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Abstract

This paper presents a novel boundary approach which isdadlas a constraint-handling technique in an
algorithm inspired on the ant colony metaphor. The necesdiipproaching the boundary between the feasi-
ble and infeasible search space for many constrained ggtion problems is a paramount challenge for every
constraint-handling technique. Our proposed technigeeigely focuses the search on the boundary region and
can be either used alone or in combination with other comgtrendling techniques depending on the type and
number of problem constraints. For validation purposesalgorithm inspired on the ant colony metaphor is
adopted as our search engine which works following one optheiples of the ant colony approach, i.e., a pop-
ulation of agents iteratively, cooperatively, and indegetly search for a solution. Each ant in the distributed
algorithm applies a simple mutation-like operator whiclplexes the neighborhood region of a particular point
in the search spacénlividual search levgl The operator is designed for exploring the boundary betwie

feasible and infeasible search space. In addition, eacbtaains global information from the colony in order to



exploit the most promising regions of the search spaoceeration levgl We compare our proposed approach
with respect to a well-known constraint-handling techeidfoat is representative of the state-of-the-art in the,area

using a set of standard test functions.

1 Introduction

Ant System (AS) [1] was the first example of an ant colony ojation algorithm to be proposed in the literature.
However, AS was not competitive with state-of-the-art ailipons for the TSP, the problem to which the original
AS was applied. Accordingly, several improvements wergpsed to the original version of AS, many of which
were especially designed to deal with the TSP problem. Th& mportant improvements are: AS with atitist
strategyfor updating the pheromone trail levels, AS: (a rank-based version of Ant System) [2HAX-MIN
Ant System MMAS) [3], and the Ant Colony System (ACS) [4]; all of them onigily designed to operate on
combinatorial optimization problems. A detailed deséaptof these versions can be found in [5].

On the other hand, it is interesting to note that severaliegjibns inspired by the ant colony metaphor, de-
scribed in the following, have been developed to operateomimuous spaces. In addition, it is worth remarking
that all of these applications fit well under the swarm ingelhce framework, which includes the algorithms based
on the ACO approach. More precisely, Bilchev and Parmee f6p@sed an algorithm for continuous spaces
in which the whole search space is discretized in order toesgmt a finite number of search directions. This
approach was validated using a small set of constrainedgarah Since then, several other researchers have pro-
posed schemes to apply algorithms inspired by the ant calogtaphor to continuous search spaces. However,
all of these approaches only deal with unconstrained op#tian problems. For example, Ling et al. [7] report a
general proposal for a continuous convex domain space utithcluding any experimental results. The proposal
involves the application of adaptive crossover and mutatiperators based on the relative fitness of the solutions.
Lei and Qidi [8, 9] also take some ideas from the ant colonyapiedr to design optimization algorithms for con-
tinuous spaces by dividing the search spaceinsnoibregions —i.e., a discrete view of the search space, fewev
different from the discretization initially proposed byl&iev. Lei and Qidi's approach was applied to a set of
one-variable multimodal functions defined on an unconst@isearch space where each subregion corresponds to
a subinterval of the variable. Initially, each ant is assigjto the respective search interval. As the search process
continues, each ant shifts the middle point of its interealmding to the quality of the solution found. In this way,
overlapping search regions will arise as the ants focuseéhech on common promising subregions of the search
space. The pheromone trail distribution on interivéd given by a unimodal functiof; (bell shaped) reaching a
higher peak as the quality of solutiafp increases. Functidh; represents the learning experience of the algorithm
in order to explore/exploit different subregions of thersbaspace. Thus, the interval in which an ant will deposit
its pheromone is chosen according to a probability valuectvis proportional to the amount of pheromone trail

on the respective intervals. Although this work is limitedat few unconstrained continuous problems, it could be



an interesting approach to be extended for constrainedegarah Finally, it is worth remarking that this algorithm
is applied as a complementary step after a genetic algotitherfound some promising subregions of the search
space.

More recently, Dréo and Siarry [10] proposed an alterreatigorithm for continuous spaces inspired by the
ant colony metaphor which introduces the conceptietierarchyand communication channels. The approach is
tested on only one problem (multimodal unconstrained fiongtaind designed considering that the pheromone trail
is not the only way of applying indirect communication amdhg ants. Instead, they apply the concept of dense
heterarchy as a manner of explaining the behavior of soneeirspecies for which the communication is achieved
through either indirect or direct communication channethwell-defined properties. The prominent characteristic
of this approach is represented by the possibility of usimg tomplementary communication channels, either
indirect channefsto promote exploration or direct channels to promote exatimin of the search space according
to the solutions previously evaluated. Using a similar apph, Monmarché et al. [13] presented an algorithm
called APl which implements a parallel search scheme in thetien space based on the definition of hunter
sites (points in the search space), which are establisheedban the quality of the solutions. These sites can
be moved (translated) during the search process (expmodaby applying local search on the hunter site. The
API algorithm was applied with promising results to a set elliknown unconstrained continuous functions. On
the other hand, Pourtakdoust and Nobahari [14] proposéanatgorithm inspired by the ant colony metaphor to
continuous optimization which is purely pheromone basekexplore the search space, the algorithm uses a normal
probability distribution to model a relationship among {h@rameters, the aggregation of ants around the food
source (best so far point) and the distance of a particuleat iilwm the food source. Thus, the more the distance
between the point and the food source, the less the pheroimtensity. The pheromone update is achieved in each
iteration by updating the food source and the aggregaticiofaln particular, the aggregation factor is obtained
considering the overall distance between all the pointadcand the food source and the corresponding objective
values. The experimental study includes the De Jong’s atdn@éstbed functions (i.e., unconstrained problems)
and an experimental comparison with API [13] and a genegjorithm (GA).

Finally, a recent extension of the ACO metaheuristic to tatus domains and applied to continuous and
mixed discrete-continuous problems is presented by Sd&japd Socha and Dorigo [16] which can be considered
the first proposal that follows the original conception oa &CO approach in regards of the way the solutions are
built, i.e., incrementally. The solutions are built by ugia probability density function (PDF). At stepeach
ant generates a random number according to a mixture of ndenaels of PDFsP(z;) defined on the interval
a; < x; < b;. The experimental study involves a set of continuous uricaingd problems and the results are
better than other ACO inspired/based algorithms and coithyeetvith respect to some other non-ACO algorithms.

In this paper, we introduce a novel boundary approach forisginonlinear constrained problems, which

is also inspired by the ant colony metaphor. It is worth nptihowever, that our proposal can be coupled to

1According to the authors, this concept is similar to thatduséth Particle Swarm Optimization in [11] and to path-rélimg [12].



other metaheuristics (e.g., particle swarm optimizatiorao evolutionary algorithm), and it is expected to be
highly competitive in problems with active constraints.r@pproach is mainly based on the work of Bilchev and
Parmee [6]. The reason for not adopting one of the more re®€f inspired/based approaches for continuous
search spaces is that our main aim was to emphasize thempaderrelated aspects of the boundary approach rather
than focusing on a possibly more advanced search engine.

The remainder of this paper is organized as follows. Se@ipresents a brief description of the eariler works
on boundary search using evolutionary algorithms. Seciaescribes our proposal. The ant colony inspired
(ACI) algorithm, which is the search engine used to studyaiyglicability of our proposed boundary approach is
presented in Section 4. The test problems and experimesats are presented and analyzed in Section 5. Finally,

our conclusions and some possible paths for future res@aecprovided in Section 6.

2 Constraint-Handling and Boundary Search

Michalewicz et al. [17] wrote one of the first papers on bougdaarch through the use of evolutionary algorithms.
The efficiency of this approach was shown by using two comstthoptimization problems: Keane'’s function (also
known as(G02) [18] and another function with one equality constrainsaknown as>03). For solvingG02 the
authors proposed two genetic operators:ghemetricacrossover and a special mutation operator. Both operators
generate offspring lying on the boundary between the féasibd infeasible search space. Similarly 03,

they proposed thephericalcrossover which only generates points on the surface offithers given as the only
constraint.

