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Abstract: In this paper, a dynamic multi-objective evolutionary algorithm is proposed based on poly-


nomial regression and adaptive clustering, called DMOEA-PRAC. As the Pareto-optimal solutions and 


fronts of dynamic multi-objective optimization problems (DMOPs) may dynamically change in the op-


timization process, two corresponding change response strategies are presented for the decision space 


and objective space, respectively. In the decision space, the potentially useful information contained in 


all historical populations is obtained by the proposed predictor based on polynomial regression, which 


extracts the linear or nonlinear relationship in the historical change. This predictor can generate good 


initial population for the new environment. In the objective space, in order to quickly adapt to the new 


environment, an adaptive reference vector regulator is designed in this paper based on K-means clus-


tering for the complex changes of Pareto-optimal fronts, in which the adjusted reference vectors can 


effectively guide the evolution. Finally, DMOEA-PRAC is compared with some recently proposed dy-


namic multi-objective evolutionary algorithms and the experimental results verify the effectiveness of 


DMOEA-PRAC in dealing with a variety of DMOPs. 
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1. Introduction 


The study on dynamic multi-objective optimization problems (DMOPs) is of great practical signifi-


cance in various application fields [1]. Except for the constraints and conflicts existing among the op-


timization objectives, DMOPs further show complex time-varying characteristics on their objectives or 


decision variables. This kind of problems has been widely found in a variety of practical projects, such 


as internet of things service problem [2], dynamic control problem [3], path planning problem [4], and 


railway hub dispatching problem [5]. The key challenge for solving DMOPs is how to respond to the 


dynamically changing environments, such as the changes in the number of objectives [6-7] and deci-


sion variables [2], and the changing constraints [8], which bring difficulties to optimization. In [9], 


DMOPs are classified into four types according to the changes of Pareto-optimal set (POS) and/or Pa-


reto-optimal front (POF) with time. The solving of DMOPs should track the POS and POF in a short 


time. In order to solve these intricate problems, many dynamic multi-objective evolutionary algorithms 


(DMOEAs) have been proposed and become the mainstream for solving DMOPs. In general, the goal 
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of solving all types of DMOPs is to continuously obtain the POS within each environment. There are 


various kinds of mechanisms and techniques embedded into the current DMOEAs to achieve this goal, 


such as diversity-based DMOEAs [10-12], memory-based DMOEAs [13-15], and prediction-based 


DMOEAs [16-19]. Diversity-based DMOEAs mainly focus on maintaining the diversity of populations 


and quickly track new environments by jumping out of the current optimal scene. The main idea of 


memory-based DMOEAs is to reuse the historical population according to some judgment conditions, 


which is a simple and effective scheme when the state of the new environment is consistent with that of 


a certain historical environment. Prediction-based DMOEAs use population movement or some effec-


tive models to generate the initial population of the new environment based on the assumption that 


there is a certain relationship between changes. 
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Fig. 1 The general framework of DMOEAs 


The general framework of DMOEAs is shown in Fig. 1. Obviously, the key for solving DMOPs in-


cludes two aspects: responding to change and promoting optimization. On the one hand, in order to al-


leviate the evolutionary pressure of static optimization, DMOEAs need to effectively generate the ini-


tial population in the new environment after the environment changes. On the other hand, DMOEAs 


need to quickly search the final population with good convergence and diversity in a limited number of 


evolutions for each environment.  


It is a remarkable fact that the dynamic changes in DMOPs may occur either in the decision space or 


in the objective space, which is reflected on the changes of POS and POF, respectively. However, in 


order to respond to change or promote optimization, the key works in most DMOEAs mainly act on 


one of the spaces. Some DMOEAs only consider the change or movement of solutions in the decision 


space. For example, in [20], a DMOEA is proposed based on the change type detection. Although the 


change type detected by this algorithm is based on the definition of the problem summarized by Farina 
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[9], the detection method is only based on the difference in the number of non-dominated solutions be-


fore and after the change, so that this method can only detect whether the POS has changed, but cannot 


clearly distinguish the changes in POF. In [21], two directed search strategies are presented to obtain 


the initial population of the new environment: one of which reinitializes the population based on the 


predicted moving direction and the orthogonal direction of the movement of POS, and the other gener-


ates the desired individuals in predicted regions through the moving direction of the non-dominated 


solutions between two successive iterations. Beyond these, some DMOEAs only design the main strat-


egies according to the characteristics or status of the objective space, but they ignore the acquisition of 


the initial population at the beginning of the change. For example, a couple of strategies are adopted to 


maintain the diversity and convergence of the population after environmental changes in [22], in which 


the simulated isotropic magnetic particles niching and the scheme of environmental selection guided by 


non-dominated individuals are designed based on some information in objective space, and the main 


role of these two strategies is to promote static optimization. However, this algorithm omits the re-


sponse to changes in decision space, as it is not equipped with some measures to generate the initial 


population after changes, which means the lack of flexibility of the algorithm in responding to changes. 


From the above analysis, it can be seen that the response strategies acting in both the decision space 


and the objective space jointly affect the overall performance of DMOEAs to a certain extent. For some 


DMOPs with little change correlation or rapid change, the DMOEA that lacks a response in a certain 


space may reap some disappointing final populations. In order to solve the above problem, two effec-


tive strategies which act in the decision space and the objective space are respectively proposed in this 


paper, and a DMOEA based on these effective components is presented, called DMOEA-PRAC. The 


main contributions of this paper are summarized as follows: 


1). A polynomial regression based predictor (called PR) is designed for generating initial population 


according to the change of POS in the decision space. The potentially available information contained 


in all historical populations is obtained by the PR predictor based on polynomial regression model, 


which extracts the linear or nonlinear changing relationship of historical environments. After each en-


vironmental change, DMOEA-PRAC can generate promising initial solutions for new environment.  


2). An adaptive reference vector regulator (called AC) based on K-means clustering is suggested to 


track the complex changes of POF in the objective space. Inspired by the evolutionary trend of the cur-


rent population, the regulator obtains the suitable reference vectors for the current environment by 


clustering. Through the AC regulator, the adjusted vectors can guide the evolution effectively, and 


DMOEA-PRAC can adapt to the new environment quickly. 


3). The performance of DMOEA-PRAC is studied and analyzed by numerous experimental studies 


for solving DMOPs with various characteristics, which involve disconnected POFs, degenerated POFs 


and concave-convex switching POF. Here, DMOEA-PRAC is compared with some state-of-the-art 
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DMOEAs, and the experimental results verify the effectiveness of DMOEA-PRAC in dealing with a 


variety of DMOPs.  


The rest of this paper is organized as follows: the related works of current DMOEAs and the motiva-


tions of the designed DMOEA-PRAC are described in Section 2. The whole flow and details of 


DMOEA-PRAC are presented in Section 3. In Section 4, the discussions of the experimental results of 


DMOEA-PRAC with some competitive DMOEAs are provided. At last, the conclusions of this paper 


and the future work are outlined in Section 5. 


 


2. Related Works and Our Motivations 


2.1 Some Definitions of DMOPs 


This paper mainly concerns the unconstrained DMOP with the changing objective values, which is 


mathematically defined as follows: 


1 2minimize    ( , ) ( ( , ), ( , ),..., ( , )) ,


subject to    
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where ( , )F tx  is a set of m objective functions at time t. In the decision space n
x R  , a solution 


1 2( )T
nx ,x ,...xx contains n decision variables. Here, t is the time index in the time space t , which is 


defined by  


t


t


t
n


                             (2) 


where   and t  represent the generation counter and the frequency of change, respectively, and nt is 


the severity of change. The smaller value of t  means the faster dynamic change, and the smaller val-


ue of nt indicates the larger vibration in each change.  


For DMOPs, there are some basic definitions as follows: 


Definition 1: For two solutions x1 and x2, x1 is said to dominate x2, if and only if:  i{1, 2, …, m} 


1 2( ) ( )i if x ,t f x ,t , and  j {1, 2, …, m} 1 2( )< ( )j jf x ,t f x ,t , where ( )if x,t is ith objective value at 


time t.  


Definition 2: For a nondominated (Pareto-optimal) solution *
tx  at time t, there is no other solution 


xx  to dominate *
tx . The Pareto-optimal set includes all nondominated solutions at time t, repre-


sented by POSt. 


Definition 3: At time t, the corresponding objective vectors of the POSt are called the Pareto-optimal 


Front, represented by POFt.  


According to the changing status of the POS and POF, DMOPs are divided into the following four 


types [9]: 


Type Ⅰ: The POS changes with time, while the POF remains unchanged.  
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Type Ⅱ: Both the POS and the POF change with time.  


Type Ⅲ: The POS is invariable, while the POF changes with time. 


Type Ⅳ: Although the objective function changes, the POS and the POF are all fixed. 


2.2 A Brief Introduction of DMOEAs 


At the beginning of solving DMOPs, DMOEAs usually need a change detection mechanism to judge 


whether the environment has changed or not. At present, the mainstream change detection mechanism 


is the reevaluation method [10, 17], and its main idea is to select a part of the solution from the current 


population to detect the environmental change by checking whether their objective values are the same. 


In this paper, a simple and effective reevaluation method is adopted to detect change. If a change is de-


tected, DMOEAs need some response schemes to track the change and provide the new environment 


with a good initial population to approximate the true POS and POF as closely as possible. According 


to the change response mechanism, the existing DMOEAs can be divided into the following three cat-


egories: diversity-based DMOEAs, memory-based DMOEAs, and prediction-based DMOEAs. 


1) Diversity-based DMOEAs. When solving DMOPs, the population may have converged to a spe-


cific region in the current environment. If the change occurs, it may be difficult for DMOEAs to track 


and locate the new global optimality due to the diversity loss. Diversity-based DMOEAs emphasize on 


improving this situation, and this kind of DMOEA first starts from DNSGA-II proposed by Deb et al. 


[10]. There are two response strategies in DNSGA-II, i.e., random initialization and mutation mecha-


nism, which introduce diversity by adding some randomly generated individuals or individuals with 


Gaussian variation to the population. In [11], a simple response mechanism is integrated into a 


DMOEA with vector evaluation in the proposed DVEPSO. When the environment changes, the posi-


tions of some particles are reinitialized to respond to the change. In addition, there are some DMOEAs 


based on diversity maintenance that directly take the POS of the previous moment as the initial popula-


tion of the new environment. For example, the orthogonal DMOEA called DOMOEA-II is proposed in 


[12] and the DMOEA based on immune clonal selection strategy is designed in [23], which directly 


regard the current POS as the initial population of the new environment. Some diversity-based 


DMOEAs [12, 23, 24] do not take actions to obtain an effective initial population in the new environ-


ment, and their individual selection and maintenance methods are based on the information of POF in 


the objective space, while the influence of POS changes in the decision space is ignored. This kind of 


DMOEA may be invalid for those DMOPs that change rapidly or drastically. 


2) Memory-Based DMOEAs. The main idea of the memory-based DMOEAs is to store the POSs 


searched from the historical environments and reuse the historical POSs in the new environment ac-


cording to some criterions. For example, a DMOEA based on artificial immune system called 


DCMOAIS is designed in [13]. In this approach, three modules for initialization, exploration and ar-


chiving are suggested to maintain the convergence and diversity of the population. In [14], a memory 
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mechanism which can store a large number of non-dominated solutions is combined with a static algo-


rithm NSGA-II [25]. When the change occurs, the stored individuals are reused to form the initial pop-


ulation of the new environment. Furthermore, a DMOEA based on memory mechanism and local 


search is presented in [26]. This algorithm calculates the intensity of environmental change by detect-


ing the matching degree of the current POS in the new environment, and then determines the number of 


individuals selected by the memory mechanism according to the intensity of change. In [15], a memory 


mechanism is designed based on change similarity detection. If change is detected, the central points of 


the POS in a historical environment where the change is similar to the current change will be reused in 


the initial population of the new environment. For these memory-based DMOEAs, most of them are 


more effective on the DMOPs with periodic changes, and a certain amount of computation is used to 


store and extract useful information in memory. In addition, how to design more accurate reuse criteria 


is also an urgent problem for the memory-based DMOEAs. 


