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An Evolutionary Approach for Resource Constrained
Project Scheduling with Uncertain Changes

Forhad Zaman, Saber Elsayed, Ruhul Sarker, Daryl Essam and Carlos Coello Coello

Abstract—The Resource Constrained Project
Scheduling Problem (RCPSP) belongs to a class of
complex constrained optimization problems. As of the
literature, RCPSPs have been widely studied while
considering that the activity durations are known
with certainty. However, in practice, the durations are
usually uncertain for many projects. In this research,
the uncertainty in activity durations is represented as
stochastic changes. So the new problem is recognized as
SRCPSPs. One of the popular approaches for solving
SRCPSPs is to use Evolutionary Algorithms (EAs) for
scheduling, by applying a suitable number of scenarios
for solution evaluations. These scenarios are generated
based on the stochastic parameters. In this approach,
the fitness evaluation component is computationally
very expensive. In this paper, we propose an algorithm,
based on two multi-operator based EAs, to deal with
the optimization process for scheduling and which also
uses a simple strategy to reduce the fitness evaluation
costs. A set of test problems with up to 120 activities
have been solved using this proposed approach and
previous state-of-the-art algorithms. The results
obtained by the former were found to be of acceptable
quality with a significant reduction of computational
time.

Index Terms—RCPSP; uncertainty; evolutionary
algorithm; differential evolution; genetic algorithm.

I. Introduction

A resource constrained project scheduling problem
(RCPSP) consists of a number of activities, each of
which has a certain duration and limited resources. Its
main goal is to determine a schedule for performing the
activities, by minimizing the finish time of the last activity,
while satisfying any precedence relationships among the
activities and for resource availability. This problem has
become very popular over the last few decades because of
its applicability to various practical problems, including
job shop, assembly shop, manufacturing, and construction
projects [1].

RCPSP is known to be a NP-hard problem and
is computationally expensive [2]. Over the last few
decades, numerous approaches for solving RCPSP
have been developed, including exact, heuristic, and
meta-heuristic, for example, genetic algorithm (GA) [3],
greedy randomized adaptive search procedure (GRASP)
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[4], adaptive robust optimization model [5], local search
procedure [6] and heuristic technique [7]. In those studies,
the activity durations are mainly considered as known with
certainty. However, in many cases in practice, the activity
durations are uncertain. RCPSPs with uncertain activity
durations are challenging research problems, recognized as
stochastic RCPSPs (SRCPSPs) [7].

There are three approaches to deal with SRCPSPs. They
are: predictive, proactive and reactive. The predictive
approach applies the average value of the durations
and solves the problem in a deterministic manner. This
approach produces a single schedule which is usually
considered as a baseline solution. The proactive approach
takes into account the variations in activity durations and
determines schedules showing the variations in project
completion times. This approach assumes, that the pattern
or distribution of uncertainty for activity durations, are
known in advance. In a reactive approach, initially a
baseline solution is generated by considering deterministic
activity durations. It is then re-scheduled when any
activity duration is subjected to any uncertainty [6].

In the case of uncertainty, it is expected to provide
solutions with the statistical behavior of the project’s
duration. In the literature, the approaches are broadly
categorized as: (i) redundancy-based; (ii) contingent; and
(iii) robust or stable scheduling. The first schedules a
project while considering additional delay times for its
activities to minimize risks, the second produces multiple
baseline solutions for a project, and the last obtains
a solution through an optimization process, in which
the objective function measures robustness, by means
of a number of approaches; for example, minimizing
the expected fitness values (FVs), taking into account
deviations of the FVs under uncertainties, the worst-case
values, and solving the problem while considering the
softness of the soft constraint [6], [8].

Over the last few decades, many approaches for
obtaining stable solutions to SRCPSPs have been
developed, for example, robust optimization [9], fuzzy [10],
policy-based [11] and scenario-based approach [12]. Among
them, the scenario-based approach is the most popular
one that has been successfully applied to many uncertain
optimization problems, including SRCPSPs [8]. In it, each
scenario represents a particular instance of the SRCPSP,
by first fixing uncertain parameters, and then solving
each instance in a deterministic manner. The expected
objective function value is then calculated using the
objective function values of the scenarios. For a discrete
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uncertain variable, a scenario tree is a common approach
for generating such scenarios, where each represents a
sample path.

In a general scenario based approach, it is recommended
to consider a large number of scenarios in generating
solutions. Earlier research showed that, a large number
of scenarios need to be generated to cover an uncertain
variable’s 3σ areas [8]. Such an approach requires
a significantly higher computational effort when the
parameters are continuous and uncertainty is represented
by probability distributions [13]. It is well-known
that the scenario dependent approach, combined
with population-based algorithms for SRCPSP, is
computationally expensive, but produces better solutions
than conventional methods [1].

In this paper, to reduce the computational burden
of the scenario dependent population-based algorithm in
solving SRCPSPs, we investigate the effect of limiting the
number of individuals and/or generation, for stochastic
fitness evaluation, such as evaluating all individuals in all
generations, all individuals in the final generation only, and
only the best individual in all generations. In all cases,
all generated scenarios are applied and these scenarios
are randomly generated based on the uncertain activity
durations. For the third option, to find the best individual,
all individuals in a given generation are evaluated using
a single scenario which is based on the mean values of
the uncertain parameters. Then the average fitness value
of the best individual is calculated for all scenarios. For
experimental study, the scenarios are generated using
five different probability distributions. The basic search
algorithm consists of two multi-operator evolutionary
algorithms (MOEAs), that are a multi-operator GA
(MOGA) and multi-operator DE (MODE). Although the
same numbers of individuals are initially used for both
algorithms, these numbers are updated in each generation,
based on their performance in the previous generations.
In this case, the better performing algorithm is allowed
to evolve for a certain number of generations (defined
as a cycle) alone and then the process is restarted with
two algorithms. The parameters of MOEAs are selected
self-adaptively, based on their performance during the
evolutionary process.

The performance of the scenario-based evolutionary
approach was evaluated by solving a number of well-known
SRCPSPs, with up to 120 non-dummy activities. The
parameters of the problems were taken from PSPLIB
[14] and the uncertain activity durations were taken
from [11]. A comparison of the results obtained by the
proposed approach and several state-of-the-art algorithms,
reveals that the proposed algorithm, with the third option,
outperforms the others in terms of solution quality, with a
significant reduction in computational time. This research
uncovers the fact, that most current methodologies are
using more computation than required.

The contributions of this paper can be summarized
as: (i) SRCPSPs are defined as a scenario-based model,
that considers the uncertain activity duration can be

either real or integer; (ii) different options of fitness
evaluations using scenarios are investigated, in order to
reduce computational time; (iii) the elite solution is
determined, based on the expected fitness values of the
best individuals from both the parents and offspring; (iv) a
new algorithm was developed to solve this scenario-based
model; and (v) the results obtained are compared with
those of many existing algorithms, which shows that the
proposed algorithm is superior.

