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Abstract—In multi-objective optimization, a scalable test prob-
lem is one that can be formulated for an arbitrary number of
objectives. Scalable test problems evaluate the conceptual foun-
dations of the so-called many-objective evolutionary algorithms.
As an important class of problems, scalable test problems should
contemplate a wide variety of features allowing us to evaluate
and judge specific components of many-objective evolutionary
algorithms. This, in fact, should promote the development of
new strategies and/or methods in the design of many-objective
optimization approaches. For this reason, the study of features
and difficulties of this class of problems, plays a salient role in the
development of many-objective approaches. As a result, a number
of multi-objective scalable test problems have been proposed in
recent years. In this paper, we present a review of features and
limitations of existing multi-objective test problems formulated in
continuous and unconstrained search spaces. We examine some
features observed in some test problems which have not been
properly discussed before. Additionally, we summarize a list of
features and recommendations that should be considered in the
design of scalable multi-objective test instances. Then, we preset
a review of the state-of-the-art scalable test suites, including their
features and limitations according to the recommended guidelines
discussed herein. Finally, some possible paths for future research
in this area are briefly discussed.

I. INTRODUCTION

MULTI-OBJECTIVE evolutionary algorithms (MOEAs)

have become an efficient and flexible tool to solve

the so-called multi-objective optimization problems (MOPs).

Notwithstanding the wide variety of evolutionary approaches

that have shown success in solving problems with two and

three objectives, several studies have revealed that most of

the existing evolutionary approaches become inefficient and

even impractical as the number of objectives increases [37],

[28]. Optimization problems having more than three objectives

are commonly referred to as many-objective optimization

problems, and their solution with MOEAs has motivated a sig-

nificant amount of research, as they appear in a wide number

of real-world applications.1 This has motivated the design of

new strategies capable of solving in an efficient manner many-

objective optimization problems, see for example [69], [15],

[72]. In this regard, many-objective optimization is considered

today as a very active research area.

1As an example of this class of problems, interested readers are referred
to [51], [63], [52].

Researchers working on continuous many-objective

optimization have adopted scalable multi-objective test

problems—i.e., problems that can be formulated for an

arbitrary number of objectives—to analyze the working

principles of many-objective approaches. Different

characteristics of scalable test problems have facilitated

the study and evaluation of different mechanism into many-

objective approaches. This, in fact, has motivated the design

of scalable test problems with a large variety of features.

As a consequence, a number of scalable test problems were

proposed since the early days of many-objective optimization,

see for example [18], [27]. Many are the criticisms towards

the use of artificial test problems, as some researchers claim

that such problems do not reflect the actual features of

real-world problems. However, the properties of artificial

test problems vary significantly between each other and they

can be complemented among different problems. In this

way, many-objective approaches can be tested on different

problems with different features and the well-performing

approaches become good candidates to solve a real-world

problem. For this reason, a multi-objective test problem

should include a variety of characteristics that simulate the

properties observed in real-world problems.

In this paper, we review the recommendations and charac-

teristics for the construction of continuous and unconstrained

test problems that are available in the specialized literature.

Particularly, we focus on [27], where a vast list of recommen-

dations and features is well analyzed and discussed. However,

due to the inherent advances in evolutionary multi-objective

optimization, and as part of our contribution, we examine some

features observed in some test problems which had not been

explicitly discussed before. As a consequence, we summarize

an extended list of characteristics and recommendations that

should be considered when designing continuous and uncon-

strained scalable multi-objective test instances. In addition

to this, we present a review of state-of-the-art scalable test

problems including their features and limitations according to

the features discussed in this paper. With this, we attempt to

reflect some of the areas in which more research is needed and

we establish such areas as possible paths for future research.

The rest of the paper is organized as follows. Section II

describes the design approaches that have been used for

multi/many-objective test problems, and introduces the rec-
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ommendations and features suggested for the construction of

such test instances. In Section III, a comprehensive review

of scalable test suites is presented. Section IV exposes the

features and limitations of the existing test suites. Finally,

in Section V, we provide our conclusions and some possible

paths for future research.

II. MULTI-OBJECTIVE TEST PROBLEMS: DESIGN

APPROACHES, RECOMMENDATIONS AND FEATURES

A. Design Approaches

In this section, we describe the three different techniques

which have been adopted in the construction of multi-objective

test problems [18].

1) Multiple single-objective approach: This is an intuitive

method that combines a number of single-objective optimiza-

tion problems to formulate a multi-objective model. This strat-

egy was extensively adopted in the early days of evolutionary

multi-objective optimization research, see for example [59],

[67], [65]. The main disadvantage of this approach is that

the Pareto set (PS) and the Pareto front (PF) are unknown,

and depending of the single-objective functions, they can be

very difficult to state. This, in fact, complicates the analysis

of results and the comparison of MOEAs may become unfair.

Nonetheless, this methodology has been recently adopted to

formulate new multi-objective test problems [4].