3) Prediction-based DMOEAs. In recent years, the prediction-based method is very popular in the re-


search of DMOPs due to its strong robustness and flexibility. In the prediction-based DMOEAs, it is 


usually assumed that the change of the environment follows a predictable pattern. Through the law of 


change found by a prediction mechanism, the initial population of the new environment can be easily 


generated. According to the difference of driver kernel, the prediction-based DMOEAs can be roughly 


divided into experience-driven (knowledge-driven) DMOEAs and model-driven (data-driven) DMOE-


As. The predictors in experience-driven (knowledge-driven) DMOEAs are often formed by the de-


scriptive information (experience or knowledge) such as the movement of particular solutions and the 


types of change, which is obtained by the discriminator of algorithms or observed by researchers. For 


example, a multi-directional prediction strategy is employed in [27], where some representative indi-


viduals are selected from population according to the clustering results, and the representative individ-


uals of the last two environments form a multi-directional prediction sequence. In the new environment, 


the displacement of each representative individual guides the evolution direction of each cluster. Based 


on this study, a multi-model prediction algorithm called MMP is designed in [28]. The changing types 


of POS are subdivided into translation, rotation and combination, which are distinguished by the dis-


criminant strategy of MMP, and different change types correspond to different prediction schemes. 


Moreover, the DMOEA suggested in [29] relocates the knee points and boundary points according to 


the movement of the global knee points in the new environment, and the initial population of the new 


environment is generated near the predicted knee solutions and boundary solutions. In model-driven 


(data-driven) DMOEAs, the predictors tend to be inspired by some self-learning intelligent models, 


which can extract some hidden rules of environmental change, and the performance of models depends 


on the quality of data. There are many advanced techniques that have been applied to model-driven 


(data-driven) DMOEAs. For example, Kalman filter (KF) is introduced in [16] to solve DMOPs. When 
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the environment changes, a scoring mechanism is used to decide whether to use the KF-based predictor. 


Furthermore, a DMOEA based on linear inverse model is proposed in [30], and the inverse model 


guides the evolution of the population by predicting the reverse function between the decision space 


and objective space. Based on this study, in order to break through the limitations of linear model, an 


inverse Gaussian process is used to construct the relationship from the objective space to decision 


space [31]. In addition, the transfer learning based strategies are widely used to solve DMOPs. In [19], 


the transfer component analysis (TCA) is adopted to build a prediction model, which uses the acquired 


knowledge to explore new POS for generating the initial population of new environment. In brief, pre-


diction-based DMOEAs are suitable for most DMOPs and have developed rapidly in recent years. 


However, this kind of DMOEAs still has a lot of improvement room for research, as the generalization 


ability of the prediction model and the computational cost of model training can be further improved. 


2.3 Our Motivations 


Most of the existing works to solve DMOPs intend to consider only the change of one space, that is, 


the change of POS in the decision space or the change of POF in the objective space. Some DMOEAs 


that only consider tracking POF in the objective space place emphasize on promoting static optimiza-


tion, but rarely perform new search in the decision space. If the environmental change is significant, the 


population of the previous environment is obviously no longer applicable. Therefore, a predictor that 


acts on the decision space is designed in this paper, which explores the changing trends of POS from 


the historical populations. Assuming that the change of POS can be expressed by a function, the motion 


such as translation and rotation can be simply represented by some linear functions, i.e., the vector ad-


dition of some individuals with displacement vector or angle vector. However, it is difficult to find the 


change equation for the inenarrable nonlinear motions. Given that most POS changes can be abstracted 


by polynomial equation, the designed predictor uses the polynomial model to fit the relationship of 


POSs. From the perspective of obtaining the implicit information of change, this model-driven predic-


tor is self-learning, which reduces the burden of designing additional judgment conditions to obtain ex-


plicit information. In short, this predictor explored in the decision space acquires the initial population 


of the new environment by learning the linear or nonlinear change relationship between historical POSs, 


which helps the algorithm respond to change rapidly. 


If the response strategy in a DMOEA focuses on searching the decision domain, it may be difficult 


for the algorithm to deal with the DMOPs whose POF has complex changing characteristics, such as 


expansion or scaling, disconnection, concave-convex switching and knee region transformation. In Fig. 


2, the POFs of DF9, DF11 and DF12 [32] have different truncations and sizes in different environ-


ments, while the DMOEAs that only consider the decision space cannot obtain the information about 


POF changes. In addition, the number of static evolution in each environment is limited, which also 


makes it difficult for such DMOEAs to track the true POF in the new environment. Therefore, a strate-
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gy that works in the objective space is designed in this paper to respond to the changes of POF. Con-


sidering that the fixed reference vectors in the decomposition-based algorithm may fail in some re-


gions, an adaptive reference vector regulator is developed in our algorithm. In this regulator, the 


K-means clustering method is adopted to collect the information about population evolution, and the 


new reference vectors suitable for the current environment are obtained based on the clustering results. 


According to the adjusted reference vectors, the proposed algorithm can adapt to the change of the ob-


jective space more quickly and track the true POF in the new environment more accurately. 
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Fig. 2 The changes of POF in DF9, DF11 and DF12 


 


3. The Proposed Algorithm DMOEA-PRAC 


This section introduces the proposed DMOEA-PRAC, and the overall framework of DMOEA-PRAC 


is given in Section 3.1. When the change occurs, DMOEA-PRAC responds to the change in the deci-


sion space and the objective space, respectively. For the decision space, a predictor based on polynomi-


al regression is adopted to generate the initial population of the new environment. For the objective 


space, a reference vector regulator based on adaptive K-means clustering is designed to quickly tackle 


to the complex changes of POF. The two strategies are described in detail in Section 3.2 and Section 


3.3, respectively. In addition, in order to obtain the final population with good convergence and diver-


sity for each environment, a simple and effective environmental selection strategy is suggested based 


on the adjusted reference vectors, which is provided in Section 3.4. 


3.1 The Framework of DMOEA-PRAC 
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Fig. 3 The framework of DMOEA-PRAC  


 


The basic framework of the proposed DMOEA-PRAC is shown in Fig. 3, and the pseudo code of the 


overall process is shown in Algorithm 1. There are five inputs in Algorithm 1, which are a DMOP, the 


termination condition, the population size N, the number of objective m and the number of variables d. 


In line 1, the set POP used to preserve the final population in all environments is set to an empty set, 


and then the population P and the reference vector matrix W are randomly initialized in line 2, where 


the number of solutions in population P and the number of vectors in W are N. Then, DMOEA-PRAC 


enters the main loop in lines 4-18 until the termination condition is met. Firstly, the offspring popula-


tion O is generated by the differential evolution (DE) operator [33], and the union population U is ob-


tained by merging the parent population P and the offspring population O in line 4. If the change is de-


tected in line 5, the final population of the previous environment is preserved in the population set POP 


in line 6. According to the historical populations retained in POP, the designed PR predictor introduced 


in Section 3.2 is used in DMOEA-PRAC to predict the initial population P of the new environment in 
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line 7.  


 
Algorithm 1 General Framework of DMOEA-PRAC 
Input: a DMOP, the termination criterion, the population size N, the number of objective M, the num-
ber of variable d 
Output: The stored final population sets in each environment: POP = {P1, P2, ..., Pt} 


1: Set POP =  
2: Initialize and evaluate a population P and generate a reference vector matrix W 
3: while the termination criterion is not met do 
4: Generate the offspring O from P and get the union population U by merging O and P 
5: if change is detected  
6: Store the final population of the last environment into population set POP  
7: P = PR(POP, N, d)      //Algorithm 2   
8:         Reinitialize the vector matrix W randomly 
9:         if the reference vector adjustment condition is met 


10:             Divide U into multiple frontiers (F1, F2, ..., FL) by the non-dominated sorting 
11:             Start from F1, i = 1 
12:             while |S| ＜ N do 
13:                  S = S + Fi, i = i+1 
14:             end while 
15:             W = AC(S, N, M)             //Algorithm 3 
16:         end if 
17:     end if  
18: P = EnvironmentalSelection(U, W, N)        //Algorithm 4 
19: end while 
20: return POP 


 


Subsequently, the algorithm prepares for the adjustment of the reference vectors in the objective 


space. In order to eliminate the negative influence in the process of vector adjustment in the past, and 


avoid the adaptive vectors entering a limited or cramped area in the later stage of change, 


DMOEA-PRAC needs to firstly reinitialize the reference vectors randomly in line 8. Next, if the condi-


tion for reference vector adjustment is met, the algorithm will adaptively adjust the vectors based on 


the proposed AC regulator in lines 10-15. In line 10, the algorithm divides the union population U into 


multiple Pareto frontiers (F1, F2, ..., FL) by fast non-dominated sorting [25]. In order to adjust reference 


vector effectively, the algorithm obtains a solution set S from different dominance levels in lines 11-14, 


which starts from non-dominated frontier F1 in line 11, and then Fi (i = 1~L) is orderly added to the so-


lution set S until the number of solutions in S is not less than N in line 13. Subsequently, the reference 


vector will be updated by the AC regulator suggested in Section 3.3 in line 15. In the K-means cluster-


ing based regulator, the generation of new reference vectors is based on the centroids of clusters. Final-


ly, in order to obtain the population with good convergence and diversity, the elite solutions are select-
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ed from the union population U according to a simple and effective environmental selection strategy in 


line 18, and the corresponding pseudo code is shown in Algorithm 4. At the end of Algorithm 1, the set 


POP containing the final population of each environment is outputted. 


 


3.2 The Predictor based on Polynomial Regression 


3.2.1 The Polynomial Regression 


The PR predictor based on polynomial regression is presented to excavate the potential relationship 


between the historical environments and the new environment. Through the regression analysis, the 


motion equation of each decision variable is obtained by the polynomial model, which is used to pre-


dict the initial solutions in the new environment. In this paper, the polynomial equation is taken as the 


general form of the movement equation as it can express most linear or nonlinear processes. The unary 


polynomials are defined as: 
2


0 1 2( ) ... n
np x x x x                                  (3) 


where n  is the coefficient of each item, and n is the degree of the polynomial equation. If n is set to 


0, it is the linear equation, which can be used to describe the linear relationship of historical changes. If 


the variable about x in each item is regarded as a feature, and set x1 = x, x2 = x2 and xn = xn, Eq. (3) can 


be transformed into:  


0 1 1 2 2( ) ... n np x x x x                                 (4) 


Obviously, regardless of the form of the feature xn, Eq. (4) can be regarded as a linear equation about 


coefficient n . For a set of training data 1 1 2 2{( , )}={( , ), ( , ), ..., ( , )}m mx y x y x yx y
ur uur uur


 containing m 


training samples, where x and y represent the training input matrix and the training output matrix, re-


spectively, and ( , )i ix y
ur


 is a training sample (i = 1~m). The length of the input data of each training 


sample is | ix
ur


|, and the length of the output data is 1. According to the regression process, 


DMOEA-PRAC learns a polynomial mapping between the input data and the output data, which can 


reflect the changing trend of the solution in the decision space. Each obtained polynomial mapping 


serves as a prediction model to provide a variable of a solution for the new environment. In particular, 


the key of obtaining such a prediction model is to get the appropriate coefficient n  of Eq. (3) by 


training. Supposing that   and X represent the coefficient matrix and the feature matrix, respectively, 


Eq. (4) can be expressed as: 


 y X                                      (5) 


where   is the matrix of constant terms, and the feature matrix X consists of the input matrix x. For 


the unary polynomial, X can be defined as: 
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1 ...


1 ...
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1 ...
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m m m


x x x


x x x


x x x


 
 
   
 
  


X                                  (6) 


where j
ix  is the jth power feature of the input data of the ith training sample. 


Regarding Eq. (5), although this abstract model is a function about feature terms formed by several 


variables, it can also be regarded as a linear function about coefficient terms in the process of regres-


sion. Therefore, the appropriate model coefficients can be easily obtained through the linear regression. 