The structure of this paper is as follows: Section II
describes the mathematical modeling of the scenario-based
SRCPSPs and provides a relevant literature review;
Section III discusses the proposed solution approach;
Section IV illustrates the computational results and
statistical comparisons with state-of-the-art algorithms;
and Section V presents the conclusion and suggested
future work.

II. Background of SRCPSP

In this section, the formulation of SRCPSPs and
their existing solution approaches in the literature are
presented.

A. Problem description

The aim of a SRCPSP is to schedule a project with a
stable solution in an uncertain environment. Generally, a
project network is used to explain the logical relationships
between the activities in a given project; for example,
Fig. 3 shows a project with 11 activities, in which the
node set (D = {1, 2, . . . , 11}) represents the activities,
the arc sets (A) their start and finish times (ST and
FT, respectively), and the zero lag of their precedence
relationships. For each project, there are two dummy
activities, 0 and D+ 2, which indicate the start and finish
times of the project, respectively. Therefore, a project
consists of D+2 activities and each cannot be started until
all its precedence activities are completed. It is assumed,
that if an activity starts, it cannot be stopped until it’s
entirely finished, also that the duration of each activity
(d) is uncertain and denoted as d̃ [1], [15].

The objective of a SRCPSP, is to minimize the overall
project duration, which is called the make-span of a
project. Its constraints are of satisfying all the precedence
relationships and resource capacity limits, which are
mathematically expressed as:

Minimize: E [FTD+2] =
1

NS

NS∑
s=1

FT(D+2),s (1)

Subject to:

FT1,s = 0, s ∈ NS (2)

FTi,s ≤ FTj,s − d̃s,j ,∀ (j, i) ∈ A, s ∈ NS (3)

∑
j∈At

rjk ≤ Rk, ∀j, t, k, s (4)
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FTj,s ≥ 0, ∀j (5)

where E [FTD+2] is the expected FT of the finish dummy
activity, calculated by averaging FTD+2 over NS scenarios,
FT(D+2),s, the FT of the finish dummy activity in the
sth scenario and FT1,s, that of the start dummy activity
which is always zero. Constraint (3) is used to ensure that
the ith activity cannot be started until all its predecessors
have finished, with d̃s,j indicating the duration of the jth

activity in the sth scenario, that is randomly generated
using a PD with a mean of (details are provided in
subsection III-B1). Constraint (4) indicates that activity
j requires a kth type of rjk resource, which must not be
greater than its maximum limit of Rk. As there are K
types of renewable resources in a project, they are limited
to being used at a certain time, but can be re-used later,
for example, machines and manpower. The symbol At
represents a set of activities running during a time period,
t ≤ FTD+2, with constraint (5) is used to ensure that an
activity’s FT is not negative.

B. Relevant literature review

Over the last few decades, deterministic RCPSPs
have been studied extensively. Since they are NP-hard
problems, numerous approaches have been developed
to obtain better solutions. Of them, meta-heuristic
algorithms have performed well, due to their flexible
characteristics which avoid local minima [16]; for example,
Alcaraz et al. [17] developed a robust GA for scheduling
different projects, which although performing well, is
computationally expensive. To reduce time, Debels
et al. [18] proposed a decomposition-based GA and
Valls et al. [19] a hybrid GA, in which the search
operators are modified and a local search introduced
to enhance the solution quality. Using a local search,
other population-based algorithms perform well, for
example, differential evolution (DE) [20], particle swarm
optimization (PSO) [21] and DE with fuzzy clustering
[10]. Based on the results obtained by these algorithms,
it is evident that some are superior for certain problems,
but, are inferior for others, which is true even for a
single problem. It is found that an algorithm may perform
well in an early stage of evolution but become stuck in
local optima later. To overcome this drawback, Saber
et al. [1] developed a multi-method based algorithmic
framework called COA, which consists of two algorithms:
a MOGA and MODE, each of which uses multiple search
operators, with the results obtained being better than
those in the existing literature. However, these methods
were designed for deterministic RCPSPs, in which the
durations of activities are considered to be known discrete
values, whereas because in practice they are uncertain
and may change for many reasons, including unavailable
resources, bad weather, delayed delivery and lack of
workers, considering them known may result in a project’s
schedule performing poorly.

Recently, many researchers considered RCPSPs with
uncertain durations, called SRCPSPs, in which an
activity’s duration is not assumed to be known in advance,
but are represented by a random vector or scenario as
d̃ = {d1, d2, . . . , dNS

}, where ds, s ∈ NS is the sth random
scenario of a duration with a known PD [11]. However,
this assumes that the distributions of the durations of
the activities are discrete, which results in the SRCPSP
being a generalization of a deterministic RCPSP. However,
due to the uncertain behavior of activities’ durations, the
solution to a SRCPSP may not be a single schedule, but
multiple ones depending on the scenarios of an activity’s
duration. In other words, since the finish time of an
activity can be a multiple, depending on its duration
scenarios, the start time of its successor must also be a
multiple. Consequently, a number of solutions are found
for a SRCPSP, with some researchers calling them policies
[3]. A policy or strategy is defined as updating a solution
on an on-line basis, that determines which activities are to
be started at a certain decision time (t), based on a given
PD and prior knowledge up to t− 1.

Several classes of such policies can be found in the
literature, for example, earliest-start

(
πES

)
, pre-processor(

πPR
)
, pre-selective

(
πPS

)
, linear pre-selective

(
πLPS

)
,

resource-based
(
πRB

)
, and activity-based

(
πAB

)
[13], with

many researchers using them to solve SRCPSPs; for
example, Ballesẗı¿œn et. al [3] and Francisco et. al. [22]
used a πAB policy, Ashtiani et. al [23] used a πPR and
Rostami et. al. [11] used different generalized processor
policies. Also, Fernandez et al. [24] solved a SRCPSP using
a scheduling policy represented as a multi-stage stochastic
optimization problem. Recently, a closed-loop policy for
SRCPSPs with a dynamic programming approach was
introduced by Li and Womer [2], that outperformed
the above-mentioned open-loop policies. However, it was
also found that closed-loop policies are only superior for
a SRCPSP with a asymmetric PD of durations, while
open-loop ones are better for other cases. Considering
either an open- or closed-loop policy, particularly RB, AB
or PR, is computationally intractable for a large practical
SRCPSP, as the set of scenarios increases exponentially,
according to the number of activities [11].