2) Bottom-Up approach: The bottom-up approach [18] is

a flexible method that has facilitated the design of multi-

objective test problems. In this approach, the Pareto optimal

front, the objective space and the decision space are separately

constructed. Concretely, the decision variables are splitted

into two groups: “position” and “distance” parameters. The

Pareto optimal surface is constructed by parametric functions

(position functions) whose inputs are the position parameters.

The objective space is stated by constructing an extreme

boundary surface parallel to the Pareto optimal surface, so that

the hyper-volume bounded by these two surfaces constitutes

the attainable objective space. Finally, each decision variable

vector is mapped into objective space. This task is carried out

by defining linear/nonlinear functions where the inputs are

the distance parameters. Such functions (known as distance

functions) establish the distance of the objective vectors to

the PF. Therefore, the difficulty to approximate solutions to

the PF depends directly on the difficulty of solving such

distance functions. Because of its flexibility, the bottom-up

approach has been successfully employed in the construction

of multi-objective test problems, particularly in the design

of scalable test problems. However, most of the test suites

adopting the bottom-up approach assume that position and

distance parameters are completely uncorrelated—i.e. they can

be easily identified—which is something hardly seen in real-

world problems.

3) Constraint surface approach: This method was in-

troduced to construct constrained multi-objective test prob-

lems [18]. Unlike the bottom-up approach that starts from

a pre-defined Pareto optimal surface, the constraint surface

approach first states the overall search space. Second, a number

of linear/non-linear constraints involving the objective function

values is added, thus erasing part of the objective space (i.e.,

restricting the search space). Finally, by defining linear/non-

linear objective functions, the decision variable space is

mapped into the objective space.

B. Recommendations and Features

The construction of multi-objective test problems should

satisfy some requirements and should include characteristics

aimed to evaluate specific components of MOEAs. In partic-

ular, when a test instance possesses different characteristics,

the test problem should evaluate the robustness of a MOEA,

i.e., the capability of a MOEA to solve a test problem with a

certain number of features. Several criteria for the construction

of multi-objective test instances have been discussed by a

number of researchers, particularly in the pioneering works of

Deb et al. [18] and Huband et al. [27]. Huband et al. [27]

analyzed and justified different requirements which should

be considered in the design of multi-objective test problems.

Table I presents the seven recommendations (R1–R7) and

the five features (F1–F5) discussed by Huband et al. [27].

However, because of the inherent progress on evolutionary

multi-objective optimization, other features (F6–F8) are added

and described below.

1) Feature 6 (F6): Difficult Pareto Set Topology: Ok-

abe et al. [53] noticed that the Pareto optimal set of most

multi-objective test instances, is defined by a piecewise linear

function. However, as pointed out in [40], this limitation

of test problems does not reflect the actual characteristics

commonly observed in real-world problems. Okabe et al. [53]

introduced the notion of predefined PS as an alternative

to construct multi-objective test instances with arbitrary PS

topologies. This notion was generalized to an arbitrary number

of decision variables in [76], [40], in a set of test instances

with complicated Pareto sets.
To observe the difficulties that can bring a complicated PS

topology to a multi-objective problem, consider the following
“kite” test problem, where all the objectives are to be mini-
mized:

Fj=1:M−1(x) = (1 + g(x))× xj

FM (x) = (1 + g(x))×
(

1−
∏M−1

i=1

9xi+1

10

)

/
(

1− 0.1M−1
)

x ∈ Ω = [0, 1]n and M < n
(1)

In the above problem, a piecewise linear PS topology can

be defined with

g(x) =
∑n

j=M (xj − 0.5)2 (2)

while a more complicated PS shape is formulated with

g(x) =
∑n

j=M (xj − γj(x))
2 (3)

such that

γj(x) =
1

2(M−1)

∑M−1
i=1 sin(2πxi − 1 + θj)

3 + 1
2 (4)

with θj =
2π(j−M)

n
, for j = M, . . . , n.

In the following experiment, let’s consider the above test

problem with M = 2 and n = 20. Thus, the PSs projections

onto the space x1, x2 and x3, for the two formulations of g
can be appreciated in the plots of Fig. 1. In both formulations
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TABLE I: Recommendations and features for multi-objective test problems

Recommendation (R) or Feature (F) Comment

R1: No Extremal Parameters Prevents exploitation by truncation based correction operators
R2: No Medial Parameters Prevents exploitation by intermediate recombination
R3: Scalable Number of Parameters Increases flexibility, demands scalability
R4: Scalable Number of Objectives Increases flexibility, demands scalability
R5: Dissimilar Parameter Domains Encourages EAs to scale mutation strengths appropriately
R6: Dissimilar Trade-off Ranges Encourages normalization of objective values
R7: Pareto Optima Known Facilitates the use of measures, analysis of results, in addition to other benefits

