from each other.

For the sake of a better understanding of its development so far, Figure 1 depicts
a historical timeline of bio-inspired computation to date, spanning from the seminal
contribution of EP and ES to the bibliographic flood of metaphor-based SI methods
registered in the last couple of decades. When it comes to scientific production, EC
captained the prominence of literature in the dawn of this field, with GA and DE at its
foremost. A quantitative estimation supporting this statement can be made by inspect-
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ing the reputed Scopus R© scientific database, which indicates that more than 13,000
works have been published in this topic since the beginning of the present century,
blossoming with particular strength during the last decade (approximately 1,000 pa-
pers published on average every year). Despite slightly less prolific on an aggregate
basis (more than 12,000 works since year 2000), SI methods have kept on a par with
their EC counterparts. However, SI has lately become the highest growing field of bio-
inspired computation, thriving at a notable pace from barely 400 contributions in 2007
to more than 1,200 in 2017. Indeed, the interest garnered by this branch has been in
crescendo at such a rate that the number of published works related to SI when com-
pared to that of EC becomes greater every year since 2012. The nested plot in Figure
1 illustrates the yearly scientific production in which the above facts have been noted.
Despite enlightening with respect to the activity in the field we note, however, that
these bibliographic productivity numbers should be assessed with forewarning caution,
due to the bias that the aforementioned excess of metaphor-based works may have
introduced in the reported statistics.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

: Evolutionary Computation

: Swarm Intelligence

EP: Evolutionary Programming

GA: Genetic Algorithm

GP: Genetic Programming

SDS: Stochastic Diffusion Search

PGA: Parallel Genetic Programming

ACO: Ant Colony Optimization

DE: Differential Evolution

PSO: Particle Swarm Optimization

NSGA-II: Non-dominated sorting GA II

EDA: Estimation of Distribution Algorithm

HS: Harmony Search

BFO: Bacterial Foraging Optimization

CMA-ES: Covariance Matrix Adaptation 

Evolution Strategy

EO: Electromagnetism-like Optimization

SCA: Society and Civilization Optimization

ICA: Imperialist Competitive Algorithm

ABC: Artificial Bee Colony
IPOP-CMA-ES: Covariance Matrix Adaptation 

Evolution Strategy with Increasing Population

GSO: Glowworm Swarm Optimization

BEA: Bees Algorithm

HSM: Hierarchical-Social Metaheuristic

MOEA/D: Multi-objective Evolutionary 

Algorithm based on Decomposition

CLPSO: Comprehensive Learning PSO

BBBC: Big-Bang Big-Crunch Algorithm

SFLA: Shuffled Frog Leaping Algorithm

BBO: Biogeography-based Optimization

MSA: Monkey Search Algorithm

RFD: River Formation Dynamics

IWD: Intelligent Water Drops
SMPSO: Speed-constrained Multi-objective PSO

FA: Firefly Algorithm

BA: Bat Algorithm

GSA: Gravitational Search Algorithm

CS: Cuckoo Search

CFA: Cuttle Fish Algorithm

BSO: BrainStorming Optimization

WSA: Weighted Swarm Algorithm

LCA: League Championship Algorithm

ASO: Anarchic Society Optimization

SHADE: Success-History based Parameter 

Adaptation for Differential Evolution

CRO: Coral Reefs Optimization

GWA: Grey Wolf Algorithm

RO: Ray Optimization

FPA: Flower Pollination Algorithm

WCA: Water Cycle Algorithm

BO: Brainstorming Optimization

AAA: Artificial Algae Algorithm

PPA: Prey-Predator Algorithm

ASI: Artificial Swarm Intelligence

MBO: Monarch Butterfly Optimization

MRA: Mushroom Reproduction Algorithm

ROA: Rainfall Optimization Algorithm

SSA: Squirrel Search Algorithm

KWA: Killer Whale Algorithm

DA: Duelist Algorithm

HCA: Hydrological Cycle Algorithm

…
EP

Memetic 

Algorithms

GA

ES

GP DE

PSOACO

PGA
HS

BFO

EDA

NSGA
II

EO

SCA HSM

ABC

ICA

SDS

BEA

GSO

CS

GSA

BA

FA

BBO

MSA

SFLA

BBBC

CLPSO
SMPSO

ASO

LCA

WCA

FPA

RO BO

AAA

WSA

PPA

MBO

ROA

KWA

SSA

DA

ASI

BSO

HCACooperative 

Coevolution

IWD

RFD

CRO

MRA

GWA

CFA

# of contributed 

works in the literature

(Scopus ®)

1500

1000

500

CMA
ES

IPOP
CMA
ES

Constructive 

Cooperative 

Coevolution

SHADE

MOEA
/D

Hyper-

heuristics

Figure 1: Time line of the history of a representative excerpt of Nature-inspired optimization techniques
(both bio-inspired and physics-based methods), where each technique is represented by its acronym inside
a circle. Techniques that have posed a renowned milestone in the history of bio-inspired computation are
highlighted in bold font, whereas modern nature-inspired algorithms, depicted in light gray, are included
just for illustrative purposes. The figure also includes a nested plot depicting the number of published
contributions related to EC and SI in the last two decades. Data retrieved from the Scopus R© database
(November 1st, 2018). The steady behavior of EC over recent years clashes with the rapid bibliographic
growth of SI.

This section may provide the reader with a general overview of bio-inspired compu-
tation, but the literature focused on this field is immense, with thorough bibliographic
compendiums already contributed in the form of exhaustive surveys [42, 43, 44, 45].
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It is our intention not to review once again the existing work on the topic, but rather to
identify and discuss upcoming challenges and potential research directions in the most
promising hot topics of the field. We now proceed with this critical analysis.

3. Bio-inspired Computation: Where we Stand and What’s Next

Bio-inspired computation is a broad field composed by multiple interconnected re-
search areas. A thorough comprehensive review of the state of the art of all such areas
would be counterproductive in our attempt at prioritizing research efforts in a global
scale. For this reason, in this section, we stress on a reduced subset of research areas
which, as shown in Figure 2, have been particularly trendy in the last couple of years.
Our analysis, schematically summarized in Figure 3, emphasizes on the identification
of research niches that still deserve further attention by the community, as well as on
possible algorithmic synergies between different areas or between bio-inspired compu-
tation and other knowledge disciplines that could eventually disclose uncharted routes
for further investigation.
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Figure 2: Share of research contributions published within every area of bio-inspired computation addressed
in Section 3. Data retrieved from the Scopus R© database (November 1st, 2018). Publication counts have
been produced by submitting to Scopus R© the query FIELD AND AREA, e.g. SWARM INTELLIGENCE
AND MULTIMODAL. Some variants of the terms have been also used for the sake of a maximum coverage
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3.1. Theoretical Foundations

Even though bio-inspired computation has so far enjoyed great popularity, there
still remains a wide gap to be bridged between the empirical performance assessment
of bio-inspired optimization techniques and the rigorous mathematical understanding
of some of their most important algorithmic properties such as the rate of convergence,
computational complexity or statistical stability, among others. Before the modern
computer era, only well-characterized problems could be tackled using mathematical
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programming methods and neat mathematical proofs. Meta-heuristics were developed
thereafter to deal with non-rigorously defined optimization problems – even not for-
mally defined at all, provided that a measure to compare any two solutions is available
– for which traditional maths do not apply. With this prior in mind, the study of theo-
retical properties of bio-inspired heuristics can be thought to be, to a point, misaligned
with the fundamental goal with which they were originally conceived [46]. Neverthe-
less, such analyses can yield valuable information on the fundamental reasons why a
search algorithm performs empirically better than others for a certain class of problems.
Indeed, the lack of a universally outperforming meta-heuristic for all kind of optimiza-
tion problems yields from the well-known No Free Lunch Theorem for optimization,
originally introduced in [47], further elaborated in [48, 49, 50, 51], and recently revis-
ited in [52]. This Theorem has been of central importance in the field of optimization
meta-heuristics, as it states that no optimization algorithm can perform better than any
other under any metric over all possible problems. This proven fact stimulates the
need for developing theoretical studies on the properties of meta-heuristics, for which
many authors have lately elaborated on different mathematical frameworks that we
here overview, with the final aim at outlining future paths that should be followed in
this area.
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Figure 3: Graph with first-level nodes representing the areas within bio-inspired optimization considered in
our study, with some of their identified research niches stemming from each of such nodes.

To begin with, the understanding of the working mechanisms of bio-inspired tech-
niques has traditionally progressed by addressing fundamental questions on their con-
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vergence properties and computational complexity with different mathematical frame-
works and tools [53, 54]. One of the most studied topics is related to the convergence
of these search algorithms, including the identification of the conditions under which
such a convergence can be guaranteed. Following the insights drawn for Simulated
Annealing and other heuristics by using Markov models, fixed-point theory, variance
analysis, and dynamical systems, much attention has lately been paid to the extrapo-
lation of these tools to model the agent-based behavior of population-based heuristics
[45]. For example, the theory of dynamical systems has unveiled very interesting prop-
erties of PSO, such as the range of parameter values under which this algorithm can be
proven to converge [55]. Logistic maps, a polynomial recurrence relation capable of
modeling the non-linear demographic dynamics of a population of organisms, has been
used for similar purposes [56]. An alternative approach to convergence analysis resides
on the adoption of Markov Chain Monte Carlo methods to model the interactions be-
tween multiple search agents in bio-inspired solvers [57]. However, the use of this
mathematical framework with more recent heuristics still remains largely unexplored
for many other algorithms.

Another theoretical aspect that has undergone intense research in the last few years
is the relationship between the solution space of the problem to be solved and the de-
sign of the bio-inspired optimization technique. In this regard, much attention has been
devoted to the theoretical analysis of the so-called landscape of the problem, which
is composed not only by the fitness function that assigns a metric value to a given
candidate solution, but also by a neighborhood operator that relates different encoded
solutions and the solution encoding strategy itself [58]. Fitness landscape analysis
finds its motivation in the need for a better understanding of how a search algorithm
can perform on a family of problem instances, rather than on a single problem instance.
To some extent, preliminary studies have shed light on commonalities within a given
problem family that eventually lead to theoretically buttressed design directives for the
search algorithm. For instance, the landscapes of many combinatorial optimization
problems such as the symmetric TSP and the graph α-coloring problem are elementary
on their own or can be decomposed into a number of elementary landscapes. Theoreti-
cal properties unveiled by landscape analysis regarding the suitability of neighborhood
operators are favorable to the inclusion of local search methods within the bio-inspired
solvers. An example of this design strategy is the work in [59], where appropriate
bio-inspired meta-heuristics were selected for the protein structure prediction problem
based on fitness landscape analysis with random walks. However, such approaches are
often problem-specific and cannot be generalized to solve other problems.

Other interesting properties that can be inferred from landscape analysis range from
the runtime performance estimation to the evolvability of a population of individuals
induced by the landscape, the neutrality of the landscape, the discovery of optimal
parametric settings for heuristic operators or the quantification of certain topological
properties of the landscape of interest for the application of bio-inspired heuristics,
such as the presence of attraction basins, barriers, or multi-modality or ruggedness (for
which the concept of auto-correlation becomes essential) [60]. Reported attempts at
establishing a formal methodology to decompose a problem in a series of elementary
landscapes [61] are promising paths that should be continued further in the near future,
for the community to argue their new bio-inspired design choices. This is the reason
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why landscape analysis is propelling a vibrant research activity in the last year [62, 63],
with recent insights being reported such as the need for a close match between the
coordinate system used by the heuristic and the fitness landscape [64]. Unfortunately,
such approaches can be largely problem-specific. This area is still at a very early stage
of maturity to be embraced systematically by the community.

The study of the search efficiency of bio-inspired heuristics has also attracted great
attention in recent times, especially in what regards to the balance between their di-
versification (exploration) and intensification (exploitation) capabilities [65, 66]. The
former refers to the generation of diverse candidate solutions within the search process
leading to wide coverage of the solution space on a global scale, whereas the latter
stands for the capacity of the solver to focus the search process in local regions of the
solution space. In the wider context of randomized search heuristics (within which
bio-inspired solvers can be thought to be a subset), many theoretical tools have been
proposed to quantify numerically the aforementioned capabilities, such as the mea-
surement of different metrics of diversity over the population of evolved solutions, that
might be an indicator of the level of diversification of the algorithm along iterations. In-
terestingly, diversity has been identified as a driver for the success of heuristic solvers,
to the point of replacing the fitness of the problem itself as the criteria to control the
evolution of candidate solutions under what has been coined as novelty search [67].
However, it is also known that some loss of diversity is required for some heuristics
to converge properly [68, 69]. This suggests that more theoretical studies are needed
in regards to the role of diversity and the balance of local search and global search re-
quired to undertake a certain problem efficiently. To shed light on these crucial aspects,
we postulate that further developments around the study of landscapes should gradu-
ally consider behavioral aspects featured by specific bio-inspired algorithms, yielding a
theoretical field that has been lately known as dynamic fitness landscape analysis [62].
Another valuable research direction for this purpose is the assessment of structural bias
in population-based heuristics, namely, the limitation of certain heuristics to focus on
some part of the solution space [70]. Due to their internal features, such algorithms
may sample solutions more often either close to the origin, or close to the boundary, or
close to any other specific part of the search space. Structural bias can degrade severely
the performance of heuristic solvers, as has been already found for some important bio-
inspired algorithms [71]. Similar studies alike should also be carried out with modern
heuristics so as to clear up their behavior when sampling the solution space.

Some words of reflection should be posed around the fundamental comprehen-
sion of bio-inspired optimization approaches. A blossoming succession of innovative
bio-inspired optimization methods has emerged during the last decade, particularly in
metaphor-based SI. However, despite their inherent utility to discern the novelty of
such methods with respect to the state of the art, theoretical insights on these meth-
ods have been reported at a significantly lower pace than their plain experimental per-
formance assessment. This shortage of mathematical background is jeopardizing the
discovery of new research directions in bio-inspired computation, reducing it to a des-
perate, senseless race for bio-inspired exoticism and creativeness. Efficient problem
solving is by no doubt the ultimate goal of bio-inspired computation, goal for which
Nature provides countless mechanisms for learning and self-adaptation in complex cir-
cumstances. However, the emulation of such mechanisms in the form of bio-inspired
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solvers should be grounded on a solid design rationale, either by showing theoretical
findings that motivate design choices or by proving that the designed heuristic has im-
proved theoretical properties in terms of convergence speed, fitness stability and other
characteristics alike. For this to occur, more contributions combining empirical assess-
ment and theoretical developments are needed in years to come so as to steer away
from the ’look, it’s working’ publishing frenzy witnessed in recent literature.

Finally, we believe that the theoretical and mathematical analyses of bio-inspired
algorithms can be carried out from different perspectives so as to gain insight from
different angles [45]. Interesting algorithmic properties can be studied using Markov
chain theory, self-organized systems, filter theory, discrete and continuous dynamical
systems, Bayesian statistics, computational complexity analysis and other frameworks
[57]. Ultimately, truly in-depth understanding and insights will be gained by leveraging
expertise, theories, and frameworks from mathematics, computer science, statistics,
machine learning, control theory, complex systems, and other disciplines.