Another useful approach, in which a SRCPSP is
represented as a scenario-based model and the expected
objective function is evaluated by considering many
possible scenarios of activities’ durations, is found in the
literature [15]. Its main advantage is that the operator
does not need to know the actual values of the uncertain
parameters in advance. Instead, many sets of random
values are generated for every uncertain parameter using
a known PD and then their FVs are independently
evaluated and their average value is considered the
expected FV of a given schedule. Over the last few years,
this scenario-based method has become a popular choice
for many optimization problems with uncertainties, such
as project scheduling [9], electrical generator planning [8]
and logistics [25]. However, this approach is generally
computational expensive. To reduce computational time,
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Tseng et al. [12] developed a scenario-based SRCPSP
model containing a proposed technique for reducing
the number of scenarios, Zaman et. al [15] solved a
SRCPSP using an evolutionary algorithm (EA), with the
scenarios of activity durations being considered only in
the final generation, and their known values were used
in other generations. Although this approach reduced
computational time significantly, the schedule obtained
by that approach may not be optimal, as after applying
the scenarios, the best schedule was formed among the
final population members and so had no chance of further
improvement. In addition, the scenarios of the durations
were rounded to their nearest integer values, that caused it
to loss a PD’s property. To best of our knowledge, solving
a continuous scenarios based SRCPSP using EAs, has not
yet been explored.

III. Proposed Approach

In this paper, the SRCPSP is modeled as a scenario
driven problem with continuous decision variables. The
original COA was designed for solving deterministic
RCPSP, where the activity durations were considered as
integers [1]. As the uncertain durations are continuous, we
modified the algorithms to deal with continuous variables.
The uncertain variables of durations are represented by
a number of scenarios (NS) generated using various PDs,
as shown in subsection III-B, with the algorithm called a
‘scenario-based COA’ (‘S-COA’).

S-COA is a population-based method which starts with
an initial population of NP random individuals, as shown
in subsection III-A, with new individuals always used in a
serial schedule generation scheme (SSGS) to obtain their
feasible schedules and a local search is applied to enhance
the quality of the schedules. Firstly, NP individuals are
evaluated considering their deterministic duration values,
using Eqns. (1) to (5). Then, based on their FVs, the
best individual is selected and its expected FV (EFV)
is evaluated for NS duration scenarios, as shown in
subsection III-B. Note that a random duration from NS
scenarios can be a continuous or discrete value, with the
process for dealing with a continuous one in S-COA, as
described in subsection III-B.

In subsequent generations, new individuals are
generated using one or both of the S-COA algorithms,
MOGA and MODE, based on their prior performances
for generating better individuals than their parents, as
discussed in subsection III-C. After their generation,
NP new offspring are evaluated using their deterministic
durations and based on the minimum finishing times of
the last dummy activity, the best individual is selected.
Then, the EFVs of the new best and its parent’s best,
are evaluated under the same NS duration scenarios and
the best individual is merged with its selected offspring.
This process continues until the algorithm reaches its
maximum fitness function evaluations (MFFEs). The
pseudo-code of the proposed S-COA is presented in
Algorithm 1 and its details are discussed in the following
subsections.

Algorithm 1 Pseudo-code of solution approach

Require: Require: NS , MFFE and NP .
1: Generate an initial population of size NP , as discussed

in subsection III-A.
2: Generate feasible schedules and apply a local search

to all NP individuals, and evaluate them, as discussed
in subsection III-B.

3: Evaluate the expected FV (EFV) of the best individual
for NS scenarios, as shown in subsection III-B.

4: Set the current FFE (cfe) to, cfe = NP +NS .
5: while cfe ≤MFFE do . Main loop
6: Generate NP new offspring based on the

MOGA and MODE operators, as discussed in
the optimization methods in subsection III-C.

7: Evaluate the FVs of the new offspring as
discussed in step 2 . Set, cfe = cfe+NP .

8: Based on the best FVs, find the best
individual, apply NS scenarios to the new and
old best individuals, and evaluate their EFVs,
and set, cfe = cfe+ 2 ∗NS .

9: Based on these EFVs, select the best
individual for this iteration.

10: end while

A. Representation and initial generation

The decision variables of SRCPSP are sequences of
activities, generated using random permutations as:

~xi ∈ perm
(

∆

∆

)
∆ = {1, 2, . . . , D − 1} , ∀i ∈ NP (6)

where ~xi is the ith individual in the NP population,
perm

(
∆
∆

)
the permutation or random combination of the

non-dummy activities. The number of decision variables
depends on the number of activities in a project i.e., D+2.

B. Fitness evaluation with uncertainty

As a random or newly generated child solution may
not be feasible for satisfying its precedence and resource
constraints, a SSGS is employed to make it feasible. In it,
a new solution (~xi, i ∈ NP ) is decoded by selecting the
activities in an order based on their earliest starting times
subject to their satisfying the precedence and resource
constraints. To obtain an entire feasible schedule,

∑
j dj

iterations are required [11]. However, this may not be valid
when the duration of an activity is considered a random
value which can be continuous. To deal with continuous
values, SSGS firstly rounds the solution to a given number
of decimal points (n); for example, if n = 10 and
d = {5.265, 3.253, 1.265, 1.021}, the rounded durations
are d = round [(d ∗ n)/n] which is equivalent to d =
{5.30, 3.30, 1.30, 1.00}. Therefore, to obtain a complete
feasible schedule,

∑
j ndj iterations are required. Although

higher values of n produce more accurate solutions, they
increase the computational time significantly. In SSGS,
an appropriate activity is selected in each iteration and
is inserted into a partial schedule, based on its earliest
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Fig. 1: Graphical process for selecting the elite member

possible time subject to its precedence and resource
constraints. During this insertion, the starting times of the
activities already scheduled remain unchanged, while the
finishing time of each is recorded.

To enhance the FVs of individuals, a local search, in
which their activities are sorted in descending order of
their finishing times, is employed [1]. Then, the activities
are pushed forward as far as possible, while maintaining
the precedence and resource constraints while those of
the updated individuals are sorted again, based on their
starting times. Finally, the updated solutions are used
by SSGS to generate feasible schedules. Subsequently, the
individuals are sorted based on their finishing times to
select an elite one. Two elite individuals are selected (or
one if it is in the initial generation), one from the parents
(xbest) and another from their children (ybest) and they
are evaluated with NS scenarios generated using a PD,
as discussed in subsection III-B1. Once NS scenarios are
evaluated, the EFVs of both elite solutions are determined
by averaging their FVs for all scenarios. Based on the
EFVs of the two elite members, the best one is selected
for the next generation. Fig. 1 shows a graphical overview
of the selection of one of two elite individuals, based on
their EFVs.

Once the final elite member is selected, it is merged
with other individuals already selected, based on their
deterministic FVs, for the operations of the optimization
methods MOGA and MODE, as discussed in subsections
III-C1 and III-C2 for MOGA and MODE, respectively.