F1: Pareto Optimal Geometry Convex, linear, concave, mixed, degenerate, disconnected, or some combination
F2: Parameter dependencies Objectives can be separable or non-separable
F3: Bias Substantially more solutions exist in some regions of fitness space than they do in others
F4: Many-to-one mappings Pareto one-to-one/many-to-one, flat regions, isolated optima
F5: Modality Uni-modal, or multi-modal (possibly deceptive multi-modality)
F6: Difficult Pareto Set Topology Pareto set difficult to characterize
F7: Difficult Pareto Front Shape Pareto optimal front difficult to estimate
F8: Correlation of Position and Distance Functions Dependencies between position and distance functions
F9: Single Optimal Solution for a High Number of Objectives Single objective solution for multiple objective functions
F10: Easy Configuration of Features in Scalable Test Problems Easy way to configure the features of a scalable test problem

of the problem, the PF (for M = 2) is exactly the same and

corresponds to a single linear piece contained into the square

[0, 1]2. The difficulties of solving the kite test problem with

different PS topologies, can be observed by executing a multi-

objective algorithm with the same parameter settings over the

two different formulations of g. In this study, we consider a

hypervolume-based MOEA (namely the “S Metric Selection

Evolutionary Multi-Objective Algorithm”, SMS-EMOA [2])

as the solver of this problem for the two formulations of g.

SMS-EMOA is a steady state algorithm that generates a trial

solution at a time, aiming to maximize the hypervolume of

the non-dominated solutions found during the search. Since

the PF of the kite test problem in both configurations of g is

linear, the hypervolume indicator does not favor any convex

or concave part of the PF, being a good candidate to carry out

this experiment. In both scenarios, SMS-EMOA performed the

same number of fitness function evaluations and used the same

parameters settings. The performance evaluation was carried

out by using the empirical attainment functions (EAFs) [48],

and comparing the final set of solutions obtained by SMS-

EMOA in the problem with the two formulations of g. The

EAF provides the probability, estimated from several runs, that

an arbitrary objective vector is dominated by, or equivalent

to, a solution obtained by a single run of the algorithm. The

difference between the EAFs for an algorithm solving two

different problems with the same PF, identifies the regions

of the objective space where an algorithm is able to perform

better in a problem than in another one. In this particular

case, the magnitude of the difference in performance of SMS-

EMOA in a determined problem is plotted with a gray-colored

scale as illustrated in Fig. 2. We can clearly see that for the

complicated PS topology formulation, SMS-EMOA produces

solutions that are very likely dominated almost everywhere

by the solutions obtained in the problem with the simple PS

topology (i.e., the formulation with a piecewise linear PS).

This means that the kite test problem with the complicated PS

topology is more difficult to solve than the one with the simple

PS shape. As it was noticed by other authors, complicated PS

topologies are meant to test specific mechanisms of MOEAs,

particularly, parent selection and recombination [40]. For this
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(b) g(x) =
∑n

j=M
(xj − γj(x))

2,

where γj(x) is defined as in Eq. (4)

Fig. 1: Pareto optimal set for the kite test problems using

different g(x) functions
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Fig. 2: EAF differences for SMS-EMOA solving the kite test

problem (for M = 2) with the piecewise PS (lefthand plot)

compared to SMS-EMOA solving the kite test problem with

a complicated PS (righthand plot).

reason, this feature should be thoughtfully considered in the

design of multi-objective test problems.

2) Feature 7 (F7): Difficult Pareto Front Shape: Pareto

front geometries test the abilities of MOEAs to main-

tain spread solutions along the Pareto optimal surface.
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(a) Pareto optimal front for the
kite test problem
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(b) A set of Pareto optimal so-
lutions (P ⋆) for the kite test
problem
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(c) Weights for the kite test prob-
lem which yield solutions in
P ⋆, under the NBI approach
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(d) Hyperplane obtained in P ⋆

using extreme points obtained
by the ASF

Fig. 3: (a) Pareto optimal front, (b) optimal solutions (P ⋆), (c) weights yielding P ⋆, and (d) hyperplane found in P ⋆ using

the ASF for the “kite” test problem

Huband et al. [27] summarized several geometries involving

curvatures (concave/linear/convex/mixed) and special cases

(degenerate/disconnected) of Pareto optimal fronts (see Fea-

ture 1 in [27]). Recently, studies have shown and treated

the difficulties to solve multi-objective test problems with

disconnected or degenerate PFs, see for example [55], [41],

[6], [35].

In the case of test problems with connected and non-

degenerate PFs, their difficulties have not been clearly es-

tablished. Nonetheless, the PF of several state-of-the-art test

problems with this type of geometries have similar shapes.

Concretely, their Pareto optimal fronts can be characterized

by an (M − 1)-dimensional simplex (see Section IV-A).

To settle down difficulties for test problems with connected

and non-degenerate PFs, consider the kite test problem formu-

lated in Equation (1). This test problem has its ideal point in

z = (0, . . . , 0) and its nadir point in n = (1, . . . , 1). Its Pareto

optimal front is a connected and non-degenerate surface which

is illustrated, for M = 3, in Fig. 3a.

Several are the complications of solving multi-objective

optimization problems. Particularly, to find a proper represen-

tation of the real PF is a hard task which has been studied

throughout the development of evolutionary approaches. Some

techniques adopted by evolutionary approaches to reach a

relative good representation of the PF are described below.

