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Abstract

In this paper, a new mechanism to spread the solutions generated by
a multi-objective evolutionary algorithm is proposed. This approach is
based on the use of stripes that are applied in objective function space
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and is independent of the search engine adopted. Additionally, it over-
comes some of the drawbacks of other previous proposals such as the
ε-dominance method. In order to validate the proposed approach, it is
coupled to a multi-objective particle swarm optimizer and its performance
is assessed with respect to that of state-of-the-art algorithms, using stan-
dard test problems and performance measures taken from the specialized
literature. The results indicate that the proposed approach is a viable
diversity maintenance mechanism that can be incorporated to any multi-
objective metaheuristic used for multi-objective optimization.

Keywords: multi-objective optimization, metaheuristics, Pareto dom-
inance

Mathematics Subject Classification: 90-08, 65K99, 68W20.

1 Introduction

In the real world, there are many problems with two or more (conflicting) ob-
jectives which are meant to be optimized simultaneously. A typical example is
when one wishes to maximize a certain utility or revenue function, but at the
same time, it is desired to minimize, say, an operational cost, which is a conflict-
ing objective. Because of their nature, multi-objective optimization problems
(MOPs) have, not one, but a set of solutions (called the Pareto optimal set)
representing the best possible trade-offs among the objectives. The vectors of
the solutions contained in the Pareto optimal set are said to be nondominated.
The image of the Pareto optimal set (i.e., their corresponding objective function
values) is called the Pareto front. MOPs have been solved using mathematical
programming techniques for a long time [21, 10]. However, because of their ease
of use, low need of specific domain information and wide applicability, meta-
heuristics have become very popular as multi-objective optimization tools in the
last few years [3, 6].

Metaheuristics used for solving MOPs normally consist of two main com-
ponents: (1) a selection mechanism that favors nondominated solutions and
(2) a density estimator that allows the algorithm to generate several (different)
nondominated solutions in a single run (something normally difficult to achieve
with mathematical programming techniques).

For the first component, most multi-objective metaheuristics adopt a selec-
tion mechanism based on Pareto optimality [3]. For the second component,
a variety of approaches have been proposed, including fitness sharing [7, 12],
crowding [9], clustering [26], geographically-based schemes [18], geometrically-
based schemes [23], entropy [17], and ǫ-dominance [19], among others. Some of
these approaches are very simple to implement (e.g., fitness sharing [7] and clus-
tering [26], which rely on measuring Euclidean distances between pairs of solu-
tions) but are relatively costly (computationally speaking) and rely on problem-
specific parameters that are normally difficult to define (e.g., the niche radius)
and whose values have a high impact on performance. Others are efficient and
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rely on few parameters, but cannot be easily scaled when dealing with more
than 2 objectives (e.g., crowding [9], the adaptive grid [18] and entropy [17],
which rely on relatively simple concepts derived from geometry or from infor-
mation theory). Modern density estimators normally require few user-defined
parameters, are efficient and can be scaled to more than 2 objectives. From
them, it is worth mentioning two particular approaches: the sigma method [23]
and ε-dominance [19]. These approaches are still relatively simple, but are also
computationally efficient and quite effective. However, they also have limita-
tions, which are related to the shape of the Pareto front of the problem being
solved (e.g., ε-dominance always loses the extreme parts of the Pareto front and
tends to lose many points in any almost-straight portions of a Pareto front).
It is shown that the mechanism proposed here is able to overcome such limita-
tions, while keeping the main advantages of modern density estimators (namely,
computational efficiency and the use of few user-defined parameters).

The proposed approach can be coupled to any multi-objective metaheuristic,
but for validation purposes, it is coupled here to a multi-objective particle swarm
optimizer (MOPSO). The performance of the resulting approach is assessed
using standard test problems and performance measures commonly adopted in
the specialized literature.

The remainder of this paper is organized as follows. Some basic concepts re-
quired to understand the rest of the paper are introduced in Section 2. Section 3
presents the most relevant previous related work. The proposed approach is de-
scribed in Section 4. Section 5 presents a comparison of the results produced
by the proposed approach (coupled to a MOPSO) and two multi-objective evo-
lutionary algorithms (MOEAs) that are representative of the state-of-the-art.
Finally, in Section 6, the conclusions of this work and some possible paths for
future research are presented.

2 Basic Concepts

Let X be a set and F : X −→ IRd a given vector function with components
fi : X −→ IR for each i ∈ {1, . . . , d}. The multi-objective optimization
problem (MOP) of interest for the purposes of this paper consists of finding:
x∗ ∈ X such that

F (x∗) = min
x∈X

F (x) = min
x∈X

[f1(x), . . . , fd(x)], (1)

where the minimum is understood in the sense of the standard Pareto order in
which two vectors in IRd are compared as follows.