3.2. Dynamic and Stochastic Optimization
Most optimization problems historically addressed in the related literature built

upon static fitness functions and constraint sets that do not vary along time. Further-
more, problems may rely on parameters whose values are assumed to be fixed and
known a priori. However, in certain application scenarios, the dynamic characteris-
tics of the environment where the problem is formulated do not meet these assump-
tions: the fitness function(s) and/or constraints are often subjected to non-stationary
phenomena that make them prone to changes over time. Classical examples include
the arrival of new tasks and/or machinery failures in production scheduling problems,
or road accidents in traffic routing problems. These phenomena yield a stringent need
for dealing with the obsolescence of the formulated problem in the heuristic search
of the bio-inspired solver, as well as with the eventual uncertainty held on parame-
ters participating in the problem definition. This dynamic context for optimization
problems reflects realistically the intrinsic characteristics of avant-garde application
domains such as Social Networks, Smart Cities, Industry 4.0 or Intelligent Transporta-
tion Systems, among many others. As such, dynamic optimization collectively refers to
all those techniques tailored to efficiently undertake problems whose objectives and/or
constraints may change along time. Likewise, stochastic optimization studies the de-
velopment of solvers capable of dealing with uncertainty within the problem definition
(involving e.g. random objective functions or random constraints). Such research areas
are closely linked to one another, and both account for more realistic problem formu-
lations in real setups.

To begin with, dynamic problem formulations can be found in optimization sce-
narios where the fitness landscape used by the solver is a function of time, thereby
unchaining the need for reacting to eventual changes in the landscape and hence, pro-
vide new optimal solutions at any time instant. This area has a long history in the
literature, with surveys dating back as soon as the late past century [72], and studies
contributed thereafter on different theoretical aspects, such as the behavior of evolu-
tionary operators when dealing with dynamic problem instances [73, 74]. In the last
few years, dynamic optimization has ignited a great research activity, resulting in spe-
cial issues, workshops and competitions [75, 76] in frontline conferences and journals.
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In this regard, the presence of EC methods has been especially notable, among which
two main algorithmic design mainstreams can be identified. In all of them, population
diversity is renowned to be a design factor of pivotal importance, in a similar fash-
ion to the well-known stability-plasticity dilemma in learning over non-stationary data
streams:

• Active approaches, by which the change in the problem formulation is explicitly
detected. The solver reacts upon a detected change by altering its standard search
procedure (e.g. by resetting part of the population or increasing the mutation rate).
Here, diversity is introduced after the change occurs, which makes this design ap-
proach closely dependent on the performance of the technique used to detect the
change. This is the reason why many authors have lately invested efforts in enhanc-
ing the performance of change detectors when combined with bio-inspired solvers,
either by evaluating periodically candidate solutions or by identifying whether key
indicators of the solver’s performance vary along time. In either case, both elements
from EC and SI have been explored lately, with a dominance of the latter noted in
the last couple of years [77]. Notable milestones in this field include the design of
full or partial random restart strategies [78, 79], the so-called hyper-mutation oper-
ator [80], which imprints an increase of the mutation rate once a change has been
detected; or the migration of individuals among subpopulations in multi-population
schemes for dynamic optimization, a strategy to actively diversify the pool of can-
didate solutions handled by the solver [81, 82]. In this literature strand challenges
reside in controlling the amount of diversity to be induced after the change (which
should be coupled to the estimated characteristics of the detected change in terms
of severity and speed), as well as in the development of new methods for change
detection, specially for slowly-evolving and/or subtle problem changes.

• Passive approaches, in which diversity in the population/swarm is steadily main-
tained during the search process over time. In this case, the idea is to sacrifice
search performance during those time intervals where the problem formulation can
be deemed static for a better reaction of the algorithm when a change in the problem
occurs. This is accomplished by injecting diversity in the population/swarm of the
bio-inspired solver anyhow, to prevent it from converging to optima that might be-
come eventually obsolete. This insertion of diversity has been so far done in many
ways, including the generation of random candidate solutions, tailored crossover op-
erators that favor the generation of offspring strongly differing from their parents,
explicit convergence avoidance or the use of multiple sub-populations/swarms that
are enforced to track changes of the problem with time [83]. Despite the obvious
benefits of this approach with respect to its active counterpart (no need for explicit
change detection, effective with sharp changes in the problem), there are still ques-
tions to be addressed in regards to the balance between diversity and performance,
particularly in what refers to the coupling between the characteristics of the change
(speed, severity) and the amount of diversity to be injected. As such, when the
change evolves slowly and/or does not differ dramatically from the previous prob-
lem status, the diversity to be induced for optimal performance should be less than
when the problem formulation changes radically in a certain instant of time. To
this end, the interest has steered towards the use of self-adaptability in both active
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and passive approaches, always with bio-inspired solvers at their algorithmic core
[77, 84].

Research directions in the field of dynamic optimization are foreseen along the di-
verse axis: to begin with, most dynamic optimization problems tackled to date are de-
fined over unconstrained, continuous-variable search spaces. This experimental choice
finds its motivation in the lack of informed answers to the challenges still faced by
the community in regards to the role played by the diversity in dynamic environments
of varying characteristics. There are validated empirical pieces of evidence that align
with the intuition, such as the need for ensuring a higher diversity in population-based
heuristics the wider the differences between shifting problems are. While this state-
ment has been assessed over extensive dynamic optimization benchmarks comprising
continuous variable problems, this question still remains insufficiently addressed when
the scope is placed on discrete problem formulations, evolving constraints and/or re-
current concepts. When this is the case, it is not clear yet how to control or even define
the level of diversity injected to the solver [77].

There are other research venues around dynamic optimization that should be ex-
plored in the near future. Among them, change detection mechanisms relying on char-
acteristics of the optimization algorithm itself are known to perform poorly when the
optimization problem varies by any other reason than a change in the problem formu-
lation itself, such as noisy objectives and/or constraints. In real environments, it is
often the case that the objective evaluation is affected by external noise sources that
make the fitness value vary over time. This must not be understood as a change in the
problem formulation, but in this case detection mechanisms based on monitoring the
fitness value might misinterpret it as a problem change and trigger a false alarm. Other
dynamic scenarios where change detection mechanisms are known to fail catastrophi-
cally (e.g. slowly evolving/subtle problem changes) lead to the overall conclusion that
change detection should be avoided and efforts rather invested on passive/self-adaptive
schemes [77, 85].

On the other hand, stochastic optimization is a research topic that came to public at-
tention several decades ago [86, 87, 88], with comprehensive overviews contributed to
the literature ever since [89, 90]. This kind of optimization problems has rapidly grown
in importance and led to the emergence of different trends such as Fuzzy Programming
[91] or Stochastic Dynamic Programming [92]. Among them, Robust Optimization
[93] has particularly protruded in last times: algorithms within this broad family of
solvers define a so-called uncertainty set of possible realizations of the uncertain pa-
rameters underneath the problem at hand. Robust optimization focuses on optimizing
against worst-case realizations within this set so that a guarantee of optimality can be
given with respect to the defined uncertainty set [94]. Key design challenges in Robust
Optimization reside, on one hand, in the choice of an uncertainty set properly suited
to the problem at hand, so that a good balance between representativeness and conser-
vativeness can be met for the problem at hand. For this purpose, several recent studies
have elaborated on different methodological proposals to build good uncertainty sets,
including approaches hinging on the partial availability of data for better adapting them
[95, 96]. On the other hand, a crescent need for robust optimization of simultaneous
objectives has been noted lately in related contributions [97, 98, 99], with essential
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questions still to be addressed such as the definition of uncertainty in Pareto fronts.
Given the paramount importance gained in recent times by EC and SI as algorithmic
propellers of multi-objective solvers, we postulate that further developments should
be made in deriving new bio-inspired search operators capable of handling problem
uncertainty at the very core of their definition.

Another rich substrate of new research lines stems from the need for reliably mod-
eling of real optimization scenarios where the characteristics of several of these prob-
lems hold, thereby hybridizing modeling aspects and assumptions from several classes
of optimization paradigms. This is the case of large-scale stochastic optimization [100]
and multi-objective stochastic optimization [101, 102, 103, 104], which have been put
to practice in different scenarios with high levels of realism and complexity such as In-
telligent Transportation Systems, engineering, robotics [105], power system planning
[106], and hydrology [107]. Multimodal optimization in dynamic environments has
been likewise addressed in [108, 109]. Many sophisticated heterogeneous approaches
have been proposed for addressing these demanding problems, such as Memetic Algo-
rithms [110, 111] or EC and SI solvers tailored to deal with real-world environments
with noisy objectives [112]. In this context, we highlight the upturn of research around
the confluence of Dynamic and Robust Optimization in what has been coined as Ro-
bust Optimization over Time (ROOT), in which the goal is to find solutions that remain
acceptable (statistically robust) over the course of time [113, 114]. Despite the relative
age of this research area and its inherent practical interest, we foresee that significant
advances can be done if an eye is kept on other sciences and disciplines dealing with
uncertainty in dynamical systems, such as Risk Theory [115] or Lyapunov Optimiza-
tion [116]. We expect that the hybridization of concepts and techniques from these
fields with bio-inspired search operators will give birth to a new generation of robust
bio-inspired solvers suited for dynamically evolving environments.

3.3. Multi- and Many-objective Optimization

Problems comprising several conflicting objectives have sprung a vibrant research
activity during the last 20 years, with an ever-growing body of literature, competitions,
and benchmark focused on deriving new bio-inspired solvers suited to produce Pareto
optimal solutions with increased efficiency and efficacy. The old days in this subarea
of bio-inspired computation focused on two main strategies to deal with multiple ob-
jectives [117, 118]: 1) non-elitist non-Pareto-based methods, including lexicographic
ordering, linear aggregating functions, VEGA, ε-constraint techniques and target vec-
tor approaches; and 2) non-elitist Pareto-based methods such as Pure Pareto ranking,
MOGA, NSGA, NPGA, and NPGA-2. Nowadays most methods rely on some sort of
elitism [119], yielding renowned schemes such as SPEA and SPEA2, NSGA-II, PAES,
PESA, PESA II, µGA2 and many others. More recent variants include MOEA/D (and
its many variants), SMPSO, SMS-EMOA, HyPE and NSGA-III [120], which can be
classified in three main families depending on their design strategy [121]:

• In Pareto-based methods the selection mechanism is based on Pareto optimality, for
which most of them adopt some form of non-dominated sorting and a density esti-
mator (e.g., crowding, fitness sharing, entropy, adaptive grids, parallel coordinates,
etc.). A well-known limitation of this family of multi-objective solvers resides in
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its restricted scalability in objective function space, which is usually circumvented
by using an overly large population size. Another alternative to overcome from this
limiting issue is to change the density estimator, but this option has not been too
popular.

• An alternative design choice often followed in multi- and many-objective optimiza-
tion is to opt for decomposition-based methods. The core idea of these approaches
is to transform a multi-objective problem into several single-objective optimization
problems which are simultaneously solved using information from its neighboring
subproblems. Unfortunately, the performance of decomposition-based MOEAs is
strongly affected by the scalarizing function that they adopt, and are further sensi-
tive to the method used to generate weights. This dependence entails a more tedious
parametric tuning process when aiming to solve a certain problem, thus jeopardizing
the universality of this optimization strategy. By contrast, as opposed to Pareto-
based methods they are scalable in objective function space, although an increase in
the number of objectives will require a higher population size and thereby, a heavier
computational load of the overall solver.

• Another particularly profitable design strategy is to rely on a performance indica-
tor for the selection of individuals during the search, as is done in indicator-based
multi-objective solvers. However, the mere use of a performance indicator in the
density estimator was discovered to suffice for rendering a good performance (as
in e.g., SMS-EMOA in which the hypervolume is adopted as a density estimator
that replaces the crowded comparison operator of NSGA-II). Unfortunately, the only
performance indicator which is known to be Pareto compliant is computationally ex-
pensive in highly-dimensional objective spaces (i.e., the hypervolume). Many other
performance indicators are available [122], some of which are weakly Pareto com-
pliant (e.g., R2 and IGD+). However, they have not attracted much attention in
recent literature.

A common practice of current research in multi-/many-objective optimization is to
propose new algorithmic variants based on existing benchmark functions (e.g. ZDT,
DTLZ, WFG, UF), or adapt bio-inspired solvers to accommodate multi-objectivity.
The community will also continue producing new flavors of the most popular MOEAs
in current use (i.e. MOEA/D and NSGA-III), but there is surely room for more creative
enhancements and unprecedented algorithmic developments that can pave unexplored
research avenues in this field. Some thoughts and niches of opportunity in this direction
are outlined in what follows:

• There is an urgent need for new ideas regarding the design of multi-objective solvers
that fall aside the current research mainstream represented by the three major design
criteria noted above (i.e., Pareto-based, decomposition-based, and indicator-based).
Looking into new ways of solving multi-objective problems may be more profitable,
in the long term, than producing continuous updates to existing algorithms that, in
most cases, are not adopted by an important number of researchers. The recent ap-
proach reported in [123] can serve as a simple example of the viability of this claim:
in this work, a multi-objective optimization problem is transformed into a linear as-
signment problem using a set of uniformly scattered weight vectors. The uniform
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design is adopted to obtain the set of weights, and the Kuhn-Munkres (Hungarian) al-
gorithm is used to solve the resulting assignment problem. This approach was found
to perform quite well (and at a low computational cost) in many-objective optimiza-
tion problems. This approach does not belong to any of the three previously indi-
cated families of multi-objective algorithms. Besides exploring new research paths,
it is important to gain a deeper understanding of the major algorithms in current use.
For example, knowing that some scalarizing functions offer advantages over others
[124] is very useful to design good decomposition-based and even indicator-based
multi-objective solvers (algorithms based on R2 normally rely on decomposition).

• Another interesting idea is to combine components of different multi-objective tech-
niques under a single framework that allows to exploit their advantages. This is
the basic idea of Borg [125], which adopts ε-dominance, a measure of convergence
speed called ε progress, an adaptive population size, multiple recombination oper-
ators and a steady-state selection mechanism. This hybridization of operators, in
fact, can lead to the automated design of algorithms as has been already suggested
by researchers from automated parameter tuning for single-objective evolutionary
solvers. In this context, a very promising option is the use of hyper-heuristics to
coordinate the use of several types of heuristics with the aim of combining their
advantages in a wide class of problems. As we will later revisit in Subsection 3.8
(which is partly dedicated to this branch of bio-inspired computation), the idea be-
hind hyper-heuristics is the use of a collection of basic (low-level) heuristics, which
on their own do not produce good solutions to a given optimization problem, to come
up with a much better solution by combining them (or by generating new heuristics
from them) by means of a high-level algorithm [126]. Their main motivation is to
have a more general search engine that can solve a wider variety of hard optimization
problems. Hyper-heuristics have been mostly developed for discrete search spaces
and have been used to solve mainly single-objective optimization problems. Sur-
prisingly, few researchers have developed multi-objective hyper-heuristics, despite
their inherent potential to yield improved heterogeneous solvers for given families of
multi-objective problems. For instance, McClymont and Keedwell [127] proposed
one of the few multi-objective hyper-heuristics that has been designed for continuous
optimization problems. Their approach applies a heuristic selection method modeled
as a Markov chain to the DTLZ test problems. Maashi in her Ph.D. Thesis [128] pro-
posed an online learning selection choice function based hyper-heuristic framework
for multi-objective optimization. Her proposed approach controls and combines
the strengths of three well-known bio-inspired multi-objective solvers (NSGA-II,
SPEA2, and MOGA), which are adopted as her low-level heuristics. The indicator-
based multi-objective sequence-based hyper-heuristic (MOSSHH) algorithm pro-
posed in [129] was the first attempt to use a hyper-heuristic in many-objective prob-
lems. The study compares three indicators (one based on average rank, the hyper-
volume and the favour relation) with Pareto dominance in many-objective problems.
In [130] a multi-objective hyper-heuristic based on a choice function was proposed
to adaptively select appropriate low-level heuristics (operators) within MOEA/D.
The pool of low-level heuristics consisted of five differential evolution operators.
More recently, a hyper-heuristic was proposed in [131] to combine the strengths and
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compensate for the weaknesses of different scalarizing functions. The selection is
conducted through an indicator called s-energy, which measures the even distribu-
tion of a set of points in k-dimensional manifolds. Combining different performance
indicators within an indicator-based multi-objective solver is the proposal of [132],
in which IGD+, ε+, ∆p and R2 are adopted as possible density estimators (i.e., the
low-level heuristics). Another strategy connected to hyper-heuristics and automatic
algorithm composition is the combination of different off-the-shelf algorithms under
a single control mechanism, as done in e.g. AMALGAM [133].