Diversity assessment: Diversity assessment of a set of non-

dominated solutions is one of the most popular strategies that

for several years, has been adopted by MOEAs to achieve a

proper representation of the PF of a MOP. Usually, diversity

assessment is employed together with a convergence criterion

(normally, Pareto dominance) as part of the survival mech-

anism of a MOEA. Some methods that have been proposed

throughout the years include: fitness sharing and niching [14],

clustering [80], and crowding distance [16], among many

others. Although these methods were very popular in the first

decade of the 2000s, their use has decreased because of the

difficulty of measuring diversity in a set of non-dominated

solutions, as pointed out by several researchers [22], [25], [23],

particularly in high-dimensional objective spaces [45], [68].

Performance Indicators: Other strategies employed by

MOEAs to achieve an adequate representation of the PF are

related to performance indicators. With its emergence, the

Indicator-Based Evolutionary Algorithm (IBEA) [78] posed

the possibility to optimize a performance indicator in the

evolutionary process of MOEAs. As it is well-known, there

exists a large number of indicators to assess the performance of

MOEAs, see for example [82], [54], [34]. Such indicators are

able to assess, in different ways, convergence and diversity, or

both of them at the same time. In particular, a good representa-

tion of the PF can be achieved by using performance indicators

such as the hypervolume [81], IGD [65], and ∆p [61], among

others. However, these indicators become impractical when

the number of objectives increases and most of them require

a reference set of the PF (as the case of IGD, ∆p, and their

variants) which is difficult to obtain a priori.

Decomposition: In the last decade, scalarization functions have

been employed by several evolutionary approaches giving

rise to the well-known MOEAs based on decomposition.

Decomposition approaches rely on solving a number of scalar-

ization functions which are formulated by an even number

of weight vectors. Such scalarization functions are solved

through the search by approximating solutions towards the

real PF. Decomposition-based MOEAs have been found to

be very efficient in solving complicated test problems, see for

example [73], [40], [74]. In addition, having a well-distributed

set of weight vectors, a proper representation of the complete

PF can be reached in some multi-objective problems.

Convex hull of individual minima: A strategy recently adopted

by MOEAs is related to the convex hull of individual minima

(CHIM) [11], [12]. The idea behind these approaches consists

in finding M (number of objectives) extremes of the PF and

tracing a hyperplane (commonly referred to as CHIM) defined

by such extremes. The constructed hyperplane corresponds

to an (M − 1)-simplex which is used in different ways to

approximate solutions towards the Pareto optimal front. A

discretization of the CHIM is reached by defining a set of

weight vectors, which serve as direction guides in the search.

Therefore, a proper representation of the PF can be achieved

with a well-distributed set of weight vectors. Approaches

adopting the idea of CHIM are, for example, the Convex Hull

Multi-Objective Evolutionary Algorithm (CH-MOEA) [71],

the Nondominated Sorting Genetic Algorithm III (NSGA-
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III) [15], and the Reference Indicator-Based Evolutionary

Multi-Objective Algorithm (RIB-EMOA) [72], among others.

Approaches based on decomposition and the CHIM, share

one property: they depend on the definition of a set of

weight vectors. Particularly, when the Pareto optimal front of a

MOP can be characterized by a well-distributed set of weight

vectors, decomposition- and CHIM-based MOEAs become

highly effective since a well-distributed set of weight vectors

can be defined a priori.2

In the case of the three-objective kite test problem, a well-

distributed set of Pareto optimal solutions (P ⋆) is shown in

Fig. 3b. Such solutions can, in fact, be reached by using a

number of scalarization functions defined by an even num-

ber of weight vectors. Fig. 3c illustrates the weight vectors

that yield, under the NBI approach [12], the well-distributed

optimal solutions in P ⋆. Such weight vectors are, as can

be seen, not well distributed and do not cover the complete

space of weight vectors. In Fig. 3d, the hyperplane formed

by the approximated extremes (solutions in red) found into

the PF representation P ⋆ is illustrated.3 As can be seen,

the points ξi do not correspond to the real extremes of the

PF and the hyperplane does not cover the entire PF. Note

however, that finding the extremes of the PF is by itself a hard

problem for difficult Pareto shapes. Thus, approaches based

on decomposition or the idea of CHIM are not appropriate to

deal with this type of problems. In general, difficult PFs are

those having geometrical shapes which can not be estimated

a priori.

3) Feature 8 (F8): Correlation of Position and Distance

Functions: In the bottom-up approach, position and distance

functions can be distinguished. Position functions define the

PF of a test problem, while the PS is defined by the distance

functions. Together, position and distance functions, determine

the final coordinates of an objective vector in feasible objective

space. In the case of real-world problems and test problems

based on multiple single-objective functions, parameters re-

lated to the position and distance functions can be difficult to

identify.

To better understand the correlation between position and

distance functions, let’s consider the kite test problem defined

in equation (1).

Following the bottom-up approach, the decision variable

x = (x1, . . . , xn) is split into position xI = (x1, . . . , xM−1)
and distance xII = (xM , . . . , xn) parameters. The functions

that define the Pareto optimal front (position functions) are:

hj=1:M−1(xI) = xj

hM (xI) =

(

1−

M−1
∏

i=1

9xi + 1

10

)

/
(

1− 0.1M−1
)

(5)

2A set of weight vectors properly distributed can be reached by simplex-
lattice design [60], uniform design [21] or low-discrepancy sequences [70],
among other strategies.