Schoenauer and Michalewicz [19] proposed several evalatipoperators capable of exploring a general sur-
face of dimensiom — 1 (n is the number of variables). The design of these operatqrertds on the surface
representation: curves-based, plane-based, and pam@amegtesentation.

Wu and Simpson [20] proposed a GA for the optimization of aewdistribution system, which is a highly
constrained optimization problem. The proposed approaetvolves and self-adapts two penalty factors in order
to guide and preserve the search towards the boundary of#isible search space.

The reduction of the search space is one of the most reletiamnacteristics of the boundary search approach
since the exploration considers only the boundary of theilida search space. However, many of the test cases
considered so far by other researchers only include probleith one or two constraints (e.g=02 and G032,
respectively). In these cases, it is possible to dedithdocgenetic operators that fit perfectly the boundary of the
feasible region. However, this sort of approach is impradtin an arbitrary problem with many constraints, and it
is therefore necessary to define a more general approacbdmdary search which can be as robust as possible to

deal with different types of constraints. This was pregisee motivation for the research reported in this paper.

2Keane’s function can be considered as having one conssiaire one of them is ignored. Therefore, the search prodeedsing only on

the active constraint.



3 An Alternative Boundary Search Approach
We are interested in solving the general nonlinear programgmroblem whose aim is to fingl so as to optimize:
f(x) x=(x1,22,...,2,) € R"

wherex € F C S. The setS C R” defines the search space and gets S andi/ = S — F define theeasibleand
infeasiblesearch spaces, respectively. The search s§aseefined as an-dimensional rectangle iR™ (domains

of variables defined by their lower and upper bounds):
(i) <z; <wu(i)forl <i<n

wheren is the number of decision variables, art) andu(i) are, respectively, the lower and upper bounds of each

decision variable;;. The feasible sef is defined by the intersection 6fand a set of additionah > 0 constraints:

g; <0, for j=1,...,¢ and h; =0 for j=¢+1,...,m.

At any pointx € F, the constraintg,, that satisfyg,(x) = 0 are called the active constraintssat Equality
constraintd:; are active at all points of .

In the following we first explain the main characteristicstibé boundary operator designed to approach the
boundary of a particular constraint. Afterwards, we ddsein detail the proposed technique that takes advantage

of the boundary operator to explore some specific regionsebbundary of the feasible search space.

3.1 The boundary operator

We propose here a general boundary operator which is baste orotion that each poilt of the boundary region
can be represented by means of two different potrdady wherex is some feasible point andis some infeasible
one, i.e.(x,y) can represent one point lying on the boundary by applyingiaafy search” on the straight line
connecting the pointg andy (when considering an equality constraiate F iff h(z) < 0; otherwisez € U).
Figure 1 shows a hypothetical search space including thehiieaand infeasible (shadowed area) regions. We
can identify four points lying on the boundaly, b2, bs, andb, which are respectively obtained frof®y,y1),
(x2,¥2), (x3,¥3), and(x4, ya).

The binary search applied to each pair of poiitsy) is achieved following the steps described in function BS
(see Algorithm 1). For example, a possible application &f grocess can be seen in Figure 1 where we adopt the
pair of points(xs, y3) from which we obtain the poiribs, which lies on the boundary. The first step (labe(éy)
indicates that the first mid point found is infeasible. Canpgmntly, the left side of the straight lingy) is moved to
pointp;. In the next step (labele@)) we consider the points; andys as extreme points for which the mid point
is the feasible poinp,. Thus, the new feasible point or right extreme of the lineas/the pointp,. Finally, the

last point generated is; which can be either lying on or close to the boundary. Coadi{distto_boundary)



< &) AND Feasiblefn)) defines a threshold to stop the process of approachingaedary. However, the second
part of this condition (i.e., “Feasiblaf)”) it is only applied when considering an inequality coagtt. In this
way, functionBS guarantees that is in the feasible side regarding the corresponding inétyuadnstraint under
consideration. It is worth noticing that parameteandy are local to BS, i.e., function BS behaves as a decoder of
the pair of feasible and infeasible points passed as paeasiéiherefore, the number of “mjgbintsbetween”x
andy before approaching the boundary within a distance lesstisagiven bylogs (1) wherer = (dist(x,y)))/¢

and functiondist represents the Euclidean distance between paimisdy. Thus, the closer to the boundary, the

largerlogs(r).

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;

2: repeat

3. m = mid_pointbetweeng, y);

4. if Is.on.Boundaryfn) then

5: returnm; { m is a point lying on the boundary
6: endif

7. if Feasiblefn) then

8: X = m,
9. else

10: y = m,
11:  endif

12: until (distto_boundarym)< &) AND (Feasiblefn));

13: returnm; {The closest point to the boundary according tp

Given one feasible and one infeasible point, function B8rret either a point on the boundary or one which is
close enough to the boundary according to a paranjef€heuntil condition is applied as it when considering an

inequality constraint, otherwise “AND (Feasihia})’ is dropped.

So far, we have shown how a point lying on the boundary can fesented through a pair of points. Now we
need to consider the exploration of the search space. Faor@rafrom the perspective of evolutionary algorithms,
the candidate operators are the classical crossover anatiorut However, for the ACI approach proposed in
this work we suggest the application of any specialized-cedled mutation-like operator (the particular mutation
operator proposed for our implementation will be furthesahibed in section 4). Independently of the selected
mutation operator; it should behave as follows: given a papoints(x,y), one point feasible and the other one
infeasible, any or both of them undergo mutation. For example can consider the pair of pointss,y4) in
Figure 1 (lower-right) which represents poihi on the boundary. In this case, the feasible pgintundergoes

mutation, giving as a result a poigf, in the feasible search space. After this process, the nemt jong on the



boundary is obtained by decodifgy, y/, ), which gives ud),.

3.2 The proposed method

The simplest case to apply the boundary approach is whenrtidem has only one constraint which could be
either an equality or an inequality constraint. For the teste, it is important to remember that we are assuming
active constraints at the global optimum to proceed witk thethod where the search is always performed on the
boundary of the space defined by any of the constraints.

For facing the typical situation in which we have more thae constraint, it is necessary to define an appro-
priate policy to explore the boundary as efficiently as gulssiOne possibility is to explore in turn the boundary
of each constraint. The selection of the constraints tockefar can be determined using different methods. If
the problem includes at least one equality constraint, sgelality constraints are the most appropriate candidates
to be selected first. In order to show the robustness of ouhaakein the absence of information about the active
constraints of a problem, we will show in our experimentabst(see Section 5) a more general approach to apply
the boundary operators. As an illustrative example, Figushows a hypothetical search space determined by
three inequality constraints. Let’s suppose that the $earoceeds starting on constraint If the visited points
are on the boundary of, these points will also satisfy the remaining problem craists (filled line in Figure 2).
However, the application of the boundary operator with eg$po constraing; will eventually produce points vio-
lating constraintg, andgs (dotted line in Figure 2). One of the simplest methods to @&t this situation is the
application of a penalty function for the infeasible sadm. In addition, ifg; is active at the global optimum, the
method will focus the search on the boundary in order to istre explored regions of the whole search space.

Note however, that other (more sophisticated) constia@mtdling techniques can also be adopted.

4 Boundary Approach in an ACI algorithm

A possible design to apply some of the principles of the artpteor in continuous search problems is by discretiz-
ing the continuous search space in some way. In this work weawliscrete structure to represent a set of different
points spread on the search space. These points are daketions following Bilchev and Parmee’s proposal

in which the continuous search space is discretized in thealed search directions. Each one of these search
directions was represented through a reference point isehech space. The discrete structure is then related to
a trail pheromone structure used in the ant algorithm pregder representing the desirability of exploring on a
particular search direction. For further deteails see [[6our proposal, the discrete structure is similar, except f
the way in which the directions are represented. Our diss&tcture can be seen as a§ét, ds, ..., d; }, where

k is a parameter for the number of directions. Each direcfiois represented as a pair of two reatlimensional

vectors, i.e.d; = (x;,y:), from which new points are generated by the ants allocatddéction!. As an example,



Figure 3 shows (left) a discrete structure with= 4 search directions and (right) the correspondingpints on a
2-dimensional search space. Theoints are the result of the corresponding application atfion BS on the4
hypothetical directions.