In this paper, the least square method is used to solve the regression coefficients. The main idea is to 


minimize the sum of squares of deviations between all predicted outputs and true outputs, which is ex-


pressed as follows: 


2


1


1
min ( ) ( ( ) )


2


m


i i
i


J h X y



                              (7) 


where ( )ih X  and yi are the predicted output value and the true output value corresponding to the ith 


input sample, respectively, and ( )J   is the regression loss function. In the process of minimizing 


( )J  , the algorithm takes the partial derivative of the loss function, and the matrix derivation is used 


to obtain the optimal  , which can be calculated as follows: 
T 1 T( ) X X X y                                  (8) 


where XT is the transpose matrix of X. After the optimal   is obtained, the corresponding prediction 


model can be obtained by bringing the coefficients into Eq. (3). 


3.2.2 The PR Predictor 


In this work, each prediction model obtained by regression is individual-based, that is, every deci-


sion variable of a solution corresponds to a prediction model. Therefore, the designed PR predictor 


contains N × d polynomial prediction models, where N is the population size and d is the number of the 


decision variables. The structure of the proposed PR can be abstracted as follows: 


1 2
1 1 1 1


1 2
2 2 2 2


1 2


[ ( ), ( ), ..., ( )]


[ ( ), ( ), ..., ( )]
PR


...


[ ( ), ( ), ..., ( )]


d


d


d
N N N N


x p x p x p x


x p x p x p x


x p x p x p x


 



 

 


                         (9) 


where ( )j
ip x  is the prediction model of the jth decision variable of the ith solution in the population (i 


= 1~N，j = 1~d). The data used to predict the new solutions come from the most recent set of input 


sequences in the historical populations, which are shaped like the input sample of training data. The 


initial population of the new environment can be generated by inputting the polynomial feature matri-
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ces of the prediction data into the PR predictor. The pseudo code of PR predictor is shown in Algorithm 


2. 


 


Algorithm 2 PR (POP, N, d) 
Input: The historical population POP, the population size N, the number of decision variable d 
Output: The initial population of new environment: P 


1: Set P =  
2: Use time window to divide training data and prediction data from POP 
3: for i = 1~N 
4:    for j = 1~d 
5:       Construct polynomial feature matrix X based on Eq. (10) 
6:   Train the polynomial prediction model in Eq. (3) by linear regression 
7:   The j-D variable j


ix  of the ith solution is predicted by the fitting model 
8:    end for 
9:    Adjust the boundary of ith solution xi 


10:    Add xi to the initial population P 
11: end for 
12: return P 


In this algorithm, all final populations in the historical environments are fully utilized to predict the 


new solutions in the decision space. Firstly, the training samples and prediction data are divided from 


the historical population set POP by the time window method in line 2. The algorithm starts from the 


population of the first environment in POP, and the training samples are collected by the time-series 


movement of the window. Each window corresponds to a sample until the window reaches the last 


population of POP. Each training sample includes two parts: input data x and output data y, and a time 


window contains an input data window and an output data window. It should be noted that the length of 


the output data in the training sample is 1. Suppose that the size of the time window is win, and the 


length of the input data is win-1. If the window is not filled up, the algorithm will use random initiali-


zation to simply maintain the diversity of the population. If there are t historical populations in POP, 


t+1-win training samples can be collected from POP, and the number of training samples increases 


with the number of environmental changes. For the collection of prediction data, the time window 


eliminates the output data window and continues to move, and the length of the prediction data is 


win-1.  


The PR predictor is individual-based, so each decision variable of a solution corresponds to a predic-


tion model. In lines 3-10, the algorithm will learn each prediction model and use the model to predict 


the decision variables of new solutions. First of all, the input data composed of decision variables are 


used to construct the polynomial feature matrix X in line 5. In this paper, the length of the training in-


put data is 2, so the corresponding model is a binary polynomial equation, and the polynomial feature 
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matrix X is expressed as: 


1 1 1 1 1 1


2 2 2 2 2 2


1, , , ..., , , ..., , ...


1, , , ..., , , ..., , ...
( , 1 ~ )


...


1, , , ..., , , ..., , ...


i j i j
a b a b a b


i j i j
a b a b a b


i j i j
ma mb ma mb ma mb


x x x x x x


x x x x x x
i j n


x x x x x x


 
 
   
 
  


X              (10) 


where max  and mbx  are the binary input data of the mth sample, i
max  and j


mbx  represent the higher 


power of the binary input data, and i j
ma mbx x  represents the product of different higher powers of the 


binary input data. After obtaining the polynomial feature matrix X, the algorithm trains the polynomial 


prediction model in line 6. In this process, the optimal coefficient matrix   of the prediction model is 


obtained through Eq. (8), and the corresponding prediction model can be obtained by substituting the 


coefficients in   into Eq. (3). Finally, the prediction model is used to calculate the jth decision varia-


ble of the ith solution (i = 1~N and j = 1~d) in line 7. For each predicted solution xi, its boundary must 


be checked and adjusted in line 8 to ensure that the solution is within the range of the decision variable. 


In line 9, the solution xi is added into the initial population P. In short, when a change occurs, 


DMOEA-PRAC can quickly search effective initial solutions of the new environment through the PR 


predictor. 


For the PR predictor, the matrix operation of the normal equation method in the model training pro-


cess costs the major time, and its time complexity is O(mn3), where m is the number of training samples 


and n is the dimension of the features. The dimension of features depends on the number of training 


input data win-1 and the degree of polynomial. This paper comprehensively considers the acquisition of 


nonlinear models and the avoidance of over-fitting, and the degree is set to 2, so the dimension of fea-


tures is 1 1 2 2
1 12 2win winC C  , i.e., 1 2


1 12 4win winC C  . When obtaining the initial population of the t+1 en-


vironment, there are t+1-win samples for model training, and the training complexity of a model is 
1 2 3


1 1(( 1 ) (2 4 ) )win winO t win C C     . Since the PR predictor contains N×d polynomial prediction mod-


els, the total training complexity is 1 2 3
1 1( ( 1 )(2 4 ) )win winO Nd t win C C    . 


 


3.3 The Adaptive Reference Vector Regulator Based on K-means Clustering 


In order to make the algorithm quickly adapt to the change in objective space and track the true POF 


of new environment, an adaptive AC regulator is designed based on K-means clustering to guide the 


evolution of the population. Some appropriate reference vectors are obtained from the current popula-


tion by the AC regulator, which can eliminate invalid reference vectors and generate reference vectors 


in the effective region after the environmental change. In the process of adjusting the reference vector 


by the K-means clustering, the main idea is to cluster the solutions according to similarity, and take the 


centroids of different clusters as reference points to form the reference vectors. In this paper, the acute 
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angle is used as the similarity measure of clustering, and the number of clusters is equal to the popula-


tion size N. The pseudo code for the AC regulator is shown in Algorithm 3. 


In Algorithm 3, the AC regulator starts from the initialization of the centroids of the clusters in line 1. 


For the population S, the principle of centroid search is to distribute the centroid as evenly as possible, 


so as to minimize the similarity between clusters. In this algorithm, the initial centroid set c consists of 


two types of centroids, which are the boundary centroid c1 and the conventional centroid c2, and they 


indicate the boundary cluster set C1 and conventional cluster set C2, respectively. Specially, C1 is used 


to maintain the boundary information of the population. The initialization of the two types of centroids 


adopts the following Strategy 1 and Strategy 2, respectively. 


Strategy 1 selects M boundary centroids from the population S, where M is the number of objectives. 


The principle of selection is to pick the solution with the smallest angle to the objective axis from S. 


The ith centroid 1 ( )ixc  in c1 is selected as follows: 


1 ( ) arg min ( , )i i


x S
x x e



c                                   (11) 


where ( , )ix e  is the acute angle value between solution x and the ith axis ei. The remaining N-M 


conventional centroids are selected by Strategy 2. In Strategy 2, the separation distance ( )x  of each 


solution x is calculated except the boundary centroids, and it is calculated by Eq. (12), which represents 


the minimum angle between the solution x and other solutions in population S. 


,
( ) min ( , )


x y S
x x y



                                   (12) 


After obtaining the separation distance, the solutions in S are sorted according to the descending or-


der of ( )x , and the former N-M solutions are taken as the initial conventional centroids in c2. The se-


lection of the two types of the initial centroids is shown in Fig. 4. In the bi-objective space, 4 initial 


centroids need to be selected from the 8 solutions. First, two boundary centroids are selected according 


to Eq. (11), i.e., the red points a and h in Fig. 4 (a), which have the minimum angle with the axes f2 and 


f1, respectively. Then, two conventional centroids are selected according to Strategy 2, i.e., the blue 


points c and f in Fig. 4 (b), which have the smallest angle with other solutions except the boundary cen-


troids. The four selected initial centroids are used for the K-means clustering. 
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Fig. 4 The initialized two types of centroids  


After getting the initial centroids, the population S is iteratively clustered based on K-means, and the 


final centroids of each cluster are preserved. In lines 2-4, the initial cluster set C is got by angle-based 


similarity. In this process, each solution xj in S is classified into a cluster in C according to Eq. (13) in 


line 3, and the corresponding cluster ID clj of the solution xj is retained, where clj = k. Eq. (13) is de-


fined as follows: 


, 1~
{ : arg min ( , )}k


j k
k j N


C k x cq



                               (13) 


where ( , )j kx cq  represents the angle between the ith solution jx  and the kth centroid kc . 


Algorithm 3 AC(S, N, M)  
1: Find N initial centroids c = c1 c2 of clusters in C = C1C2 
2: for each solution xj∈S 
3:     xj is classified into a cluster of C by Eq. (13) and get the corresponding cluster ID clj∈cl 
4: end for 
5: Set flag = false, times = 0 
6: while flag = false || times≤4M do 
7:     Obtain the new centroids c2 of clusters in C2 based on Eq. (14) 
8:     Update the clusters in C2 and cluster ID cj of each solution xj in S like lines 2-4  
9:     if not ∃ clj∈cl changes 


10:       flag = true 
11:     end if 
12:     times++ 
13: end while 
14: Get new vector matrix W by projecting all centroids in c to the unit hypersphere 
15: return W 


Next, the AC regulator enters the adaptive clustering process. This process is stopped when the mark 


flag is true. In addition, the number of clustering iterations is set to 0 in line 5, and the maximum times 


is 4M (M is the number of objectives), which is used to avoid redundant clustering and unnecessary re-
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source consumption. In the iterative process in lines 6-13, the algorithm first updates the centroid of 


each cluster in the conventional cluster set C2 according to Eq. (14) in line 7, and the centroid update 


formula is as follows: 


( )


( )
| |


k
j


x S
j k k


f x


f c
S






                                   (14) 


where ( )j kf c  is the jth objective value of the centroid ck and Sk is the set of all solutions in the kth 


cluster. In line 8, each cluster in C2 and the cluster ID clj of each solution are updated by using the same 


method as lines 2-4. In lines 9-11, if it is detected that there are no solutions with changed cluster ID in 


S, the stop mark flag is set to true. In the clustering process, the number of iterations times is added by 


1 after each clustering in line 12. The whole process of adaptive clustering is the alternating update of 


centroids and clusters, and it should be noted that in order to effectively preserve the boundary infor-


mation, the boundary centroids in c1 are fixed after they are first obtained in line 1. When the clustering 


process is completed, all centroids are projected onto the unit hypersphere in line 14, and new reference 


vectors in W are obtained. 


For the AC regulator, the acquisition of N initial centroids requires a time complexity of O(M|S|2), 


where M is the number of objectives, and N≤|S|≤2N. For the associating procedure of lines 2-4 in Algo-


rithm 3, the time complexity is also O(M|S|2). To finish the vectors adjustment of centroids, O(M|S|2λ) 


is required, where λ = min{4M, σ}, and σ ≥ 1 indicates the number of times that the centroids need to 


be adjusted in order to reach a stable state (i.e., flag = false). 