3Such extremes ξis (i = 1, . . . ,M ) are approximated by finding the
solutions in P ⋆ that minimize the following achievement scalarization

function (ASF): ξi = arg min
x∈P⋆ maxMj=1

(

(fj(x)− zj)/e
i
j

)

, where

e
i = (ei

1
, . . . , ei

k
)T is the ith canonical basis in R

M . When eij = 0, it is

set as: eij = 1× 10−6.

Considering the simple PS topology as described

by equation (2), the distance function is given by

g(xII) =
∑n

i=M (xi−0.5)2. Objective values are obtained by

a composition of position and distance functions. These two

functions (position and distance) give the absolute position of

a solution into the objective space. A composition of position

and distance functions can be done in many ways. Next,

we mention three approaches which have been commonly

adopted in the design of multi-objective test problems:

1) Multiplicative approach [18] 4:

fi=1:M (x) = hi(xI)× (1 + g(xII))

2) Additive approach [27]:

fi=1:M (x) = hi(xI) + g(xII)

3) Modular approach [58]:

fi=1:M (x) = hi(xI) + gi(xII |Ji)

where gi(xII |Ji) =
∑

j∈Ji
(xj − 0.5)2, such that

Ji = {j| mod (j−M+1− i,M) = 0, j = M, . . . , n}.

To observe the effect of the above approaches, consider

the case with M = 2 and n = 10 which implies that

xI = x1 and xII = (x2, . . . , x10). The Pareto optimal set

(in all the approaches) is x1 ∈ [0, 1] and xj=2:10 = 0.5. Let

x1 ∈ {0.25, 0.5, 0.75} and x
(1)
II , . . . ,x

(5)
II be three position

values and five random distance vectors, respectively. The

objective values of all pairs of position and distance vectors

(xI ’s and xII ’s) for each approach are shown in Fig. 4. The

objective vectors yielded by the multiplicative and additive

approaches are shown in Figs. 4a and 4b, respectively. As can

be seen, the five objective vectors can be sorted at different

levels of Pareto dominance. In both approaches, the distance

functions modify only the distances of solutions to the PF

without affecting their relative positions with respect to the PF.

In this way, a domination order can be observed for different

distance vectors as shown in Figs. 4a and 4b. This means that

the relative position to the PF does not depend on the distance

functions.

On the other hand, in the modular approach (see Fig. 4c),

objective vectors do not necessarily follow a dominance order.

For different distance parameters (i.e., different values of the

distance functions), the relative position of solutions with re-

spect to the PF is modified. Analogously, changing the position

parameters (i.e., different values for position functions) implies

a change in the distance. This means that the position and

distance functions have a direct dependency. Other strategies

showing greater or lower correlation between position and

distance functions are, for example, those introduced in [9],

[49]. This property makes, in fact, more realistic the design

of multi-objective test problems.

4The approach employed in the kite test problem.
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(b) Additive approach:
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(c) Modular approach:
fi=1:2(x) = hi(xI) + gi(xII |Ji)

Fig. 4: Correlation of position and distance functions in different approaches

4) Feature 9 (F9): Single Optimal Solution for a High

Number of Objectives: Correlation among objectives is a

feature inherent to real-world multi-objective problems. In

the specialized literature we can find problems for which

the objectives are either negatively or positively correlated

(according to Spearman’s coefficient), see for example [33],

[7], [24]. A positive correlation between a pair of objectives

refers to the fact that the optimization of an objective implies

the optimization of the other one. Analogously, a negative

correlation means that the optimization of an objective implies

the deterioration of another one, i.e., there exists a clear trade-

off (conflict) between the objectives.

In the case of some artificial test problems (such as DTLZ

and WFG), pairs of objectives are positively correlated. Fur-

thermore, in some test problems, the optimal solution is the

same for the objectives positively correlated or it corresponds

to the same objective value. From the correlation standpoint,

DTLZ and WFG can be seen as a particular case of this class

of problems. In general, it is desirable to have test problems

with various degrees of correlation, where the optimal solution

for each objective does not need to be the same even for a

strong positive correlation. It should be noted that different

correlation (positive or negative) among objectives makes

possible different PF’s shapes, see the works reported in [66],

[41]. On the other hand, the correlation among objectives

can affect the size of the Pareto optimal set. Actually, in the

discrete case, the size of the Pareto optimal set increases with

negative correlation and decreases with positive correlation,

see the study reported in [66]. In the continuous case (under

certain numerical precision), a similar situation is expected to

occur, i.e., the size of the Pareto optimal set increases with

negative correlation and decreases otherwise.