If ~u = (u1, . . . , ud) and ~v = (v1, . . . , vd) are vectors in IRd, then

~u � ~v ⇐⇒ ui ≤ vi ∀ i ∈ {1, . . . , d}. (2)

This relation is a partial order. It is also written as ~u ≺ ~v if ~u � ~v and ~u 6= ~v.
In this case it is said that u dominates v. For example, in Figure 1, point B
dominates point E.
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Figure 1: Example of a Pareto front for a bi-objective case.

Definition 2.1 A point x∗ ∈ X is called a Pareto optimal solution for the
MOP (2) if there is no x ∈ X such that F (x) ≺ F (x∗). The set

P∗ = {x ∈ X : x is a Pareto optimal solution}

is called the Pareto optimal set for the MOP (2), and its image under F , i.e.

F (P∗) := {F (x) : x ∈ P∗} ,

is called the Pareto front.

In Figure 1, the Pareto front corresponds to the parts on the boundary of
F (X) joining the points A and B, and also the points C and D.

Here, it is said that x dominates y when F (x) ≺ F (y). Let Y ⊆ X and
y ∈ Y . If there is no x ∈ Y , that dominates y, it is said that y is nondominated
(with respect to Y ). Observe that all the elements in the Pareto front are
nondominated with respect to X .

Next, the well-known “scalarization” result that will be used later on is
presented.

Lemma 2.1 If ~x∗ ∈ X is a solution of the weighted problem:

min
~x∈X

d
∑

s=1

wsfs(~x), where ws > 0 ∀s ∈ {1, . . . , d} and

d
∑

s=1

ws = 1, (3)

then ~x∗ ∈ P∗.
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3 Previous Related Work

Particle swarm optimization (PSO) is a relatively recent metaheuristic which is
inspired on the flight of a flock of birds or fish seeking food. PSO has been suc-
cessfully applied to a wide variety of optimization problems [16, 11], but its use
in multi-objective optimization started only a few years ago (in the late 1990s).
However, and in spite of its recent adoption for solving multi-objective opti-
mization problems, a high number of multi-objective particle swarm optimizers
(MOPSOs) exist today (see for example [30, 15, 25, 24, 14, 4]).

Nevertheless, and in spite of this important number of publications on MOP-
SOs, most of such work has placed little emphasis in aspects such as the impor-
tance of the scheme adopted to select leaders [1], and the mechanism adopted to
maintain diversity. This last topic is the one that it is dealt with in this paper
although, as indicated before, the proposed approach does not use any specific
features of PSO (or any other metaheuristic, for that sake) and, therefore, can
be coupled to any other multi-objective metaheuristic.

Some researchers have proposed the use of novel mechanisms to maintain
diversity in a MOPSO. Two of the most representative approaches in this area
are: (1) the sigma method [23] and (2) ε-dominance (a relaxed form of Pareto
dominance that can be used to regulate convergence of a MOEA, when adopted
as an archiving technique [19]) [22]. Next, these two approaches are briefly
discussed.
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Figure 2: This figure illustrates a situation that causes problems to the sigma
method proposed by Mostaghim et al. [23].
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The sigma method uses the vector represented by the evaluation of F (~x) of
the particle ~x, and the leader of this particle is the individual in the elite set1

whose sigma is closest to the sigma of ~x (sigma is a direction and is computed
using an expression provided by the authors of this method [23]). The core
idea in the sigma method is to form clusters using the particles in the elite
set as the centers of such clusters. Note however that the elite set could be
very large. Since the number of elements in each cluster is not bounded, there
could be leaders with many “followers” and some leaders with no “followers”.
In consequence, the approach may fail to cover all the Pareto front. Also, the
approach requires that all the objective function values are positive (some sort
of scaling is required when this is not the case). Figure 2 shows a case in which
the sigma method could fail. In this figure, all the directions go to the portion
of the Pareto front which is closer to the “ideal vector”. Thus, it is possible
that the solutions generated do not cover all the Pareto front.

Let us consider again the MOP (2). The concept of ε-dominance [19] refers to
a relaxed form of Pareto dominance. A decision vector x1 is said to ε-dominate
a decision vector x2 for some ε > 0 iff: fi(x1)/(1 + ε) ≤ fi(x2), ∀i = 1, . . . , d,
and fi(x1)/(1 + ε) < fi(x2); for at least one i = 1, . . . , d (d is the total number
of objective functions of the problem). It is worth noting that ε is a user-defined
parameter.
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Figure 3: An example in which the ε-dominance approach retains the wrong
point.

1Most modern MOEAs use an elite set in which the solutions that are “globally” nondom-
inated (i.e., nondominated with respect to all the individuals that have been processed so far)
are stored. This set is theoretically required in order to guarantee convergence [29].
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This concept is normally used to fix the size of the external archive (or
secondary population) in which a multi-objective evolutionary algorithm retains
the nondominated vectors found during the search (i.e., the elite set). The
main drawback of the ε−dominance method is the number of comparisons and
distances that have to be computed. Another possible problem with the ε-
dominance approach is shown in Figure 3. In this case, the point A is closer
to the lower lefthand corner than point B, but point B is closer to the Pareto
front than point A. So, in this case, the ε-dominance approach retains point A.
In contrast, the proposed approach will retain point B.