A general outline of the ACI algorithm is shown in Algorithm & is worth remarking that the original ACI
proposal [6] for continuous domains is used to proceed withlocal exploration after a genetic algorithm has
finished with the global search. However, the algorithm pssga here, is in charge of performing the entire search
process. More precisely, our ACI algorithm starts with acfet directionsd = (x,y) randomly generated with

x € Fandy € U.

Algorithm 2 ACI algorithm
t=0

initialize A(t)
evaluateA(t)

while (stop condition not metpdo
t=t+1
updatedirs._trail
allocateantsA(t)
evaluateA(t)

end while

General outline of the ACI algorithm for continuous probkerin the Appendix (see Algorithm 3) we show a more

detailed version of the algorithm adopted in this papenidiig its more important components.

The ACI algorithm (see Algorihm 2) works as followsitialize A(t) generateg random directions,
sets the initial values for the trail structure, and “distities” N, ants on the: directions, wheréV, > k in order to
allocate one or more ants to the same direction. Each amia#d in a directioh generates a new solution through
any valid mutation-like operator applied to the pair of fgsifx;,y;) representing the initial reference points on
directionl; evaluate A(t) obtains the objective value for the new points generatpdate _dirs _trail is
in charge of updating the directions (according to the solutions found) and accutmggheromone trail in each
direction proportionally to the quality of the objectivenittion values found in the corresponding direction, i.e.,
7 = (1 —p) -7 + A, whereAr; is a value proportional to the best objective value on dioedtand0 < p < 1
is the pheromone trail evaporation ratdlocate _ants A(t) redistributes the population of ants on the
directions, proportionally to the accumulated pheromoai values. Thus, the ants on directibre {1,...,k}
are on charge of searching in the neighborhood of the casrefipg boundary feasible point on directibnThe
new reference point on directidrfor the next iteration is the best solution found in direntio Figure 4 shows a
hypothetical situation witl ants and3 search directions.

The main characteristics of our ACI algorithm include twathction levels:



1. individual search involves the strategy followed by each ant to search inéigtmborhood. In our case, we
have chosen for our implementation a mutation-like operath such that)(x,y) = (x',y’) where (the

same applies tg’):

x' = (x1,...,7},...,x,) wherei is a random number frodil, ..., n}

and,
x; + (u(@) —x;)) x R if r>0.5

x;— (x; — (7)) X R otherwise

wherer is a random number in the ranffe.1] and0 < R < 1is considered to define the extent of the search
interval with respect to each variable. Paramdiestarting at valud will vary down to0 on each iteration

as described below.

2. cooperation involves information exchange among the ants in order idgthe search to certain regions
of the search space. This information is represented byhkegmone trail structurerf wherer; represents
the accumulation of pheromone trail on directiom he distribution of the ants on the different directions is
achieved by the formula:

Rt = ®
2h=17h(t)

The changes on the values of raitpinvolved in our mutation operator, controls the extentaf $earch interval
for each dimension and can be implementedagt) = R(1 —r(1~%/T)) wherer is a random number in the range
[0..1] andT is the maximum number of iterations. Consequently, theevAly (¢) falls in the rangd0..R] and gets
closer to0 as the elapsed number of iteratiariacreases.

Figure 5 represents the successive poitslinensional vectors) on directiohat iterationt wherep! =
BS(d}), i.e., a point obtained by the application of functiBi$' on the pair of points represented yat iteration
t, in this example € {0, 1,2, 3,4}. Thus, a square represents the neighborhood for a partjcoiat. Following
the algorithm, at the first iteration a fixed number of antsdiséributed on thé: directions, i.e., the ants that were
allocated to directiord at the iterationt = 0 will start the search from poin?. For example, in Figure 5 is
the starting point on directioh p; is the best point found by the ants allocated to directiby usingA z(0)%.
As t increases, new regions of the search space are independeplibred in each direction. For our example, the
remaining successively generated points on diredtiarep?, p;, p/, and so on. Thus, the ACI algorithm can be
seen as a trajectory approach which simultaneously seaachéifferent directions and exploits the past experience
to guide the search towards the most promising regions dowpto the quality of the results. Furthermore, the

accumulated pheromone trail will decrease on directioasghoduce low-quality solutions due to the effects of the

SHowever, other alternative mutation operators are alssiples
41t should be noticed thah r (¢) is not a monotonically decreasing value.



evaporation process focusing the ants’ attention on marmging regions of the feasible search space. In order
to avoid premature convergence of the algorithm, a potintigeful direction can remain as an alternative search
region by bounding with lower and upper values the amounth&rpmone trail in each direction following the
principle of the M MAS algorithm.

5 Analysis of Results

The application of our approach, called AMBBundary (ANT# for short) requires minimum changes when ap-
plied to the different test cases considered: the objefuiretion, number of variables, range of each variable, and
constraints. However, the policy to determine on which t@irst the search should focus needs to be considered
when a problem has more than one constraint: a) we can foewsgtirch on all the constraints, but considering one
constraint in turn by controlling the change through a gattr condition (§;;), b) similar to the previous alter-
native but considering only the active constraintg.{§ or c) just considering one constraint during the whole run
(S; wherej € {1,...,m}). These three ways of exploring the search space are peelfrst in our experimental
study in order to analyze the performance of the ABI'®n each of the considered problems. In our experiments,
the condition to produce a change on the search from onereamtsio another is given by an elapsed number of
iterations and it is represented by the parameterdn addition, for problems with more than one constraint, we

incorporate a penalty function of the form:

o, 1) = F(@) + (D)3 max0,g;(@)} + 3 hy(a)) @

j=1 j=q+1

where(t) is a dynamic penalty factor which could changetathe elapsed iteration, increases wijtf0) <

w(1) < p(2)--- < wu(T). Alternatively, the penalty factor can be fixed throughd tun, i.e.,u(t) = po for

all1 <t < T. Regardless of the penalty function adopted, it is wortharkimg that each solution is always
lying on the boundary of the feasible space corresponditigg@onstraint under consideration. Note that a penalty
function was adopted due to its simplicity, since our indéreas to assess the advantages of our proposed approach.
However, other constraint-handling techniques are evig@ossible.

The parameter setting used in this experimental study wasreally determined. More precisely, the param-
eter values are the followingV, = 50 ants (population size}; = 20 directions (number of reference points),
maximum number of iterations 30000, the evaporation rate = 0.5, t. > 0 is the number of iterations that
ANT-5 focuses on one constraint in turn. When= 0, ANT-5 focuses on only one constraint throughout the
whole run. We set. = 200 for the policyS,.: andS,;;. The penalty factor.(¢) was experimentally determined
for each particular problem and is shown in the correspamtdibles of results. AN was executed0 times with
different seeds for each parameter combination. The pnebktudied include a set of well-known test cases tra-

ditionally adopted in the specialized literaturgéd1 to G13 [21]. In addition, we consider other problems recently

10



labelled asz14, G15, G17, G21, G23, G24 [22], andG25 [23]. The whole experimental study was performed
on a Laptop with an Int&) Pentiun®®) M Processor 725, running at 1.6 Ghz, and with 512 Mbytes of RANE

ANT-5 algorithm was implemented in the C programming languageingunder Suse-Linux.

5.1 Study of the application of ANT-B

We have divided the presentation of the results into two psaccording to the following criteria: the first group,
is displayed in Tables 1 and 2. Table 1 includes two specigsaince they were the first problems on which
the boundary approach was applied (proble®t® and G03). In addition, these problems have one and two
constraints respectively. However, the second constddiproblemG02 is not considered since it is not active
at the best known value. The columns in this table show thengefor the number of variables, the best value
found (BF), Mean, Standard Deviation (Std), Worst, numbdeasible solutions out a80 runs (#Fea), and the
mean number of evaluations of functigtr;, 1) (Eg. 2) to get the best value found (Mean(#E)). On the othedha
Table 2 shows two problems both of which include one equabtystraint (problemé&11 andG25). Accordingly,

no penalty valuesy() need to be applied for this first group of problems. In theagrimg tables, the column “No.
of variables” is replaced by “Cnst”, indicating the crite@dopted to proceed with the boundary search, $.g.,
(j € {1,...,m}), Sact, Or Sgy. In addition, the best known or global optimum value for epobblem is shown in
parenthesis.