This property of artificial test problems, i.e., the presence

of positive correlation among different objectives, allows to

evaluate certain types of approaches. It is known that the

presence of positive correlation places obstacles for the good

performance of approaches based on the reduction of objec-

tives [5], [3]. Particularly, approaches based on reduction of

objectives can fail when dealing with scalable test problems

where the optimal solution is the same for some objectives

positively correlated. Such is the case of DTLZ2 where remov-

ing an objective function results in collapsing the remaining

objectives to the same single optimal solution. For this reason,

in [5], a variant of DTLZ2 (namely DTLZ2BZ) was proposed

where the positive correlation is maintained but the single

optimal solution for the objectives positively correlated is

avoided. Thus, we shall say that a scalable test problem

adheres to the property that objectives positively correlated

collapses into a single optimal solution, if the objectives

collapse to a single optimal solution when an objective is

removed from the original formulation of the problem.

5) Feature 10 (F10): Easy Configuration of Features in

Scalable Test Problems: As pointed out early, scalable test

problems have helped us to understand different components

of MOEAs. Although they have been criticized as they are

artificial and they rarely reflect the true conditions of real-

world problems, their properties vary significantly with re-

spect to each other, and they can be complemented among

themselves. Therefore, the well-performing evolutionary ap-

proaches should be good candidates to solve real-world prob-

lems. For this reason a scalable test suite should contemplate

a vast number of characteristics simulating some properties

that have been observed in real-world applications. Assumed

in such a way, since the early developments in this area,

researchers have considered distinct features in the design of

scalable test problems, such as those discussed in [18], [27].

Currently, most of the existing test suites incorporate problems

with different features which cannot be modified by a standard

user. Thus, if a test problem is formulated with a given

PF geometry being separable and unimodal, a conventional

user can hardly reformulate such problem keeping the same

PF geometry but making it non-separable and multi-modal.

Therefore, a flexible configuration of scalable test problems

gives to the users the possibility of configuring a scalable

test problem with its desirable properties going from easy to

difficult. Thus, the easy configuration of a test problem with

its desirable characteristics is an issue considered in the list

of features of scalable test problems.

III. SCALABLE TEST SUITES

A scalable multi-objective test problem refers to a prob-

lem which can be formulated with an arbitrary number of
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objectives. Generalized in [39], the multi-objective sphere

model [59] (SPH-m in [79]) is, perhaps, the first scalable

test problem reported in the specialized literature. Through-

out the years, researchers have introduced test instances to

evaluate the working principles of many-objective evolutionary

algorithms—see for example [38], [76], [69], [43]. However,

the design of scalable problems as a set of test problems or

a “test suite”, providing different difficulties to promote the

design of robust evolutionary approaches (in the context of

many-objective optimization), has been much less investigated.

Next, a review of scalable test suites reported in the specialized

literature is presented.

1) Deb et al. test suite: The Deb-Thiele-Laummans-

Zitzler (DTLZ) suite [18] constitutes the first set of test

problems that is scalable in both the number of decision

variables and the number of objective functions. This set of

problems, provides seven unconstrained and two constrained

scalable test problems with different characteristics. Focusing

on unconstrained test problems—the scope of this paper—this

testbed introduces characteristics such as uni-modal (DTLZ2

and DTLZ4), multi-modal (DTLZ1, DTLZ3 and DTLZ7) and

biased (DTLZ4 and DTLZ6) test instances which aim to test

the abilities of MOEAs to approximate solutions towards the

real PF. Four continuous and non-degenerate PFs (DTLZ1–

DTLZ4), two degenerate PFs (DTLZ5–DTLZ6) and a discon-

nected PF (DTLZ7) summarize the Pareto optimal surfaces in

this test suite. In spite of its popularity, the DTLZ test suite has

several weaknesses which have been exposed by a number of

authors [27], [40]. Remarkable shortcomings are, for instance,

the absence of variable linkages or parameter dependencies,

the simple topologies of their PSs, and the cushy identification

of distance and position parameters.

2) Huband et al. test suite: To overcome some of the disad-

vantages of the DTLZ test suite, Huband et al. [27] proposed

a set of nine scalable test problems called the Walking-Fish-

Group (WFG) test problems. These problems incorporate

important properties simulating several features commonly ob-

served in real-world problems (including non-separable, multi-

modal, deceptive, and biased test problems). The WFG test

problems embody seven connected and non-degenerate PFs

(WFG1 and WFG4–WFG9), a problem with a disconnected PF

(WFG2) and a degenerate test instance (WFG3). An important

advantage of this toolkit, is the possibility to construct new

test problems from a combination of shape functions (which

defines the PF) and a set of transformations (which determine

the search space). The WFG test problems established a well-

defined test suite that, in the last decade, has become (together

with the DTLZ test suite) widely adopted in the analysis

and study of many-objective evolutionary approaches. Similar

to DTLZ, in the WFG test problems, distance and position

parameters can be easily identified.