4 Stripes-based mechanism

Throughout the remainder of this paper the functions f1, . . . , fd are assumed to
be bounded below.

First, a result and a definition that are part of the core idea of the proposed
approach are presented.

Lemma 4.1 Let ~x1, ~x2, . . . , ~xd ∈ X be the minimizers of the functions f1, f2, . . . ,
fd respectively. Then the Pareto front is contained in the “hyper-box” defined
by the points F (~x1), F (~x2), . . . , F (~xd).

The proof of Lemma 4.1 is trivial and is, therefore, omitted here. The
lemma is illustrated in Figure 4, for the case in which d = 2 and the Pareto
front corresponds to the parts on the boundary of S joining the points A and
B, and also the points C and D,

Definition 4.1 Let X1, . . . , Xd ∈ IRd then the convex hull of these vectors is

CH(X1, . . . , Xd) =

{

d
∑

i=1

αiXi/

d
∑

i=1

αi = 1, αi ≥ 0, αi ∈ IR

}

. (4)

The core idea of the approach proposed in this paper (called “stripes”) is
that the convex hull generated by the points F (~x1), F (~x2), . . . , F (~xd) (defined in
Lemma 4.1) is “similar” to the Pareto front (see Figures 5 and 6). Thus, several
points can be used (which will be called stripe centers) uniformly distributed
along this convex hull, and the individuals of the population are assigned to the
nearest stripe center. This way, the individuals are being distributed in several
stripes determined by the stripe centers (see Figure 5). Now, if an upper bound
is set on the number of individuals in each stripe and on the number of elements
of the Pareto front, the approach will provide a distribution of points, avoiding
an excessive clustering in any particular region from those defined by the stripes.

In this paper, the notion of clustering is adopted, but the center of each
cluster is fixed and uniformly distributed along the convex hull, as shown in
Figures 5 and 6 (the small circles are the centers of the clusters).
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The stripe center set can be computed using:







Xi1,...,id
=

d
∑

j=1

ijF (~xi)

nl
/ i1 + · · · + id = nl, i1, . . . , id ∈ IN ∪ {0}







(5)

where nl ≥ 1, is a parameter provided by the user which refers to the number
of points in each edge of the convex hull.
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Figure 6: Distribution of the stripes center for d = 3, nl = 6

Special case d = 2

In the case d = 2, some simplifications can be done, as shown next.
In this case the stripe center set can be computed using

{

Xi =
iF (~x1) + (ns − 1 − i)F (~x2)

ns − 1
, i ∈ {0, 1, . . . , ns − 1}

}

, (6)

where ns is the number of stripes, which is equal to nl.
In the case in which there are only two objective functions, d = 2, a rotation

can be applied to all elements in the population and to all elements in the elite
set, such that the vector F (~x1) − F (~x2) is parallel to the x−axis. Then the
stripe of every element in the population is calculated using the coordinate x
of the rotated element, as follows. Let θ be the angle between the x−axis and
the vector F (~x1) − F (~x2). Thus, this angle is what all the elements need to
be rotated. Further, if F r(~x) = (f r

1
(~x), f r

2
(~x)) are the rotated coordinates of
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F (~x) = (f1(~x), f2(~x)), then

f r
1
(~x) = cos(θ)f1(~x) − sin(θ)f2(~x)

f r
2
(~x) = sin(θ)f1(~x) + cos(θ)f2(~x)

(7)

Now, to determine the stripe of the individual whose evaluation is F (~x) the
following expressions are used. Let

h =
f r
1
(~x2) − f r

1
(~x1)

ns − 1
, and h~x =

f r
1
(~x) − f r

1
(~x1)

h
. (8)

Then

stripe(~x) =







1 if h~x < 0.5
[[ h~x + 1.5]] if 0.5 ≤ h~x < ns − 0.5

ns if h~x ≥ ns − 0.5,
(9)

where [[r]] denotes the integer part of r ∈ IR.
This procedure to assign the stripe is simpler than the method for calculating

distances to the stripe center and for computing the minimum of these distances.
To illustrate the way in which the proposed approach works, Figure 7 shows

an example for a problem with two objectives. In the figure, it can be seen that
the approach (which was coupled to the MOPSO proposed in [4]) generates a
good representation of the Pareto front.

4.1 A MOPSO with Stripes

In order to validate the effectiveness of the proposed approach to maintain
diversity, the MOPSO proposed in [4] is used as the search engine. However,
in this case, the diversity maintenance scheme are the stripes proposed in this
paper instead of the adaptive grid originally adopted in [4]. This MOPSO with
stripes is called ST–MOPSO.