1) Scenario generation: In this paper, the durations
of activities are assumed to be uncertain and follow
a particular PD. As when a project’s activities are
scheduled, their durations are considered random values
of NS scenarios. We generate them for each activity’s
duration using three well-known continuous PDs that are
common in SRCPSPs [11], [16]. They are discussed as
follow.

a) Uniform Distribution: It is a common type of
PD that has a constant probability that can be discrete
or continuous, we assume a continuous one, with NS
scenarios of a given duration generated as:

d̃s,j = lbj + (ubj − lbj)rands (7)

∀s = 1, 2, . . . , NS ; ∀j ∈ D + 1

where d̃s,j is a random value of the jth activity’s duration
in the sth scenario, rands ∈ [0, 1] is a random value

between 0 and 1, and lbj and ubj are the lower and upper
bounds of the jth activity, respectively.

b) Exponential Distribution: This distribution is
usually modeled with a constant rate of failure and a larger
standard deviation (Std) than the uniform one. The NS
random scenarios of a given duration, using an exponential
distribution, are generated as:

d̃s,j = Exp(µj),∀j ∈ D + 1; ∀s = 1, 2, . . . , NS (8)

where µj is the mean or deterministic value of the jth

activity’s duration.
c) Beta Distribution: This distribution is very well

known for project scheduling with uncertainty. Many
RCPSPs have been modeled that uses it with two shape
parameters (α and β) to generate a random value between
0 and 1, with NS scenarios of the activity’s duration
generated as:

d̃s,j = lbj + (ubj − lbj)Betas(α, β) (9)

∀s = 1, 2, . . . , NS ; ∀j ∈ D + 1

where Betas(α, β) is a random value between 0 and 1 in
the sth scenario, generated by using a beta distribution
with parameters, α and β.

C. Optimization methods

In this research, two algorithms, MOGA (Alg1) and
MODE (Alg2), are used in a single framework in
which both are performed sequentially one after another.
Initially, their probabilities (prob1 and prob2) are set to 1
and in each generation, two random numbers are generated
as randi ∈ [0, 1], i = 1, 2. Then, if randi ≤ probi, a new
solution is generated using Algi. After a certain number
of generations, called a cycle (CS), probi is updated based
on its performance in previous generations as [1]:

probi = max

(
0.1,min

(
0.9,

∑CS
g=1 SRi,g∑2

i=1

∑CS
g=1 SRi,g

))
(10)

where g is the current generation number, and SRi,g the
success rate of the ith algorithm in the gth generation,
determined as:

SRi,g =


fbest
old,i,g−f

best
new,i,g

fbest
old,i,g

f bestold,i,g 6= f bestold,i,g

1 f bestold,i,g = f bestold,i,g

(11)

where f bestold,i,g and f bestnew,i,g are the best FVs of the parents

and offspring of the ith algorithm in the gth generation,
respectively, ∀i ∈ {1, 2}, and g ∈ NP .

As S-COA considers two MOEAs, for MOGA an
integer-based crossover and mutation operator are
employed, while for MODE, two mutation operators, DE1

and DE2, are used with a crossover, as discussed in the
following subsections.
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1) MOGA: In MOGA, two crossovers, (i) a two-point,
and (ii) a uniform, with a left-shift mutation operator is
used. The number of individuals assigned to each operator,
depends on their performance in previous generations, as
calculated as:

nI1 = min

(
NP − 1,

(
max

(
1,

NP∑
k=1

rand1 ≤ Probop1

)))
(12)

nI2 = NP − nI1 (13)

where rand1 ∈ [0, 1] and Probop1 is the probability
of the two-point crossover, which is initially set to 0.5,
and subsequently updated using Eqn. (15). The symbols
nI1 and nI2 indicate the numbers of individuals to
be generated using two-point and uniform crossovers,
respectively.

To generate two new individuals using the two-point
crossover, firstly, two parents (~x1 and ~x2) are randomly
selected using a tournament pool, next they are divided
into three parts and then they combined by exchanging
the 2nd part between the two parents while ensuring that
there are no redundant elements in any child. Fig. 2 shows
the process for generating two children from two parents.

Using the uniform crossover, a child (~y1) is generated
from two random parents ~x1 and ~x2, as:

~y1 =

{
x1,j randj ∈ [0, 1] ≤ 0.5

x2,j randj > 0.5 ∩ x2,j /∈ ~y1

,∀j = 0, 1, . . . , D + 1

(14)
Once a child is generated, a left-shift mutation is used,
in which a gene of a child (yi,j∀i ∈ NP ,∀j ∈ D + 1) is
randomly shifted to its left if randj ∈ [0, 1] ≤MR, where
MR is the mutation rate.

Once all the children are generated, their feasible
schedules are obtained, as discussed in subsection III-A.
Then, after applying a local search, their FVs are
evaluated considering NS scenarios, as in subsection III-B.
To enhance the convergence rate, the elite solutions
from the previous generation are merged with the new
individuals and Probop1 updated as:

Table I: Example of obtaining a continuous individual from
a discrete one

~xi, i ∈ NP 1 5 4 2 3 6
loc(xi) 0 3 4 2 1 5

rand∈ [0, 1] 0.32 0.84 0.85 0.04 0.61 0.39
~xcont
i 0.32 3.84 4.85 2.04 1.61 5.39

Probop1 = max

(
0.1,min

(
0.9,

I2p
I2p + Iu

))
(15)

where I2p and Iu are the average improvements in the
two-point and uniform crossovers, respectively, which

are calculated as:
(∑NP

i=1 max
(
0, fnewi − foldi

))
/NP , ∀NP .

Note that when both I2p and Iu are zero, the value of
Probop1 is set to 0.5.

2) MODE: Depending on the value of prob2, a number
of new individuals are generated, using the operators of
MODE. Similar to MOGA, the number of individuals in
each operator is determined, based on Eqns. (12) and
(13), in which nI1 and nI2 represent DE1 and DE2,
respectively.

In MODE, the real-value individuals, i.e., ~xconti , are
used to generate new individuals (~yconti ), with the integer
individuals first encoded to their continuous ones, which is
obtained from a discrete individual (i.e., ~xi). An encoding
approach is employed, in which each value of ~xconti is
encoded, based on its location (loc) in the vector of ~xi,
plus a random value between 0 and 1. For example, Table
I shows the process whereby a continuous decision vector
is obtained from its discrete one. The second row indicates
the location of each cell, for example, the second cell is the
location of ‘2’ which is 3 in the first row of ~xi. Note that
the first and last activities of each project are dummies.