3) Emmerich and Deutz test suite: In order to design

multi-objective test problems with different Pareto optimal

fronts, Emmerich and Deutz [20] introduced a scalable test

suite based on the Lamé superspheres (LSS). Although this

methodology is limited to design Pareto optimal geometries

with spherical shapes, it can be considered as the first study fo-

cused on the Pareto shape of scalable test problems. Something

remarkable about this proposal are the mirror test problems

which adopt an inverted sphere as the Pareto optimal front of

the proposed multi-objective test problems. Even though the

use of mirror spheres had already been adopted as a Pareto

optimal surface in [27], the parameter γ of the Lamé spheres

is able to modify the convexity/concavity degree in these test

problems. In addition to new Pareto optimal shapes, the Lamé

superspheres test suite incorporates features such as multi-

modality and many-to-one mapping which introduce additional

difficulties for solving these problems using a MOEA. Since

the LSS test suite adopts the DTLZ framework, distance and

position parameters can also be easily identified.

4) Saxena et al. test suite: Saxena et al. [58] extended the

principle of complicated PSs (initially introduced for two- and

three-objective problems [76], [40]) to scalable multi-objective

test problems. The Saxena-Zhang-Duro-Tieari (SZDT) test

suite introduces seven unconstrained test problems and the

possibility of designing new test problems by choosing a

combination between Pareto optimal shapes and complicated

PS topologies. The Pareto optimal fronts for all these test

problems are defined in one and two dimensions, i.e., they

become degenerate for more than two and three objectives,

respectively. Regarding the Pareto optimal fronts, four continu-

ous and connected surfaces including convexity and concavity

generalize the Pareto shapes in this test suite. The convergence

difficulties in this benchmark are specifically stated by the

topology of the PSs. The absence of multi-modality and non-

separability, are the shortcomings in this test suite. However,

the use of the modular approach [40] in this testbed, makes

difficult to determine the position and distance parameters,

which becomes an advantage over the previous test suites.

5) Cheng et al. test suite: As pointed out in [27], [17],

variable linkages should be considered in the construction

of multi-objective test problems. This feature is particularly

important in test instances because, as remarked in [57], it

makes it more difficult for a MOEA to properly exploit optimal

solutions. Cheng et al. [9] introduced a set of nine test

problems specially designed to test MOEAs for large scale

optimization (i.e., for multi-objective problems with a large

number of decision variables). In the Large Scale Multi-

Objective Problems (LSMOPs), variable dependencies are

stated by two variable linkage functions (linear and nonlinear).

In addition to the dependencies among variables, this test

suite introduces correlation between decision variables and

objectives by means of a correlation matrix. Although the test

problems are scalable to an arbitrary number of objectives, this

test suite is limited to three Pareto optimal shapes, concretely,

the PFs from DTLZ1 (normalized in objective function space),

DTLZ2, and DTLZ7.

6) Masuda et al. test suite: Masuda et al. [49] proposed

a toolkit to generate scalable test problems. This test suite

is mainly focused on the design of different Pareto optimal

shapes. The methodology introduced in this approach allows

the design of Pareto optimal surfaces by using a finite number

of vertices. Such vertices state the Pareto optimal front whose

shape can be defined as linear, concave, or convex. Although

only two test problems were instantiated, the toolkit provides a

methodology for designing scalable test problems with Pareto
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optimal surfaces having an arbitrary number of vertices. A

remarkable aspect of the Masuda-Nojima-Ishibuchi (MNI)

test suite, is that at different distances from the PF, different

PF shapes can be produced.

7) Scalable Multi-Objective Test Suites for Visual Examina-

tion of Multi-objective Search: As a generalized version of the

single polygon problems of Köppen and Yoshida [38] and the

multi-line (or multi-curve) problems of Rudolph et al. [56],

Ishibuchi et al. [29] proposed a set of many-objective test

problems in two- and three-dimensional decision spaces. These

test problems allow the visual examination (in the decision

space) of multi-objective algorithms when approximating so-

lutions towards the Pareto optimal set. Although the test

problems presented in this study were initially formulated in

low-dimensional decision spaces, the authors drew the possi-

bility to construct test problems in high-dimensional spaces

by specifying multiple points with the required dimension-

ality. Such idea was implemented in the many-objective test

suite formulated in a high-dimensional decision space [32].

Inspired by the above test suites, Li et al. [46] proposed the

construction of a test problem whose Pareto optimal solutions

lie in a rectangle (in the two-variable decision space) and, more

importantly, are similar (in the sense of Euclidean geometry)

to their images in the four-dimensional objective space. As

a generalization of Li et al. ’s test problem, in [44], a class

of multi-objective test problems scalable in the number of

objectives (called multi-line distance minimization problems

(ML-DMP)) was introduced. Two are the main characteristics

in this test suite: 1) the Pareto optimal solutions lie in a regular

polygon in a two-dimensional decision space, and 2) these

solutions are similar (in the sense of Euclidean geometry) to

their images in high-dimensional spaces.

It could be argued whether the properties included in the

above test suites are observed in real-world multiobjective

problems. However, these test suites allow understanding how

a multi-objective algorithm can achieve a good representation

of the true PF by visualizing the front in a degenerate surface.

8) Other test Suites Scalable in the Number of Objectives:

In the following, we briefly describe other scalable test suites

available in the specialized literature.