The proposal consists of using one leader in each stripe and to compute
a weighted sum determined by the points F (~x1), F (~x2), . . . , F (~xd) defined in
Lemma 4.1, to select the leaders, where the leader of a stripe is the point that
minimizes this weighted sum.

To compute the parameter of the scalarization, the coefficients of the nor-
mal vector ~n of the “affine subspace” (hyper–plane) that contains the points
F (~x1), F (~x2), . . . , F (~xd), are used.

Thus, for d = 2 the normal vector is:

~n = (|f2(~x
1) − f2(~x

2)|, |f1(~x
1) − f1(~x

2)|) (10)

For the case d = 3 the vector product will be used as follows.
Let (a, b, c) = [F (~x1) − F (~x2)] × [F (~x1) − F (~x3)] then

~n = (|a|, |b|, |c|) (11)
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Algorithm 1 ST-MOPSO Algorithm

1: ~gbest← ~x0

2: for i = 0 to nparticles do

3: ~pbesti ← ~xi ← initialize randomly()
4: fitnessi ← f(~xi)

5: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi

∗
) then

6: GBEST ← GBESTU ~xi

7: end if

8: end for

9: repeat

10: for i = 0 to nparticles do

11: gbest← GBESTU(0,|GBEST |)

12: for d = 0 to ndimensions do

13: velocityid ←W ×velocityid +C1×U(0, 1)× (pbestid−xid)+C2×U(0, 1)×
(gbestid − xid)

14: xid ← xid + velocityid

15: end for

16: if flip(1/10) then

17: perturb particle i
18: end if

19: if |GBEST| < 5) then

20: perturb 10% of the range of one dimension (randomly selected) of particle
i

21: end if

22: fitnessi ← f(~xi)

23: if fitnessi is nondominated with respect to f( ~pbesti) then

24: ~pbesti ← ~xi ∈
25: end if

26: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi

∗
) then

27: GBEST ← GBESTU ~xi

28: end if

29: end forGBEST ← stripes− approach(GBEST )
30: until Termination criterion

11
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Figure 7: An example of the type of distribution of nondominated solutions
produced by the proposed approach.

In the other cases the Gram-Schmidt orthogonalization process will be used to
obtain the normal vector or the orthogonal projection of some special vector on
the “Affine Subspace”.

Thus, the leader of a stripe is the element that minimizes

~n · F =

d
∑

i=1

nifi(~x), (12)

with ~n = (n1, . . . , nd).
From Lemma 2.1, if the leader is a minimal point of (12) it is in P∗. Thus,

this scheme for selecting the leaders makes sense.
However, in the case in which d = 2, the rotated coordinates F r(~x) are

available and the parameters of the scalarization can be taken as:

n1 = sin(θ), and n2 = cos(θ), (13)

the coefficients of the rotation. In this case, the leader of a stripe is the particle
in the elite set that minimizes f r

2
(the y-coordinate of F r).
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Algorithms P Gmax needed to reach the required FFEs P

400 800 1,200 1,600 2,000
ST-MOPSO 40 9 19 29 39 49 100

PAPSO 40 9 19 29 39 49 100
MOPSO 40 9 19 29 39 49 100
NSGA-II 100 3 7 11 15 19 100
ε-MOEA 100 150 350 550 750 950 ≈ 100

Table 1: Generic parameters used by the algorithms compared. FFEs = fitness
function evalations. Gmax = maximum number of generations (iterations)

5 Comparison of Results

Several test functions were taken from the specialized literature to validate the
proposed approach. First, the results obtained by ST–MOPSO for three bi-
objective test problems will be included. The obtained results are compared
with respect to those produced by two multi-objective evolutionary algorithms
representative of the state-of-the-art in the area: the NSGA-II [9] and the ε-
MOEA [8] and two PSO-based approaches, the MOPSO from [4] and a slight
modification of that MOPSO that is called PAPSO. PAPSO uses Pareto dom-
inance in order to compare solutions. It also uses an archive which serves as
an explicit form of elitism in order to store the nondominated solutions found
so far in a single execution. However, it does not use any explicit approach to
maintain diversity in the archive.

After that, an example which considers a MOP with 3 objective functions
(see subsection 5.4) is presented. The results will be, again, compared with
respect to those obtained by PAPSO, MOPSO, NSGA-II and ε-MOEA.

Each approach performed 2, 000 fitness function evaluations for the test func-
tions, in the results shown next. However, the solutions at every 400 fitness
function evaluations are pulled out in order to perform a more detailed analysis
of the proposal (i.e., the results of the algorithms when they are using 400, 800,
1, 200, 1, 600 and 2, 000 fitness evaluations of every test problem included in this
study are analyzed). The results shown correspond to 30 independent runs.