We tested>02 setting the number of variables as= 20, 50, and100. ANT-5 succeeded in finding the best
known value fom = 20 [24]. In addition, it was able to find a better quality resthiaih the best objective reported
in [19] wheren = 50 and f(x*) = 0.831937. Forn = 100, we found0.8456841707 as the best value in our
experimental study. Also, it is worth remarking that all s@utions found were feasible for alland very similar
among themselves as can be observed in the columns Meargristdyorst. With respect to proble6i03, we
considerech = 20 andn = 50 variables. ANTB found the optimum feasible solution for both cases in alltun
Figure 6 shows a convergence graph for problémg (left) andG03 (right) with n = 20 variables. For each of
them are plotted the mean best found values o@0afins for each generation. It can be observed for prokii&id
(right) that before iteratioi300 the algorithm achieves a mean value close to the optimumrealkdgor problem
G02 it needs abow2000 iterations to approach the corresponding best known v&8imilarly to G02 andG03, in
the remaining problems of this grou@{1 andG25), our approach reached the optimum in all cases.

The second group of test cases is conformed by some problanrsghmore than one constraint which have
been frequently used in the specialized literatdrei, G04, G05, G06, GO7, GO9, G10, andG13. We also include
problemG24 [22] in this subgroup. Only for710, we adopted a dynamic penalty(¢) = 1.05 x u(t — 1) for
t =0,1,---,7T; with 4(0) = 200000). The static penalty factors adopted for the remaining lemis are (i.e.,
fort = 0,1,---T): GO1, u(t) = 1000; G04, u(t) = 800000; GO5, u(t) = 10; GO6, u(t) = 10000; GO7,
w(t) = 20000; GO9, u(t) = 2000, G13, u(t) = 0.2; and G24, pu(t) = 1000. The results for this group of

11



problems are displayed in Tables 3 and 4. It must be noticadthiese problems include different numbers and
complexities of the equality and inequality constraintsakitare active at the best known or optimum solution. As
indicated in column “Cnst.”, each row shows the results wABIT- 3 was applied adopting one of the following
criteria: search exclusively on constrain{(S;, j = 1,...,m), on all the active constraints in tur${.;), and
over all the constraints in turns(;;). For example, probleni’01 has 6 active constraints. Accordingly, ANT-
performs ideally when searching on those active conssaifsimilarly, the algorithm succeeded in finding the
optimal solution when using bothi,.; andS,;;. However, its performance slightly decays when searchmthe
non active constraints as could be expected. This situsiomre dramatic for probler&04 which has two active
constraints. In this case, ANB-only finds high quality feasible solutions when searchinthw# , Sg, S,.:, and
Sau- The last case deserves an additional explanation sincg, fgrconstraint®2 and5 were not considered. In
fact, for these constraints the approach was not capableradrgting any pair of pointsx, y) as needed to obtain
a pointb lying on the boundary (function BS in Algorithm 1). It seerhat for these constraints all the solutions
are feasible on the corresponding range of values for vi@sal, i = 1,...,5. Therefore, we do not have any
boundary between the feasible and the infeasible searae dpaconstraint® and5. Regarding constraint$
and5, ANT-B found no feasible solution at all. However, this can be argld because feasible solutions for this
problem are generally far from the boundary of these comg#alt is also important to remark that by usisg,
ANT-B reported the optimal value fa@#04 (f(x*) = 30665.359). However, for the search optiots andS,.:,
ANT-5 found feasible solutions with an objective value36665.542 where all the constraints are feasible (in this
case constraintg (x) < 0,fori =1,,...,5, andgs(x) = y whered < y < 1079).

A similar situation can be seen for proble&05 which has three equality constraints. Accordingly, ART-
finds a high quality solution for this problem (very near te thptimal one) when searching on the corresponding
equality constraintsS,.; andS,;. On the other hand, proble606 has two inequality constraints which are active
at the optimum. ANTB performs optimally for this problem by following any of thieree applicable strategies:
S1, S2, andS,.;. The last problem in Table 3 has six active constraints and-#N\berforms similarly taz01 since
the best results were obtained when searching on the acinstraints or by using,.; or S,;;.

ProblemG09 has two active constraints for which ANAfound the optimum value. However, searching on the
non active constraints can give results far from the expbeddue (sees; andSs). G10 constitutes one of the most
difficult test cases not only for our approach, but also fostradher constraint-handling techniques. Al Tound
feasible solutions with all the search strategies excapsiand.Ss. Note the small number of feasible solutions
found for this problem, as well as the large standard dediagialue produced (with respect to the deviations of
the other problems). Another interesting problentis3 whose feasible search space is defined by three nonlinear
equality constraints. For this problem ANFfound the optimal solution following any of the four applida search
strategies. Finally, it can be seen that Al§Tperforms optimally on probler&24 which has two active inequality
constraints where the optimal solution was found for alitgtgies in each run (see #Fea).

Also, it is worth remarking that ANTBE needs an important number of evaluations to reach the Higjoadity
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value for each problem as can be observed in the correspgpodinmn Mean(#E). The lowest value for this variable
is obtained in most cases when usifig; as the search option. In general, the high values for Megn¢é# be
explained due to the design of ANF-which readily approaches the feasible region (particyltre boundary
between the feasible and infeasible search space). Howtbeemutation-like operator used here needs several

additional iterations to produce improved solutions inphemising search regions.

5.2 Comparison with an state-of-the-art algorithm

In this section we compare the best quality results from AR{we useS,.; as the most efficient search criteria)
with respect to the results of one of the best constraintliag technique known to date: Stochastic Ranking
(SR) [21]. Table 5 shows for each problem considered, thiemyph, and the corresponding Best value found (BF),
average (Mean), and Worst values respectively from ANdnd SR. The parameter setting used for SR was as
follows: 1 = 30, A = 200, Gaussian Mutationy = 1, Py = 1, G,,, = 1750, andd = 0.0001 (see [21] for further
details).

The performance of AN is comparable in many ways with respect to SR. From the petispeof the best
values found (BF) ANTB reaches similar values as SR in all the problems considém®dz02, ANT-5 reached
the best known value reported in [17] by usingeahhocboundary operator. On the opposite side, @i, ANT-B

did not obtain the optimal solution. However, the resultsieged in all cases are highly competitive.

5.3 Additional testbed for constrained problems

In this section we show the experimental results from thdiepjion of ANT-8 and SR to some additional test
caseg714, G15, G17, G20, G21, andG23 which have been recently incorporated in [22]. Table 6 @digplon its
columns, the problem names and the corresponding best kvalwa. On the rows we show, the optimum (or best
known value), best value found (BF), Mean, Worst, and thebenmof feasible solutions found (out 86 runs) for
ANT-B5 and SR respectively. The symbomeans that no feasible solutions were found. The penaltyegalsed
in ANT-5 were as follows:G14, 1(0) = 150.8; G15; p = 9.5; G17, u(0) = 400; G21, p(0) = 1500; andG23,
1(0) = 13500. All of them, except for problend’15, used dynamic penalty values as indicated at the beginifing o
this section. The parameter setting for SR was as descritaea

For problemG15, both algorithms performed very well, achieving a value fhaslightly better than the best
value previously known. SR had the best performance forgtolem and all the solutions that it obtained were
feasible. The following corresponds to the best solutiamfbby the ANTB : x* = (3.50883921, 0.21725025,
3.55539723). In addition, we show for this problem four plots (see Figdjecorresponding to th20 directions

on the search interval at iteratiohs 10000, 20000, and30000. It can be observed that at iteratidrthe search

5SR was run by the authors using Thomas Runarsson’s codeh géwailable at:

http://cerium.raunvis.hi.is/"tpr/software/sres/inde x.html .
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directions are fairly spread on the corresponding seartdrial. However, at iteratiom0000 the ANT-5B starts

to converge towards a suboptimal region. This situatiomglea at iteratiore0000 where the distribution of the
directions is more spread on a different area. Finallygaiion30000, almost all search directions have converged
to a tightly clustered region where the best value known ssftocated.