3.4 Environmental Selection 


In the prediction-based method, the effectiveness of the response strategy is related to the quality of 


the historical population, so it is important to acquire the final population with good convergence and 


diversity in each environment. Here, a simple and effective environmental selection scheme based on 


reference vector is designed in this paper. Regarding the diversity, the algorithm selects individuals by 


associating solutions to reference vectors in W. Considering the convergence, the solution with the best 


convergence index is added to the population one by one. In line 1 of Algorithm 4, the population P is 


set to empty. In lines 2-4, all the solutions xi in the union population U are associated to one reference 


vector wj in W (i = 1~|U|，j = 1~N). The binding method is similar to the process of classifying solutions 


to clusters. In line 6, for each vector wj in W, the set Bj of all solutions associated to wj is obtained as 


follows: 


,
{ : arg min ( , )}


i j


j
i i jx U w W


B x x wq
 


                             (15) 


where ( , )i jx wq  is the angle between the solution xi and the vector wj. 
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Algorithm 4 EnvironmentalSelection(U, W, N) 
1: Set P =  
2: for each solution xi∈U 
3:     Associate xi to a reference vector wj in W based on Eq. (15) 
4: end for 
5: for each reference vector wj∈W 
6:     Obtain the set Bj of solutions associated to wj 
7:     if |Bj| != 0 
8:       Calculate the Chebyshev distance Dch of each solution xj


i in Bj 
9:     end if 


10: end for 
11: while |P|<N do 
12:     Add the solution with the minimum Dch in Bj∈B to population P, and remove it from Bj 
13: end while 
14: return P 


Next, in line 7 of Algorithm 4, if the number of solutions in the binding set Bj is not 0, the Chebyshev 


distance [34] of each solution in Bj is calculated in line 8, which is defined by: 


1~
( ) max ( )l


ch i j l i l
l M


D x w f x z



                               (16) 


where ( )l if x  is the lth objective value and zl is the lth dimension of the ideal point. In the case of the 


same diversity, the solution with smaller Chebyshev distance is often preferred due to its better con-


vergence. In lines 11-13, if the number of solutions in the population P is less than N, the solution with 


the minimum Chebyshev distance will be selected one by one and circularly from the binding set Bj and 


added into the population P in line 12. Then, the selected solution is removed from the set Bj. Here, the 


one-by-one selection means that only one solution is selected from a binding set at a time, and the 


number of solutions in P is updated immediately after a solution is added into P. The cyclic selection 


refers to the selection of solutions from B in turn (B = {j = 1~N | Bj}), i.e., if the number of solutions in 


P is still less than N after a round of selection, a new round of selection will be started from B until the 


size of population P reaches N. The purpose of cyclic selection is to avoid invalid selection when the 


binding set is empty. Finally, the evolutionary population P containing N solutions is outputted in line 


14. The environmental selection strategy designed according to the reference vector is a decomposi-


tion-based method, which considers the diversity and convergence of the population comprehensively, 


and some good solutions can be preserved for each environment. 


4. The Experimental Studies  


4.1 Related Experimental Settings 


4.1.1 Benchmark Problems and Compared DMOEAs 


In our experimental studies, the benchmark suite DF [32] with various changes are chosen for the 







19 


performance evaluation of the proposed algorithm, which basically comes from some static optimiza-


tion problems or some complex variants of other benchmarks, such as FDA [9], dMOP [35], ZJZ [17] 


and JY [36]. The DF test suite consists of 9 bi-objective problems DF1~DF9 and 5 tri-objective prob-


lems DF10~DF14. Specially, DF2 is part of the type I DMOP in which the POS changes but the POF is 


invariable, while DF1, DF3~DF9 and DF10~DF14 belong to the type II DMOP in which both the POS 


and the POF are constantly changing. In these test problems, the mapping relationship of functions and 


the shape of the corresponding POFs involve many complex dynamic properties, such as variable links, 


irregular shapes and time-dependent geometry, and they are widely used to test the performance of 


DMOEAs.  


In order to validate the performance of our proposed method, five competitive DMOEAs are used as 


the comparison algorithms, which are briefly introduced below. 


1). PPS [17]: This algorithm is a representative algorithm that uses the technique of linear regression 


to deal with DMOPs. In the process of evolution, the optimal solutions are divided into two parts: pop-


ulation center and manifold, in which center is used to determine the location of the population, and 


manifold implies the outline information of the population. When environment changes, PPS uses the 


autoregressive model (AR) and the preserved historical center sequences to predict the new population 


center. Similarly, the algorithm estimates the new manifold by calculating the similarity and variance 


between the historical manifolds, and the initial population of the new environment is generated based 


on the new center and manifold. 


2). SGEA [18]: The main idea of SGEA is to respond to environmental changes in a steady-state 


manner. When the environmental change is detected, the initial population of the new environment 


generated by SGEA consists of two kinds of solutions, half of which are derived from the 


well-distributed solutions in the old environment, and the other half are predicted based on the move-


ment direction and step size of individuals collected from the historical environments. In the process of 


optimization, the evolutionary population interacts with an external archive to improve the convergence 


speed and help the algorithm to adapt to changes quickly, so as to provide good tracking capability. 


3). MOEAD-SVR [37]: MOEA/D-SVR uses the predictor of support vector regression (SVR) to gen-


erate the initial population in the new environment. As a representative prediction model of nonlinear 


regression, SVR plays a great role in exploring the excellent solutions of the new environment. In addi-


tion, MOEA/D-SVR combines with the decomposition-based multi-objective evolutionary algorithm 


MOEA/D, and each sub-problem will train a SVR predictor. A large number of experiments show the 


advancement of MOEA/D-SVR. However, due to the characteristics of SVR model, MOEA/D-SVR 


depends on the quality of historical populations, so there is still room for improvement in the perfor-


mance of MOEA/D-SVR in the early stage of evolution. 


4). KT-DMOEA [38]: KT-DMOEA uses transfer learning to cope with changes. This algorithm ex-
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tracts representative solutions to reduce the occurrence of negative transfer, which are the knee points 


of the population. In order to make full use of this information, KT-DMOEA establishes a trend predic-


tion model for knee points firstly, which estimates the distribution of the knee points in the new envi-


ronment according to the knee points sets obtained from the most recent two environments in history. 


Then, KT-DMOEA uses the unbalanced TrAdaBoost algorithm to improve the accuracy of the esti-


mated knee points. The initial population of the new environment will be composed of these new knee 


points and their Gaussian noise points. 


5). IT-RM-MEDA [39]: IT-RM-MEDA is also an algorithm based on transfer learning, which uses a 


pre-search strategy to screen out some high-quality individuals with good diversity, and the guided 


population composed of them is used as the target domain of transfer. At the same time, IT-RM-MEDA 


trains a strong classifier through the TrAdaBoost algorithm, which identifies the outstanding solutions 


from a large number of sampled solutions to form the initial population of the new environment. 


IT-RM-MEDA combines many strategies, which not only maintains the advantages of transfer learning, 


but also avoids the occurrence of negative transfer, so as to greatly improve the quality of solutions and 


the speed of convergence. 


4.1.2 Performance metrics and Experimental Settings 


When assessing the performance of solutions obtained by different DMOEAs, the following two 


performance metrics are adopted in this work, which can evaluate the performance of compared algo-


rithms in terms of convergence and diversity. 


1). Mean Inverted Generational Distance (MIGD) [40]: The MIGD is a widely used performance in-


dicator which can reflect the convergence and diversity of the population simultaneously. At time t, 


supposing that *
tPOF  is a set of uniformly distributed points in the true POF, and POFt is the corre-


sponding approximation POF obtained from a DMOEA, IGD can be calculated as: 


*
*


*


min ( , )
IGD( , )


| |
t tx POF y POF


t t
t


d x y
POF POF


POF
 


                       (17) 


where d (x, y) refers to the Euclidian distance between x and y, and | *
tPOF | is the number of points in 


*
tPOF . Then the MIGD is defined as follows： 


*IGD( , )
MIGD


| |
t T t tPOF POF


T
                            (18) 


where T is a set of discrete time instances and | T | is the total number of changes in a run. In general, 


the smaller MIGD value indicates the better performance. 


2). Mean Schott’s spacing metric (MSP) [41]: The SP metric [42] measures the uniformity of popula-


tion. A smaller SP value reflects a more uniform distribution of the solution obtained by the algorithm. 


This metric is calculated as: 
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| |
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SP( ) ( ( ))


| | 1
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                          (19) 


where Di is the Euclidean distance between the ith point in POFt and its nearest point, and D  repre-


sents the average value of all Di. The MSP can be denoted by: 


SP( )
MSP


| |
t T tPOF


T
                               (20) 


In this paper, all the considered algorithms are independently run 20 times on each test problem, and 


other general experimental parameters are configured according to the original references, which are 


summarized as follows. 


1). Dynamic Test Settings: For the selected benchmark problems, the frequency of change T  and 


the severity of change Tn  are considered to be set to 5 and 10, and four sets of experiments are set up 


by ( T , Tn ) as (5, 5), (5, 10), (10, 5) and (10, 10). In all problems, the number of decision variables is 


set to 10. 


2). Population size and termination condition: The population size N is set to 100 and 300 respec-


tively when the objective number is set to two and three. Each run consists of 100 environmental 


changes, and the termination condition of all algorithms is that the maximum number of evolutions G is 


no more than T × 100.  


3). Settings for reproduction operators: In the SBX operator and PM operator [43], the probability of 


crossover pc and mutation pm are respectively set to 1.0 and 1/d, where d is the number of decision var-


iables. The distribution indexes for SBX and PM are all set to 20. In DE operator [33], the crossover 


probability CR and the scaling F are set to 0.5 and 1.0, respectively. 


4). Other Parameters settings: In DMOEA-PRAC, the condition of reference vector adjustment is 


that G mod T  equals to 3 and 5 when T  = 5 and 10, which means that there is one adjustment in 


the middle of each environment. In addition, the size of time window win used to obtain the training 


data in DMOEA-PRAC is set to 3. 


4.2 Comparison with Several Competitive DMOEAs 


The statistical MIGD and MSP results of the six DMOEAs on all DF problems are respectively 


summarized in Table 1 and Table 2, in which both the mean value and standard deviation (in parenthe-


sis) are provided. For each test problem, the best results, i.e., the smallest MIGD and MSC values 


among these six DMOEAs, are highlighted in bold with a gray background. Here, the mul-


ti-comparison procedure based on Friedman test [44] is used to test the statistical significance of the 


results, For the MIGD metric and MSP metric, the calculated p values of the test are 1.3230e-29 and 


6.0322e-32, respectively, both of which are less than 0.05, which means that the performance of the six 


DMOEAs is considered to be significantly different at the 5% significance level. In addition, Fig. 5 (a) 
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and Fig. 5 (b) show the global mean ranks of the six DMOEAs under the MIGD metric and the MSP 


metric, respectively. It is obvious that the proposed DMOEA-PRAC achieves the best ranks in both 


performance metrics among the six DMOEAs. Moreover, the pair-wise comparisons based on Wilcox-


on rank-sum test [45] at the 5% significance level is applied to verify the statistically significant dif-


ferences between the results of DMOEA-PRAC and its five competitors. In the following tables, the 


symbols “+”, “=” and “-” represent that the metric values of the corresponding algorithm are signifi-


cantly better than, similar to and worse than that of DMOEA-PRAC, respectively. In addition, the pop-


ulation distributions of the six algorithms corresponding to each environment in some typical DMOPs 


are given, and the characteristics and performance of these simulations are discussed and analyzed in 


detail. 


 


(a)                                           (b) 


Fig. 5 The mean ranks of the six DMOEAs under the MIGD metric (a) and the MSP metric (b) 


4.2.1 The MIGD metric values and The MSP metric values 


From the MIGD values shown in Table 1, it can be seen that the performance of the DMOEA-PRAC 


proposed in this paper on 14 DF test problems is obviously better than that of the five comparison 


DMOEAs. Among the 36 test cases of 9 bi-objective problems DF1~DF9, DMOEA-PRAC, 


MOEA/D-SVR and IT-RM-MEDA perform best in 25, 3 and 8 cases, respectively, while the perfor-


mances of PPS, SGEA and KT-DMOEA on all bi-objective problems are worse than the first three 


DMOEAs. For the 5 tri-objective problems (DF10~DF14), DMOEA-PRAC performs best in 9 out of 


20 test cases. SGEA, MOEA/D-SVR and IT-RM-MEDA perform best in 4, 3 and 4 cases respectively, 


while PPS and KT-DMOEA still do not obtain the best MIGD results in all tri-objective cases. In gen-


eral, the proposed DMOEA-PRAC performs best in 34 out of 56 test cases, while PPS, SGEA, 


MOEA/D-SVR, KT-DMOEA and IT-RM-MEDA gain the best MIGD values in 0, 4, 6, 0 and 12 cases. 