Table 1 summarizes the general parameter settings adopted for all the al-
gorithms compared. In Table 1, P refers to the population at each generation,
Gmax is the total number of generations (or iterations) to be performed. Note
that all the algorithms perform the same number of objective function evalua-
tions for all test problems (the fitness functions computed for the initialization
process are also counted). NP is the number of solutions expected by each
algorithm; in the case of ε-MOEA, this parameter is controlled by the value of
~ε which is shown in Table 2.

Table 2 summarizes the specific parameter settings adopted for all the algo-
rithms compared.

In order to allow a quantitative comparison of results the following perfor-
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Algorithms Variation Parameters

ST-MOPSO C1 = 1.4962,C2 = 1.4962, W = 0.7298,
ns = 100, perturbation ratio 1/10

PAPSO C1 = 1.4962,C2 = 1.4962, W = 0.7298,
perturbation ratio 1/nvars

MOPSO C1 = 1.4962,C2 = 1.4962, W = 0.7298,
perturbation ratio 1/nvars

NSGA-II Simulated binary crossover (Pc = 0.8, ηc = 15),
parameter-based mutation (Pm = 1/nvars,ηc = 20)

ε-MOEA Simulated binary crossover (Pc = 0.8, ηc = 15),
parameter-based mutation (Pm = 1/nvars,ηc = 20),
εZDT1 = εZDT2 = εZDT3 = [0.007, 0.007]T ,
εviennet = [0.11, 0.11, 0.11]T

Table 2: Specific parameters used by the algorithms compared.

mance measures were adopted: standard deviation of the crowding distances
[13], spread [9], inverted generational distance [27], ratio of the hypervolume
[20], success counting (which is a variation of the performance measure called
“error ratio” [27]) and the number of nondominated points found by the final
population.

The definition of each of these performance measures is presented next.

5.1 Standard Deviation of the Crowding Distances (SDC)

This performance measure computes the standard deviation of the crowding dis-
tance in order to give more information about the distribution of the solutions:

Definition 5.1 The SDC performance measure is defined as:

SDC =

√

√

√

√

1

|F |

|F |
∑

i=1

(di − di)2 (14)

0 ≤ SDC ≤ ∞. The lower the value of SDC, the better the distribution of
vectors in F . di is the mean value of all di. Again, a perfect distribution, that
is SDC = 0, means that di is constant for all i.

5.2 Spread

Deb et al. [9] proposed the performance measure ∆ with the idea of measuring
both progress towards the Pareto-optimal front and the extent of spread. To
this end, if P is a subset of the Pareto-optimal front, ∆ is defined as follows

14



Definition 5.2 The ∆ performance measure is defined as:

∆ =

m
∑

i=1

de
i +

|F |
∑

i=1

|di − d|

m
∑

i=1

de
i + |F |d

. (15)

where de
i denotes the distance between the i-th coordinate for both extreme

points in P and F , and di measures the distance of each point in F to its closest
point in F . For the experiments, the crowding distance for di is used (see [6]
for more details on this distance). Nevertheless, other types of measures could
be used for di. From the above definition, it is easy to conclude that 0 ≤ ∆ ≤ 1
and the lower the ∆ value, the better the distribution of solutions. A perfect
distribution, that is ∆ = 0, means that the extreme points of the Pareto-optimal
front have been found and di is constant for all i.

Inverted Generational Distance (IGD)

The concept of generational distance (GD) was introduced by Van Veldhuizen
& Lamont [27, 28] as a way of estimating how far are the elements in the Pareto
front produced by the algorithm from those in the true Pareto front of the
problem.

Definition 5.3 Generational distance is defined as:

GD =

(

N
∑

i=1

d2

i

)1/2

N
(16)

where N is the number of nondominated vectors found by the algorithm being
analyzed and di is the Euclidean distance (measured in objective space) between
each of these vectors and the nearest member of the true Pareto front.

It should be clear that a value of GD = 0 indicates that all the elements
generated are in the true Pareto front of the problem. Therefore, any other
value will indicate how “far” are these solutions from the global Pareto front
of the problem. Here, an “inverted” generational distance measure (IGD) was
implemented, using as a reference the true Pareto front, and each of its elements
are compared with respect to the front produced by an algorithm. In this way,
IGD computes how far are the elements of the true Pareto front, from those in
the Pareto front produced by the algorithm being analyzed. Computing this
“inverted” generational distance value reduces the bias that can arise when an
algorithm does not fully cover the true Pareto front. It is worth noting that,
since this performance measure requires having the true Pareto front of the
problem, it cannot be used in problems in which the true Pareto front is not
known and is very costly (computationally speaking) to compute it (e.g., in
large instances of NP-Complete problems).
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Ratio of the Hypervolume (HV R)

The ratio of the hypervolume (HV R) performance measure was introduced in
[20], and is based on the “size of the space covered” performance measure, which
was originally proposed in Zitzler’s PhD thesis [31].