With respect to the quality of results, something similappened inG17 where ANTS and SR achieved an
objective value very close to the best known value receethprted in [22] (SR marginally outperformed our ap-
proach). The best solution found by ANTis: x* = (203.25057161,98.51080589, 383.16031685,419.98475072,
—11.21762319, 0.07194439). However, ANT# only obtained3 feasible solutions (in 30 runs) whereas SR ob-
tained30. Nevertheless, it is remarkable that the final violationhef tonstraints was very small for our approach
as can be observed in Figure 8 which displays the mean valuedarithmic scale) of constraints’ violations
(Mean(V)) out of30 runs for the problems in Table 6 with respect to the best sed&rtion during the30000
iterations—we have only plotted the fi¥200 iterations since after that, the constraints violatioresiasignificant
with respect to the earlier iterations.

On the other hand, the performance of SR for the other prablemot as good as for probler6d 5 andG17.
Although SR obtained0 feasible solutions for probler¥14, its best value is far from the best known. However,
ANT-B converged 5 times to a feasible solution (out 86 runs), achieving a very good performance taking into
account BF, Mean, and Worst values. For the remaining pnolg21 and G23), SR was not able to find any
feasible solutions, whereas ANFperformed well for these two problems. The best found vaaresvery close
to the best known. However, f@r23 there is an important distance between the best and the waitsts found.
The best solution obtained by AN3-for problemG21 is: x* = (193.78298439, 0.00000000, 17.32778946,
100.01064200, 6.68460537, 5.99149380, 6.21459710) whereas the best solution for proble@23 is: x* =
(0.00000000, 99.99979243, 0.00000000, 99.99979275, 0.01530904, 0.01531166, 100.00000000, 199.99979277,
0.01000000).

Finally, we show in Table 7 a comparison on the number of 8miugvaluations regarding ANB-and SR.
ColumnseanT. 53 @andegR represent, respectively, the average number of evalugatmobtain the best solution
for ANT-B and SR. It can be observed that for proble@s, G02, G03, G04, G06, GO7, G09, G13, G24, and
G25; epNT-5 IS less tharegg where the difference between these two values is remarkabé®me of them. On
the other hand, for problents10, G11, G14, G15, andG17; egRis less thaepNT. 5- HOowever, forG10, ANT-13
outperforms SR considering the quality of the solutionsifhuFor the remaining problemé&21 andG23), it can
be observed a large number of evaluations for ABITNevertheless, ANT was the only algorithm able to find
an acceptable number of good quality feasible solutionthiese two problems. It is also worth remarking that SR
was run with a larger number of generations on probléas andG23, more preciselyr,, = 3500 (i.e., 700000
evaluations). In spite of that, SR was not capable of findmgfaasible solution for these two problems, despite
performing a much larger number of evaluations than befBrem the above situation, it is not possible to claim

that ANT-B outperforms SR. As a matter of fact, on average, SR outped@NT-55 over the set of test problems
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(taken as a whole), if we take into account the number of fonavaluations (from Table 7, we can obtagi428
and107450, respectively, as the average number of function evalnatior ANT-5 and SR on the whole test set,
excludingG21 and G23). However, if the results are analyzed per test problem, ANi§ more consistent in
terms of performing less evaluations, since ARTequires less evaluations in 9 problems, and SR requirss les

evaluations only in 6 problems, and is not able to reach aldsasolution in two more problems).

6 Conclusions and Future Work

In this paper we presented an alternative approach to réadbaundary between the feasible and infeasible search
space which could be useful when facing problems with actrestraints. For the initial testing of this method we
have used an ACI algorithm as a search engine (AN'Bnd a penalty function as a complementary mechanism
for problems with more than one constraint. The overall @enfance of ANTB was satisfactory for all of the
problems considered. The comparison with a state-of-thalgorithm shows the potential of this method as an
alternative or complementary approach for constraineiapation problems. In fact, for some problems, AMT-
was able to improve the corresponding best known solutiergs, (02 (with n = 50 variables),G'15, andG17).

It is clear that further improvements should be considelgdst, it is necessary to incorporate some mechanism
aiming at reducing the number of evaluations. In additiorwauld be desirable to implement self-adaptation
mechanisms and alternative exploration operators. Afgimg a different search engine could be more suitable for
the boundary approach. For example, the ACO algorithm mweg@dy Socha [15] could act as a more appropriate
ACO-based search engine. Furthermore, differential é\@i25] and evolution strategies [26] are also highly
recommended candidates to be tried as search engines, dbe ¢wod performance that they have shown in

numerical optimization problems.
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Appendix: Problems

e G01[23]
Minimize:
4 4 13
f(x)=5-2xi—5-2x?—2xi
=1 =1 =5
subject to:

201 4+ 2292 + 210+ 211 — 10 <0
=2r1 +2x3 + 210+ 212 — 10 <0
2

T2+ 223+ 211 +212—10<0

where the bounds afe< z; <1 (i =1,...,9),0 < z; <100 (: = 10,11,12) and0 < x13 < 1. The global
minimum is atx* = (1,1,1,1,1,1,1,1, 1, 3, 3,3, 1), where six constraints are active (g2, g3, 97, gs, and
go) and f(x*) = —15.

e G02[18]
Maximize:
f(x) = |El_1 cos” (i) — 2[1iy COSQ(JJv:)I
Z?:l ”%2
subject to:

g1(X) =0.75 — H?:l z; <0
g2(x)=> 1, =750 <0

wheren = 20 and0 < z; < 10. The best known solution is at

x* = (3.16237443645701, 3.12819975856112, 3.09481384891456, 3.06140284777302,
3.02793443337239, 2.99385691314995, 2.95870651588255, 2.92182183591092,
0.49455118612682, 0.48849305858571, 0.48250798063845, 0.47695629293225,
0.47108462715587,0.46594074852233, 0.46157984137635, 0.45721400967989,
0.45237696886802, 0.44805875597713, 0.44435772435707,0.44019839654132) where

f(x*) = 0.80619 and constraing; is close to being active.
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e GO3[17]

Maximize:

subject to:

where0 < z; <1 (i = 1,...,n). The global optimum where = 10 is atx* = (1/v/n, ..., 1/y/n) where
Fx)=1.
e G04[27]
Minimize:
f(x) = 5.357854722 + 0.8356891z 25 + 37.293239z; — 40792.141

subject to:

91(x) = 85.334407 + 0.00568582225 + 0.000626221 24—
0.0022053z325 — 92 < 0

g2(x) = —85.334407 — 0.0056858z025 — 0.000626221 74+
0.0022053z325 < 0

gs(x) = 80.51249 + 0.0071317z025 — 0.00299552 25+
0.002181322 — 100 < 0

ga(x) = —80.51249 — 0.0071317x0z5 + 0.00299552 25—
0.002181322 < 0

g5(x) = 9.300961 + 0.0047026z325 + 0.001254721 25+
0.00190852324 — 25 < 0

g6(x) = —9.300961 — 0.0047026z325 — 0.001254721 25—

0.0019085z374 < 0

where78 < z; < 102,33 < z9 < 45 and27 < x; < 45 (i = 3,4,5). The optimum solution is at
x* = (78,33,29.995256025682, 45, 36.775812905788) where f (x*) = —30665.539. Two constraints are

active (g; andgg).

e G05[28]
Minimize:

£(x) = 3z + 0.00000122 + 225 + (0.000002/3)3

subject to:
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g1(x) =—x4+23—055<0

g2(x) = —x3+ x4 —0.55<0

hs(x) = 1000sin(xs — 0.25) 4+ 1000sin(—z4 — 0.25) +894.8 —z1 =0
h4(x) = 1000sin(x3 — 0.25) + 1000sin(zrs — x4 — 0.25) + 894.8 — x5 =0
hs(x) = 1000sin(x4 — 0.25) + 1000sin(zs — x3 — 0.25) + 1294.8 =0

where0 < z; < 1200, 0 < z9 < 1200, —0.55 < z3 < 0.55, and—0.55 < z4 < 0.55. The best known
solution [29] isx* = (679.94453,1026.067,0.1188764, —0.3962336) where f (x) = 5126.4981.

e G06[23]
Maximize:

f(x) = (z1 — 10)3 + (22 — 20)3

subject to:

gl(X) = (1‘1 - 5)2 + (1‘2 — 5)2 — 100 > 0,
g2(x) = — (21 — 6)% — (v3 — 5)% + 82.81 > 0,
wherel13 < z; < 100 and0 < x5 < 100. The optimum solution is* = (14.095,0.84296), f(x*) =

—6961.81381. Both constraints are active at (see Figure 10).

e GO7[28]
Minimize:
f(x) = z?+23+x120 — 1421 — 1625 + (03 — 10) + 4(24 — 5)% + (25 — 3)?
+2926 — 1)2 + 522 + T(xg — 11)% + 2(wg — 10)2 + (2110 — 7)2 + 45
subject to:

g1(x) = —105 + 4x1 + bxe — 37 — Yz < 0

g2(x) = 1021 — 8x9 — 1727 + 225 <0

g3(x) = —8x1 + 229 + Sxg — 2210 — 12 <0

ga(x) =3(z1 — 2)2 +4(x2 — 3)? + 225 — Tz, — 120 <0
g5(x) = 523 + 8wy + (z3 — 6)? — 224 —40 <0

g6(x) = 23 +2(w3 — 2)% — 2w129 + 1425 — 26 < 0
g7(x) = 0.5(x1 — 8)% + 2(w2 —4)? + 322 — 26 —30<0
gs(x) = —3x1 + 629 + 12(29 — 8)2 — 7219 < 0
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where —10 < 2; < 10 (¢ = 1,..,10). The optimum solution isx*=(2.171996, 2.363683,
8.773926,5.095984,0.9906548,1.430574,1.3221644898%, 8.280092, 8.375927) whefex*) = 24.306209.

Six constraints are active at: g1, g2, 93, 94, g5, andgg.

e G09[28]
Minimize:
f(x) = (z1-10)% 4 5(xz — 12)% + 2§ + 3(z4 — 11)?
+1028 + 722 + 2% — 4wy — 1026 — 87
subject to:

g1(x) = =127 +o 22 + 324 + 23 + 422 + 525 <0

—196 + 23x1 + 23 + 22 — 8x7 <0

(x) =
go(x) = —282 + Tzy + 3w + 1023 + 24 — 25 <0
g3(x) =

(x)

ga(x :43:%4—3:% —3x1x2+2x§—|—5x6 — 1127 <0

where—10 < z; < 10 (¢ = 1,...,7). The optimum solution isc*= (2.330499, 1.951372, -0.47775414,
4.365726,-0.6244870,1.038131, 1.594227) whése") = 680.6300573. The active constraints at this point

are:g; andgy,.

e G10[28]
Minimize:

fx)=21 4+ 22+ 23

subject to:

(x) = —1 + 0.0025(z4 + z6) < 0
(x) = —140.0025(x5 + 27 —2x4) <0

93(x) = —1+0.01(zg —25) <0
(x) = —x126 + 833.33252x4 + 100x1 — 83333.333 < 0
(x)
(x)

where100 < z; < 10000, 1000 < z; < 10000 (¢ = 2,3) and10 < z; < 1000 (i = 4,...,8). The best
known solution isx* = (584.3282028010, 1354.1644876700,5110.7156493300, 182.4326280510,
295.5675740820, 217.5673719490, 286.8650539690, 395.5675740820), wheref (x*) = 7049.2083398°5.

6See http://www.mat.univie.ac.at/"neum/glopt/cocaBetichmark/Library2new.v1.html, where problen¥10 can be found a&106.
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e G11[29]

Minimize:

subject to:

h(x) =z9 — 22 =0
where—1 < x; < 1and—1 < 25 < 1. The optimum solution is* = (+ — 1/+/2,1/2) andf(x) = 0.75.

o G13[28]

Minimize:

f(X) = T172T3T4T5
subject to:
hi(x) =23 +a3+a%+22+22-10=0

hQ(X) = T2x3 — 5.234.135 =0

hs(x)

P +a3+1=0
where—2.3 < z; < 23 (1 = 1,2)and3.2 < z; < 3.2 (i = 3,4,5). The optimum solution is
x* = (—1.777143,1.595709, 1.827247, 0.7636413, —0.763645) and f (x*) = 0.0539498.

o G14[27]
Minimize:
10 "y
fx) =) wilci+In=g5—)
; 2;21 z)
subject to:

ha(x)
hQ(X) =x4+4+2x5+x6+27—1=0

T, 4+ 229 + 223+ a6 + 210 —2=0

h3(x) = x3 + @7 + 25 + 229 + 10 — 1 =0
where the bounds ate¢ < =; < 10 (: = 1,...,10), ande; = —6.089, co = —17.164, c3 = —34.054,
c4 = —5.914,c5 = —24.721, cg = —14.986, ¢y = —24.1, cg = —10.708, cg = —26.662, c190 = —22.179.
The best known solution is at* = (0.036002,0.151412,0.783686,
0.001725,0.484752,0.000695, 0.028175,0.017604, 0.038714, 0.093207) where f (x*) = —47.764411.
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e G15[27]:

Minimize:

f(x) = 1000 — 27 — 25 — a3 — x125 — 7173

subject to:

hi(x) =23+ 23 +23-25=0
hQ(X) =8x1 + 1429+ T3 — 56 =0

where the bounds afe< z; < 10 (z = 1, 2, 3). The best known solution is at = (3.51211626026935,
0.216988345475683, 3.55217615445509) where f (z*) = 961.715172.

e G17[27]
Minimize:
f(x) = f(x1) + f(z2)
where
3021 0 <z <300
fl(xl) =
31xq 300 < z1 < 400
2819 0 < z9 <100
fa(x2) = 2925 100 < x5 < 200
3022 200 < z9 < 1000
subject to:

1) =~ — T3igrgcos(1. —x6) + 09079825 4(1.47588
" 300 — 37,57 1.48477 0193017'5(9)?83

0.90798z2

hQ(X) = —T9 — L3T4 COS(].48477+ xﬁ) + 131.078

131.078

cos(1.47588)

ha(x) = —a5 — 22 sin(1.48477 + ) + S2T982% i (1.47588)

0.90798z2
131.078

ha(x) = 200 — —E24_gin(1.48477 — x6) +

131.078 sin(1.47588)
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where the bounds afe< 21 <400, 0 < 25 < 1000, 340 < z3 < 420, 340 < 24 < 420, —1000 < 25 <
1000 and0 < xg < 0.5236. The bestknown solutionis at = (201.784467214523659, 99.9999999999999005,
383.071034852773266, 420, —10.9076584514292652, 0.0731482312084287128) where

f(a*) = 8853.53967480648.

e G21[30]

Minimize:

f(x)=mx

subject to:

g1(x) = —z1 + 3529% + 35296 <0

h1(x) = —300x3 + 750025 — 7500z¢ — 25z4x5 + 252426 + x324 =0
ha(x) = 100z2 + 155.365x4 + 2500z7 — xoxy — 25x427 — 15536.5 = 0
h3(x) = —x5 + In(—x4+900) =0

ha(x) = —x6 + In(xg + 300) =0

hs(x) = —x7 +In(—224+ 700) = 0

where the bounds afe< z; < 1000, 0 < z9,z3 < 40,100 < 24 < 300,6.3 <25 <6.7,5.9 < 26 < 6.4
and4.5 < z7 < 6.25. The best known solution is at = (193.783493, 0, 17.3272116, 100.0156586,
6.684592154,5.991503693, 6.214545462) where f (x*) = 193.7783493.

o G23[31]

Minimize:

f(x) = =9z5 — 15z5 + 621 + 1622 + 10(x6 + x7)

subject to:

91(x) = xoxs + 0.02z¢ — 0.025z5 < 0
g2(x) = xoxy + 0.0227 — 0.01528 < 0
hi(x) =x1+x2 — 23 —24=0

ha(x) = 0.03z1 + 0.01lxs — xg(x3 + x4) =0
hs(x) =x3+x6 — 25 =0

hy(x) =x4+ a7 — 25 =0
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where the bounds afe< z1, x2, g < 300,0 < z3, 25, 27 < 100,0 < 24, 28 < 200 and0.01 < z9 < 0.03.
The best known solution is at = (0, 99.9999000001, 5.58738477217701e—026, 100, 0.000099999999, 0,
100, 200, 0.01) wheref(x*) = —400.002500.