From the one-by-one comparisons in the last row of Table 1, DMOEA-PRAC performs better than PPS, 


SGEA, MOEA/D-SVR, KT-DMOEA and IT-RM-MEDA in 48, 46, 40, 56 and 43 out of 56 cases, re-


spectively, while it is only outperformed by these five competitors in 5, 8, 11, 0 and 12 cases, respec-


tively. Obviously, DMOEA-PRAC shows the best performance for DF problems. 
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Regarding DF1 and DF3, they have similar POF shapes in one period, i.e., the shape of POF contin-


ually changes among convex, linear and concave POFs in the optimization process. In the decision 


space, the change of POS in DF1 is translation, and the step of each translation conforms to the prop-


erty of trigonometric function, while the changes of POS in DF3 include translation and rotation. For 


these two similar problems, DMOEA-PRAC gets the best MIGD results in 7 cases. When both values 


of T  and Tn  are 10, the performance of DMOEA-PRAC on DF1 is slightly worse than that of 


MOEA/D-SVR, and its performance is similar to PPS and SGEA. Obviously, DMOEA-PRCA has 


good performance in solving the problem with constantly changing concave and convex PF. Especially 


when the frequency of change is fast ( T = 5), DMOEA-PRAC can quickly respond to the change. 
Table 1 


Mean and standard deviation values of MIGD obtained by DMOEA-PRAC and five competitors 
Problems τt, nt PPS SGEA MOEA/D-SVR KT-DMOEA IT-RM-MEDA DMOEA-PRAC 


DF1 


5, 5 0.2230±6.52E-03(-) 0.1222±2.05E-02(-) 0.0435±7.40E-03(-) 0.1423±1.23E-02(-) 0.0299±1.35E-02(-) 0.0062±6.82E-05 


5, 10 0.0505±6.32E-03(-) 0.0300±1.28E-03(-) 0.0278±2.36E-03(-) 0.1120±9.90E-03(-) 0.0319±1.03E-02(-) 0.0062±6.40E-05 


10, 5 0.0549±1.46E-03(-) 0.0348±1.58E-03(-) 0.0119±2.94E-03(=) 0.1423±7.26E-03(-) 0.0358±1.70E-02(-) 0.0107±4.51E-04 


10, 10 0.0180±2.47E-03(=) 0.0166±2.30E-04(=) 0.0089±4.74E-04(+) 0.1120±1.04E-02(-) 0.0338±8.63E-03(-) 0.0112±5.16E-04 


DF2 


5, 5 0.2031±8.62E-03(-) 0.1794±1.06E-02(-) 0.0394±3.04E-03(-) 0.1906±7.96E-03(-) 0.0232±8.34E-03(-) 0.0070±2.13E-04 


5, 10 0.1054±2.92E-03(-) 0.1169±4.73E-03(-) 0.0360±2.84E-03(-) 0.1671±6.09E-03(-) 0.0194±7.73E-03(-) 0.0070±1.86E-04 


10, 5 0.0979±1.78E-03(-) 0.1032±4.71E-03(-) 0.0105±8.51E-04(-) 0.1151±8.23E-03(-) 0.0213±4.93E-03(-) 0.0054±7.72E-05 


10, 10 0.0846±1.07E-03(-) 0.0949±3.64E-03(-) 0.0107±9.77E-04(-) 0.1003±5.87E-03(-) 0.0220±8.50E-03(-) 0.0054±5.17E-05 


DF3 


5, 5 0.2915±2.50E-02(-) 0.3557±1.04E-02(-) 0.3509±2.26E-02(-) 0.4357±1.91E-02(-) 0.0414±6.86E-03(-) 0.0063±4.70E-05 


5, 10 0.2370±2.00E-02(-) 0.3167±1.20E-02(-) 0.3581±2.85E-02(-) 0.4555±1.57E-02(-) 0.0448±9.75E-03(-) 0.0063±5.89E-05 


10, 5 0.0691±2.84E-02(-) 0.3183±1.47E-02(-) 0.2641±4.28E-02(-) 0.4015±2.83E-02(-) 0.0487±2.44E-02(-) 0.0052±3.26E-05 


10, 10 0.0568±2.82E-02(-) 0.2887±1.89E-02(-) 0.2866±1.92E-02(-) 0.4228±3.02E-02(-) 0.0451±6.35E-03(-) 0.0052±6.01E-05 


DF4 


5, 5 0.5460±4.50E-02(-) 0.2709±1.14E-02(-) 0.0702±1.27E-03(-) 0.9880±2.78E-02(-) 0.2180±9.89E-02(-) 0.0666±4.98E-04 


5, 10 0.4418±6.09E-02(-) 0.2088±1.62E-02(-) 0.0807±9.28E-04(-) 1.0908±2.98E-02(-) 0.2203±5.61E-02(-) 0.0774±9.76E-04 


10, 5 0.1954±2.64E-02(-) 0.2129±4.09E-03(-) 0.0665±3.86E-04(=) 0.9598±2.45E-02(-) 0.2019±9.58E-02(-) 0.0669±3.91E-04 


10, 10 0.1231±1.92E-02(-) 0.1665±8.86E-03(-) 0.0779±3.54E-04(+) 1.0441±4.36E-02(-) 0.1876±8.13E-02(-) 0.0785±6.19E-04 


DF5 


5, 5 0.1650±3.03E-02(-) 0.0571±2.05E-03(-) 0.0500±1.87E-02(-) 1.7121±3.76E-02(-) 0.0176±7.05E-03(-) 0.0064±6.90E-05 


5, 10 0.0759±2.95E-02(-) 0.0319±6.62E-04(-) 0.0197±8.91E-04(-) 1.3587±3.38E-02(-) 0.0166±7.23E-03(-) 0.0064±9.69E-05 


10, 5 0.0295±9.42E-03(-) 0.0275±3.85E-04(-) 0.0080±3.51E-04(-) 1.6302±1.81E-02(-) 0.0244±1.05E-02(-) 0.0053±3.95E-05 


10, 10 0.0463±3.24E-02(-) 0.0221±2.29E-04(-) 0.0080±1.89E-04(-) 1.3093±1.76E-02(-) 0.0200±1.22E-02(-) 0.0053±2.64E-05 


DF6 


5, 5 12.3826±3.79E-01(-) 3.1475±2.38E-01(-) 2.1467±6.06E-01(-) 4.0323±3.02E-01(-) 26.2397±4.61E+00(-) 0.0179±2.58E-03 


5, 10 11.5324±2.00E-01(-) 1.1384±2.22E-01(-) 0.6055±7.25E-01(-) 4.7204±4.10E-01(-) 22.8553±6.51E+00(-) 0.0160±2.09E-03 


10, 5 10.0170±2.47E-01(-) 0.8712±1.93E-01(-) 1.9187±5.06E-01(-) 2.7908±3.34E-01(-) 23.4216±6.76E+00(-) 0.0154±1.56E-03 


10, 10 9.4320±3.09E-01(-) 0.5660±1.32E-01(-) 1.6981±5.83E-01(-) 3.5657±2.85E-01(-) 24.9518±7.95E+00(-) 0.0127±1.67E-03 


DF7 


5, 5 0.2643±8.89E-02(+) 2.4494±3.90E-02(+) 3.4112±9.36E-05(+) 8.6136±3.68E-01(-) 0.0323±1.13E-02(+) 3.9514±4.14E-02 


5, 10 0.1166±8.49E-03(+) 1.0887±2.07E-01(+) 0.8985±1.58E-03(+) 4.5473±3.01E-01(-) 0.0316±5.01E-03(+) 1.2797±3.80E-02 


10, 5 0.0864±6.91E-03(+) 2.3730±3.20E-02(+) 3.4114±4.53E-05(+) 8.2772±4.05E-01(-) 0.0345±8.34E-03(+) 3.8663±5.71E-02 


10, 10 0.0403±5.50E-03(+) 0.8504±2.50E-01(+) 0.8981±1.24E-04(+) 4.2866±1.96E-01(-) 0.0300±9.33E-03(+) 1.2197±1.74E-02 


DF8 


5, 5 0.0411±5.05E-03(-) 0.0997±3.03E-03(-) 0.0193±6.92E-04(+) 0.1966±7.40E-03(-) 0.0065±5.81E-04(+) 0.0212±9.66E-04 


5, 10 0.0430±5.84E-03(-) 0.0816±2.29E-03(-) 0.0196±6.24E-04(=) 0.2038±9.07E-03(-) 0.0067±7.79E-04(+) 0.0193±1.22E-03 


10, 5 0.0137±9.93E-04(+) 0.0934±1.01E-03(-) 0.0169±5.35E-04(+) 0.1733±7.20E-03(-) 0.0069±6.79E-03(+) 0.0204±8.86E-04 


10, 10 0.0134±7.40E-04(=) 0.0758±8.81E-04(-) 0.0168±6.49E-04(+) 0.1755±9.28E-03(-) 0.0068±6.93E-04(+) 0.0186±7.30E-04 


DF9 


5, 5 0.4400±1.73E-02(-) 1.0709±6.26E-02(-) 0.1022±4.79E-05(-) 1.6574±5.72E-02(-) 0.1894±5.75E-02(-) 0.0051±9.75E-05 


5, 10 0.3917±2.67E-02(-) 0.5109±3.69E-02(-) 0.0988±5.37E-05(-) 1.4471±3.22E-02(-) 0.1782±6.64E-02(-) 0.0052±1.34E-04 


10, 5 0.2377±1.05E-02(-) 0.5891±3.75E-02(-) 0.1019±1.70E-04(-) 1.4834±1.82E-02(-) 0.1662±3.42E-02(-) 0.0042±6.14E-05 


10, 10 0.1628±1.10E-02(-) 0.2479±1.12E-02(-) 0.0986±1.71E-04(-) 1.3754±2.52E-02(-) 0.2176±6.27E-02(-) 0.0042±6.54E-05 


DF10 


5, 5 0.3169±5.16E-03(-) 0.1077±1.15E-03(-) 0.0655±1.23E-03(-) 0.2095±1.36E-02(-) 0.0213±2.58E-03(+) 0.0378±5.27E-04 


5, 10 0.3097±5.16E-03(-) 0.0837±1.52E-03(-) 0.0660±8.83E-04(-) 0.2142±1.09E-02(-) 0.0233±3.08E-03(+) 0.0384±5.70E-04 


10, 5 0.2171±4.90E-03(-) 0.1048±9.31E-04(-) 0.0654±1.15E-03(-) 0.1865±8.52E-03(-) 0.0229±4.10E-03(+) 0.0383±6.06E-04 


10, 10 0.2106±4.76E-03(-) 0.0805±3.19E-03(-) 0.0649±1.91E-03(-) 0.1790±1.24E-02(-) 0.0228±5.29E-03(+) 0.0386±3.53E-04 


DF11 


5, 5 0.6968±2.75E-03(-) 0.6797±1.15E-03(-) 0.1328±1.34E-02(-) 0.6855±2.17E-03(-) 0.0737±2.03E-02(-) 0.0264±1.32E-04 


5, 10 0.7002±3.47E-03(-) 0.6711±4.36E-04(-) 0.0261±8.40E-05(=) 0.6866±1.39E-03(-) 0.1007±5.61E-02(-) 0.0266±8.89E-05 


10, 5 0.6745±1.65E-03(-) 0.6700±4.77E-04(-) 0.0253±7.63E-05(+) 0.6721±2.09E-03(-) 0.0841±2.39E-02(-) 0.0268±8.58E-05 


10, 10 0.6755±1.88E-03(-) 0.6616±3.86E-04(-) 0.0252±8.77E-05(+) 0.6710±2.22E-03(-) 0.0858±5.06E-02(-) 0.0269±8.05E-05 


DF12 
5, 5 0.6192±2.37E-02(-) 0.2091±7.49E-03(-) 0.3709±1.08E-02(-) 0.8799±2.15E-02(-) 0.9998±4.74E-04(-) 0.0374±2.08E-04 