Despite the impulse around multi-objective hyper-heuristics exposed above, we still
need more theoretical studies to better comprehend their superior performance in
the reported cases so far. In fact, some work in that direction has been already
done. For instance, Qian et al. provided in [134] a theoretical study on the effective-
ness of selection hyper-heuristics for multi-objective optimization, concluding that
selection hyper-heuristics applied to any of the three major components of a multi-
objective evolutionary algorithm (selection, mutation, and acceptance) can exponen-
tially speed up the optimization process. More theoretical findings to be contributed
in the future should unveil new possibilities for the design and construction of hybrid
multi-objective optimization algorithms, specially bearing in mind the emergence of
new bio-inspired search operators.

• An aspect that has also attracted great attention in the last couple of years is the scal-
ability of multi-objective techniques when addressing problems with many objec-
tives. The reason behind this research trend lies on the fact that off-the-shelf multi-
objective solvers do not scale properly under such circumstances. For instance, the
number of non-dominated solutions is known to grow exponentially with the num-
ber of objectives [135], which makes the selection mechanism in Pareto-based meth-
ods completely useless since all the non-dominated solutions are considered equally
good. There is also another interesting problem related to scalability: as we increase
the number of objectives, the number of solutions required to sample the Pareto front
also grows exponentially, further complicating an efficient exploration of the search
space of the problem at hand. in this context it is also interesting to highlight the
empirical work reported in [136], where it was shown that a random search is more
effective than NSGA-II when dealing with more than 10 objectives. As a result,
many-objective optimization deals with the design of scalable search algorithms for
problems characterized by many (typically more than 3) objective functions.

In the early days of this area, two types of approaches were commonly adopted to
cope with many-objective optimization problems: 1) to adopt or propose a prefer-
ence relation that induces a finer grain order on the solutions than that induced by
the Pareto dominance relation; or 2) to reduce the number of objectives of the prob-
lem during the search process or during the decision making process. Many other
approaches are possible, including, for example, the use of machine learning tech-
niques (as in MONEDA [137]), performance indicators (as in SMS-EMOA [138]),
ε-dominance or the two-archive MOEA, which uses one archive for convergence and
another for diversity [139].

The source of difficulty in many-objective problems has been extensively studied in
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recent times, with specific complexity factors that by themselves open up new chal-
lenging avenues in this area. Several works are the baseline reference in this regard:
to begin with, Ishibuchi et al. considered in [140] five types of difficulties that arise
in many-objective problems, including the typical ones (e.g., difficulties to generate
a good approximation of the entire Pareto front) and others that are not so obvious
(e.g. difficulties to assess performance). By that time, Schütze et al. had already con-
cluded that adding more objectives for a given problem does not necessarily make
it harder [141], an insight that was later empirically confirmed in [140] by showing
that NSGA-II could properly solve many-objective knapsack problems whose ob-
jectives were highly correlated. However, many other challenging aspects related to
many-objective optimization deserve to be studied in the near future, from density
estimators (what to use and what sort of distributions do we aim to find?), the visual-
ization of high-dimensional Pareto fronts and performance indicators suited for this
family of optimization problems (at least not as expensive as the hypervolume).

• A multi-objective optimization area that has lately attracted attention is the scalabil-
ity of multi-objective solvers in terms of the number of decision variables. Almost
no work had been published on this topic until a few years ago, when a small study
reported results in problems that were scaled up to 100 decision variables [15], later
extended to more than 2,000 variables and several multi-objective solvers [142]. Re-
markably, in this work, PAES was found to be the most salient technique from the
several compared (NSGA-II, SPEA2, MOCell, OMOPSO, and PESA-II). OMOPSO
did very well up to 256 decision variables and ranked second between 512 and 1024
decision variables. Years later, the first multi-objective solver designed for large-
scale multi-objective optimization was proposed in [143], where CC (Cooperative
Coevolution) was used to tackle problems amounting up to 5,000 decision variables.

Although other large-scale multi-objective optimization techniques have been pro-
posed since then [144, 145, 146], several topics remain to be explored in this area.
For example, there are no many sets of test problems explicitly designed for testing
large-scale multi-objective problems [147]. Furthermore, large-scale many-objective
optimization problems have recently entered the research arena, e.g. [148], thereby
unfolding many challenging paths blending together complexities from both areas.

Clearly, the main challenge for the coming years is to continue to open new venues
of research in bio-inspired multi-/many-objective optimization. This is becoming in-
creasingly difficult, given the huge volume of research that has been conducted and
is currently ongoing around the world. We need to be more creative: there are still
plenty of topics to study within this field, but some of them require moving outside
the main stream of the research that is currently being conducted. For example, we
need new performance indicators, particularly for many-objective optimization. We
lack appropriate performance indicators for assessing diversity in many-objective op-
timization, although there are some interesting choices (e.g. s-energy). It is also im-
portant to design new mechanisms (search operators, encoding strategies) realistically
modeling specific features of real-world problems (e.g., heterogeneous and/or variable
length encoding [149, 150, 151], expensive objective functions, uncertainty or highly-
constrained search spaces [152]). Co-evolutionary approaches can help solve complex
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multi-objective optimization problems, which also unleashes another interesting path
for future research. Besides large scale problems, co-evolution can be useful in other
domains – e.g. dynamic multi-objective optimization problems [81] – but its potential
has been scarcely studied [153].

However, it is important to keep in mind that a great source of diversity regarding
research ideas is the knowledge coming from other disciplines. For example, our field
has adopted advanced data structures (e.g., red-black trees), concepts from computa-
tional geometry (e.g., convex hulls, quadtrees and Voronoi maps), and from economics
(e.g., Game Theory) to design novel search algorithms and operators. We also need
to explore more ways of bridging the gap between this field and elements from Oper-
ations Research, such as mathematical programming [154]. Another one is the use of
the Karush-Kuhn-Tucker optimality conditions to estimate proximity of a solution to
the Pareto optimal set [155]. All in all, diversity, heterogeneity and synergy between
different disciplines must be ensured within the community working in order to attain
more disruptive and scientifically valuable advances not only in multi-/many-objective
optimization, but also in other areas within bio-inspired optimization. Otherwise, if we
only investigate by analogy, research in this area will eventually suffer from stagnation.

3.4. Multimodal Optimization

Multimodal optimization problems consist of finding multiple optimal solutions
within a single algorithm run, in order to have a better knowledge about the different
solutions in the search space [156]. Population-based bio-inspired algorithms are the
most used approaches to solve multimodal optimization problems, specially those in-
cluding diversity-preserving mechanisms, also known as niching methods [157, 158].
Research on multimodal optimization techniques, mainly evolutionary algorithms, had
a boom in the early 2000s, and has been an research topic of importance until today,
as can be seen in Figure 2 (stacked bar colored as ). According to [158], there are
several reasons why multimodal search is important in real-world problems:

• Locating multiple optimal solutions of a problem improves the knowledge of the
problem domain, much more than in single-solution cases.

• Multiple solutions with optimal quality provide a decision maker with a wider port-
folio of options for consideration, based on which different factors can be applied to
choose the best option in each case.

• Looking for multiple optimal solutions can be good in terms of improving the search
capabilities of the algorithm since the computational effort is diversified to explore
different regions of the search space.

• Diversity methods involved in multimodal optimization algorithms are able to im-
prove the quality search of the algorithm since they counteract the effect of genetic
drift, which causes diversity loss in bio-inspired algorithms.

Motivated by these benefits, the literature has been rich in regards to niching ap-
proaches that have been combined with bio-inspired heuristics in order to help them
properly search over multimodal fitness landscapes. For the sake of completeness, in
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what follows we briefly describe some of the most classical approaches for niching in
evolutionary algorithms [157]:

• Fitness sharing, originally introduced in [159], consists of dividing the population
of a bio-inspired algorithm into subgroups, according to a measure of similarity
between solutions. Thus, an individual must share its information with individuals
belonging to the same niche area. To this end, a rule must be defined by which every
individual’s fitness is decreased by an amount depending on the number of similar
individuals in the population. A usual way to proceed in this matter is to modify the
fitness of the i-th individual in the population as f ′i = fi

mi
, where mi is known as

the niche count measuring the approximate number of individuals close to the i-th
individual. The niche count is usually established depending on the similarity dij
between the i-th and j-th individual. The similarity dij is typically measured over
the genotype or the phenotype of the problem.

• The clearing method is very close to the fitness sharing approach but is instead based
on the concept of limited resources of the environment [160]. Instead of sharing
resources between all individuals of a single subpopulation as in fitness sharing,
clearing methods assign them only to the best members of the subpopulation, in
such a way that this operator preserves the fitness of the some of the best individuals
(dominating individuals) of the niche, and resets the fitness of the others individuals
in the population (correspondingly, dominated individuals).

• In crowding schemes for multimodal optimization [161], only a percentage of the
population reproduces and dies in each generation of the evolutionary search. The
newly generated individuals replace similar ones in the population. For this purpose,
a subset of individuals is drawn at random from the population, whose cardinality (in
% with respect to the population size) is referred to as Crowding Factor. Then, a new
generated individual replaces the most similar element in this sample, taking into
account a distance function dij similar to the one defined above. This approach was
improved in [162] leading to probabilistic crowding, where different tournaments
between similar individuals (parents and offspring) are carried out. When producing
offspring, however, the whole population is used, hence parents can be potentially
drawn from different niches. This results in a poor exploitation capability of the
overall search heuristic in distinct niches, thereby motivating alternative strategies
as the ones following hereafter.

• Speciation [163] and islanding [164] are other ways of dealing with multimodal op-
timization problems. On one hand, the speciation technique divides the population
into several species according to their similarity, so each species focuses on a differ-
ent solution of the problem. Islanding follows the same design principle but defines
several subpopulations or islands where individuals are independently evolved.

• The induction of niching behavior within the individuals produced by a bio-inspired
solver can make them converge efficiently around different basins of attraction. To
this end, in addition to the general niching strategies outlined above, an alternative
is to exploit the concept of neighborhood, a relationship between individuals over
a distance space that can be used, for instance, to adaptively adjust the amplitude
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or frequency by which bio-inspired operators are applied, replace the stochastic na-
ture of parent selection strategies, or to control the migration of individuals between
different basins.

Two main niching strategies can be adopted when facing multimodal optimization
problems with population-based meta-heuristics: 1) index-based topologies for nich-
ing, which define the neighborhood of an individual based on its index within the
population and a predefined topology (e.g. a ring or a star); and 2) Euclidean dis-
tance based niching, which fixes the neighborhood relationship between encoded
solutions in the population based on their Euclidean distance. Euclidean neighbor-
hood was first used to generate offspring in [165] for single-objective bound con-
strained problems. Subsequently, [166] was the first work to use Euclidean distance
for generating offspring within each neighborhood, enhancing, as a result, the local
exploitation around each niche. Several other contributions have since then used
Euclidean distance based neighborhood niching induction for multimodal problems
[167, 168, 169, 170]. However, the use of neighborhoods and other concepts related
to topology spans further possibilities in other areas of bio-inspired optimization,
such as multi-objective optimization (e.g. MOEA/D resorts to the definition of a
neighborhood structure to transfer information between subproblems).

In the last few years, bio-inspired solvers have thrived as the default algorithmic
choice in multimodal optimization, producing new algorithms and drawing up new
paradigms related to this optimization casuistry. Of special interest are the findings
reported in [171], where it was shown that a single-objective multimodal problem can
be reformulated as a bi-objective optimization problem, so that heuristics developed
for this alternative problem statement were proven to efficiently tackle more complex
multi-modal search spaces than contemporary algorithms, comprising a larger number
of variables and number of optima. Beyond the relatively improved performance of its
proposed approach, this work paved the way towards the application of multi-objective
bio-inspired solvers to the multimodal case, and further exemplified how the synergy
between different areas in bio-inspired computation can yield new efficient approaches
to tackle classical problems. In fact, this intuition has been at the core of a number of
recent publications, see e.g. [167, 172] and citing contributions thereafter. It is also
worth noticing that niching is also considered a very effective strategy to improve the
performance of multi-objective algorithms [158], an observation which reinforces even
further the aforementioned profitable synergy between both areas of bio-inspired opti-
mization. Research efforts in the future should strive for exporting advances of one area
to another and vice versa. This being said, late advances in many-objective optimiza-
tion could serve as a source of inspiration to develop new approaches for effectively
solving multimodal optimization problems.

An alternative research line in multimodal optimization aims at defining tailored
solvers with biological inspiration at their core to when addressing these problems,
among which we underscore the prominent role taken by PSO in recent times [173,
174, 175]. Indeed, the notion of memory, inherent to PSO, is exploited to induce
niching behavior. Usually, a swarm is divided into two parts: 1) an explorer swarm
(with the current particles) and 2) a memory swarm (with only the best particles found
so far by the algorithm). The underlying idea is that best particles within the memory

21



swarm act as solution niches, eventually locating multiple solutions to the problem.
Alternative proposals to multimodal problems using PSO algorithms have gravitated on
the use of multi-swarms [176], the induction of Euclidean-based niching [168] or a ring
topology in the neighborhoods within the swarm [177]. Another bio-inspired solver
successfully applied to multimodal optimization is DE, which has been hybridized with
fitness sharing [11], speciation and islanding [178]. In light of this preceding research
record, it is only a matter of time that the community will receive studies dealing with
the hybridization of new bio-inspired techniques with traditional strategies to tackle
multimodal problems.

Finally, Machine Learning should capitalize on bio-inspired solvers for multimodal
optimization, in problems related to feature selection [179] or model calibration [180].
We do think that this is an extremely interesting research line that spans far beyond
multimodal optimization, which we expect will be further growing in the near future.
We will later revolve on this statement.

3.5. Topologies

Contributions related to the design of topologies within population-based heuristics
elaborate on the control of the information flow among population members by speci-
fying the nature and outreach of their interactions [181, 182]. By appropriately defining
topologies within the population/swarm, it becomes possible to emphasize global ex-
ploration and/or local exploitation. The rationale behind the design of topologies lies
on the widely acknowledged fact that the overall search performance of evolutionary
algorithms can be significantly biased by how individuals in the population are or-
ganized and interact with each other. As such, many different topological schemes
have hitherto been proposed by advancing over the so-called panmictic topology, in
which all population members can mate with any other member. This simple topology,
which lies at the core of naive versions of well-known evolutionary algorithms such as
GA, is known to foster the rapid dissemination of information among the individuals,
yielding a progressive loss of diversity and ultimately, a potentially premature conver-
gence of the overall search process. This is the reason why more elaborated topological
schemes have been extensively analyzed in recent years, often relying on the definition
of a structural neighborhood between individuals. A recent comprehensive overview
on this topic can be found in [183].