G24[23]:

Maximize:

f(x) = —21 — 22

subject to:

Ty < 2z7 — 8% + 8x% 42
To < 4x‘11 — 323:% + 883:% — 96z, + 36,

where the bounds ar6,< z; < 3 and0 < x5 < 4. The best known solution is at* = (2.3295, 3.1783)
where f(x*) = —5.5079. Figure 11 shows the feasible search space determined biyvthenequelity

constraints and the approximate positioncdfwhich lies on the boundary.

G25[23]:
Minimize:

f(x) = =12z — Ty + 22

subject to:

2zt +2—2=0

where the bounds afe < z; < 2 and0 < z5 < 3. The best known solution is &* = (0.71751,1.470)
wheref(x*) = —16.73889. Figure 12 shows point* which lies on the boundary (in this case the boundary

is equivalent taF).
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Algorithm 3 A pseudo-code for the ANB algorithm

/I updatetrail: lays a pheromone trail on the respective directions

updatefrail(Trail: real vector)

1:forlin1: kdo
2:  Trailll] = (1 — p)x*Trail[l] + ATrail[l] // see Section 4
3: end for

/I updatedirections: the new reference points on each direction

updatedirections(Dirs: directions)

1:forlinl:kdo
2:  Dirg[l] =bestpair_of_pointsfound.on.direction()

3: end for

[/ allocateants: sends the ants to search on different directions

allocateants(A: colony, Trail:real vector, Dirs: directions, ctr: intage

1: for ¢inl1: N, do

2:  d=choosedir(Trail) // a direction probabilistically chosen accard to the pheromone trail (Eq. 1)

3:  ant: applies mutation (regarding 'ctr’) on the pair @fdimensional points represented by Difis= (x4,y4)
4:  anti saves the new pairs of points a$.&;, A.y;) = (x},y7})

5: end for

/l evaluate: obtains the objective value for the solutianmfl and the set the best solution on each direction

evaluated: colony )

1: for ¢in1: N, do

2. Ab; = BS(A.x;, A.y;) Il obtains the respective point on the boundary (see Algorit)
3:  A.eval = F(A.b;) /l evaluation of poinb;
4

. end for

// main program

main()

1:t=0

. ctr= initial_constraint // ‘ctr’ represents the problem constraint uramsideration
. init_d(Dirs,ctr) // generates randomn-dimensional pair of points regarding ‘ctr’
: init_t(Trail) // set thek initial values for the pheromonte trail structure

. allocateants(A(¢), Trail, Dirs, ctr);

. evaluatefd(t))

: while (stop condition not meto

t=t+1

© O N O g s W N

if (change constrainthen

[N
o

ctr= getnextctr(ctr) // The search continues considering another robtonstraint following a

[l

newdirections(Dirs,ctr) // similar to ‘updateirections’ except that it could be necessary the generatio

[N
w

/I of new points according to the new ‘ctr’

N
R

else

N
a

updatedirections(Dirs,ctr)

=
S

end if

=
~

updatetrail(Trail)

i
©

allocateants(A(t), Trail,Dirs,ctr);
19:  evaluated(t))
20: end while

/I Rendez-Voupolicy using either §;;, Sact, Or S; (see at the beginning of section 5).
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Figure Captions

Figure 1: Given one feasible and one infeasible point, tmeesponding point lying on the boundary can be easily
reached by using a simple binary search. On the right sideshidwn the application of a hypothetical mutation-like

operator on pointéx,,y,).

Figure 2: Feasible search space defined3bpequality constraints. The search proceeds on the bowrafar
constraintg;. It can be observed that the second and fifth points on thedawyrof g; (from left to right) are

infeasible.

Figure 3: A discrete structure with = 4 search directions (left) and the correspondimpints on a 2-dimensional

search space (right) obtained through the applicationmétion B.S from the4 hypothetical search directions.

Figure 4: Nine ants are distributed on three search direstizy 4, and3 ants respectively allocated on directions
1, 2, and3. CR, NP, and NR stand respectively for “current referendatpd'new points obtained through a valid

mutation operator”, and “new reference point (the best efrtbwest generated points on a particular direction)”.

Figure 5: Sequence of points generated in the search spdderated to the extent of values in each dimension.

Each pointp} is obtained by the application of functid®S on the pair of points represented Byat iterationt.

Figure 6: Convergence of the best average values in eadtigeifor problemG02 (left) andG03 (right). It can

be obsereved a fast convergence to the best knGidf)(and optimal (03) values before iteratioB00.

Figure 7:20 search directions at different stage of the A Tunning for problemG15: (a) fairly sparse at the
beginning, (b) search concentrated on a suboptimal re@dmoving to another the region, and (d) converging to

the best knwon solution.

Figure 8: Mean(V) values (in log scale) of aifi run for problems>14, G15, G17, G21, andG23 during the first

3000 interations. It can be observed a rapidly decreasing vdlgermstraint violation for all these problems.
Figure 9: Keane’s function with = 2.
Figure 10: Problem G6. Floudas-Pardalos’ function.

Figure 11: Approximate position of the best known value omblundary of the feasible search space regarding

constraintg;; andgs.

Figure 12: Best known solution and the feasible search spateemined by equality constraiht
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Table Captions

Table 1: The results for problents02 (Keane’s function) and~03 show a robust behavior of ANF- (see Std

values) for all the instances tested of these problems.
Table 2: For problems G11 and G25 it is unnecessary to usealtpéactor.

Table 3: Results for problents01, G04, G05, G06, andG07. For each problem, we show the different alternatives
of using ANTSB , i.e.,S; (for j = 1...m), Sact, andSyy. For some of these problems, ANF{ails to find any

feasible solutionG4 with optionsS; andS,, andG05 with optionsS; andSs.

Table 4: Results for problems09, G10, G13, andG24. For each problem, we show the different alternatives of
using ANTS, i.e.,S; (for j = 1...m), Saet, andS,y. ANT-B fails to find any feasible solution for proble@il0
with optionsS; and Sg. Also for G10, one of the hardest problems considered, we can observgadtandard

deviation values.

Table 5: Comparison of ANB with respect to one of the best constraint-handling teamiknown to date:
stochastic ranking (SR). Both algorithms perform simitarh all the problems with respect to the BF value. How-
ever, ANTS is more robust that SR when considering the Mean and WoraesaBoldface is used to indicate

cases in which an algorithm was able to reach the optimumdsirkmown value) for a problem.

Table 6: Comparison of ANB with SR for a set of additional test cases. With respect tatradity of the results,
ANT-B performs better than SR on proble&i4, similarly onG17, and almost the same @#l5. However, SR
(by doubling the value of parametét,,) was not capable of achieving any feasible solution for [isG21 and

(G23. On the contrary, SR obtained a larger number of feasiblgatismis on problemé&14 andG17.