Once ~xconti is obtained, the nI1 number of
offspring is generated using DE1, which is based on
‘current-to-rand/bin with archive’, as:

yconti,j =


xconti,j + Fi

(
xcontr1,j − xconti,j + xcontr2,j − X̂cont

r3,j

)
if rand ≤ cri ∪ j = jrand

xconti,j otherwise
(16)

where, r1 6= r2 6= r3 6= i ∈ NP are randomly selected
from xcont, and Fi and cri are the amplification factor
and crossover rate of the ith individual, respectively. As
the appropriate selection of these two parameters (Fi
and cri) is challenging, as it is very important to obtain
the best solution to an optimization problem [26], they
are self-adaptively adjusted in each generation during the
solution process. Details of the self-adaptive mechanism
can be found in [1]. The notation cont represents the union
of the storage archive of all the old individuals and the
entire xcont. Note that as this archive is initially empty,
but after a certain stage, may become too large, we set
a threshold value. If the size of the archive exceeds this
threshold, the old values are randomly replaced with new
ones.
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Table II: Example of decoding to obtain a discrete
individual from a continuous one

~xcont
i 0.32 3.84 4.85 2.04 1.61 5.39

sort
(
~xcont
i

)
0.32 1.61 2.04 3.84 4.85 5.39

Rank= ~xi 1 5 4 2 3 6

Once the nI1 number of offspring is generated using
DE1, the remaining offspring (i.e., nI2) are generated
using DE2 which is based on ‘current-to-rand/bin without
archive’ as:

yconti,j =


xconti,j + Fi

(
xcontr1,j − xconti,j + xcontr2,j − xcontr4,j

)
if rand ≤ cri ∪ j = jrand

xconti,j otherwise
(17)

where rand ∈ [0, 1], r4 6= r1 6= r2 6= r3 6= i ∈ NP and jrand
is a random gene of ~xconti .

After generating NP offspring using DE1 and DE2,
the continuous-valued yconti ∀i are decoded to their
integer-valued yi∀i by firstly sorting ~yconti in ascending
order and then producing ~yi based on its rankings. For
example, Table II shows a sample of a discrete schedule
obtained from a real-valued one.

After obtaining ~yi∀i ∈ NP , feasible schedules are
generated from yi∀i, as described in subsection III-A.
Then, a local search is applied to all the offspring and their
FVs evaluated for NS scenarios, as discussed in subsection
III-B. In the selection, the better individuals are selected,
based on their corresponding FVs, as:

xnewi,j =

{
yi,j FV (yi,j) ≤ FV (xi,j)

xi,j FV (xi,j) < FV (yi,j)
(18)

where xnewi,j ∀i ∈ NP , j = 0, 1, . . . , D is the selected jth

gene in the ith individual. Finally, the Probop1 for MODE
is updated in a similar way to that for MOGA using Eqn.
(15).

IV. Computational Results

In this section, several experiments that were carried
out to determine the performance of S-COA for solving
different SRCPSPs are discussed, and the results obtained
are compared with those from state-of-the-art algorithms.
For fair comparisons, the SRCPSP benchmarks are taken
from the literature. The algorithm is evaluated on problem
sets of J30, J60 and J120 activities, all of which are
standard data sets for project scheduling problems,
containing 400, 600 and 600 RCPSP instances with 30,
60 and 120 non-dummy activities, respectively [1]. All the
test problems are solved using S-COA while considering
the following NS scenarios for the activities’ durations:

• var1 : scenarios are considered for evaluating all
individuals in all generations;

• var2 : scenarios are considered for evaluating all
individuals only in the final generation; and

• var3 : scenarios are considered for evaluating the best
individual in all generations.
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Fig. 3: Small test problem with 11 activities

These three variants of the proposed algorithm (S-COA)
are used to solve all the problems to determine the explicit
performances of the scenario-based algorithm. Note that
var1 is a popular choice in an evolutionary uncertain
environment [8] while var2 and var3 are tested in this
paper.

For fair comparisons, the MFFEs are tested for both
5000 and 25000 schedules for all the problems, the values
of NS is 100, 50 and 10 for the J30, J60 and J120 ones,
respectively, the population size (NP ) to 10 and the other
parameters kept the same as in [1]. As we use continuous
PDs to generate scenarios of activities’ durations, the
random values of these durations can be continuous, and
to obtain their decimal values to the tenth place, we set
n = 10 (subsection III-B).

Each test case is run 15 times, with the median values
reported for all the variants of the algorithm, until they
reach the MFFEs. They are implemented in a Matlab
(R2018a) environment on a desktop computer with a 3.4
GHZ Intel Core i7 processor and 16 GB of RAM.

A. Illustrated Problem: Discussion

Initially, we considered a small test problem with
11 non-dummy activities, to determine the performance
of the different variants of the proposed algorithm. Its
parameters are shown in Fig. 3, with the availability of
three types of resources that are A=6, B=7 and C=6 [27].

The optimal solution of this problem is 20 [27] which
is easily obtained using the deterministic version of
our algorithm. The stochastic nature of this problem is
established by considering that the durations are uncertain
and follow a beta distribution, with the parameters based
on three estimations, i.e., optimistic (a), most likely (m),
and pessimistic (b). The α and β parameters for the beta
distribution are calculated as:

φj =
5aj − 4mj − bj
aj + 4mj − 5bj

∀j = 1, 2, . . . , 11 (19)

αj = φjβj ∀j = 1, 2, . . . , 11 (20)

βj =
−(φ2

j − 34φj + 1)

(φj + 1)3
∀j = 1, 2, . . . , 11 (21)
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Table III: Results for the small test problem obtained by
S-COA

Alg. Make-span Time
Min. Mean Max. (sec.)

var1 21.30 21.39 21.50 3.62
var2 21.40 21.72 23.90 6.07
var3 21.30 21.39 21.50 2.24
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Fig. 4: Convergence plots of the small test problem

where aj = 0.8dj , mj = dj and bj = 1.5dj ∀j, and dj is the
duration of the jth activity. Given a sample scenario size
of 100, the best solution obtained to this problem is 21.706
using the tabu search algorithm [27]. We also solved the
same problem, using the above three different variants of
the proposed algorithm.

With the MFFEs set to 5k, each variant of the algorithm
was run 15 times and its mean value is reported in Table
III. It can be seen that the results for the project durations
using var1 and var3 are the same, while the average
computational time for var1 is greater than that for var2
and var3.

Fig. 4 shows convergence plots of the three variants
of the proposed algorithm. It can be seen that var1
and var3 obtain the same best solutions, while var2
solves the problem in a deterministic way until the final
generation and then considers scenarios which increase
the make-span in comparison with those of previous
generations. However, as the best solution obtained by
var2 is worse than those from var1 and var3, based
on the quality of solutions and computational times, it
can be easily concluded that var3 is the best option for
solving such a scenario-based SRCPSP. Therefore, for the
following SRCPSPs, we compare only the results from var3
with those from the state-of-the-art algorithms.