As has been foretold in Subsection 3.4, the criterion by which the above neigh-
borhood relationship is defined established two general categories of topologies for
population-based heuristics: those based on the population index of the individuals
and a predefined structure (e.g. ring, wheels, random, von Neumann or star, among
others) that dictates how information flows among them; and those based on a mea-
sure of distance to dynamically determine which solutions are neighbors of each other.
Furthermore, topologies can be endowed with further characteristics to make them
better perform in certain problem setups. As such, topologies can be static or dy-
namically adapted along the run. Likewise, heterogeneous topologies [184] enforce
different topological relationships (e.g. tighter or looser connectedness) between sub-
populations, to the extreme of generating them in a randomized manner [185]. Once
the topology is established, good solutions encountered during the search process are
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spread throughout the whole population or exploitation subpopulation, yielding an im-
proved convergence and superior optimality in many flavors of optimization problems
such as bound constrained single-objective optimization, multi-objective optimization
and multimodal niching.

Topologies can be also defined within the subpopulations or islands (also referred
to as demes) of a distributed EA. Although we will elaborate further on this area of
bio-inspired optimization in Subsection 3.8, it is important to note that the interaction
between such isolated islands (which evolve independently) takes usually the form of
a migration policy, which selects which individuals are moved or copied between sub-
populations. Therefore, the migration policy can be regarded as a topology between
demes in distributed bio-inspired solvers. By carefully tailoring the migration policy
one can balance between exploration (demes do not interact with each other and search
over the solution space in isolation) and exploitation (individuals are occasionally mi-
grated between islands). Therefore, independent intra-deme evolution and migration
schemes must be devised to match a good balance between exploration and exploita-
tion, which in turn intersects with the characteristics of the optimization problem at
hand and the operators of the heuristic algorithm themselves.

Regarding this noted threefold intersection, certain population topologies have been
found to perform better than others when applied to solve a given class of optimization
problems. An example supporting this statement can be found in multimodal optimiza-
tion problems where, as mentioned in Subsection 3.4, topology-based niching methods
relying on multiple subpopulations have been extensively studied in the literature. In
problems composed by single optima, however, panmictic topologies are more suit-
able than their sub-population based counterparts. Unfortunately, there is still no clear
understanding of the theoretical foundations behind this match between problems and
topologies, nor can we predict which topology performs best for a given problem. This
unsolved issue triggers a wave of future research towards extensively designing new
population topologies capable of dealing with problem classes that have been tackled
with topology-based heuristics to a much lesser extent than multimodal and unimodal
problems, such as constrained, multi-objective, large-scale, or bi-level, among oth-
ers. Efforts are also foreseen to be needed towards the extrapolation of the topology
concept to other heuristics than DE and PSO, which have so far monopolized the liter-
ature related to this area. Finally, a promising research direction is to jointly consider
topologies and ensemble strategies (Subsection 3.8) as a means to leverage the superior
explorative/exploitative powers of ensembles and delegate the search intensification in
tailored topologies set within the population of each member of the ensemble.

3.6. Surrogate Model Assisted Optimization
In certain applications such as aerospace design, optics or biomedical engineering,

problems tackled by bio-inspired optimization methods usually rely on computer sim-
ulations. Such simulations are conducted not only for testing purposes but also to prop-
erly tune the configuration of the overall system by providing a quantitative indicator
of its performance. Unfortunately, accurate testing processes entail high computational
efforts, with evaluation times that range from hours to days per experiment. Hence,
the efficient design of bio-inspired solvers is often an extremely time-consuming task,
becoming prohibitive even for the powerful computation means available nowadays.
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The lack of sensitivity information and numerical noise usually present in experimen-
tal outcomes can also be deemed as issues falling within this specific context. These
problems, and other related ones can be mitigated by the adoption of surrogate models,
which reliably portray the expensive simulation-based model in a cheaper and analyt-
ically tractable way. Simulation-driven studies supported on surrogate model assisted
optimization have gained great popularity, allowing the community to address prob-
lems that could not be tackled otherwise, and dramatically reducing the computational
costs of the problem-solving process. Furthermore, once built to achieve an admissi-
ble accuracy level, the surrogate model can be exploited to provide hints about where
promising candidate solutions are located over the solution space, thereby serving as a
driver for optimized heuristic search operators.

Several comprehensive surveys can be found in the literature, highlighting different
aspects of this specific field. Two remarkable overviews are the ones in [186] and [187],
which focus on aerospace sciences, a sector where surrogate model based optimization
has been utilized in manifold design applications due to the complexity of conduct-
ing real experiments. In fact, many other recently published contributions revolve on
applications within this sector: this is the case of [188], for example, which aims at
showcasing that surrogate-based global optimization is feasible for aerodynamic shape
optimization with a high number of design variables. Likewise, in [189] a solver based
on the Kriging surrogate model and parallel infill-sampling method is proposed for the
aerodynamic shape optimization of a swept natural-laminar-flow wing. Authors of that
study claim that the main challenge in this study links to the trustable prediction of
laminar–turbulence transitions and reasonable compromise of viscous and wave drags.
Another recently presented work is [190], which explores the feasibility of a hybrid
approach based on evolutionary algorithms and support vector regression to reach op-
timal configurations of the landing gear master cylinder. In this research study, the
aerodynamic shape design problem is also approached by using surrogate models and
intelligent estimation search with sequential learning (IES-SL, [191]).

Surrogate models are also appropriated for problems arisen in other disciplines and
sectors. For instance, the design of different types of antennas for wireless communica-
tions has also undergone significant research with surrogate models in recent years. In
[192], for instance, the design of an ultra-wideband antenna with an integrated balun is
faced by an automated numerical surrogate-based optimization. Authors in [193] claim
that the design of contemporary antennas requires the configuration of an unprecedent-
edly high number of parameters to configure, which exacerbates the complexity of the
overall design problem. To alleviate it, they introduce a novel two-level method for the
surrogate modeling of antenna structures using Kriging interpolation models. Another
example of the prevalence of surrogates in antenna design problems is [194], where
a multi-objective formulation of this problem is tackled by considering performance
and robustness as conflicting objectives, and by automatically selecting the best surro-
gate among a portfolio of possible models (namely, polynomial regression, Gaussian
process regression, and Kriging).

A stimulating general review on the area of the surrogate model assisted optimiza-
tion has been recently presented in [195]. Among many other interesting aspects, this
review highlights that the efficient use of surrogates entails great savings in terms of
computational resources, but also pinpoints the complexity of selecting an appropri-
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ate surrogate due to the variety of available models. In this study authors discuss on
frequently used approaches for obtaining surrogates, stressing particularly on recent
advances in this regard. Regression models such as linear regression and support vec-
tor regression are discussed, despite an emphasis is placed on Kriging and Radial Basis
Functions (RBF). These two interpolation models are among the most popular ones for
feasibility analysis and optimization by virtue of their capability to provide a quanti-
tative measure of prediction uncertainty. This has allowed these models to prevail in
many applications, such as design simulation [196] and pharmaceutical process simu-
lations [197] in the case of Kriging, and parameter estimation [198] or water pumping
optimization [199] in the case of RBF.

Several important challenges can be outlined within this specific topic. To begin
with, it remains unclear how surrogate models could efficiently tackle complex prob-
lems composed by a high number of dimensions. A growing amount of studies are
recently echoing this issue [194, 200], putting in question the efficiency of traditionally
used methods like the ones mentioned previously [201, 202]. New mechanisms and
existing methods are being lately combined to face this issue, as in [201] where Krig-
ing is hybridized with partial least squares. Deep Learning models could also enter this
arena by incorporating techniques proposed lately to quantify the statistical reliability
of their predicted output, as those exemplified by [203] or provided off-the-shelf by
Bayesian deep models [204]. The challenge for the deep models will be to learn within
a limited number of function evaluations.

A higher dimensionality of the problem under consideration also requires further
improvements for the optimization algorithm itself. Sophisticated evolutionary meth-
ods are receiving attention in recent years, such as cooperative PSOs [200], hierarchi-
cal PSOs [205] or Cooperative Co-evolutionary approaches [206]. The applicability
of LSGO techniques should also be inspected in this regard in combination with the
aforementioned Deep Learning surrogates. We foresee that this synergy may have a
groundbreaking effect in the scalability of problems addressed with surrogate models
and bio-inspired optimization.

3.7. Distributed Evolutionary Algorithms
Since most real-world applications can be highly nonlinear and large-scale, bio-

inspired algorithms that work well for small-scale or moderate-scale problems need
to be modified and parallelized in implementations. Though multi-agent, population-
based algorithms can be suitable for parallelization, it is not clear what is the best way
to parallelize them. In addition, simple processing parallelization may not be enough
to solve truly large-scale problems with thousands or millions of variables. Certain
modifications and enhancements are needed, even though it is not clear yet how to
achieve such effective modifications at the moment.

In this context distributed Evolutionary Algorithms (dEA) come to the scene by
deploying different populations of solutions on distributed systems in order to improve
the performance of sequential (traditional) evolutionary solvers [207, 208]. dEAs also
include co-evolution type algorithms, which tackle high dimensional problems through
distributed divide-and-conquer mechanisms. A recent tutorial of the most important
distributed techniques in EAs is given in [209], which classifies dEAs in population-
based models (island, cellular, master-slave, hierarchical and pool) and dimension-
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based approaches (co-evolution and multi-agents). We review here the most important
characteristics of dEAs following a similar structure for describing each model of dEA,
i.e. starting with population-based dEAs and finishing with dimension-based models
such as co-evolution algorithms. A schematic representation of all these parallel com-
putation strategies for bio-inspired computation is depicted in Figure 4.

To begin with, the master-slave model is a simple albeit effective dEA model [209,
210]. In this class of distributed optimization models, bio-inspired search operators
are executed in the so-called master part of the algorithm, and evolved individuals are
then delivered to slave processors for fitness evaluation. In this case, it is considered
that the fitness evaluations of the individuals are independent, so there is not a need for
communication among slaves processors. The distributed fitness computation featured
by these dEAs makes them especially well-suited for those cases where most of the
computational complexity of the problem at hand is concentrated on the computation
of the fitness. Therefore, when parallel processing capabilities are available they are an
efficient alternative to other methods such as surrogate-model assisted optimization.

The second dEA discussed in this subsection is the island model [211], which is a
coarse-grained evolutionary algorithm where different sub-populations of solutions are
considered, each processed by a different processor. Communications between islands
are allowed and occur when certain individuals migrate among them at given times of
the evolution. The migration mechanism is an important design part of island models,
including the migration topology, its frequency, and extent, as well as the replacement
policy in the destination island.

Slightly linked to the island model introduced above, a cellular dEA model [212]
is a fine-grained, spatially-structured approach, which consists of just one population
whose individuals are arranged on a grid of processors (cell). Interaction among indi-
viduals handled by the evolutionary algorithm is done by using communications paths
defined by a network topology in the dEA. Thus, each individual in the population can
only interact with those individuals within its neighborhood. As the neighborhoods of
individuals are overlapping with each other, good individuals tend to propagate to the
entire population of the algorithm.

A rather different strategy is followed in the hierarchical dEA model, also referred
to as the hybrid model [213]. It combines two (or more) distributed models hierar-
chically, such as the 〈island, master-slave〉 or 〈island, cellular〉, among other combi-
nations. The underlying idea of these approaches is to improve the search capabilities
of the whole heuristic by embedding characteristics of both models into a single al-
gorithm. The last population-based dEA reviewed in this subsection is the pool dEA
model, in which a set of autonomous processors are deployed to work on a shared re-
source pool. Processors are loosely coupled, in such a way that they do not know each
other’s existence and only interact with the pool [214]. The pooled model provides a
natural approach to asynchronization and heterogeneity in dEAs, of inherent interest
for their deployment in non-controlled computing frameworks.

In what refers to dimension-based models, Cooperative Co-evolution (CC) pro-
vides a powerful divide-and-conquer architecture for computationally hard optimiza-
tion problems, such as LSGO [215, 216, 217]. In CC a highly-dimensional or com-
plex optimization problem is divided into several simpler sub-problems, which will be
solved by different meta-heuristics. Provided that the problem formulation allows for
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such a decomposition, sub-problems in which it is split can be solved independently, so
that once the optimization process has been completed the solution of the problem can
be obtained by assembling all produced solutions to the sub-problems together. How-
ever, when complex interdependencies exist between sub-problems, the CC model can
still be applied in such a way that each computing node performs a local evolution pro-
cess in a solution subspace. Then, by enforcing communication between nodes, they
can adaptively adjust their search direction and cooperatively move towards regions of
higher optimality for the problem at hand. A dimension-based approach is also present
in multi-agent models [218], which differs from CC in that they do not require any di-
rect coordination of agents to evolve. Instead, agents are endowed with game-theoretic
behavioral rules such that they optimize local functions and negotiate mutually to reach
some stable equilibrium and thereby, complete the optimization task efficiently.

Recent activity on dEAs has been intense, with many different real-world appli-
cations having been addressed by parallel bio-inspired techniques falling within this
category. Remarkable advances in this regard include [219], where new approaches
for migration in dEAs based on biological invasions are proposed and proven to be
particularly well suited for island genetic algorithms, showing improvements over al-
ternative migration schemes. Another interesting work in this line is [220], where a
new discretization scheme for Big Data processing based on a multivariate dEA is pro-
posed and tested in different large-scale classification instances, such as ECBDL14, a
highly unbalanced classification database consisting of 32 million instances with an
unbalance ratio over 98%. In all the tested problems the proposed dEA-based dis-
cretizer performed best, attaining superior accuracy rates. Unsupervised classification
over large-scale datasets has also been tackled by adopting dEAs, such as [221], where
an island genetic algorithm is proposed for fuzzy partition problems, or [222], where
dEAs are applied to improve a k-Means clustering algorithm. There has been also
active research around more practical versions of dEAs, in areas such as large-scale
optimization [223, 224, 225], Electromagnetism [226], Computational Fluid Mechan-
ics [227], energy planning [228] or neural networks training [229].

Besides large-scale data mining, a multi-objective optimization is another research
subarea where dEAs can yield profitable computational gains. The main motivation
to develop parallel multi-objective solvers is to deal with expensive objective func-
tions, which are common in real-world applications comprising multiple criteria. How-
ever, something surprising is that the design of new parallel approaches is very rare in
the specialized literature [230]. We are lacking work on the development of asyn-
chronous parallel multi-objective solvers, and their comparison with respect to their
synchronous counterparts (quite in line with the work in [231]). We also need parallel
multi-objective optimizers designed to run on GPUs, following early work in [232].
Another interesting topic is the change of granularity in a parallel multi-objective al-
gorithm (with a unidirectional topology) with the aim of performing a more efficient
search [233]. There are many other possibilities. For example, the use of asynchronous
parallelism combined with the use of micro-populations was adopted in [234] to yield
S-PAMICRO (PArallel MICRo Optimizer based on the S metric), a computationally
efficient (parallel) version of SMS-EMOA that uses exact hypervolume contributions.
Above all, a crucial task that the community should engage with is to exploit parallel
architectures by designing multi-objective bio-inspired techniques that explicitly take
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advantage of a particular parallel architecture (e.g., grid computing or GPUs), rather
than simply producing ad-hoc parallel versions of existing multi-objective evolution-
ary algorithms such as MOEA/D and NSGA-II. There are, however, many other re-
search topics worth to be explored in the intersection between dEAs and multi-/many-
objective optimization, such as the impact of the topology on the performance of a
parallel solver and the management of diversity among distributed populations.
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Slave
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Figure 4: Example of (a) an master-slave dEA model; (b) an island dEA model; (c) a cellular dEA model;
(d) hybrid 〈island, cellular〉; (e) hybrid 〈island, island〉.