5, 10 0.5482±1.22E-02(-) 0.2861±8.09E-03(-) 0.3415±1.45E-04(-) 0.8723±1.54E-02(-) 0.9995±7.60E-04(-) 0.0373±1.80E-04 
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10, 5 0.4383±6.42E-03(-) 0.1990±6.33E-03(-) 0.3207±7.50E-03(-) 0.9021±1.41E-02(-) 0.9998±2.24E-04(-) 0.0361±1.22E-04 


10, 10 0.3822±1.00E-02(-) 0.3071±1.19E-01(-) 0.3071±1.05E-02(-) 0.8917±2.07E-02(-) 0.9995±4.63E-04(-) 0.0359±1.47E-04 


DF13 


5, 5 0.6392±6.27E-02(-) 0.1708±1.42E-03(+) 0.2600±2.55E-03(-) 1.5839±2.21E-02(-) 0.2202±1.25E-02(-) 0.1904±1.74E-03 


5, 10 0.4740±3.58E-02(-) 0.1538±1.09E-03(+) 0.2569±1.92E-03(-) 1.3185±1.40E-02(-) 0.2287±1.66E-02(-) 0.1892±2.73E-03 


10, 5 0.2250±1.13E-02(-) 0.1511±7.06E-04(+) 0.2728±1.82E-03(-) 1.5388±9.16E-03(-) 0.2171±1.49E-02(=) 0.2155±2.49E-03 


10, 10 0.2141±1.63E-02(=) 0.1419±3.89E-04(+) 0.2710±2.82E-03(-) 1.2768±4.60E-03(-) 0.2261±1.60E-02(-) 0.2155±4.71E-03 


DF14 


5, 5 0.2946±3.18E-02(-) 0.0591±9.25E-04(-) 0.0366±2.56E-04(-) 1.0280±8.71E-03(-) 0.0372±9.89E-03(-) 0.0298±5.21E-04 


5, 10 0.1442±1.76E-02(-) 0.0341±3.45E-04(-) 0.0383±2.50E-04(-) 0.8446±6.46E-03(-) 0.0421±6.83E-03(-) 0.0309±2.96E-04 


10, 5 0.0869±5.43E-03(-) 0.0476±5.64E-04(-) 0.0319±7.60E-05(=) 1.0125±3.08E-03(-) 0.0413±1.02E-02(-) 0.0316±1.11E-03 


10, 10 0.0744±5.94E-03(-) 0.0321±1.98E-04(=) 0.0336±7.50E-05(-) 0.8190±1.73E-03(-) 0.0365±4.77E-03(-) 0.0321±3.15E-04 


best/all 0/56 4/56 6/56 0/56 12/56 34/56 


+/-/= 5/48/3 8/46/2 11/40/5 0/56/0 12/43/1 -- 


The change of POS in DF2 is similar to that in DF1, but its POF is consistent. The switching of posi-


tion-related variables in DF2 often brings difficulties to optimization. Nevertheless, in all test cases, 


DMOEA-PRAC outperforms all comparison algorithms. For DF4, the distribution of its POS in the 


decision space presents a radial shape, and the changes involve translation, rotation, expansion and 


scaling. In the 4 test cases of DF4, when T = 10 and Tn = 5, the MIGD value of MOEA/D-SVR are 


the best, while DMOEA-PRAC and MOEA/D-SVR perform similarly. When T = 10 and Tn = 10, 


DMOEA-PRAC is slightly worse than MOEA/D-SVR. From DF1 and DF4, it can be seen that the 


SVR prediction model is more dependent on the quality of the historical population, so MOEA/D-SVR 


can occasionally outperform DMOEA-PRAC when the number of static evolutions is large ( T =10). 


However, when the project faces the challenge of rapid environmental changes, DMOEA-PRAC can 


solve the problem more effectively. 


Considering DF5 and DF6, the changes of their POS are also similar to that of DF1. What’s more, 


their POF exists different numbers of knee points in different environments. The POF of DF5 is always 


distributed around the unit hyperplane in the objective space, while the POF of DF6 spans the entire 


objective space. On these two problems, DMOEA-PRAC gets the best MIGD results in all test cases. 


The changes of POS in DF7 and DF8 respectively depend on exponential function and trigonometric 


function, so the rotation characteristics are displayed in the decision space, i.e., their POSs may be 


symmetrical about certain points. IT-RM-MEDA achieves the best MIGD results on all instances of 


DF7 and DF8, which may be benefited from the effectiveness of the guided population provided by its 


pre-search mechanism in individual transfer. For the proposed DMOEA-PRAC, to a certain extent, the 


PR predictor used in decision space is more difficult to properly learn the characteristics of the expo-


nential function, so the effect of DMOEA-PRAC is relatively poor. The changing POS of DF9 is 


grid-distributed in the decision space, and the POF of each environment is composed of broken line 


segments. On this discontinuous problem, the AC regulator designed in this paper can help the algo-


rithm to explore the evolution direction quickly, so that the population can adapt to the new environ-


ment in time, and DMOEA-PRAC obtains the best MIGD results in all test cases. 


For the 5 tri-objective problems, the change of the POS in DF10 is similar to that in the bi-objective 


problem DF7, and the shape of POF gradually changes from extreme convexity to extreme concavity. 


In the four test cases, DMOEA-PRAC is slightly worse than IT-RM-MEDA. For DF11 and DF12 with 
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similar changes, their POSs have a common rotation point, and the POFs all change on the unit sphere. 


Among the 8 test cases of DF11 and DF12, DMOEA-PRAC performs slightly worse than 


MOEA/D-SVR on DF11 when T = 10, but DMOEA-PRAC performs well in many cases as a whole. 


DF13 generates broken POFs in the process of change, and the number of truncated areas changes over 


time. Among all DMOEAs, SGEA obtains the best MIGD results in all cases of DF13. For DF14 with 


complex changes in POF, it may degenerate in the process of change, so the POF may be a curve or a 


continuous surface. When there is no degeneration, the size of the POF region and the distribution of 


the knee region will continue to change. The proposed DMOEA-PRAC gets the best MIGD results in 


all cases of DF14, which shows the superior performance in dealing with complex dynamic problems 


of three objectives. 
Table 2 


Mean and standard deviation values of MSP obtained by DMOEA-PRAC and five competitors 
Problems τt, nt PPS SGEA MOEA/D-SVR KT-DMOEA IT-RM-MEDA DMOEA-PRAC 