Let P∗
A be the solution (nondominated elements) of an algorithm A . First,

the hypervolume needs to be computed2 for the region determined by the image
(F (P∗

A)) of the solution of the algorithm A and the origin.
For example, a vector ~x ∈ P∗

A for a two-objective problem defines a rectangle
bounded by a reference point W and (f1(~x), f2(~x)). The area of the union of
all such rectangles defined by each vector in P∗

a is the hypervolume. Then the
hypervolume V (P∗

A) determined by the algorithm A is defined as:

V (P∗
A) := Hypervolume







⋃

~x∈P∗

A

a~x







, (17)

where a~x is the hyperbox determined by the components of F (~x) and the W
reference point. V depends strongly of the choice of W . A set of nondominated
solutions can produce different values of V for different choices of W . Therefore,
the use of this metric makes difficult to compare different values for V in different
iterations. The use of the ratio of the hypervolume is a way to overcome this
problem.

Definition 5.4 Let PopA and P∗
PF be the solution of an algorithm A and the

Pareto front PF of the function at hand, respectively; Then the performance
measure HV R is defined as

HV R(A, PF ) =
V (P∗

A)

V (P∗
PF )

(18)

In this performance measure, the maximum value of HV R should be 1 when
A is equal to PF and HV R(A, PF ) < 1, otherwise.

Success Counting (SC)

The success counting measure is defined based on the idea of the measure called
Error Ratio proposed by Van Veldhuizen [27] which indicates the percentage of
solutions (from the nondominated vectors found so far) that are not members of
the true Pareto optimal set. In this case, the number of vectors (in the current
set of nondominated vectors available) that are members of the Pareto optimal
set are counted:

Definition 5.5 The success counting measure SC is defined by

SC =

N
∑

i=1

si, (19)

2The hypervolume is the area under the curve for the 2-dimensional case or the volume
under the surface for the 3-dimensional case.
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where N is the number of vectors in the current set of nondominated vectors
available;
si = 1 if vector i is a member of the Pareto optimal set, and si = 0 other-
wise.

It should then be clear that SC = N indicates an ideal behavior, since
it would mean that all the vectors generated by the algorithm belong to the
true Pareto optimal set of the problem. For a fair comparison, when using this
measure, all the algorithms should limit their final number of nondominated
solutions to the same value. Note that SC avoids the bias introduced by the
Error Ratio measure, which normalizes the number of solutions found (which
belong to the true Pareto front) and, therefore, provides only a percentage of
solutions that reached the true Pareto front. This percentage does not provide
any idea regarding the actual number of nondominated solutions that each algo-
rithm produced. It is worth noting that, as in the case of IGF, this performance
measure requires having the true Pareto front of the problem.

Number of points

It shows us how far the number of solutions found is from the maximum capacity
of the repository. In all the experiments, the repository was defined with a
capacity of 100 points. So, the closer to 100 that an algorithm gets, the better
the value of this performance measure.

5.3 Performance in Problems with 2 Objective Functions

Now the results obtained for the following three test functions taken from [32]
are shown:

5.3.1 ZDT1’s test function

Minimize (f1(~x), f2(~x))

f1(~x) = x1

f2(~x) = g(~x) h(f1(~x), g(~x))

g(~x) = 1 + 9

m
∑

i=2

xi

(m − 1)
,

h(x, y) = 1 −

√

x

y
(20)

where m = 30, and xi ∈ [0, 1].
Figure 8 shows the graphical results produced by ST-MOPSO, PAPSO,

MOPSO, ε-MOEA and the NSGA-II in the first test function chosen (the true
Pareto front of the problem is shown as a continuous line in the left–hand side
image of Figure 8).
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Figure 8: Solutions produced by 1) ST-MOPSO, 2) PAPSO 3) MOPSO 4)
NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in the ZDT1 test
function (using 400, 1200, and 2000 test function evaluations).

Box-plot graphics shown in Figures 9 and 10 depict the behavior of 1) ST-
MOPSO, 2) PAPSO, 3) MOPSO, 4) NSGA-II and 5) ε-MOEA for the ZDT1
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test function regarding the six performance measures adopted for this study. In
order to study the spread behavior of such algorithms, the results of the SDC
and Spread performance measures need to be analyzed (see Figures 9(a) and
9(b)). From these results, it should be clear that the proposed approach could
distribute its solutions even in early stages of the search. This would not be
useful if the proposed approach were not converging to the true Pareto front.
However, when analyzing the results obtained by the performance measures
IGD, HVR, SC and number of points (see Figures 9(c), 10(a), 10(b) and 10(c)),
it is found that ST-MOPSO could find both more nondominated solutions with
respect to the true Pareto front and could also distribute better such solutions
along the Pareto front as it is reflected by the HVR and IGD performance
measures. Therefore, it can be said that ST-MOPSO outperformed the other
algorithms with respect to which it was compared, regarding all the performance
measures adopted.