Future advances in the area of dEAs should be focused on better exploiting their
capabilities, by inspecting radically new search methods hinging on distributed com-
puting resources, and also assessing their applicability in general application scenarios
such as LSGO and Big Data. Regarding the former, an interesting line stems from the
derivation of heterogeneous search algorithms merging different encoding strategies,
bio-inspired operators and constraint handling techniques [235] into a single unified
search algorithm suited for parallel implementations [236]. This research has been ex-
plored in the literature recently when a heterogeneous meta-heuristic technique was
proposed in [237] and later adapted in [238] for LSGO problems. In this regard, we
recommend [239] for a comprehensive overview of ensemble strategies for population-
based bio-inspired algorithms, with connections and prospective insights into their ap-
plicability for LSGO, multimodal, multiobjective dynamic and constrained optimiza-
tion.

As for developmental application lines in dEAs, LSGO and Big Data problems in
Earth and Atmospheric Sciences, Global Energy Demand or Climate Change studies
are some of the most important areas where dEAs could have a deep impact due to the
computationally challenging characteristic of these problems. Alternative applications
in problems involving a huge amount of variables, observations and/or objectives are
also of utmost interest for dEAs, as those frequently occurring in Finance, Bioengi-

28



neering or Biomedicine, among others.

3.8. Ensemble Methods and Hyper-heuristics
The concept of ensemble in optimization refers to the use of multiple search strate-

gies, subpopulations, algorithms, rules for selecting next generation population, op-
erators and/or parameter values to tackle an optimization problem [239]. The idea is
that the ensemble strategy can obtain better results than a single strategy, specifically,
better than the ensemble composites working on their own, when applied to a given
optimization problem. Following [239], ensembles for optimization can be classified
by taking into account different characteristics of the technique at hand, mainly the
type of constituent elements and the applied implementation technique. First, when
the ensemble combines different types of search strategies, operators or constraint han-
dling techniques, it is known to be a low-level ensemble. On the other hand, high-level
ensembles refer to methods that adaptively select the best optimization algorithm for
a given problem among a set of candidate algorithms [240, 241]. Ensemble methods
can be also categorized regarding their implementation structure, resulting in competi-
tive single/population, competitive multi-population, and cooperative multi-population
ensembles.

Low-level ensembles include multi-methods and multi-strategy approaches devel-
oped in the last decade. Multi-methods algorithms consider the combination of differ-
ent operators or algorithms to solve an optimization problem. Examples of low-level
competitive single population approaches are those proposed in [242], where different
search operators are jointly applied and self-adapted in the same genetic population, or
[238, 243], where a set of “substrates” are defined in a Coral Reef Optimization algo-
rithm, representing the application of different search operators defined in a single pop-
ulation. Multi-methods have been also applied to improve multi-objective optimization
problems [244, 245]. Other multi-methods operate on different sub-populations, yield-
ing competitive multi-population approaches such as the one in [246]. Alternative low-
level ensembles involving other algorithmic components have been also proposed in
the literature, such as neighborhood sizes [247], constraint handling techniques [248]
or niching [249] among others.

High-level ensembles have been also applied to optimization problems with suc-
cess. For example, [250] proposes a portfolio of different algorithms to be applied
in optimization problems, choosing the best combination of algorithms depending on
the problem under consideration. In [251] a comparison of different high-level multi-
method ensembles is carried out. Multi-strategy ensembles choose among different
versions of the same search strategy to solve optimization problems, usually in a com-
petitive fashion in single or multiple populations. Ensembles of multi-strategy ap-
proaches based on different algorithms have been proposed in the literature, for exam-
ple, based on DE [252, 253], PSO [254], Artificial Bee Colony algorithms [255] or
Biogeography-based optimization [256].

Closely related to the idea of ensemble methods, the hyper-heuristic paradigm ap-
peared in the early 2000s as a novel computation paradigm useful to tackle hard op-
timization problems. As already mentioned in Subsection 3.3, hyper-heuristics have
been defined as “search methods or learning procedures for selecting or generating
heuristics for a given optimization problem” [257]. Hyper-heuristics operate on a set
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of simple heuristics – which by themselves do not render good results for a given opti-
mization problem – and combine them via a higher-level algorithm towards achieving
much better solutions [126]. In other words, a hyper-heuristic seeks the automated
construction of new heuristics highly adapted to efficiently solve a given optimization
problem; for this purpose, the hyper-heuristic algorithm at hand must explore a search
space spanned by low-level heuristics by using hyper-heuristic operators defined for
selecting, modifying, combining and/or constructing heuristic methods.

Following [126], hyper-heuristics can be classified in different categories depend-
ing on the nature of the heuristic search space. Thus, hyper-heuristics are classified
into hyper-heuristics for heuristic selection, that comprises those methodologies fo-
cused on choosing or selecting existing heuristics, and hyper-heuristics for heuristics
generation, that includes those methodologies focused on creating new heuristics from
existing ones. Focusing on heuristic selection, the process to construct the complete al-
gorithm is quite simple: first, it is necessary to select a set of good low-level heuristics
for the optimization problem at hand. Note that this idea is quite related to the concept
of low-level ensembles. It is not necessary that the heuristics on their own are very
effective in solving the problem, but their number should be large enough to generate
a large search space [258]. Then, a high-level approach must be selected in order to
obtain the best set of low-level heuristics and how to apply them to solve the problem.
In many cases, this high-level algorithm is a meta-heuristic (evolutionary algorithm,
ants algorithm, particle swarm, etc.), which requires a proper encoding of the low-level
encoding to perform the search. This encoding strategy stringently depends on the
problem being solved, and the algorithm’s performance depends also on this selection.
A number of tutorial and reviews papers focused on hyper-heuristics can be found in
the literature for the interested reader [257, 259, 260].

There are several lines which are currently hot research topics when it comes to
ensembles and hyper-heuristics [239, 257]. First, an important issue, currently under
research in both topics, is the application of these techniques to large-scale optimization
problems. In large-scale problems, the application of ensembles or hyper-heuristics be-
comes much more involved than usual: the encoding strategy is not straightforward, the
exploration capabilities of the algorithms become inefficient, and sometimes the com-
putational complexity of standard ensembles is too high to tackle this kind of problems.
Further research is still needed to solve these issues. Different lines are currently under
development related to intelligent encoding methods to alleviate the high computa-
tional complexity inherent to large-scale optimization. The second central challenge
in ensemble and hyper-heuristics is the specific selection of methods to be assembled
or low-level heuristics in the hyper-heuristic method. In many cases, it is possible
to choose among a large set of low-level methods or heuristics, but the appropriate
selection of these composing pieces of the ensembles or hyper-heuristic approaches
remains an issue not fully solved when it comes to real application setups. Finally,
the combination of high-level with low-level methods/heuristics is another hot topic in
ensembles for optimization, also with application in hyper-heuristics. The idea is to
combine multiple-methods approaches with multiple strategies in the high-level algo-
rithm, which leads to challenging problems related to the algorithms tuning and the
computational complexity of the final ensemble.
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3.9. Memetic Algorithms
Memetic Algorithms were first conceived [261] and later forged [262] as a branch

of bio-inspired computation characterizing a specific kind of hybrid evolutionary meta-
heuristics. Initially defined as modifications of Genetic Algorithms employing local
search mechanisms, the community was doubtful about Memetic Algorithms even
years after their advent [40]. It is important to note that at the time of their inception,
PSO, DE and other adaptations for real-valued optimization problems had not been yet
contributed to the community. Memetic Algorithms were, thus, designed as an efficient
workaround to endow global search heuristics at that time (e.g. binary-coded GA) with
local search capabilities. However, many EC and SI heuristics reported shortly there-
after have been shown to be able to perform both global and local search provided that
their search procedure is based on the difference between any pair individuals (as in the
aforementioned DE and PSO). In the initial stages of the search process, global search
is enforced inherently due to the diversity of the population (large differences between
individuals), whereas local search is performed when the population converges around
an optimum (correspondingly, small differences between individuals). Furthermore,
other sophisticated bio-inspired approaches have shown an ability to perform global
and local search simultaneously; this is the case of CMA-ES when configured with a
highly adaptive step size [263], or the more recent HCLPSO approach [184], which
defines two subpopulations (with parameters selected for one to favour exploration, the
other for exploitation) so that information is exchanged only from the exploration to the
exploitation subpopulation. Therefore, the separation between global and local search
established in Memetic Algorithms is progressively disappearing in favor of monolithic
methods jointly comprising both functionalities.

From their advent the family of Memetic Algorithms blossomed into a massive
diffusion, being today one of the most prolific fields within Operations Research.
Nowadays, the distinguishing concept behind Memetic Algorithms has evolved to a
more generic conception of this algorithmic branch, defined as the combination of
bio-inspired approaches for global optimization with separate local improvement and
individual learning mechanisms, possibly incorporating domain-specific knowledge of
the problem at hand.

Due to the intense activity on this specific field and with the intention of being
adapted to the time’s needs, Memetic Algorithms have been growing at a constant pace
to yield complex techniques with extremely sophisticated cooperative mechanisms. As
a result of this fertile activity, a fair amount of Memetic Algorithms coexists in the
current literature, which can be classified in many different and equally appropriate
ways. In our brief survey of the state of the art we embrace the taxonomy introduced in
[264, 265], in which three different chronological generations are distinguished based
on their intrinsic characteristics and communication mechanisms:

• The first generation started with the pioneering work by Moscato and Norman men-
tioned above, in which the benefits of combining population-based global optimiza-
tion solvers with local search procedures were first explored. Methods framed within
this first category are characterized by the use of a single local search heuristic.

• The second generation of Memetic Algorithms delved into the memetic transmission
and design selection, with Multi-meme evolutionary algorithms [266] and hyper-
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heuristics [267] leading the algorithmic streamline during this period. The main
difference between these techniques and the classic MAs is the use of a group of
local search methods. On the one hand, in multi-meme methods, simple inheritance
mechanisms are used for the transmission of the memetic material (i.e. the choice
of the local optimizer). On the other hand, in hyper-heuristics, the groups of pre-
defined memes compete among themselves to decide which one to choose for local
refinements. This competition is based on their previous performance by resorting
to a reward mechanism. Interested readers on this specific generation are referred
to [268], in which an extensive survey on Memetic Algorithms considering multiple
learning methods inside an evolutionary strategy is presented.

• Finally, the search process of methods considered to compose the third generation of
Memetic Algorithms also rely on multiple local optimizers. Additionally, memetic
information is also passed on to offspring produced by crossover operators. How-
ever, the main novel ingredient of third-generation Memetic Algorithms with respect
to their preceding counterparts is that the mapping between the evolutionary trajec-
tory and the choice of the local optimizer is learned from experience. Two principal
trends emerge from this third category: self-adaptive schemes [269] and co-evolving
memetic methods [270].

A great upwelling of contributions has been lately noted in the literature, all fo-
cused on the discovery of new synergistic memetic approaches with biological inspira-
tion at their core. In [271], for example, the hybridization of a Cuckoo Search with a
dynamic local search is studied for multi-objective optimization problems. The same
design principle is observed in [272], where a recently proposed SI approach – Brain
Storm Optimization – is combined with a metric-based clustering method, which is put
to practice for optimally composing flight formations in swarms of unmanned aerial
vehicles. Interesting works are also noted at the junction between other areas of bio-
inspired optimization, such as the one in [273], where a large-scale capacitated arc
routing problem is tackled by using a Memetic Algorithm combining decomposition
strategies, co-evolution, and extended neighborhood search. Another relevant study to
highlight is the one introduced in [274], where a many-objective, dynamic schedul-
ing problem is faced by using a proactive rescheduling Memetic Algorithm based on
Q learning. The key concept of the designed approach is to learn the most profitable
global and local search methods in an adaptive way for the dynamically changing prob-
lem environment.

Next research waypoints to be visited in this area should include, at first, the deriva-
tion of self-adaptive mechanisms to tune the balance between exploration and exploita-
tion. For any algorithm to work well in practice, a certain balance between explorative
search and exploitative search is needed. Exploration enables to search a larger area
in the search space, while exploitation focuses on the local regions that can poten-
tially speed up the overall convergence. However, too much exploitation and too lit-
tle exploration can lead to premature convergence, while too much exploration and
too little exploitation can slow down the convergence and increase the computational
costs dramatically. Thus, a fine balance between these two-opposing components is
needed. This is uniquely critical in bio-inspired Memetic Algorithms, where diversifi-
cation is empowered by the bio-inspired solver and intensification is delegated on the
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local search method. Different mechanisms of collaboration between these two search
procedures may render different degrees of exploration and exploitation. Without an
in-depth understanding of when this trade-off must be tuned and how it is difficult to
design algorithms that can balance these two components. In this regard, further re-
search is needed towards achieving new procedures for detecting and quantifying the
level of stagnation, as well as appropriate, configurable countermeasures (e.g. diversity
induction) well suited to be inserted in classical frameworks for memetic computing.

Although we foresee an exciting future for research on this topic, the community
investigating on Memetic Algorithms should avoid falling into the temptation to hy-
bridize the myriad of bio-inspired optimization techniques reported to date with local
solvers just for empirical serendipity. Though qualitative improvements may eventu-
ally be obtained, the lack of mathematical rigor or argued design decisions may hinder
the discovery of memetic patterns that could bring real value to the area. In fact, it
still remains unclear how to combine components from different algorithms to make a
hybrid more computationally efficient and effective for a given optimization problem.
Workarounds to this lack of knowledge take advantage of the availability of computa-
tional resources to automatically construct hybrid heuristics. This is the case of recent
studies dealing with evolutionary hyper-heuristics deployed over large computation
grids composed by volatile computing nodes [275]. Nevertheless, a detailed analysis
shedding light over this worrying concept in Memetic Algorithms is urgently needed
in order to gain informed intuition rather than factual observations.

3.10. Large-Scale Global Optimization
Evolutionary Algorithms are a very popular tool in the field of real coding opti-

mization, in the industrial and scientific domain. However, sometimes these problems
require complex models with hundreds, if not thousands, of real parameters. This
high number of dimensions greatly worsens the behavior of algorithms designed for a
smaller number of variables, because the domain search increases exponentially with
the dimension (the curse of dimensionality [276]). This type of optimization problems,
with thousands of variables, is called Large-Scale Global Optimization (LSGO).

Tackling LSGO as a special category within bio-inspired optimization allows re-
searchers to design algorithms tailored for them, as well as to propose special bench-
marks to analyze and compare their performance. This has a special interest for differ-
ent reasons. On one hand, these benchmarks may, in some ways, reflect the character-
istics of many real problems, where the contribution of variables to the outcome of the
objective function varies greatly from one another [277, 278]. On the other hand, the
development of algorithms that can efficiently explore these large search spaces allows
for more efficient optimization algorithms, if not more scalable with respect to the size
of the problem. Indeed, this is an increasingly valued feature given the growing trend
of processing large volumes of data and variables.

The community working on this particular computation paradigm has united reg-
ularly in special sessions co-located in renowned conferences since the first was held
in 2008 [279, 280]. In 2010 another special benchmark was proposed [281]. In 2011,
there was a special issue in Soft Computing journal with another benchmark [282].
Later, in 2013 another benchmark for LSGO was proposed in [277], which was spe-
cially designed by combining functions with different levels of separability and depen-
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dency between the variables. Since 2013, many competitions have been held where
these same benchmarks have been maintained. Furthermore, many research works
have used them to develop their own proposals. As evinced by Figure 2 (stacked bar
colored in ), the evolution of LSGO in last years shows a rising trend in number of
contributions, with no clear predominance of EC or SI approaches. All in all, achieve-
ments as the ones outlined in what follows are symptomatic of the momentum of this
subarea, with biological inspiration taking a leading role in recent contributions [20].