DF1 


5, 5 0.0324±1.75E-03(-) 0.0243±2.31E-03(-) 0.0070±3.72E-04(+) 0.1936±3.78E-02(-) 0.1133±6.31E-02(-) 0.0096±1.73E-04 


5, 10 0.0140±1.49E-03(-) 0.0133±8.83E-04(-) 0.0072±1.29E-04(+) 0.1477±3.94E-02(-) 0.1606±5.86E-02(-) 0.0095±1.47E-04 


10, 5 0.0151±1.08E-03(+) 0.0112±8.01E-04(+) 0.0056±1.00E-04(+) 0.0633±1.73E-02(-) 0.1530±4.93E-02(-) 0.0199±2.32E-03 


10, 10 0.0055±7.13E-04(+) 0.0072±4.43E-04(+) 0.0057±1.16E-04(+) 0.0494±1.93E-02(-) 0.0954±2.09E-02(-) 0.0186±4.31E-03 


DF2 


5, 5 0.0295±1.77E-03(-) 0.0250±1.51E-03(-) 0.0091±2.39E-04(+) 0.2777±4.12E-02(-) 0.0475±2.27E-03(-) 0.0130±5.06E-04 


5, 10 0.0154±1.13E-03(-) 0.0132±5.79E-04(=) 0.0091±2.72E-04(+) 0.2088±3.52E-02(-) 0.0343±1.81E-03(-) 0.0128±2.40E-04 


10, 5 0.0167±1.22E-03(-) 0.0113±5.60E-04(-) 0.0072±1.63E-04(+) 0.1078±1.65E-02(-) 0.0222±1.68E-03(-) 0.0103±1.57E-04 


10, 10 0.0087±5.01E-04(+) 0.0071±3.56E-04(+) 0.0076±1.62E-04(+) 0.0743±2.10E-02(-) 0.0204±1.10E-03(-) 0.0103±1.64E-04 


DF3 


5, 5 0.1085±1.14E-02(-) 0.0376±6.82E-03(-) 0.0240±4.18E-03(-) 0.3061±5.25E-02(-) 0.0605±6.41E-03(-) 0.0099±1.53E-04 


5, 10 0.1068±1.28E-02(-) 0.0218±2.84E-03(-) 0.0134±4.38E-03(-) 0.2786±4.44E-02(-) 0.0563±7.44E-03(-) 0.0099±2.13E-04 


10, 5 0.0346±5.54E-03(-) 0.0169±1.74E-03(-) 0.0097±1.84E-03(-) 0.2076±5.02E-02(-) 0.1489±1.08E-01(-) 0.0078±1.24E-04 


10, 10 0.0282±4.42E-03(-) 0.0121±1.30E-03(-) 0.0054±6.59E-04(+) 0.1513±2.92E-02(-) 0.0940±4.57E-02(-) 0.0078±1.45E-04 


DF4 


5, 5 0.3285±1.78E-02(-) 0.1587±2.59E-02(-) 0.0210±1.83E-03(+) 0.3836±5.52E-02(-) 0.4795±5.40E-02(-) 0.0555±2.13E-02 


5, 10 0.2670±4.08E-02(-) 0.1411±1.90E-02(-) 0.0221±1.96E-03(+) 0.4094±5.72E-02(-) 0.3041±9.62E-02(-) 0.0969±3.98E-02 


10, 5 0.1359±2.31E-02(-) 0.1083±8.16E-03(-) 0.0183±1.12E-03(=) 0.3081±4.07E-02(-) 0.1146±1.51E-02(-) 0.0196±4.24E-03 


10, 10 0.0936±1.13E-02(-) 0.1049±1.09E-02(-) 0.0199±1.32E-03(+) 0.3365±3.33E-02(-) 0.0783±2.21E-02(-) 0.0210±7.44E-03 


DF5 


5, 5 0.0469±7.11E-03(-) 0.0345±2.39E-03(-) 0.1062±1.81E-02(-) 0.2109±2.69E-02(-) 0.1620±3.35E-02(-) 0.0090±1.48E-04 


5, 10 0.0320±9.61E-03(-) 0.0181±1.64E-03(-) 0.1089±1.83E-02(-) 0.1745±3.60E-02(-) 0.1507±5.79E-02(-) 0.0089±1.75E-04 


10, 5 0.0118±3.27E-03(-) 0.0147±1.68E-03(-) 0.0599±1.36E-02(-) 0.0757±9.88E-03(-) 0.3109±4.01E-02(-) 0.0072±1.10E-04 


10, 10 0.0137±6.24E-03(-) 0.0091±4.12E-04(-) 0.0940±2.17E-02(-) 0.0689±2.14E-02(-) 0.2418±3.44E-02(-) 0.0072±8.50E-05 


DF6 


5, 5 2.3765±7.79E-02(-) 3.4259±1.67E-01(-) 0.3123±1.30E-01(-) 10.4315±6.09E-01(-) 4.5064±2.11E-01(-) 0.1507±5.21E-04 


5, 10 2.3692±8.06E-02(-) 1.1496±1.94E-01(-) 0.2015±1.29E-01(-) 9.8499±7.97E-01(-) 4.2518±1.96E-01(-) 0.1554±3.41E-04 


10, 5 2.0398±6.68E-02(-) 0.5270±1.77E-01(-) 0.2068±3.63E-02(-) 6.9209±6.80E-01(-) 4.2179±2.14E-01(-) 0.1339±1.82E-04 


10, 10 2.0300±1.04E-01(-) 0.2399±2.97E-02(-) 0.0967±4.23E-02(+) 5.8996±5.52E-01(-) 3.8044±1.81E-01(-) 0.1381±2.74E-04 


DF7 


5, 5 0.1634±2.62E-02(-) 0.0254±8.19E-03(-) 0.0526±2.66E-04(-) MAX(-) MAX(-) 0.0108±1.30E-03 


5, 10 0.0605±4.96E-03(-) 0.0688±4.65E-02(-) 0.0522±8.55E-04(-) MAX(-) MAX(-) 0.0105±1.50E-03 


10, 5 0.0833±8.68E-03(-) 0.0285±1.44E-02(-) 0.0529±1.56E-04(-) MAX(-) MAX(-) 0.0058±8.27E-04 


10, 10 0.0309±2.70E-03(-) 0.0973±6.15E-02(-) 0.0528±1.33E-04(-) MAX(-) MAX(-) 0.0056±7.66E-04 


DF8 


5, 5 0.0457±2.71E-03(-) 0.0285±5.15E-03(-) 0.0139±7.92E-04(=) 0.2519±2.89E-02(-) 0.1681±1.60E-02(-) 0.0131±3.21E-04 


5, 10 0.0450±4.84E-03(-) 0.0310±1.90E-03(-) 0.0132±4.55E-04(+) 0.3116±4.95E-02(-) 0.1722±1.79E-02(-) 0.0150±6.39E-04 


10, 5 0.0172±1.62E-03(-) 0.0226±1.69E-03(-) 0.0131±2.37E-04(-) 0.1299±1.80E-02(-) 0.1308±1.55E-02(-) 0.0124±2.87E-04 


10, 10 0.0214±3.04E-03(-) 0.0257±3.22E-03(-) 0.0131±3.02E-04(+) 0.1391±2.39E-02(-) 0.1683±2.00E-02(-) 0.0141±3.79E-04 


DF9 


5, 5 0.1666±9.29E-03(-) 0.3835±3.51E-02(-) 0.0058±4.20E-05(+) 0.8699±1.01E-01(-) 0.4161±3.28E-02(-) 0.0180±7.95E-04 


5, 10 0.1515±9.33E-03(-) 0.2180±2.30E-02(-) 0.0058±5.98E-05(+) 0.9203±1.60E-01(-) 0.2790±2.08E-02(-) 0.0189±5.08E-04 


10, 5 0.1067±1.02E-02(-) 0.2101±1.77E-02(-) 0.0061±1.57E-05(+) 0.6341±9.46E-02(-) 0.2498±4.02E-02(-) 0.0124±5.42E-04 


10, 10 0.0790±5.58E-03(-) 0.1178±1.27E-02(-) 0.0061±2.86E-05(+) 0.6838±5.47E-02(-) 0.1251±2.00E-02(-) 0.0128±8.47E-04 


DF10 


5, 5 0.3605±1.39E-02(-) 0.0340±3.52E-03(-) 0.0248±1.07E-03(-) 0.2173±2.11E-02(-) 0.1405±2.55E-02(-) 0.0214±1.64E-04 


5, 10 0.3482±1.50E-02(-) 0.0365±4.00E-03(-) 0.0241±4.32E-04(-) 0.2011±2.06E-02(-) 0.1503±1.39E-02(-) 0.0213±2.74E-04 


10, 5 0.2303±1.39E-02(-) 0.0317±3.23E-03(-) 0.0240±7.15E-04(-) 0.1150±7.78E-03(-) 0.1565±3.16E-02(-) 0.0204±2.45E-04 


10, 10 0.2208±1.19E-02(-) 0.0334±3.68E-03(-) 0.0243±1.07E-03(-) 0.1089±1.04E-02(-) 0.1518±1.88E-02(-) 0.0204±1.97E-04 


DF11 


5, 5 0.0371±6.93E-04(-) 0.0180±8.46E-04(-) 0.0203±1.08E-04(-) 0.0385±1.11E-03(-) 0.0741±5.80E-03(-) 0.0148±1.02E-04 


5, 10 0.0370±7.68E-04(-) 0.0162±5.14E-04(-) 0.0202±8.16E-05(-) 0.0390±7.92E-04(-) 0.0775±5.99E-03(-) 0.0148±1.05E-04 


10, 5 0.0337±4.61E-04(-) 0.0152±4.99E-04(-) 0.0200±9.17E-05(-) 0.0333±6.32E-04(-) 0.0706±5.22E-03(-) 0.0142±5.57E-05 


10, 10 0.0338±5.78E-04(-) 0.0120±3.22E-04(+) 0.0199±9.15E-05(-) 0.0331±3.19E-04(-) 0.0757±5.35E-03(-) 0.0143±6.80E-05 


DF12 5, 5 0.6109±2.00E-02(-) 0.0609±5.47E-03(-) 0.2538±6.62E-02(-) 0.3640±6.09E-02(-) 0.0000±2.13E-18(+) 0.0252±1.34E-04 







26 


5, 10 0.4951±2.13E-02(-) 0.0597±8.05E-03(-) 0.0763±1.26E-03(-) 0.3453±7.80E-02(-) 0.0057±1.72E-02(+) 0.0253±7.34E-05 


10, 5 0.4757±3.35E-02(-) 0.0523±5.76E-03(-) 0.2206±9.22E-02(-) 0.2818±7.86E-02(-) 0.2078±1.83E-01(-) 0.0245±1.27E-04 


10, 10 0.3778±1.65E-02(-) 0.0517±7.49E-03(-) 0.2486±1.68E-01(-) 0.2246±5.68E-02(-) 0.1132±1.40E-01(-) 0.0244±1.10E-04 


DF13 


5, 5 0.5929±2.67E-02(-) 0.0942±1.74E-02(-) 0.3610±4.51E-02(-) 0.3209±3.01E-02(-) 0.2132±1.19E-02(-) 0.0477±3.46E-04 


5, 10 0.5653±4.33E-02(-) 0.0617±8.09E-03(-) 0.3787±5.46E-02(-) 0.3062±2.06E-02(-) 0.1582±1.70E-02(-) 0.0480±7.25E-04 


10, 5 0.2577±3.21E-02(-) 0.0554±9.53E-03(-) 0.3579±1.31E-02(-) 0.1830±1.10E-02(-) 0.1625±2.20E-02(-) 0.0430±1.13E-03 


10, 10 0.2302±3.14E-02(-) 0.0414±8.71E-03(+) 0.3651±5.31E-02(-) 0.1564±1.48E-02(-) 0.1427±3.06E-02(-) 0.0429±8.70E-04 


DF14 


5, 5 0.2081±1.15E-02(-) 0.0174±6.36E-04(-) 0.3588±2.00E-02(-) 0.1342±9.55E-03(-) 0.2983±3.76E-02(-) 0.0161±8.20E-05 


5, 10 0.1111±1.75E-02(-) 0.0139±3.65E-04(+) 0.3539±1.97E-02(-) 0.1279±1.97E-02(-) 0.2423±3.90E-02(-) 0.0164±1.14E-04 


10, 5 0.0630±6.47E-03(-) 0.0106±1.52E-04(+) 0.3931±3.41E-02(-) 0.0790±8.35E-03(-) 0.3226±1.82E-02(-) 0.0154±8.13E-05 


10, 10 0.0472±8.78E-03(-) 0.0090±2.42E-04(+) 0.3676±4.64E-02(-) 0.0658±5.87E-03(-) 0.2848±2.66E-02(-) 0.0156±9.40E-05 


best/all 1/56 6/56 18/56 0/56 2/56 29/56 


+/-/= 3/53/0 8/47/1 19/35/2 0/56/0 2/54/0 -- 


Table 2 provides the MSP comparison results of all the considered DMOEAs on DF problems. Ob-


serving these results, DMOEA-PRAC shows the better distribution, as it gains the best results in 29 


cases, while the other five algorithms are respectively best in 1, 6, 18, 0 and 2 cases. As shown in the 


last row of Table 2, DMOEA-PRAC performs better than its five competitors respectively in 53, 47, 35, 


56 and 54 out of 56 instances, while it is only outperformed by them in 3, 8, 19, 0 and 2 instances, re-


spectively. 


In the 36 cases of 9 bi-objective problems, the distribution of MOEA/D-SVR is better than that of 


the proposed DMOEA-PRAC, as it gets 18 best MSP values, while DMOEA-PRAC gets 16 best values. 


This may be due to the uncertainty of the distribution of reference vectors adjusted by AC regulator in 


the early stage of evolution in a low-dimensional environment. The adjusted reference vectors may be 


dense in some areas, resulting in the aggregation of partial solutions. Among the six algorithms, PPS, 


SGEA, KT-DMOEA and IT-RM-MEDA obtain poor population distributions, as they get the best MSP 


values in 1, 1, 0 and 0 out of 36 cases, respectively. In addition, for KT-DMOEA and IT-RM-MEDA, 


their MSP on DF7 is very large and exceeds the order of magnitude of 1000, which is represented by 


MAX in this article. 


In the tri-objective problems, the population distribution of DMOEA-PRAC is obviously better, as it 


obtains 13 of the best MSP values in 20 cases, while PPS, SGEA, MOEA/D-SVR, KT-DMOEA and 


IT-RM-MEDA get 0, 5, 0, 0 and 2 best MSP values, respectively. Generally speaking, the performance 


of the proposed algorithm is relatively good in terms of distribution. 


 


4.2.2 Further Discussion and Analysis  


In order to further study the performance of DMOEA-PRAC and comparison algorithms, several sets 


of simulation figures of six algorithms on DF2, DF3, DF5 and DF9 when T = 5 and Tn  = 10 are 


provided in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, which show the final population distribution of each algo-


rithm in some continuous environments. In these figures, the lines or surfaces composed of gray points 


represent the POFs of a problem in different environments, and the blue points represent the solutions 


of a final population obtained by a DMOEA in each environment. 


For the type I dynamic problem DF2, among the six algorithms, PPS and SGEA have similar per-
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formance, as the populations obtained by them can only cover part of the POFs and cannot get con-


verged in general, but the diversity of them is slightly better than that of KT-DMOEA and 


IT-RM-MEDA. The convergence and diversity of the populations generated by KT-DMOEA and 


IT-RM-MEDA are obviously poor, and they only obtain the convergent populations in a few changes. 


By comparison, MOEA/D-SVR and DMOEA-PRAC have better performance. However, in some en-


vironments, there is still a certain distance between the population obtained from MOEA/D-SVR and 


the corresponding POF, so the convergence of MOEA/D-SVR is slightly worse than that of DMOEA- 


PRAC. In addition, the population obtained by MOEA/D-SVR is difficult to detect solutions at both 


ends of some POFs, while the populations obtained by DMOEA-PRAC have some missing solutions 


near the extreme points, so both of them have some deficiencies in diversity. 


 


 


 


Fig. 6 Final solutions sets obtained by six DMOEAs on the DF2 problem 
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Fig. 7 Final solutions sets obtained by six DMOEAs on the DF3 problem 


 


When solving the DF3 problem, it can be observed from Fig. 7 that the populations obtained by 


DMOEA-PRAC have good convergence and diversity as the solutions can be uniformly and neatly dis-


tributed on the POF corresponding to each environment. By contrast, in the changing environments, the 


populations obtained by PPS do not converge obviously, while the diversity of populations generated 


by SGEA is extremely poor, and the corresponding solutions are mainly distributed near an objective 


axis. For MOEA/D-SVR, KT-DMOEA and IT-RM-MEDA, the populations obtained from them have 


poor convergence and diversity, in which IT-RM-MEDA only converges in a few environments where 


the shapes of POFs are convex, but it cannot explore some effective solutions in other environments. 


According to the population distribution of each algorithm on DF3, it can be seen that for the DMOPs 


in which the shapes of POFs are constantly switching between convexity, linearity and concavity, the 


proposed DMOEA-PRAC can adapt to various environments, and can explore and exploit outstanding 


populations under many kinds of changes. 


 


 


Fig. 8 Final solutions sets obtained by six DMOEAs on the DF5 problem 
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From the DF5 problem in Fig. 8, there are some constantly changing knee areas in its POFs during 


the change process. PPS, SGEA, MOEA/D-SVR and DMOEA-PRAC can all obtain populations with 


good convergence and diversity in each environment of the DF5 problem, but the populations obtained 


from the first three have some invalid solutions beyond the boundaries of POFs, and the performance 


of KT-DMOEA and IT-RM-MEDA is obviously inferior. For DF9, the changing POFs are discontinu-


ous, and the number of line segments is continually changing. It can be observed from Fig. 9 that 


MOEA/D-SVR and DMOEA-PRAC can easily obtain populations with good convergence and diversi-


ty in each environment, while the corresponding populations of PPS, SGEA, KT-DMOEA and 


IT-RM-MEDA are far less than satisfactory. From the simulation of DF5 and DF9, apparently the sug-


gested DMOEA-PRAC also has good performance in solving DMOPs with complex changes. 