B. Experimental setup for PSPLIB benchmarks

In this section, the performance of the proposed S-COA
is tested by solving the well-known PSPLIB benchmarks
with J30, J60 and J120 instances, with the difficulty
of each defined by the three parameters of network
complexity (NC), resource factor (RF) and resource
strength (RS). NC indicates the average number of

Table IV: Parameters of PD

PD
Limits Mean Variance

lb ub µ σ

U1 dj −
√
dj dj +

√
dj - dj/3

U2 0 2dj - d2j/3

Exp - - dj d2j
B1 dj/2 2dj - dj/3
B2 dj/2 2dj - d2j/3

predecessors in each activity, RF the average percentage
of various types of resource usage per non-dummy activity
which has a non-zero duration and RS the availability
of resources. For a fair comparison, the values of NC,
RF and RS for the J30 and J60 instances are set to
NC ∈ {1.5, 1.8, 2.1}, RF ∈ {0.25, 0.5, 0.75, 1} and
RS ∈ {0.2, 0.5, 0.7, 1}, and those for the J120 ones
NC ∈ {1.5, 1.8, 2.1}, RF ∈ {0.25, 0.5, 0.75, 1} and
RS ∈ {0.1, 0.2, 0.3, 0.4, 0.5} [1].

After 15 independent runs of each test case, the
median results are compared with those available from
state-of-the-art algorithms for SRCPSPs. Firstly, we
consider a GA [3] and GRASP [22], both of which use
an activity-based (AB) policy and are called AB-GA and
AB-GR, respectively. Secondly, a two-phase GA [23] called
PPGA and an approximate dynamic programming (ADP)
algorithm based on a hybrid look-back and look-ahead
(HBA) approximation architecture [2], called ADP-GBA,
are considered. Finally, we compare our algorithms with
the recently proposed different generalized processor
policies (GP-policies) for SRCPSPs [11]. Also, the results
obtained by several approaches for J120 activities found
in the literature, such as an estimation of distribution
algorithm with RB (RB-EDA) [13] and a two-phase
meta-heuristic consisting of GRASP and a GA with GP
(GP-H) [11], are compared with those obtained by our
algorithms.

We consider five types of PD, Uniform1 (U1), Uniform2
(U2), Exponential (Exp), Beta1 (B1) and Beta2 (B2), with
their lower and upper bounds (lb and ub, respectively),
means (µ) and variances (σ) shown in Table IV. The
parameters α and β for the B1 and B2 distributions are set
as α =

dj
3 −

1
3 , β = dj− 2

3 , and α = 1
6 , β = 1

3 , respectively.
It is clear in Table IV, that the durations with the Exp
distribution have a maximum σ, followed by those with
the U2 and B2 ones, and then the U1 and B1 ones.

C. Experimental results

The average results after solving each test problem
up to 5k and 25k MFFEs, using the proposed S-COA
with var3, are presented in Tables V, VI and VII for
the J30, J60 and J120 instances, respectively, with the
notation ‘NR’ indicating that these values are not found
in the literature. The column labeled ‘Gap’, indicates the
average percentage deviation of the expected make-span
from the critical path length (CPL), with the deterministic
durations [13]:
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Table V: Comparison of results obtained by S-COA and
state-of-the-art algorithms for J30 instances

Algorithm MFFE
Gap

U1 U2 Exp B1 B2

PPGA [23]
5k 19.87 30.67 45.56 19.93 30.76
25k 19.59 30.24 46.12 19.49 30.22

ADP-HBA [2] NR 16.63 42.37 45.13 12.60 16.63
LFT [28]

25k
21.6 30.89 46.47 21.59 30.87

SLFT [28] 21.6 30.83 46.32 21.6 30.76
DH [28] 21.36 31.18 46.86 21.36 31.21

S-COA
5k 1.56 8.67 16.66 1.29 7.72
25k 0.83 7.26 13.79 0.74 6.14

Table VI: Comparison of results obtained by S-COA and
state-of-the-art algorithms for J60 instances

Algorithm MFFE
Probability distribution

U1 U2 Exp B1 B2

PPGA [23]
5k 18.91 29.08 45.74 18.98 29.17
25k 18.32 28.57 45.36 18.31 28.77

ADP-HBA [2] NR 14.14 38.32 39.76 10.46 16.84
LFT [28] NR 19.94 28.49 44.97 19.95 28.63
SLFT [28] NR 19.89 28.42 44.94 19.90 28.55

S-COA
5k 12.76 19.31 28.70 12.62 18.54
25k 11.83 18.05 26.38 11.79 16.92

Gap =
1

R

R∑
r=1

Er(f)− CPLr
CPLr

(22)

where Er(f) is the expected make-span of the rth problem,
which is determined by the means of simulations with NS
scenarios with values of R are 400, 600 and 600 for the
J30, J60 and J120 instances, respectively.

In Tables V to VII, it can be seen that the proposed
S-COA algorithm, consistently obtains better results for
both the 5k and 25k cases, than the state-of-the-art
algorithms. However, the maximum gaps are in the Exp
distribution, followed by U2 and B2, and the minimums
in U1 and B1, which is consistent with the assumptions of
the parameters for different PDs in Table IV.

Table VIII presents the average computational times
in seconds for different instances. As the state-of-the-art
algorithms are not implemented in our platform, it would
not be fair to compare their reported CPU times with
ours. However, it can be seen that the CPU times of the
proposed algorithm significantly increase when the MFFEs
are changed to 25k from 5k.

D. Uncertainty and PD

As already noted, the expected make-span varies widely
when the pattern of the uncertainty of a project’s
durations is changed, with the changes possibly reflected in
the σ of the solutions obtained after applying NS scenarios
to the best solution. In other words, a small value of
NS indicates that the solution is more stable, even after
applying the scenarios.

Table IX presents the σ values of the three variants
(var1, var2 and var3 ) of the proposed S-COA for different

Table VII: Comparison of results obtained by S-COA and
state-of-the-art algorithms for J120 instances

Algorithm MFFE
Probability distribution

U1 U2 Exp B1 B2

AB-GA [22]
5k 51.49 78.65 120.22 - -
25k 49.63 75.38 116.83 - -

AB-GR [22]
5k 46.84 72.58 114.42 47.17 75.97
25k 45.21 70.95 112.37 45.60 74.17

RB-EDA [13]
5k 47.29 59.54 72.50 47.65 58.29
25k 46.66 56.07 72.05 47.04 57.82

GP-H [11]
5k 46.71 55.95 71.71 46.87 55.95
25k 44.98 55.37 71.29 45.12 55.42

PPGA [23]
5k 48.86 59.91 76.03 49.01 58.82
25k 47.21 58.07 74.56 47.25 57.95

EDA [13]
5k 47.29 56.54 72.50 47.65 58.29
25k 46.66 56.07 72.05 47.04 57.82

ADP-HBA [2] NR 42.11 71.94 74.90 38.93 45.39
RB-LFT [28] 25k 48.05 55.59 70.95 48.05 55.56
RB-SLFT [28] 25k 48.04 55.48 70.76 48.04 55.45