By looking at the Pareto fronts produced by each algorithm in this test
function, it should be clear that ST-MOPSO could reach the true Pareto front in
most of the runs performed (the output of the 30 independent runs was combined
in a single file in order to generate the plots from Figure 8). Also, it can be seen
that PAPSO and MOPSO could reach the true Pareto front. However, this is
not completely true, since if the SC performance measure shown in Figure 10(b)
is analyzed, it can noted that none of these two algorithms could find more than
40 nondominated solutions with respect to the true Pareto front.

5.3.2 ZDT2’s test function

Minimize (f1(~x), f2(~x))

f1(~x) = x1

f2(~x) = g(~x) h(f1(~x), g(~x))

g(~x) = 1 + 9

m
∑

i=2

xi

(m − 1)

h(x, y) = 1 −

(

x

y

)2

(21)

where m = 30, and xi ∈[0,1].
Figure 11 shows the graphical results produced by ST-MOPSO, PAPSO,

MOPSO, the NSGA-II [9] and ε-MOEA [5] in the second test function adopted
(the outputs of the 30 independent runs of each algorithm were combined in
a single file in order to generate the plots). From this figure, it can be seen
that the PSO-based algorithms generated solutions closer to the true Pareto
front than NSGA-II and ε-MOEA. When the PSO-based approaches are com-
pared, it should be clear than the ST-MOPSO had a better performance. This
graphical-based conclusion can be confirmed if the comparison of results shown
in Figures 12 and 13 is analyzed. When the spread behavior shown in Fig-
ures 12(a) and 12(b) (SDC and Spread performance measures, respectively) is
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observed, it can be noted that the PSO-based approaches presented a better
distribution of solutions. However, the proposed approach was the algorithm
which showed the best performance for the Spread performance measure. If the
IGD and HVR performance measures are analyzed (see Figures 12(c) and 13(a),
respectively) it can be easily noted that ST-MOPSO, PAPSO and MOPSO out-
performed both NSGA-II and ε-MOEA for this test function. Also, it should
be noted that the proposed approach converged to the true Pareto front after
performing only 1, 200 fitness function evaluations while the other PSO-based
approaches converged after performing 2, 000 fitness function evaluations. The
SC performance measure shown in Figure 13(b) confirms the superiority of the
proposed approach. Therefore, it can be stated that, as in the previous example,
the performance of ST-MOPSO outperformed the other approaches compared
for this test function.

5.3.3 ZDT3’s test function

Minimize (f1(~x), f2(~x))

f1(~x) = x1

f2(~x) = g(~x) h(f1, g)

g(~x) = 1 + 9

m
∑

i=2

xi

(m − 1)

h(x, y) = 1 −

√

x

y
−

x

y
sin(10πx) (22)

where m = 30, and xi ∈[0,1].
Figure 14 shows the graphical results produced by ST-MOPSO, PAPSO,

MOPSO, the NSGA-II, and ε-MOEA in the third test function chosen (the
outputs of the 30 independent runs of each algorithm were combined in a sin-
gle file in order to generate the plots). From such figure, it can be seen that
the proposed ST-MOPSO generated some points outside the true Pareto front
in some of the runs. However, when looking at the graphical output generated
with 1, 200 fitness function evaluations, it is clear that the proposed ST-MOPSO
converged in most of its runs to the true Pareto front. The other PSO-based
algorithms converged reasonably well and NSGA-II and ε-MOEA produced a
considerably large number of solutions outside the true Pareto front of the prob-
lem.

Figures 15 and 16 show the comparison of results among the three algo-
rithms considering the performance measures previously described. In this test
function, the Spread performance measure shown in Figure 15(b) does not lead
to any conclusive result. This seems to be mainly due to the disconnected form
of the Pareto Front. However, when analyzing the rest of the performance mea-
sures, it can observed that the approach proposed here could reach the Pareto
front since it produced good results for the IGD and the HVR performance
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measures (see Figures 15(c) and 16(a)); it also produced a better number non-
dominated solutions than the other algorithms (see Figures 16(b) and 16(c)).
Therefore, it can be said that the proposed approach could reach the true Pareto
front while the others did not. Also, as well as in the previous example, it should
be clear that the proposed approach cold reach the true Pareto front after per-
forming only 1, 200 fitness function evaluations.

From these performance measures, it can be stated that the proposed ap-
proach outperformed the other algorithms.

Summarizing the results obtained for the bi-objective problems, it can be
seen that the performance of the proposed ST-MOPSO was the best with respect
to all the performance measures adopted. By looking at the Pareto fronts of the
three test functions adopted, it can be easily seen that most of the executions of
the ST-MOPSO algorithm reached the true Pareto front, which is an indicative
of the robustness of the approach. This contrasts with the other approaches,
which not only showed a higher variation of results, but were also unable to
reach the true Pareto front in most of the runs, mainly because of the relatively
low number of fitness function evaluations considered. When using a larger
number of evaluations, the two other approaches are able to reach consistently
the true Pareto front of the test functions adopted.