 


 


 


Fig. 9 Final solutions sets obtained by six DMOEAs on the DF9 problem 


In order to decipher the influence of PR predictor and AC regulator in DMOEA-PRAC, some abla-


tion experiments are carried out to verify their role in the algorithm. The statistical MIGD values of 


DMOEA-PR and DMOEA-AC on 7 representative problems (5 bi-objective problems and 2 


tri-objective problems) are shown in Table 3, where DMOEA-PR and DMOEA-AC are two versions of 


DMOEA-PRAC that remove regulator and predictor, respectively. In DMOEA-PR, the algorithm only 


uses PR predictor to search the decision space after the change occurs, while DMOEA-AC only re-


sponds to the change by adjusting the reference vectors in the objective space by the AC regulator. In 


Table 3, the better MIGD value obtained by DMOEA-PR or DMOEA-AC in each instance is bold, 


while the best MIGD value obtained by the three algorithms is marked with a gray background. Among 


the 14 test cases, DMOEA-PRAC performs significantly better than the other two algorithms that use a 
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single responder on 9 cases. DMOEA-AC which only uses the AC regulator performs better on the type 


I problem DF2, which may be due to the historical experiences of reference vector adjustment is bene-


ficial to solving the problem in which the POF is fixed. For DF12 problem, DMOEA-AC also obtains 


the best results, but it is obvious that the difference between the three algorithms is small. Considering 


the algorithm using a single responder, DMOEA-AC using only the AC regulator is better in 9 cases, 


while DMOEA-PR using only the PR predictor is better in 5 test cases, which means that the AC regu-


lator is more effective in improving the performance of the algorithm to a certain extent. Generally 


speaking, DMOEA-PRAC with two responders can solve dynamic problems better, as it takes into ac-


count the dynamic responses of the two spaces, and the PR predictor and the AC regulator jointly help 


the algorithm respond to changes and track the optimal solutions. 


Table 3 
Mean and standard deviation values of MIGD obtained by ablation experiments 


Problems τT, nT DMOEA-PR DMOEA-AC DMOEA-PRAC 


DF1 
5, 5 0.0387±1.19E-04 0.0918±4.46E-05 0.0062±6.82E-05 
5, 10 0.0417±1.35E-04 0.0799±3.05E-05 0.0062±6.40E-05 


DF2 5, 5 0.0051±3.30E-04 0.0049±8.73E-05 0.0070±2.13E-04 
5, 10 0.0050±1.95E-04 0.0049±2.27E-04 0.0070±1.86E-04 


DF4 
5, 5 0.3510±1.64E-03 0.3956±1.48E-03 0.0666±4.98E-04 
5, 10 0.3117±2.04E-03 0.3922±1.67E-03 0.0774±9.76E-04 


DF8 
5, 5 0.1094±9.85E-03 0.1037±1.64E-03 0.0212±9.66E-04 
5, 10 0.1155±8.67E-03 0.1145±1.84E-03 0.0193±1.22E-03 


DF9 
5, 5 0.0474±3.68E-04 0.0219±3.72E-04 0.0051±9.75E-05 
5, 10 0.0599±6.28E-04 0.0220±1.89E-04 0.0052±1.34E-04 


DF12 
5, 5 0.0369±4.52E-03 0.0352±6.89E-06 0.0374±2.08E-04 
5, 10 0.0361±2.53E-03 0.0323±4.34E-04 0.0373±1.80E-04 


DF14 
5, 5 0.0610±2.30E-04 0.0284±5.05E-05 0.0298±5.21E-04 
5, 10 0.0575±3.09E-04 0.0593±5.78E-04 0.0309±2.96E-04 


 


To evaluate the actual runtime of DMOEA-PRAC and 5 comparison algorithms, the average running 


times (in seconds: s) from 20 runs are plotted in Fig. 10, for DF1-DF14 problems with τT = 5 and nT = 5. 


It can be seen that SGEA takes the shortest time on 9 bi-objective problems, while PPS has the fastest 


running speed on 5 tri-objective problems. The running time of PPS is relatively stable on all problems, 


while the running times of the other five DMOEAs on tri-objective problems increase significantly, es-


pecially MOEA/D-SVR, KT-DMOEA and DMOEA-PRAC. For the four DMOEAs using machine 


learning-based responders, i.e., MOEA/D-SVR, KT-DMOEA, IT-RM-MEDA and DMOEA-PRAC, 


they are generally slower than the two classical algorithms PPS and SGEA, which is usually greatly 


affected by model training. 


Considering the convergence of each algorithm in each environment, it depends on two factors: dy-


namic response and static optimization, whose complexities reflect the computational speed of each 


algorithm in each environment. For the proposed DMOEA-PRAC, the PR predictor and the AC regu-


lator determine the worst time complexity; Thus, the overall complexity of DMOEA-PRAC is the larg-


er one of 1 2 3
1 1( ( 1 )(2 4 ) )win winO Nd t win C C     for running the PR predictor and O(M|S|2λ) for running 
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the AC regulator, where N is the population size, d is the number of decision variables, t is the time in-


stant, win is the size of the time window, M is the number of objectives, S is the number of solutions 


used for clustering and λ is the times of centroid adjustments. For PPS, the AR model determines the 


worst time complexity with 1 1 2 2 3 3 3( (3 3 3 ) )k k kO Ndk C C C  , where 3 is the model degree and k is the 


length of history mean point series. For SGEA, its predictor is simple and the response strategy is based 


on quantifiable change rules; So its worst time complexity is the larger one of O(MN2) and O(N2logN). 


For MOEA/D-SVR, the SVR-based model determines the worst time complexity between O(Ndq(t-q)2) 


and O(Ndq(t-q)3), where q is the parameter of sliding window. For KT-DMOEA, its worst time com-


plexity is O(N2d). For IT-RM-MEDA, its worst time complexity is the larger value of O(HNIp) and 


O(ItdN2), where H is the number of reference vectors, Ip is the number of iterations in presearch stage 


and It is the number of iterations for individuals transfer. 


 


 


Fig. 10 The average running times of six DMOEAs on DF1-DF14 problems (τΤ = 5, nT = 5) 


 


4.3 Application in controller design for dynamic system 


In this section, the performance of the proposed DMOEA-PRAC in solving a parameter optimization 


problem based on the proportional-integral-derivative (PID) controller on unstable systems is discussed. 


PID controller is a common feedback loop component in industrial control applications, which consists 


of the proportional unit P, the integral unit I and the differential unit D, and its control quantity is a lin-


ear combination of error signal e(t) on proportional, integral and differential. The output signal u(t) of 


PID is calculated as follows: 


0


1 ( )
( ) [ ( ) ( ) ]


t de t
u t Kp e t e t dt Td


Ti dt
                         (21) 


where Ti and Td are integral time constant and differential time constant, respectively. After Laplace 


transformation, Eq. (21) can be expressed as: 
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1 1


( ) (1 )C s Kp Td s
Ti s


                                (22) 


where Kp, Ki (Kp/Ti), Kd (Kp×Td) are the coefficients of proportional control, integral control and dif-


ferential control, respectively. For any system, the algorithm needs to find these three corresponding 


parameters that make the PID controller work well. 


In general, the performance of PID controller is usually evaluated from two aspects: the rise time R 


of the system and the maximum overshoot O, in which the rise time refers to the time from the initial 


time to the first time that the response output reaches the steady state value, and the maximum over-


shoot indicates the maximum degree to which the response output deviates from the steady state value 


during the adjustment process. In this paper, these two evaluation values of the PID controller are the 


two optimization objectives to be considered, and the faster rise time and the smaller overshoot are 


usually expected by a good PID controller. Here, the optimization problem is expressed as: 


, (0.5,5.0) (0.1,1.0)
min { ( , , ), ( , , )}


Kp Ki
R Kp Ki Kd O Kp Ki Kd


 
                   (23) 


For an unstable negative feedback control system, the parameters of the open-loop transfer function 


will change, so the parameters of each unit of the PID controller need to be constantly adjusted to 


achieve a satisfactory control effect for a specific system. In this paper, the parameter optimization of a 


garbage combustion controller [9] is discussed, and the transfer functions of the system G(s) and the 


controller C(s) are set as follows: 


3 2
2 1


1.5
( )


50 ( ) ( ) 1


1
( )


G s
s a t s a t s


C s Kp Ki Kd s
s


    

     


                         (24) 


where a2(t) = 43 + 30sin(πt/18), a1(t) = 3 + 30sin(πt/18), and Kd is set to 8.3317 according to the expe-


rience in [9].  


The simulation of PID controller in this paper is based on the Control System Designer toolbox in 


MATLAB. The two decision variables Kp and Ki are encoded by real numbers, and the ranges of their 


values are (0.5, 5.0) and (0.1, 1.0), respectively. The value ranges of the two objectives R and O are set 


to (0, 100), and the values of the steady state are set to 1.0. It is worth noting that the parameters of PID 


controller are highly sensitive, and the law of its parameter adjustment is more complex, as the differ-


ence of system transfer function under different time steps increases with the transformation of high-


er-order terms, so this problem is an unpredictable DMOP to some extent.  


In this paper, the performance of the proposed DMOEA-PRAC and two comparison algorithms 


MOEA/D-SVR and IT-RM-MEDA, which perform better in the benchmark problems, are tested on the 


parameter optimization problem of the dynamic PID controller. Fig. 11 shows the distribution of the 
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non-dominated solutions obtained by the three algorithms in the objective space at t = 10, 12 and 16, 


respectively. The horizontal axis and the vertical axis represent the rise time and the maximum over-


shoot (unit: %) of the controller, respectively. In three environments, the solutions obtained by 


MOEA/D-SVR can converge uniformly, and the number of non-dominated solutions in the population 


is more than that of the other two algorithms, but its deficiency is that the search for boundary solutions 


is limited, and there are solutions that are extremely effective on one objective and poor on the other. In 


comparison, the diversity of the population obtained by IT-RM-MEDA is poor, especially at t =16. 


However, when t is 12, the optimization effect of IT-RM-MEDA on the rise time is better than that of 


the other two DMOEAs. For DMOEA-PRAC, although the diversity of the population from it is 


slightly worse than that of MOEA/D-SVR, its overall convergence performance is relatively stable. 


Generally speaking, the three algorithms can provide appropriate parameters for the dynamic PID con-


troller, and in real life, the specific modeling design, the control of constraints and the selection of solu-


tions may require some additional considerations. 


 


 


 


Fig. 11 The Distribution of the non-dominated solutions of the parameters of the PID Controller obtained by 


MOEA/D-SVR, IT-RM-MEDA and DMOEA-PRAC in the objective Space at t = 10, 12, 16. 
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5. Conclusions and Future Work 


In this paper, a dynamic multi-objective optimization algorithm DMOEA-PRAC based on polyno-


mial regression and adaptive clustering is proposed. When change occurs, the algorithm responds to the 


change in the decision space and objective space, and the corresponding PR predictor and AC regulator 


are introduced in the proposed DMOEA-PRAC, which can quickly and effectively track the true POS 


and POF corresponding to the new environment. The PR predictor is used to generate the initial popu-


lation for the new environment, while the AC regulator is adopted to adjust the reference vectors. These 


two important components improve the performance of DMOEA-PRAC together. Finally, some re-


cently proposed DMOEAs are selected to compare with DMOEA-PRAC, and the experimental results 


verify the effectiveness of DMOEA-PRAC in dealing with a variety of DMOPs. 


In the future work, we will improve the efficiency and complexity of our algorithm and enhance its 


performance to solve more complex DMOPs with the changes in the number of objectives, decision 


variables, and constraints. Moreover, the application of DMOEAs on more real-world DMOPs will also 


be the focus of our future work. 
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