In fact, research in LSGO not only has allowed to design evolutionary algorithms,
but also to develop further other research lines closely linked to the computational
problems derived from large problem scales. First and more evident, LSGO has cat-
alyzed the design of parallel and distributed algorithms to reduce the high processing
time needed for efficiently addressing large-scale problem instances. This crossroad
between areas has already been noted in the previous subsection.

An interesting research line triggering many contributed schemes in the last years
is to use the aforementioned benchmarks to develop new techniques that automati-
cally infer relationships among variables. This inference permits to identify groups of
variables that could be optimized in isolation with the minimum loss of efficiency. In
combination with a CC, this approach can be very effective, because grouping variables
allows the algorithm to optimize a lower number of variables. These grouping variables
techniques are in essence decomposition methods based on a divide-and-conquer strat-
egy, which allows decomposing large-scale problems into multiple low-dimensional
subcomponents that can later be optimized by one or several algorithms capable, in
most cases, of running in parallel. This decomposition is crucial to obtain good results
[283, 284]. The most straightforward approaches in this regard are random [215] or
dynamic grouping (i.e. changing it during the run) [285]. Later, the work in [286]
proposed to adapt the subcomponents size based on the historical performance. More
advanced techniques strive to detect the interaction between variables to group together
those with more interactions, because they can significant improve the results [287].
An example of this strategy is the delta grouping approach proposed in [288]. Delta
grouping tries to identify interactions between variables by measuring the differences
in fitness when the variable values change in isolation and when they are simultane-
ously changed. More recently, the same authors proposed an improved delta grouping
scheme in which the number of evaluations required is halved, furthermore exhibiting a
more robust behavior than its previous counterpart [284]. We refer to [289] for a more
detailed description of the evolution of the LSGO area.

Anyway, even considering the improvement in computational performance yielded
by these grouping methods, such gains obtained by the decomposition usually do not
compensate for the cost in terms of evaluations required for detecting variable depen-
dencies. Thus, last proposals try to reduce this high cost in evaluations. A significant
new approach in this direction is to apply the decomposition in a recursive way, like in
[290]. Definitely there is a research niche in this noted drawback of current grouping
LSGO techniques, because when the reduction in complexity could compensate the
additional evaluations in the process, it could be applied in all types of problems, not
only large-scale problems. Even more, their application to many real-world problems
is also expected, because these problems could encompass variables with many and few
relationships with others, thus the optimization process with one grouping mechanism
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could be improved significantly.
Since these grouping techniques are very costly in evaluations, and they are not

useful for function with overriding [287], currently they cannot be considered com-
petitive enough in comparison with algorithms specially designed for LSGO, thus the
develop of algorithms specially designed for them is still a very interesting and open
research line. Among these techniques, Multiple Offspring Sampling (MOS, [291])
has been considered the state of the art during many years, because since its first ap-
pearance in the LSGO panorama [292] it has not been improved significantly. MOS is
an algorithm that combines several generic optimization algorithms and more specific
solvers for LSGO, such as local search methods that are applied to the same population
in rounds with an adaptive mechanism that decides which algorithm should be applied
in each round, considering the historical performance of previous applications of every
algorithm. Very recently, another proposed algorithm, SHADEILS [293], surpassed
results obtained by MOS (specially in more complex functions), becoming the new
state of the art in LSGO supported by the results attained by this algorithm in the latest
CEC’2018 competition [294]. SHADEILS is a memetic algorithm that combines an
advanced version of DE with two local search methods and an adaptive mechanism to
decide which one of the local search should be applied in each round (DE is always ap-
plied). As in other recent references [295], we observe that DE has lately prevailed as
the most utilized bio-inspired search algorithm in LSGO optimization. However, addi-
tional characteristics of recent proposals like the memetic computing strategy followed
in SHADEILS suggest that there is still room for more efficient LSGO algorithms.

To summarize, in a future we expect that new grouping variable techniques could
reduce the cost of evaluations to the point of compensating for the use of such tech-
niques rather than optimizing all variables together. Another promising field is to im-
prove existing specially-designed algorithms. A third promising research line is to
replace the algorithms usually used in CC, usually classical algorithms, with specific
algorithms for LSGO, to avoid the possible limitations that could prevent these algo-
rithms from reaching their full potential.

3.11. Parameter Tuning
The majority of bio-inspired optimization methods are very flexible algorithms,

with many parameters driving their search behavior. Thus, assigning proper values to
these parameters is crucial for obtaining the best possible results for a given problem.
This selection can be theoretical to meet some desired properties of the algorithm itself
(as occurs in the design of CMA-ES [8]). More usually, parameters are rather set in a
experimental way by e.g. using a value grid or, less regularly, by mirroring parameter
settings used in similar studies to the proposed one. Unfortunately, it is often the case
that bio-inspired algorithms have too many parameters, so that seeking the best value
for each one of them can be regarded as another optimization problem by itself [296].
This problem, namely, to decide the best parameter values for the algorithm, is referred
to as tuning or off-line tuning (because a decision is made on the parameter values
before running the algorithm).

When a new bio-inspired algorithm is proposed within the community, the values
of its parameters should be tailored in regards to the experimental setup under choice,
for which a small study of parameter sensitivity is usually carried out aside. Depending
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on the number of parameters and their explored range of values, the search space can
become computationally unaffordable even for very coarse value grids. One of the most
important decision is to decide which parameters should be tuned, or fixed assigned
based on the intuition or convention, as the recommended values by other researchers
or authors of the original algorithm. When searching for the best performing parameter
set over value grids recommended by other authors [297, 298], the expensive cost of
tuning usually restricts the number of selected parameters. Moreover, in some complex
problems, it is not unusual to spend time and efforts executing the algorithm with many
different combination of parameters, obtaining that only a few of them have a strong
influence over the results. Therefore, many combinations can be avoided, reducing
the overall computation time. A parametric sensitivity analysis, or robustness studies,
can be very useful to identify the relevant parameters to tune (and hence conventional
values are used for the remaining ones).

Another important question is if the improvement yielded by parameter tuning de-
serves the computational cost required by this process. The answer depends strongly on
each particular case, but in general, it is worthwhile when real-world problems must be
optimized many different times, or when small objective improvements due to param-
eter tuning can yield significant gains in some practical aspect, e.g., lower economic
costs associated to the solution. When tuning is demanding in terms of computational
burden, a very popular option is to delegate the process to tool as REVAC [299] or
I-RACE [300], capable of automating the parameter tuning process. Among them I-
RACE has lately become one of the most widely adopted schemes. I-RACE is a freely
available software that uses racing tuning [296] to allow researchers to easily adjust
the values of the parameters of an algorithm over a specific group of functions. The
mechanism of I-RACE is simple: from an executable algorithm and a list of parameters
(indicating, for each one, the type and range of possible values), the software samples a
distribution for each parameter to be tuned, and updates it with the best configurations
(as per a racing mechanism) to bias subsequent sampling stages towards parameter val-
ues in the best configurations found so far. After several sampling iterations, the best
configuration is returned. In this way, although tuning still remains costly in terms
of time processing, researchers are alleviated from time-consuming parameter tuning
phases.

When a research work proposing a new optimization algorithm reports a bench-
mark with other solvers from the state of the art, it is often the case that parameter val-
ues are carefully tuned for the proposed approach. However, for the rest of algorithms
the values proposed by their authors in related contributions are instead adopted, under
the assumption that their optimality also holds for the problem under consideration.
In some cases these adopted values were obtained under experimental conditions (e.g.
dimensionality, range, or evaluation limits) that could strongly differ from the prob-
lem(s) considered in the benchmark at hand. In these cases, when the experimental
conditions are very different and/or the proposal is tuned more exhaustively than its
counterparts, a similar parameter tuning process should be done with each of the refer-
ence approaches in the benchmark to ensure fairness in the comparison [301]. In [298]
extensive comparisons were carried out with competitive algorithms with and with-
out automatic tuning. As a conclusion, results were shown to greatly differ based on
whether default values or the tuned parameters were used, remarking the importance
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of a good parameter tuning (whenever it is practically feasible and affordable) in new
bio-inspired algorithm proposals to come.

3.12. Parameter Adaptation
To overcome the problem of setting parameter values, an uprising trend is to use

adaptive or self-adaptive parameters. On one hand, adaptive parameters are changed
during the run by means of an adaptation strategy that is set before the algorithm is
actually executed. On the other hand, self-adaptive parameters are parameters whose
values are evolved at run-time along with decision variables according to the interme-
diate results obtained by the algorithm during its search [302]. This could be online
tuning, because the results obtained during the run are used as feedback to adapt cur-
rent parameters values. These two techniques can be combined based on the parameter
type. We consider that these adaptation mechanisms, with may also hinge on the use of
ensembles or hyper-heuristics (already introduced in Section 3.8), constitute a promis-
ing research topic within bio-inspired optimization.

A current tendency in this context is to use self-adaptation mechanisms for very
sensible parameters that have a strong influence on the results. Not only it reduces
the parameters to tune (making the algorithm simpler to use on new problems), but it
can also yield great improvements. For instance, the most successful proposals in the
family of DE-based heuristics during the last few years hinge on the adaptation of the
main parameters of this bio-inspired solver, namely, the F (differential weight) and CR
(crossover probability) parameters [303].

One of the most difficult parameters to adapt in a bio-inspired solver is the popu-
lation size. Although it is usual to resort to the same population size than in previous
related works, this is a parameter with a strong influence on the trade-off between
exploration and exploitation. An encouraging approach is to use an adaptive or dy-
namic population size: while it is well-known that a higher population size is useful
for maintaining diversity in the first stages of the search process, in the last stages it is
more important to foster exploitation around the best individuals within the population.
Thus, enforcing a higher population size at the beginning of the search and including
a reduction mechanism (in combination with elitism) could improve the performance
of algorithms. This is a simple strategy that can render very good results [304, 305].
Also, there are additional factors that could affect the population size, like to use a
survey parameter related to each individual (reducing the lifetime for worse solutions),
varying the population based on the fitness of its individuals (like [306]), or incest pre-
vention mechanisms. Also, sometimes the population size is affected when a restart is
done in the algorithm [8], or even several populations with different sizes are simulta-
neously used [307]. In fact, there are studies like the one in [308] that analyze in depth
different criteria for the population size, concluding that the proper value of this param-
eter depends on the problem itself. To date, self-adaptive population size mechanisms
is an open issue, with interesting modern contributions being contributed regularly in
the community (see [309] for a comparison among different adaptive population size
strategies).

Other parameters that possess a great influence over the search are those controlling
the variation operators (like crossover or mutation) used to generate the new solutions.
For long time ago it has been proposed to increase the diversity between parents and
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offspring when the population converges to compensate for the lack of diversity [310].
There are many proposals in GA to encourage diversity, such as an adaptive mutation
[311] or and adaptation of the selection mechanism to recombine the most dissimilar
individuals. As for DE, most of the contributions dealing with this heuristic propose to
adapt the CR and F parameters that balance the difference between a newly produced
solution and its reference solutions (encouraged by the improvement obtained). In the
majority of cases the values are not fixed, but change from solution to solution by
sampling a distribution with a central value. This central value is adapted based on
successful solutions, considering as such those that are introduced into the population.
First DE versions harnessing this design principle, like SaDE [312] or JADE [313],
used only a mean value for each parameter, which is adapted along the run. However,
in order to obtain a higher level of robustness, alternative versions like SHADE use
a memory of several F and CR mean values; in that way, the search can be done by
alternating among different mean values. Another recent trend is to consider not only
the best solution to guide the search, but a group of the best p solutions (selected one
random for each solution), and adapt that parameter p during the search by 1) using a
reducing value to increase diversity at initial stages, and 2) centering the search around
most promising solutions in later stages. All these techniques are complementary, and
in many algorithms they are used in combination.

In memetic algorithms or in co-evolutionary algorithms, in which several algo-
rithms are used in combination, there are also parameters that control how these algo-
rithms interact with each other. The self-adaptation of these parameters makes it pos-
sible to enforce the application to each algorithm based on the improvement achieved
by each one, using one reinforcement learning technique [314]. The most widespread
method is to select one algorithm based on a probability, which is periodically updated
as a function of the relative improvement obtained by each component. This model has
been used to select the local search method [315], or to choose the mutation operator
[312]. This model has been proven to be specially good in complex search spaces. For
instead, proposals like [291] or [242] combine different classic algorithms and some
specific local search methods, obtaining very competitive results that clearly surpass
those obtained by each of its components. The excellent survey in [316] describes in
depth different parameter control strategies reported in recent times.

To summarize, although the adaptation of parameters has been an active research
line for years, the good results obtained by recent proposals have revived the interest in
these techniques. Not only they can result in the best performance, but they also allow
algorithms to better adapt to a wider range of problems and, consequently, get closer to
the fundamental goal pursued in meta-heuristic optimization. Additionally, making a
parameter self-adaptive reduces tuning problems exposed in the previous section, and
yields a more readily usable search algorithm to solve real-world problems.

3.13. Benchmarks and Comparison Methodologies
In order to assess the convenience of a new bio-inspired algorithm, researchers

must properly gauge its performance over one or several optimization problems, and
compare it with other algorithms in the literature. To this end, traditionally researchers
proposing a new bio-inspired algorithm selected a group of theoretical functions to use,
and the experimental conditions under which the algorithm(s) would be tested. This,
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however, produced an important disadvantage: results from different papers could not
be compared to each other because they considered different functions and/or experi-
mental conditions. Indeed, authors should compare the results of their proposed solvers
to those obtained by other reference algorithms in the literature, over the same set of
problems and under the same experimental conditions. This approach, however, posed
several main drawbacks:

• In strong connection to the structural bias that has been identified in certain heuristics
(see Subsection 3.1), problems could have also properties that might favor some
algorithms over others. For instance, in many problems, the optimum is at the center
of the domain search, favoring algorithms prone to explore this area of the search
space.

• It is difficult to decide which algorithms to compare with, as it is hard to identify the
current state-of-the-art algorithms.

• While the parameter values set for the newly proposed bio-inspired algorithm are
rather adequate for the experimental problem, the reference algorithms are config-
ured with the parameter values retrieved from the papers were such algorithms were
originally presented (and thus, recommended by their authors). Although this is a
widespread practice, it is usually very unfair because the parameter values recom-
mended by the authors might be suitable for the original experiments, but not for
eventually new fitness functions and/or experimental conditions used in the paper
of the new proposed solver. For the sake of fair comparisons, all parameter values
should be automatically tuned for the new benchmark (see Section 3.11); otherwise,
strongly impairing non-tuned algorithms could mislead the conclusions drawn from
the benchmark, as was shown in [298].

In order to overcome the above disadvantages, in the last years the community has
embraced the use of standard test suites or benchmarks. These benchmarks define a
group of functions to optimize, including all their related experimental conditions, so
that the authors can compare directly the obtained results for their proposed solver.
There are many benchmarks available in the literature, most of them proposed by or-
ganizers of specific special sessions and competitions in conferences from the field.
Such benchmarks have also been widely adopted in other fora (e.g. journal papers) as
standard benchmarks. Thus, these benchmarks not only allow researchers to compare
directly their results, but also give a ranking of the best algorithms for the benchmark
(ranking that can be completed by the proposals published in journals). This makes
it very easy to identify the current state-of-the-art for any given benchmark, thereby
becoming a clear reference algorithm for comparing optimization techniques proposed
in the future [317].

Unfortunately, more than ten years after the first benchmarks too many proposals
are still published without a right comparison methodology, mainly because the pro-
posals were not compared against the considered state-of-the-art algorithms in many
proposals in the literature. Authors of many contributions do not compare with algo-
rithms identified as the state-of-art, but most worryingly: they limit their benchmark to
classic algorithms (such as off-the-shelf versions of PSO or DE) proposed more than
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twenty years ago. Such deceptive works thus ignore a whole series of variants that have
been proposed over the years, and that have been found to be much more competitive
than their original counterparts and variants of other bio-inspired algorithms. In [318]
reference algorithms selected in new proposals published in well-known and recog-
nised journals were analyzed, concluding that in the majority of cases, such reference
algorithms did not perform competitively enough to be selected as such.