S-COA
5k 34.57 37.15 39.58 34.53 35.40
25k 33.30 34.87 36.00 33.28 33.18

Table VIII: Average computational times of different
algorithms for J30, J60 and J120 instances

Ins. MFFE
Probability distribution

U1 U2 Exp B1 B2

J30
5k 58.72 69.09 70.32 64.42 67.24
25k 332.81 337.86 183.74 237.78 254.41

J60
5k 181.21 185.45 193.87 183.70 190.88
25k 859.38 889.25 1103.19 511.12 927.85

J120
5k 1325.03 1325.05 1362.66 1190.88 1188.97
25k 3563.33 4026.85 8947.86 8408.60 9110.82

problems with different PDs. It can be seen that the larger
values are in the Exp distribution for all cases, obviously
as they have the maximum Std, while the smaller values
are in the U1 and B1 ones, as they have the minimum
Std. Comparing these values obtained from three variants
of the algorithm, it is clear that they are almost the same
for all cases, which indicates that regardless of whether an
algorithm considers scenarios in the final generation (var2 )
or applies scenarios to the best individual in all generations
(var3), it covers the same level of uncertainties, as when
the scenarios are considered for all the individuals in every
generation (var1 ). Therefore, it could be said that how the
scenarios are used in any stage of the solution process does
not affect the consideration of uncertainties.

Table IX: Variances of obtained solutions

Prob. Variant
σ

U1 U2 Exp B1 B2

J30
var1 3.76 9.19 19.11 3.83 10.07
var2 3.75 9.23 19.04 3.79 10.03
var3 3.71 9.16 19.44 3.87 10.12

J60
var1 4.20 10.20 20.81 4.26 10.94
var2 4.22 10.22 20.62 4.27 10.83
var3 4.20 10.25 20.65 4.28 11.03

J120
var1 4.16 10.27 21.01 4.25 11.11
var2 4.13 10.34 21.64 4.24 10.80
var3 4.07 10.02 21.09 4.20 11.08
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Table X: Effect of NS on performances of S-COA

NS
J30 J60 J120

%Gap Std Time %Gap Std Time %Gap Std Time
10 7.94 18.40 38.94 11.23 20.64 98.98 39.58 21.09 662.66
50 11.79 18.72 39.55 28.70 20.65 193.87 53.61 21.63 726.64
100 16.66 19.44 70.32 32.22 20.94 216.68 57.38 22.69 819.00
1000 22.07 19.32 140.20 39.22 21.32 234.14 61.91 22.62 992.37
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Fig. 5: Performance of S-COA for NS

E. Numbers of scenarios vs performances

In this section, we analyze the performances of the
proposed algorithm, for the NS (i.e., numbers of scenarios)
considered in simulations. All the SRCPSP benchmarks
are solved using S-COA with NS = 10, 50, 100 and 1000,
while MFFE is set to 5000 and the Exp distribution is used
to generate the scenarios, as its σ is the maximum. Table X
shows the gaps, Std and computational times (in seconds)
for the J30, J60 and J120 benchmarks, and Fig. 5 the gaps
and times with respect to the number of scenarios (NS).
Although both the gaps and times increase with increasing
values of NS , it is evident in Tables X and Tables V to VII,
that S-COA still performs better than the state-of-the-art
algorithms, even for a large number of scenarios.

F. Comparisons of different variants of S-COA

In this section, we analyze the performance of var1,
var2 and var3 of the proposed S-COA for solving all
the SRCPSPs with MFFEs of 5000 and 100, 50 and 10
scenarios for the J30, J60 and J120 problems, respectively.
In Tables XI and XII, which present the results in terms
of gaps and computational times for all the problems,
respectively, it is clear that the quality of solutions
obtained by var1 and var3 are almost similar (a statistical
comparison is performed in subsection IV-H) and those by
var2 were worse while the computational times of var1 for
all problems in every PD are superior.

Fig 6 shows a normalized bar chart, in which an
improvement in the average gaps of make-spans for var3
over those for var1, and their corresponding CPU times
for all benchmarks are depicted. It can be seen that

Table XI: Comparisons of different variants of proposed
algorithm

Prob. Variant
%Gap

U1 U2 Exp B1 B2

J30
var1 1.46 8.69 17.90 1.25 7.91
var2 2.52 11.26 21.49 2.32 10.41
var3 1.56 8.67 16.66 1.29 7.72

J60
var1 12.85 19.53 29.63 12.65 18.45
var2 14.37 23.62 36.77 14.19 22.73
var3 12.76 19.31 28.70 12.62 18.54

J120
var1 34.80 37.42 41.14 34.71 35.84
var2 38.31 45.73 58.98 38.35 44.66
var3 34.57 37.15 39.58 34.53 35.40

Table XII: Computational times for different cases

Prob. Variant
CPU Time (seconds)

U1 U2 Exp B1 B2

J30
var1 126.47 145.62 175.78 121.05 189.61
var2 68.54 72.90 77.75 70.34 99.22
var3 58.72 69.09 70.32 64.42 67.24

J60
var1 386.22 512.26 491.71 572.90 551.64
var2 269.27 273.42 271.13 289.08 285.06
var3 181.21 185.45 193.87 183.70 190.88

J120
var1 2312.08 2340.11 2463.60 2229.42 2228.07
var2 1472.18 1392.86 1453.09 612.01 1440.74
var3 1325.03 1325.05 1362.66 1190.88 1188.97

the differences in make-spans are very small, while their
CPU times are significantly different. Therefore, it can be
concluded that var3 performs better for all cases, based
on the quality of solutions and computational time.

G. Effect on n

In this research, the random values of the durations are
generated using different continuous PDs, which results
in the values of d being continuous. However, we use a
technique to round-off these values to tenths (n = 10)
of decimal points, in order to deal with them in a more
sophisticated manner in S-COA (see subsectionIII-B for
more details), as discussed in this subsection.
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make-spans and corresponding CPU times
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All the SRCPSP benchmarks are solved using var3 of
the proposed algorithm and considering n = 1, n = 10 and
n = 20. For this experiment, we set MFFEs to 5k, with
an exponential distribution used to generate the scenarios’
durations. In Fig. 7, the results show that computational
time significantly increases when n increases but also that
the average gaps do not change markedly. The minimum
was found when n = 10, which means that the proposed
algorithm is not sensitive (in terms of solution quality) to
n, although it does perform better when n = 10.

H. Statistical test

In this section, the well-known Wilcoxon signed rank
test is performed to determine the significant differences
among the three variants of the proposed algorithm,
by using them to solve the J120 benchmark set (600
problems) with five different PDs, U1, U2, Exp, B1 and
B2.