Table 7: Average number of evaluations to obtain the bestisol for ANT-5 and SR on the test problems consid-
ered (* means ‘not available’). Clearly, there is no cleantt on the performace of the two algorithms with respect
to the number of evaluations as can be seendfgjt.z < egR for about half of the problems considered and

€ANT-5 > €gR for the remaining half of the set.
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No. of BF Mean Std Worst # Fea| Mean(#E)
Variables ()
Problem G02
20 0.8036190867| 0.8025656939| 0.0032 | 0.7930839658( 30 29500
50 0.8352618814| 0.8339309692| 0.0021 | 0.8259508014( 30 35900
100 0.8456841707| 0.8446936011| 0.0007 | 0.8423509002( 30 46700
Problem G03
20 1.0 1.0 0.0 1.0 30 140000
50 1.0 1.0 0.0 1.0 30 389500
Table 1:
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‘ Cnst. BF ‘ Mean ‘ Std‘ Worst ‘ #Fea.‘ Mean(#E)
Problem G11 (0.75)
‘ S1 0.75 ‘ 0.75 ‘0.0‘ 0.75 ‘ 30 ‘ 70400
Problem G25 (16.73889)
‘ S1 -16.73889‘ -16.73889‘ 0.0 ‘ -16.73889‘ 30 ‘ 10600

Table 2:
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Cnst. BF Mean Std Worst ‘ #Fea.‘ Mean(#E)

Problem G01 (-15.00)

S1 -15.00 -14.99 0.001 -14.996 30 274800
Sa -15.00 -14.96 0.012 -14.995 30 159720
S3 -15.00 -14.99 0.001 -14.965 30 381800
Sa -14.27 -13.54 .38 -13.18 29 544400
S5 -13.84 -13.48 0.32 -13.04 25 433800
Sé -14.22 -13.39 0.47 -13.00 26 407200
S7 -15.00 -14.78 0.2 -14.65 26 213400
Ss -15.00 -14.74 0.49 -14.46 27 723400
So -15.00 -14.67 0.76 -13.08 30 454800
Sact -15.00 -15.00 0 -15.00 30 81400
Sall -15.00 -15.00 0 -15.00 30 104000
Problem G04 (-30655.539)

S1 -30665.542 | -30665.357 0.04 -30665.279 30 20433
Sa - - - - - -

S3 | -23131.630| -23131.630 0.0 -23131.630| 0 23204
Sy - - - - - -

S5 | -26469.496| -26469.496 0.0 -26469.496| 0O 20608
Se -30665.539 | -30665.523 0.014 -30665.087 30 22985
Sact | -30655.542| -30665.542 0.0 -30655.542 30 21457
Sau | -30665.119| -30661.330| 2.7847685814| -30654.114| 30 22139

Problem GO5 (5126.49)

S1 - - - - - -

Sa - - - - - -

S3 5126.50 5133.29 9.284 5147.81 6 100800
Sa 5126.51 5134.70 11.219 5164.91 11 340000
S5 5126.68 5130.55 3.656 5136.08 11 180000
Sact 5126.50 5138.37 8.20 5132.14 6 94000
Sall 5126.50 5143.77 10.60 5163.56 5 135800

Problem G06 (-6961.81)
S1 -6961.79 -6961.71 0.075 -6169.54 11 122600
Sa -6961.81 -6961.72 0.097 -6961.34 25 103000
Sact -6961.81 -6961.74 0.070 -6961.71 25 80000
Table 3:
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Cnst. BF Mean ‘ Std ‘ Worst ‘ # Fea.‘ Mean(#E)
Problem G07 (24.306)

S1 24.37 29.59 4.83 42.97 30 70000

Sa 24,51 35.10 23.02 121.56 30 133600
S3 24.56 28.31 5.54 50.83 30 83600
Sa 24.79 54.17 70.46 380.03 30 83600
Ss 24.52 34.52 16.39 77.19 30 85000

Se 24.79 31.12 6.46 48.40 30 720800

S7 33.08 38.86 4.01 46.53 30 71200
Sg 41.03 46.86 20.92 127.06 30 260200
Sact 24.37 24.64 0.15 24.92 30 35600
Sail 24.38 24.76 0.16 25.22 30 56000

Problem GO09 (680.63)

S1 680.63 680.66 0.10 681,29 30 80400

Sa 1664.00 1890.01 | 119.92 | 1982.72 5 108000

S3 840.00 880.82 15.06 890.56 29 22200

Sa 680.63 680.96 0.96 681.95 29 43000
Sact 680.63 680.67 0.026 680.72 30 7400
Sall 680.65 680.75 0.056 680.89 30 19400

Problem G10 (7049.2083)

S1 7101.50 7346.61 | 202.15 | 7682.20 9 147700

So 7063.02 8169.68 | 1866.32| 10325.00 3 131600

S3 7057.27 7406.51 148.60 7518.91 9 148600

Sy 7095.27 7349.83 | 360.00 | 7604.39 2 128200

Ss - - - - - -

Se - - - - - -
Sact 7052.30 7199.01 | 175.01 | 7943.15 30 42800
Sail 7068.04 7141.87 52.27 7239.54 30 9800

Problem G13 (0.053950)

S1 0.053950 | 0.054908 | 0.00054 | 0.055386 29800

Sa 0.053950 | 0.054372 | 0.00044 | 0.054968 7400

S3 0.053950 | 0.054637 | 0.00017 | 0.054394 7200
Sact | 0.053950 | 0.054736 | 0.001 | 0.058462 15 19800

Problem G24 (-5.508013)

S1 -5.508013 | -5.508013 0.0 -5.508013| 30 5800

Sa -5.508013 | -5.508013 0.0 -5.508013| 30 24000
Sact | -5.508013| -5.508013 0.0 -5.508013| 30 21400

Table 4:
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BF Mean Worst
Prob. Opt’ ANT-B SR ANT-B SR ANT-B SR
G01 -15.000 —15.000 —15.000 —15.000 —15.000 —15.000 —15.000
G02 0.803619 0.803619 0.803515 0.802656 0.781975 0.793083 0.726288
GO03 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G04 | -30665.539| —30665.539 | —30665.539 | —30665.539 | —30665.539 | —30666.539 | —30665.539
G05 5126.498 5126.50 5126.497 5138.37 5128.881 5132.14 5142.472
GO06 | -6961.814 —6961.81 —6981.814 -6961.74 -6875.940 -6961.71 -6350.262
GO07 24.306 24.37 24.307 24.64 24.374 24.92 24.642
G09 680.630 680.63 680.63 680.67 680.56 680.72 680.763
G10 | 7049.2083 7052.30 7054.316 7199.01 7559.192 7943.15 8835.655
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
G13 0.053950 0.053950 0.053957 0.054908 0.057006 0.055386 0.216915
G24 -5.508013 —5.508013 —5.508013 —5.508013 —5.508013 —5.508013 —5.508013
G25 -16.73819 —16.73819 —16.73819 —16.73819 —16.73819 —16.73819 —16.73819

Table 5:
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G14 G15 G17 G21 G23
(—47.764411) | (961.715172) | (8853.539674) | (193.778349) | (—400.002500)
ANT-B | —47.760268 | 961.715099 | 8855.819335 | 193.782989 | —399.984877
BF SR —39.412791 | 961.715022 | 8856.136000 * *
ANT-B | —47.651929 | 961.715636 | 8937.446289 | 194.345108 | —249.007506
Mean SR —36.526091 | 961.715496 | 8893.396000 * *
ANT-B | —46.723707 | 961.717224 | 8952.621093 | 202.067779 —928.448352
worst SR —33.003904 | 961.725354 | 8951.007000 * *
ANT-B 15 30 3 19 16
#rea SR 30 30 30 * *

Table 6:
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Problem| eaNT-5 €SR
G01 81400 | 149600
G02 29500 | 233400
G03 140000| 212000
G04 21457| 77600
G05 94000| 52400
G06 80000| 111600
GO7 35600 | 141400
G09 7400 | 111000
G10 42800| 17200
G11 70400 10400
G13 7200 | 67200
G14 1250000| 349600
G15 695600 73200
G17 411500( 74000
G21 760000 *
G23 763100 *
G24 21400 23400
G25 10600| 15200

Table 7:
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