We must also pay special attention to the huge number of new bio-inspired pro-
posals contributed in last years [319]. The previous lack of right comparative against
competitive and modern algorithms is specially relevant for these new proposals. In
many times they are very innovative in its biological inspiration, and so is it remarked
in their description and terminology. However, it is mostly the case that similarities
with respect to previous algorithms are not highlighted – even not acknowledged at all.
Furthermore, no proper performance comparison is done with state-of-the-art variants
of currently available heuristics. When addressing real-world optimization problems,
achieving competitive results and a good searching behavior are the most important fac-
tors, not the originality of their source of inspiration [2]. Thus, when new bio-inspired
algorithms are introduced, the proposing authors should incorporate experiments by
using any of the proposed benchmarks, and thereby check competition websites to find
state-of-the-art algorithms to use them as a baseline in their selected benchmarks. Re-
sponsible research when proposing new bio-inspired optimization methods should be
also enforced by reviewers and other stakeholders along the editorial workflow, en-
suring that quantitative, statistically reliable evidences of the claims held in upcoming
publications are provided by the authors.

In this context we summarize in Table 1 the main proposed benchmarks in the
literature related to different type of optimization problems, remarking some of their
characteristics. For all these benchmarks:

• A group of optimization functions is considered, with different levels of difficulty.

• A measure of error is computed for each function.

• A different number of dimensions is considered for each function.

• Each algorithm is run several times (usually no less than 25) for each function and
dimension. The more times the algorithm is executed, the better the statistical char-
acterization of the algorithm’s performance will be.

• A stopping criterion is set, which can be either a maximum number of function eval-
uations, that linearly depends on the dimension value, or a required accuracy level,
so that the performance of each algorithm is given by the number of evaluations
needed to achieve it.

• A criterion is defined to rank the algorithms. In multimodal optimization, the mea-
sure to optimize is the ratio of local optima found by the algorithm at hand; in multi-
and many-objective there are specific measures related to the Pareto optimality and
diversity; in real optimization the criterion relies in a weighted global ranking mea-
sure, granting more importance to the results obtained for more difficult functions
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(higher dimensions). This primary ranking criterion is complemented by a feasibility
rate should the problem include constraints in its definition.

We refer to [317] for further information about optimization benchmarks and its evo-
lution and winners through the years of competitions.

Specifically for continuous (real-valued) optimization two different benchmarks
have evolved along the years: 1) benchmarks proposed within the IEEE Congress on
Evolutionary Computation (CEC), and 2) the Black-Box Competition within the Ge-
netic and Evolutionary Computation (GECCO) conference, with an increasing diffi-
culty of the majority of functions. They also differ in the criterion adopted to compare
algorithms: in CEC competitions the maximum number of evaluations is fixed, and the
error is used to compare the algorithms (fixed cost). By contrast, in BBOB competi-
tions the expected accuracy is indicated, and the algorithms are compared by consider-
ing the number of evaluations needed by a competing algorithm to achieve a given level
of precision (correspondingly, fixed target). Lately expensive optimization benchmarks
have been also proposed in which the number of evaluations is significantly reduced
to target algorithms suited for realistic situations where function evaluations could be
very costly in time (e.g. function evaluations provided by computationally intensive
simulations).

Table 1: Benchmarks commonly used in selected areas of bio-inspired optimization.
Area Benchmark [Reference] Main Characteristics

Continuous
(real-valued)
optimization

CEC’2005 [320] First benchmark, all functions shifted
CEC’2011 [321] Real-world problems, small dimensions
CEC’2013 [322] Rotated and shifted functions
CEC’2014 [323] More multimodal functions

CEC’2014 Expensive [324] Reduced number of evaluations

CEC’2015 [325] Allowed specific parameter values for
functions

CEC’2017 [326]
Composed test problems by extracting

features dimension-wise for several
problems

BBOB [327] Functions with increasing dimensionality
(from small dimensions)

Multi-objective
optimization

CEC’2009 [328] and editions ever since,
ZDT [329], DTLZ [330], WFG [331], LZ

[332], UF [328] and others [333]

From classical functions to dynamic
benchmarks

Many-objective
optimization

CEC’2017 [334], CEC’2018 [335] and
others [336, 337]

Many more targets than in multi-objective
benchmarks

Dynamic
optimization Moving peaks [338, 339]

Landscape change during the runtime,
recently dynamic multi-objective

benchmarks

Multimodal
optimization

CEC’2013 [340] and editions ever since,
new benchmark functions featuring

linkage across dimensions [341]

Measure performance is the ratio of found
optima for different thresholds

Newer benchmarks for multimodal
multi-objective optimization [342]

Performance assessed in terms of
multi-objective quality indicators and

Pareto set retention capability

LSGO CEC’2013 [277] and editions ever since Dimension equal to 1000, different
degrees of relationship between variables

The criterion used to measure the performance of each benchmark strongly depends
on the area. In real-parameter optimization, the average error or the average number
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of evaluations is obtained, and in multimodal-optimization is used the ratio of found
optima. For multi- and many-objective problems, there are special measures for the
Pareto front. The benchmarks, to compare algorithms, usually only the average mea-
sure (and occasionally the median, because average is very sensible to data) is used to
compare algorithms, remarking which algorithm obtain best results by each function.
Since in some cases highlighting which algorithm is better in each functions is not in-
formative enough, it is very common to calculate the average ranking in order to sort
all algorithms as per a single global ranking. Recently, rankings are transformed into
a certain number of points (more points to better ones), combining the total ranking
for each dimension when there are several dimension values (giving more importance
to results with greater dimension value, because the difficulty increases with the di-
mension). This is actually mainly used for the organizers of competitions rather than
in comparisons made in research papers. We believe that this comparison methodol-
ogy could be more widely adopted in the future, not only for competitions and other
workshops alike.

Nowadays, in order to compare several algorithms it is crucial to ensure that im-
provement in results are not due to stochastic differences in runs. Thus, it is mandatory
to apply statistical tests to clarify the statistical significance of the performance gaps
found among algorithms [343]. However, the majority of benchmarks in Table 1 do
not consider the application of statistical testing, neither in their experimental setting
(the number of runs is lower than those recommended for them), nor in the compari-
son criterion established by the organizers. About statistical testing, it has been proven
that required assumptions were not fulfilled in some benchmarks [344], so in general
these statistical tests are not recommended. Non-parametric tests can be used instead
which, despite less powerful, do not require any assumption to be met by the sample
beforehand. Among them, the most popular is arguably the Wilcoxon test, that allow
comparing results achieved by two algorithms. Since in these non-parametric tests the
expected error increase with each one-by-one comparison, for multiple comparisons
post-hoc tests such as as Holm/Hochberg/Hommel (they are very similar to each other)
are rather adopted to maintain the expected error controlled. A prescription of good
practices on statistical tests for comparison among EC and SI algorithms can be found
in [345, 346]. Recently, new trends in the field of statistical comparison of algorithms
indicate that bayesian tests, which provides a distribution over the parameter of interest,
are a promising approach in this regard. The meaning of p-value in null hypothesis sta-
tistical tests (parametric and non-parametric) is usually misinterpreted, as if it were the
probability of not complying with the null hypothesis. Bayesian tests actually return
the probability distribution of the null hypothesis. Therefore, while in the hypothe-
sis statistical tests when null hypothesis is not rejected there is no information at all,
bayesian tests provide useful information. In addition, they offer more robust results,
as they are not as influenced by the number of observations as the previous ones [347].

There is an open challenge that has become increasingly entangled through the
years [317]. In theory these benchmarks should serve to identify which bio-inspired al-
gorithms offer the most promising behavior when optimizing different problems. Their
ultimate goal should be to dictate which algorithms to apply to a new real-world prob-
lem, choosing from the most promising alternatives tested in functions and problems
similar (or at least, related) to the problem at hand. However, over the last decade
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benchmarks have undergone a sharp evolution mainly in terms of an increasing level of
difficulty, reaching a situation where it is possible that the functions included in these
benchmarks are overly complex when compared to real-world problems. Thus, an un-
solved issue for benchmarks is to bridge the computational gap between part of their
constituent functions and the characteristics of real-world problems, towards improv-
ing the relevance and practicality of these artificially-constructed benchmarks.

Another important disadvantage in these benchmarks is that the used stopping cri-
terion is not realistic. In real-world problems it is not only interesting to discern which
algorithm performs best with a fixed and non-realistic number of evaluations, but it is
also relevant to assess which algorithm attains an acceptable error within the minimum
time/number of evaluations. Thus, benchmarks measuring the evaluations to achieve
a certain accuracy are more realistic, when the expected accuracy is adequate. In gen-
eral the scalability of algorithms does not receive enough attention in the competition
benchmarks. Moreover, a minority of contributions has studied how evaluation num-
bers influence the convenience of one type of algorithm over another. In [348] it is
observed that for a low number of evaluations, mathematical methods could be better
suited than evolutionary algorithms. However, extensive competitions have shown also
that for a reduced number of evaluations, specifically designed evolutionary algorithms
are also a good option. This conclusion goes in line with recent studies about how bio-
inspired optimization algorithms perform over budget-limited problem instances with
respect to deterministic global optimization methods [349]. In [350] the performance
of many algorithms is studied, concluding that PSO algorithms are more adequate for
a low number of evaluations, while DE algorithms can obtain more precise results but
they often require a higher number of evaluations. These type of studies are very useful
and practical, yet lacking in the current literature. This promising research line could
reduce the gaps between theoretical benchmarks and the applicability of bio-inspired
heuristics to real setups.

To summarize, even while the proposal and use of benchmarks have become a
de-facto standard in almost all areas of bio-inspired optimization, there is still room
for improvement and open issues to be addressed, such as new benchmarks with re-
duced gap among them and real-world problems [351], and new and better comparison
methodologies, including more attention to scalability and new statistical testing ap-
proaches such as the use of Bayesian tests.

3.14. Applications of Bio-inspired Optimization

Bio-inspired algorithms and methods have been successfully applied into a wide
variety of domains [30]. A comprehensive and detailed analysis of the current applica-
tions based on bio-inspired methods is outside the scope of this article. However, it is
interesting to delve into some highly relevant areas of applications, such as social data
analysis, medicine and health, cybersecurity, or video games (among many others),
where these methods have been profusely utilized in recent times. Next we provide a
short description of these selected application areas, along with a brief digest of the
activity therein related to bio-inspired methods:

• Social Network Analysis (SNA), which comprises topics such as social-based ap-
plications for data mining, data analysis, community detection or social mining,
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has received an increasing attention from the research community. The main goal
targeted in SNA is to identify structures and patterns in social-based information
sources [352]. This area is inherently interdisciplinary, and covers areas such as
data mining, machine learning, statistics, complex systems, graph theory, informa-
tion retrieval, natural language processing, semantic web, and big data computing,
among others. When it comes to bio-inspired algorithms and SNA, several EA and
SI approaches have been utilized over single- and multi-objective problems modeled
over social network structures [353, 354]. Bio-inspired methods have been used to
guide the search process for inner structures, such as clusters or communities, to-
wards finding the most representative nodes (e.g. authorities) in the network [355],
analyzing and optimizing the diffusion of information throughout the network [356],
isolating the so-called ego network of selected central nodes [357], or studying the
dynamics of a network when modeling a non-stationary information source [358].
Besides general studies reported on generic graph structures, many practical appli-
cations can harness the insights provided by bio-inspired optimization techniques,
such as e-health [359], smart cities [360] or energy transmission networks [361]. An
exhaustive survey of evolutionary algorithms for community detection in networks
has been recently presented in [362].

• Medicine and health systems have benefited from Artificial Intelligence methods
since the advent of this research field, as exposed by the development of the first
expert systems for disease diagnosis. The increasingly complex challenges faced by
medical and health systems in the last years have grown the need for new decision
support systems aimed to help health experts improve the diagnosis accuracy. Sev-
eral recent approaches have elucidated that bio-inspired optimization techniques can
play a crucial role in this regard. For instance, in [363] a technique based on the
Artificial Bee Colony (ABC) algorithm is proposed to efficiently determine the IIR
filter coefficients capable of eliminating Doppler noise present in the aortic valve.
In [364], an enhanced version of the aforementioned ABC solver is proposed to di-
agnose breast cancer: it is used to automatically detect the breast border and nipple
position, so that the suspicious regions are identified using bilateral subtraction. In
[365] an improved ACO algorithm is used to segment MRI brain images, which is
indeed a particularly prevailing medical application addressed by the bio-inspired
optimization community (see e.g. [366, 367] and references thereafter). Likewise,
in [368] a novel method relying on adaptive bio-inspired algorithms – namely, ACO,
Bee Colonies Optimization (BCO) and GA – is introduced for selecting features ex-
tracted from a mammogram image. Several other approaches hybridize PSO with
other methods so as to improve the current state of the art of several medical prob-
lems. In [369], for instance, a technique using finite-difference frequency domain is
hybridized with PSO for reconstructing cell dimension in breast cancer and to find its
position using 2-D and 3-D breast models. in [370], a method for segmenting breast
tumor images using modified automatic seeded region growing based on PSO-based
image clustering is proposed. The hybrid approach in [371] combines together SI
and neural networks for the detection and classification of micro calcifications in
mammogram images. Finally, modern bio-inspired approaches are lately entering
the health arena, such as [372] which resorts to the Firefly Algorithm for breast can-
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cer classification, or [373], where the Bat Algorithm is used to isolate skin lesions
in medical images. Compendiums on the applications of bio-inspired methods to
medicine and health can be accessed in [374, 375, 376].

• Cybersecurity, which recurrently informed security breach incidents have spurred
on the interest in methods aimed to increase the resilience of computer systems and
processes. This field currently spreads beyond local security threats such as virus de-
tection and intrusion detection to also consider more elaborated, global phenomena
such as cyberterrorism [377] or cybercrime [378]. Whatever the threat may be, bio-
inspired methods have been lately applied to improve the overall response and re-
siliency of computer-based systems, thereby facing with success common computer
attacks such as phishing [379], eavesdropping [380], Denial-of-Service or spoofing
[381]. Closely related to these exemplified cases, the automatic detection of malware
has also leveraged the application of bio-inspired algorithms in recent contributions.
For instance, in [382] a hybrid method encompassing an adaptive neuro fuzzy infer-
ence system and PSO is proposed to find the optimum parameters that can be used
to facilitate mobile malware identification. The work presented in [383] reports the
development of an innovative active security system that acts as an extension on the
ART (Android Run Time) Virtual Machine architecture, and uses a Biogeography-
Based bio-inspired solver for training a Multi-Layer Perceptron that classifies Java
classes of a software application as benign or malicious. Finally, in [384], a novel
method that employs Deep Learning models to improve the detection of malware is
proposed. In this approach a Bat Algorithm addresses the problem of class imbal-
ance among different malware families, which is a frequent problem in data-based
studies related to cybersecurity. We refer to [385, 386, 387, 388, 389] for baseline
material about the past history of bio-inspired computation applied to problems re-
lated to cybersecurity, as well as a prospect of the research directions in this matter.