For this test, a null hypothesis (H0) is assumed, as:

H0 : α1 = α2 = 0

where α1 and α2 are the median values of the two data
sets obtained by two different variants of the algorithm.
The H0 is tested by considering a 5% significance level
with the assumption that these median values are the same
of the given data sets, where the value H0 = 1 indicates
that the null hypothesis is rejected, while H0 = 0 indicates
the alternative hypothesis that there is at least one of the
values that is not zero.

Table XIII shows the H0 values for different paired
comparisons with various PDs. The experiments were
carried out based on two parameters: (i) the average
percentage of gaps; and (ii) the average Std of the FVs
in the final generation, after applying the possible NS

scenarios. The last column shows test of the two variants
for each experiment, based on the positive ranks of
their gap percentages, Stds and CPU times. In the first

Table XIII: Statistical test results (H0 values) by different
variants of proposed algorithm for J30 benchmark set

Algorithms
Based on %Dev Based on Std

Better
U1 U2 Exp B1 B2 U1 U2 Exp B1 B2

var1 vs. var2 1 1 1 1 1 0 0 1 0 0 var1
var1 vs. var3 0 0 0 0 0 0 0 0 0 0 var3
var2 vs. var3 0 0 0 0 0 0 0 0 0 1 var3

experiment, comparing var1 and var2, it is clear that
var1 is statistically better than var2, because it considers
NS scenarios from the first generation of evolution and
fine-tunes the solutions after considering any possible
uncertainty, while var2 does not consider uncertainty until
the last generation. However, in the next two experiments,
it is clear that there are no significant differences in the
quality of solutions obtained by var1 and var3, and var2
and var3, but var3 is statistically better than var1 and
var2 in terms of the gap percentage, Std and CPU time.

I. Comparisons with Monte-Carlo Simulation

In this section, to compare our results, we simulate
the first test problem from each of the J11, J30, J60
and J120 instances using the well-known Monte Carlo
(MC) simulation [29] and run it 1000 times, while
considering a random scenario selected from the 1000
scenarios. Alternatively, in each run, the problem is solved
deterministically while considering a random duration
of each activity generated using a beta distribution
(i.e., B1). The results from the MC simulations after
1000 runs, are compared with those obtained by the
three variants of the scenario-based proposed algorithm,
i.e., var1, var2 and var3, from the final generation
after applying 1000 scenarios. Table XIV shows the
minimum (Min.), mean, median, maximum (Max.) and
Std results of the make-spans for 1000 scenarios, with
the computational times of the overall times required by
the different approaches to evaluate the 1000 scenarios.
In Table XIV, it is clear that the MC’s computational
times are significantly higher than those of the variants,
with that of var3 being the minimum. In terms of the
quality of solutions, all the approaches produce almost the
same solutions, that are not statistically significant at a
95% confidence level, as shown in Table XV. However,
for larger problems, such as the J60 and J120 ones,
the MC approach provides significantly better solutions,
because its algorithm evaluates 5000 fitness functions for
each random scenario, while in the scenario-based ones,
only one fitness function is evaluated for each scenario,
because 1000 scenarios are considered in each generation.
Although, if the scenario-based approach could evaluate
more fitness functions, it may obtain better results, this
would be computationally expensive. Therefore, it can
be concluded that a scenario-based approach, considering
scenarios to the best individual in each generation (var3 ),
performs best in terms of both solution quality and
computational time.
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Table XIV: Comparison of the results obtained by MC
simulations and scenario-based algorithms

Prob. Alg.
Make-span Time

Min Mean Median Max. Std (min)

J11

MC 19.20 21.57 21.50 24.60 0.87 59
var1 19.10 21.57 21.50 25.00 0.86 0.32
var2 19.20 21.58 21.50 24.20 0.88 0.30
var3 18.80 21.54 21.50 24.30 0.87 0.074

J30

MC 35.20 45.00 44.90 56.20 2.97 295.68
var1 35.30 45.02 45.00 54.50 3.02 1.15
var2 36.40 45.27 44.90 56.80 3.19 0.88
var3 37.50 45.28 45.10 56.40 3.09 0.86

J60

MC 63.60 77.41 77.30 96.90 4.58 946.38
var1 64.60 78.02 77.70 94.70 4.60 4.65
var2 65.80 78.19 77.90 94.60 4.61 6.93
var3 66.80 79.17 78.80 94.80 4.70 0.90

J120

MC 99.10 109.99 110.00 123.40 3.73 2346.30
var1 102.30 112.15 111.70 124.60 3.87 30.87
var2 100.90 112.39 112.30 124.80 3.73 34.45
var3 99.50 113.42 113.40 129.40 4.10 4.68

Table XV: Statistical comparison of results obtained by
MC simulations and scenario-based algorithms

Prob.
MC vs.

var1 var2 var3

H p H p H p

J11 0 0.58 0 0.35 0 0.76
J30 0 0.38 0 0.08 0 0.05
J60 1 0.00 1 0.00 1 0.00
J120 1 0.00 1 0.00 1 0.00

V. Conclusion and Recommendations for Future
Work

In this research, an efficient scenario-based approach
for solving SRCPSPs with uncertain activity’ duration
has been developed. In the process, NS scenarios were
generated using five different probability distributions,
with their parameters based on their forecasted values
and historical errors. A new COA with two MOEAs,
MOGA and MODE, was used to solve these SRCPSPs.
It included a new operator which selected an elite solution
in the following ways. Initially, all the individuals in the
population in the gth generation were evaluated, based on
their deterministic values, and the best one was selected
based on the minimum make-span. Then, the expected
make-spans of the best individuals in the gth and (g−1)th

generations were re-evaluated considering NS scenarios
and finally, an elite individual was selected from them,
based on their expected values. Once a given number of
generations was completed, the elite solution obtained was
called a ‘robust schedule’, as it could handle a large range
of possible scenarios for uncertain activity durations. Since
considering NS scenarios for every individual in every
generation was computationally expensive, we considered
only the best ones, which resulted in a significant reduction
in computational time.

For the experimental study, we considered standard
RCPSP benchmarks with up to 120 non-dummy activities
from the PSPLIB and their uncertain parameters of

activity durations from different studies in the literature.
The results obtained using the proposed approach,
when compared with those of state-of-the-art algorithms,
revealed that the former was superior in terms of solution
quality with superior computational efficiency. This is
a significant finding for scenario based approaches, for
solving uncertain problems.

Possible future work could consider multi-mode
RCPSPs, with both uncertain activity durations and
uncertain resources. Furthermore, while we used a
certain PD to determine the parameters for uncertain
activity durations, which may not always be true in
real life, adopting random values for them could be an
improvement to this approach.
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