5.4 An example with 3 objective functions

Here, an example with 3 objectives is introduced, the so–called Viennet test
function [3]:

Minimize (f1(~x), f2(~x), f3(~x))

f1(~x) = x2

1
+ (x2 − 1)2

f2(~x) = x2

1
+ (x2 + 1)2 + 1

f3(~x) = (x1 − 1)2 + x2

2
+ 2 (23)

Figure 17 shows the graphical representation of the solution produced by
ST-MOPSO (only the nondominated elements are shown), PAPSO, MOPSO,
NSGA-II and ε-MOEA for this example (the outputs of the 30 independent runs
of each algorithm were combined in a single file in order to generate the plots).

Figures 18 and 19 show the comparison of results among the three algo-
rithms considering the performance measures previously described. Apparently,
the poor values obtained by ε-MOEA are due to a well-known limitation of
the ε-dominance mechanism (it loses the extreme parts of the Pareto front).
Therefore, it is unable to properly cover the entire Pareto front. It can also be
observed that for the SDC and Spread performance measures (see Figures 18(a)
and 18(b), respectively), the NSGA-II presented better values than the other
algorithms. However, it is important to note that NSGA-II did not approach
the true Pareto front as well as ST-MOPSO as can be easily seen in the values
of IGD, HVR and SC (see Figures 18(c), 19(a) and 19(b), respectively). When
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comparing the PSO-based approaches, it can be noted that their performances
are very similar. However, the proposed approach obtained better results for
both the IGD and SC performance measures (see Figures 18(c) and 19(b)).

Summarizing, if the six performance measures and the graphical represen-
tation are considered, it can be concluded that ST-MOPSO outperformed the
other algorithms for this test problem.

6 Conclusions and Future Work

In this paper, a new mechanism to maintain diversity has been proposed, based
on the use of stripes. As an example this mechanism was incorporated into
a multi-objective particle swarm optimizer (MOPSO) in order to validate its
effectiveness. The results indicate that the approach is a viable alternative to
maintain diversity in a multi-objective metaheuristic (not necessarily a particle
swarm optimizer).

Some of the possible future work is to extend the approach so that it can
handle any number of objectives, since the current version only deals with op-
timization problems having 2 or 3 objectives. It is also desirable to test this
approach with other types of multi-objective optimization heuristics, such as
the artificial immune system [2]. Finally, a new performance measure based
on the stripes introduced in this paper could also be developed. The idea is
that this new performance measure could be used to assess the performance
of multi-objective metaheuristics regarding the spread and distribution of the
nondominated solutions that they generate.
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Figure 9: Box-plots produced from the results of 1) ST-MOPSO, 2) PAPSO
3) MOPSO 4) NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in
the ZDT1 test function (using 400, 800, 1200, 1600 and 2000 fitness function
evaluations).
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Figure 10: Box-plots produced from the results of 1) ST-MOPSO, 2) PAPSO
3) MOPSO 4) NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in
the ZDT1 test function (using 400, 800, 1200, 1600 and 2000 fitness function
evaluations).
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Figure 11: Solutions produced by 1) ST-MOPSO, 2) PAPSO 3) MOPSO 4)
NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in the ZDT2 test
function (using 400, 1200 and 2000 fitness function evaluations).
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Figure 12: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the ZDT2 test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).

29



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f(
t)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

400 ffe 800 ffe 1200 ffe 1600 ffe 2000 ffe

(a) HVR

0
20

40
60

80
10

0

f(
t)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

400 ffe 800 ffe 1200 ffe 1600 ffe 2000 ffe

(b) SC

0
20

40
60

80
10

0

f(
t)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

400 ffe 800 ffe 1200 ffe 1600 ffe 2000 ffe

(c) Number of points

Figure 13: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the ZDT2 test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).
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Figure 14: Solutions produced by 1) ST-MOPSO, 2) PAPSO 3) MOPSO 4)
NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in the ZDT3 test
function (using 400, 1200 and 2000 fitness function evaluations).
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Figure 15: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the ZDT3 test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).
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Figure 16: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the ZDT3 test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).
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Figure 17: Solutions produced by 1) ST-MOPSO, 2) PAPSO 3) MOPSO 4)
NSGA-II, 5) ε-MOEA algorithms in 30 independent runs in the VIENNET test
function (using 400, 1200 and 2000 fitness function evaluations).
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Figure 18: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the VIENNET test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).
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Figure 19: Box-plots produced from the results of 1) MOPSO, 2) NSGA-II, 3)
ε-MOEA in 30 independent runs in the VIENNET test function (using 400, 800,
1200, 1600 and 2000 fitness function evaluations).

36