• Video games have massively embraced Artificial Intelligence in a large number of
problems and challenges, such as Procedural Content Generation (PCG), bots gen-
eration or the development of virtual players [390]. To begin with, the automated
creation of content for video games via PCG techniques [391] is a critical aspect.
The industrial benefits, economically speaking, are clear: PCG can reduce develop-
ment costs and enlarge the life of commercial video games (with the corresponding
earnings increase). For this reason, most PCG methods are focused on the generation
of a specific type of contents (e.g. maps o non-player characters strategies). Different
approaches, such as co-evolutionary competitive bio-inspired algorithms, have been
proposed to generate simultaneously two different kind of contents, namely maps
and game AI [392]. The development of game bots that can dynamically adapt to
different difficulty levels as well as variable game environments is another research
line with AI methods at its core. An example is [393], which focuses on develop-
ing a generic framework, called AntBot, that builds on SI methods (in particular,
ACO heuristics), to implement real-time gaming bots for dynamic game environ-
ments. In [394], the performance of ACO and GA was assessed when dealing with
graph-constrained models in video games problems. In [395], a naive PSO solver
was shown to automatically create complex two-dimensional graphic characters by
evolving modifications made to a base character. Overviews on the applicability
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of bio-inspired optimization to games have been published during the last decade
[396, 397], but new paradigms such as serious games have lately rekindled the inter-
est in this topic and enlarged its application scope far beyond leisure (see e.g. [398]
for rehabilitation robotics).

The above list of selected topics must be regarded as an exemplifying excerpt of
the plethora of applications where bio-inspired optimization is becoming a relevant
technological enabler. Many other fields such as intelligent transportation systems
[399, 400, 401], automated manufacturing [402, 403, 404, 405] or energy systems
and smart grids [406, 407, 408, 409] have also been bolstered by bio-inspired opti-
mization methods. In all these sectors we discriminate several challenges related to
the practicality of bio-inspired solvers when deployed in real problem setups. First,
real-world scenarios are often subject to constraints that must be modeled and in-
cluded in the mathematical problem statement but, most importantly, considered by
the optimization algorithm during its search process. When this is the case, many
strategies to handle different types of constraints have been reported by the community
[235, 410, 411, 412]. However, there is no clear consensus about how to deal with
practical problems that undergo a high number of restrictions. When this is the case,
it might not be of practical value to face it as an optimization problem, but rather as a
constraint satisfaction problem [413, 414]. Different design patterns can be followed
depending on how the problem is modeled, but it is the added value to the application
what should drive the decision whether to opt for one modeling approach or the other.
Just finding a solution satisfying all imposed constraints is enough in many practical
cases. From a research perspective, the community lacks a formal, methodological
study on the conditions that should be met to select a good modeling approach for a
practical optimization problem, capable of realistically reflecting its particularities and
constraints (such as latency, complexity or scalability), yet properly balancing the cost
per value of the solver designed to solve it efficiently.

Aligned with the above objective, the expert knowledge accumulated by users of the
system to be optimized along years of operation is a very valuable source of inspiration
for the design of efficient ad-hoc heuristics [415]. In a sense, it can be regarded as the
byproduct of an adaptation of a learning machine (the human) to a problem as a result
of a series of repeated trial-and-measure iterations over time. Unfortunately, expert
knowledge is often overseen in practice; meta-heuristic algorithms are instead preferred
to expedite the achievement of good solutions at the cost of a slower convergence or
a lower optimality. In problems of increasing complexity and/or when convergence
speed is a critical design factor, expert knowledge should be exploited during the search
process by including specialized operators that model the solving patterns followed
traditionally in the scenario at hand. In most practical situations information revealed
by experts can yield better search operators or higher convergence rates; in short, a
better overall search performance than those of the most sophisticated bio-inspired
optimization method.
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4. Bio-inspired Computation: a Curly Road Ahead

In the previous section we have identified possible research paths to follow in im-
portant research areas within bio-inspired computation. Unfortunately, the field still
undergoes general issues that threaten to jeopardize true advances in years to come. A
synergistic push from the community should be made towards addressing these issues
for the benefit of Science. We herein provide some thoughts so as to constructively
foster research efforts in such directions:

4.1. More is not Always Better
The first big issue within bio-inspired computation is to decide whether we need

to improve methods discovered so far by the community, or instead look for new bio-
logical sources of inspiration to conceive new algorithmic developments. The recently
witnessed controversy around metaphor-based approaches has not achieved any com-
mon grounds in regards to the strategy that the community should embrace in regards to
this field, nor has it stopped the emergence of more and more optimization techniques
relying on allegedly innovative bio-inspired methods [416]. It is sadly concerning that
part of this literature outbreak is motivated by a lack of perspective about the real needs
of the field. However, without a consensus on how new algorithms should be evaluated
both theoretically (novelty, properties) and empirically (comparison methodologies,
benchmark problems), it is absolutely unfeasible to separate the wheat from the chaff.
We herein advocate for starting over a clean sheet in the field, and thus focus on the
fundamental paradigms that underlay bio-inspired computation as a whole, so that new
advances to come will help clear up controversial questions within the community.

4.2. Towards a Unified Notation and Description of Bio-inspired Algorithms
Closely related to the above, much has been discussed around the analogy between

old and new bio-inspired heuristics, specially within SI. Notable are the cases of Har-
mony Search and Evolution Strategies [417, 418]; Particle Swarm Optimization and
Firefly Algorithm [419]; and Ant Colony Optimization [420] and Intelligent Water
Drops [421]. In most cases disagreements could have been avoided by unifying the se-
mantics by which bio-inspired heuristics are described, so that their novel ingredients
can be put on relevance in a more cohesive manner. As a matter of fact, the myriad
of new bio-inspired algorithms that are reported on a regular basis justifies by itself
the adoption of a standard notation focused on the domain-agnostic description of new
algorithmic operators and design patterns of heuristics and meta-heuristics. Such a
standardized, metaphor-free vocabulary would prevent the community from obscure
mathematical formulae widely employed nowadays to obfuscate the real mechanisms
of newly proposed methods. By virtue of this metaphor-free description, for instance, a
candidate solution would be identified explicitly as such and not as e.g. an egg, a water
drop or a bee’s nest. This need for notational uniqueness was highlighted recently in
[422], where metaphorical aspects characterizing different honey bee inspired solvers
were decoded to standardized optimization terms. Other benefits would stem from this
standardization process beyond the assessment of differences and similarity between
bio-inspired solvers, such as a higher modularity and reusability of heuristic compo-
nents, a better detection of possible sources of unnecessary algorithmic complexity,
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and a more straightforward and reliable reproducibility of results. Even though a mani-
festo for transparency through descriptive standardization was already published years
ago [423], no significant steps have been taken ever since in this direction, despite the
significant impact any minor advance could incur in the field.

4.3. New Theoretical Directions to Better Understand Bio-inspired Algorithms

Different empirical observations and numerical simulations have elucidated that
bio-inspired algorithms can work surprisingly well in practice, but in most cases we
rarely understand why they work under the given conditions for a given type of problem
[424, 425]. Though there are some progress in theoretical analysis as we have seen
earlier, it is highly needed to use more systematic approaches – ideally, an unified
framework – to analyze bio-inspired algorithms so as to gain mathematical insight
into their working mechanisms, to estimate their rates of convergence and assess their
conditions for stability. In this regard, fresh theoretical studies lately proposed within
the community seem to be promising for analyzing and understanding bio-inspired
heuristics, such as the use of network science to characterize swarm-based algorithms
[426]. Ultimately, we hope that such insights can help to choose the right algorithms
for a given set of problems so as to solve them efficiently.

4.4. From Efficacy to Efficiency in Bio-inspired Optimization

When it comes to performance assessment, most contributions to date revolve
around effectiveness (e.g. fitness statistics) for a given complexity level (correspond-
ingly, number of fitness evaluation) when comparing among different bio-inspired ap-
proaches. Nonetheless, there is an increasing global concern with energy efficiency,
which has lately coined the so-called Green Computing concept [427]. Algorithms
under this umbrella are designed with environmental sustainability as a design goal
itself, imprinting severe constraints in several steps of their execution thread. Impor-
tant modifications result from the adoption of this design directive, in aspects such
as resource allocation, memory indexing or processing time. Most importantly, the
way an algorithm is implemented also renders a significant effect on the its actual ef-
ficiency, which calls for the adoption of Green Computing from the very beginning
of the algorithm design procedure. Good practices aligned with this range should en-
force the community to always perform a complexity analysis of novel algorithmic
proposals (by quantifying it in terms of number of sums/products and other similar
implementation-agnostic indicators). In any case, studies on the algorithmic efficiency
of bio-inspired approaches should avoid reporting on measurements closely linked to
the implementation and deployment of the algorithm itself, such as timing logs or net
memory consumption, which are strongly biased by non-algorithmic matters. A cor-
respondence between the characteristics of algorithmic components and their expected
carbon footprint should be also derived in the future.

4.5. Bio-inspired Machine Learning and Deep Neural Processing

Traditionally the useful intersection between bio-inspired optimization and Ma-
chine Learning (ML) has drawn close attention in the literature, combining both fields
of knowledge into single data-based models for manifold reasons: to mention a few,
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bio-inspired algorithms have been profusely exploited to expedite the learning pro-
cess of ML models, with particular emphasis on neural networks of different kind
[428, 429]. Correspondingly, ML models lie at the core of surrogate-model assisted
optimization in which, as introduced in Subsection 3.6, computationally expensive ob-
jectives are replaced by cheaper regression models built on a few evaluated individuals
[430]. Likewise, bio-inspired heuristics are often utilized for prescribing near-optimal
actions based on the predictions produced by ML models, completing what has lately
been known as actionable data science [431]. Examples of the mutually rewarding re-
lationship between Markov Chain Monte Carlo and bio-inspired optimization are also
enlightening: the efficiency of complex MCMC simulations has been shown to improve
by leveraging DE-based heuristics [432], whereas DE solvers encompassing MCMC
elements have been shown to better choose the scale and orientation of the distribu-
tion modeling the underlying mutation operator [433]. Recently Wang et al. [434]
evolved a population of generators which competed against the discriminator network
in the framework of Generative Adversarial Networks (GANs) through an adversarial
game and by using specially defined mutation operators. The resulting evolutionary
GAN not only alleviated some of the inherent problems associated with the training of
conventional GANs, but also exhibited improved generative capabilities.

Besides other multiple scenarios leveraging this profitable complementarity (such
as feature selection/construction [435], opposition-based learning for bio-inspired op-
timization methods [436] or their hybridization with elements from Reinforcement
Learning [437]), possibilities for the future are foreseen to sprout sharply given the
enormous number of parameters featured by the family of Deep Learning models,
which are lately prospecting the adoption of bio-inspired LSGO techniques as an ef-
ficient replacement for gradient back-propagation [438, 439]. Another ML research
niche with a noted predominance of bio-inspired heuristics is automated ML which,
despite being known for decades under different denominations (e.g. neuro-evolution
[440]), it is now when the area has been reforged as a result of the increasing design
complexity and variety of algorithmic components of Deep Learning models [441, 442,
443]. Surely ML and bio-inspired computation will enjoy a mutually rewarding mar-
riage in years to come.

4.6. New Challenges of Bio-inspired Techniques for Human-centric Applications
Human-centric applications such as Video Games or Virtual Reality/Augmented

Reality (VR/AR) are currently at the forefront of scenarios where bio-inspired opti-
mization can provide unprecedented levels of machine intelligence [444]. Such appli-
cations are often characterized by a continuous interaction between the user and the
machine, thereby requiring superior capabilities of the underlying algorithms for dy-
namic adaptation, incremental learning and bounded complexity. Despite these com-
putational constraints, the countless opportunities that bio-inspired computation may
bring to these application domains – from improved self-localization to the optimized
simulation of crowds or the optimal manipulation of virtual objects– can drive signif-
icantly efforts towards adapting them to these computing environments. For instance,
latency in VR/AR is known to be severely limited by the so-called motion to photon
threshold (∼ 20 ms), which poses challenging design constraints on any bio-inspired
optimization method designed to e.g. improve the user experience or optimize the
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rendering process of media content from streaming servers. Here we venture a vast al-
gorithmic territory to be explored in the future, unleashing new interesting paradigms
such as continual optimization for multiple, recurrently varying problem statements (in
clear connection to Continual/Lifelong Machine Learning [445]) and self-impacting
models, in which actions taken on the basis of their predictions may affect subsequent
predictive outcomes thereafter.

4.7. Bio-inspired Optimization and Emerging Computing Paradigms

In addition to the many-sided research avenues outlined above, the entire commu-
nity should keep a close eye at the impending arrival of new computing paradigms,
from the Map/Reduce model that lies underneath Big Data architectures to Ephemeral
Computing, Exascale Computing and Quantum Computing. Roughly a decade ago
we did not expect computing technology to evolve as fast as we have witnessed ever
since, developing data-intensive technologies capable of ingesting, storing and han-
dling huge amounts of data. Nowadays Map/Reduce implementations of bio-inspired
algorithms are available for their deployment on Big Data platforms [446, 447, 448].
In terms of processing power a similar trend can be noted nowadays in the form of
Ephemeral Computing [449] and Exascale Computing [450], both providing efficient
means for scaling up complex bio-inspired algorithms. Yet still at its infancy, Quantum
Computing is already spanning its applicability towards the ML realm and anticipating
astonishing gains in terms of processing throughput for many other fields, including
ML and large-scale optimization [451, 452].

We do not know which other computing paradigms we will encounter in the future
and most importantly, how they will impair the design and deployment of bio-inspired
optimization methods. Nevertheless, we must prepare ourselves for their eventual ar-
rival by conducting research efforts along valuable directions in this field. Unless we
all acknowledge this pressing need for joining forces and agree on the real priorities
of bio-inspired computation, we will wander erratically and blind through incremental
research paths that lead nowhere in this field.

5. Conclusion: an Exciting Future for Bio-inspired Computation

In this manuscript we have shared our envisioned status of bio-inspired computa-
tion, which calls for a profound reflection on the research paths that the community
should follow in the future. To this end, we have briefly reviewed the history of this
field from the very advent of EC to the plethora of new SI methods appearing in the
late literature. Grounded on this historical perspective we have identified research paths
for a number of selected areas within bio-inspired optimization that should congregate
most of the global research efforts in years to come.

Nature is truly fascinating and full of intriguing phenomena still to be understood.
Unrevealed paradigms underneath this science will surely continue fostering new ad-
vances in bio-inspired optimization, featuring unseen levels of performance and com-
putational efficiency. Today we, the research community, have the chance to leave
misleading research paths behind, and face together an overwhelming future for this
field in a harmonized, principled and scientifically enriching manner.
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[95] İ. Yanıkoğlu, B. L. Gorissen, D. den Hertog, A survey of adjustable robust op-
timization, European Journal of Operational Research in press (n.a.) (2018) n.a.
doi:https://doi.org/10.1016/j.ejor.2018.08.031.

[96] D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Mathemat-
ical Programming 167 (2) (2018) 235–292.
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[130] R. A. Gonçalves, J. N. Kuk, C. P. Almeida, S. M. Venske, MOEA/D-HH: A
hyper-heuristic for multi-objective problems, in: International Conference on
Evolutionary Multi-Criterion Optimization, 2015, pp. 94–108.
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[295] M. S. Maučec, J. Brest, B. Boškovič, Z. Kačič, Improved differential evolution
for large-scale black-box optimization, IEEE Access 6 (2018) 29516–29531.

72



[296] S. K. Smit, A. E. Eiben, Comparing parameter tuning methods for evolutionary
algorithms, in: IEEE Congress on Evolutionary Computation, 2009, pp. 399–
406.

[297] S. Smit, A. Eiben, Beating the ’world champion’ evolutionary algorithm via
revac tuning, in: IEEE Congress on Evolutionary Computation (CEC), IEEE,
2010, pp. 1–8.
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