Ishibuchi et al. test suite: Ishibuchi et al. [31] proposed

minus versions of the DTLZ and WFG test problems (namely

minus-DTLZ (DTLZ−1) and minus-WFG (WFG−1), respec-

tively) as scalable test problems with clear differences from

their original versions. These test problems stand out mainly

because the Pareto optimal fronts of the original DTLZ and

WFG test problems are inverted to obtain a similar effect as in

the mirror LSS test problems [20]. However, in this test suite,

different geometries (the geometries used in the DTLZ and

WFG test problems) are employed instead of being limited to

the superspheres as in the case of the mirror LSS test problems.

Some important key points to consider are the following: 1)

all the test problems maintain the same properties respect to

the difficulties of the distance functions in DTLZ and WFG

test problems, respectively; and 2) different test problems

promote the design of diversity mechanisms to achieve a

proper representation of the inverted DTLZ and WFG Pareto

optimal fronts.

Cheng et al. test suite: In [10], a compilation of 15 test

problems was presented as a scalable test suite, called MaF. In

this test suite, the authors’ intention is to compile a set of test

problems with different features in order to evaluate many-

objective evolutionary approaches. Most of the test problems

included in this test suite were taken from already formulated

test problems such as WFG, DTLZ, and ML-DMP, among

other works. Thus, a wide variety of features can be found

in this test suite which, indeed, shall be able to assess the

robustness of many-objective evolutionary approaches.

9) On the Scalability of Decision Variables in Multi-

Objective Test Suites: Through the development of multi-

objective test suites, the scalability in the number of decision

variables has been one of the main features contemplated in

early investigations in this area. Thus, pioneering design ap-

proaches such as Deb’s toolkit [13], and Ziztler et al.’s (ZDT)

test suite [77], marked the beginning in the design of multi-

objective test suites scalable in the number of parameters

(i.e., decision variables). In particular, with the advent of the

bottom-up approach [18] (adopted in the previous test suites),

the design of multi-objective test suites has become much more

accessible facilitating the construction of the PF and PS (they

are separately designed). Currently, most of the multi-objective

test suites adopting the bottom-up approach are scalable in the

number of decision variables. Particularly, multi-objective test

suites presented in Table II are scalable in both the number

of objectives and the number of decision variables. Other

multi-objective test suites scalable in the number of decision

variables (but not in the number of objectives) are the test

suite with complicated PSs [40], [76], the multi-objective test

suite for robust optimization [50], and the test problems with

degenerate PFs [41]5. Although these test problems are not

scalable in the number of objectives, their use can be seen

in some studies concerning to the so-called large-scale multi-

objective optimization, such as the work reported in [1], [64].

IV. FEATURES AND LIMITATIONS OF EXISTING SCALABLE

TEST PROBLEMS

A. Features of Existing Scalable Test Problems

As indicated before, the features of a test problem are meant

to evaluate the working principles of MOEAs. The features

of some scalable test problems presented before, have been

examined in the past by some researchers [27], [49]. Roughly,

the features of a multi-objective test problem can be classified

in two groups: (i) those related to the search space and (ii)

those related to the Pareto optimal surface.

Features of the search space have been discussed by some

authors [27], [40]. Such features are relatively important

because they place obstacles that complicate the exploration

of Pareto optimal solutions. In this regard, state-of-the-art

test suites have adopted several features, such as multi-

modal, non-separable, deceptive, and biased search spaces.

Regarding the Pareto optimal front, Huband et al. [27]

suggested the use of different geometries including curves

(linear/convex/concave/mixed), disconnected and degenerate

5Furthermore multi-objective test suites scalable in the number of objectives
can be found in [27], [75], [47], [42].
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surfaces. An overview of Pareto optimal fronts (for three

objectives, i.e., M = 3) of all non-degenerate test problems

included in the above test suites is presented in Fig. 5.6

To summarize the properties of the above test problems,

Table II exposes their attributes considering the suggested

recommendations and features included in Table II. Note that

the test problems DTLZ4, DTLZ5 and WFG3 were excluded

due to the inconsistencies observed by some authors [27],

[30]. In Table II, symbols “✓” and “✗” indicate whether a

recommendation is adhered to, while “+” and “−” indicate

the presence or absence of a given feature. In the case of

features, the following abbreviations are included: “S” for

separable, “NS” for non-separable, “U” for unimodal, “M”

for multi-modal, and “D” for deceptive. The recommendations

and features apply to the whole multi-objective test problem

based on the hardest feature found in any of its objective

functions. For example, if an objective function is non-

separable/multi-modal/deceptive/biased and any other objec-

tive is separable/unimodal/non-deceptive/unbiased, the prob-

lem is said to be non-separable/multi-modal/deceptive/biased.

B. Limitations of Existing Scalable Test Problems

In Section II, we presented different design approaches as

well as some recommendations and features for the construc-

tion of multi-objective test problems. A first issue to observe,

is that all the test problems reviewed in the previous section,

follow the bottom-up approach. This form to formulate multi-

objective test problems splits the construction of the PF and

the design of the search space which, in fact, facilitates the

construction of multi-objective problems specially in high-

dimensional objective spaces. The literature review presented

in Section III, exhibits the test problems that follow the

recommendations and features established in Section II-B, see

the summary of such properties in Table II. As discovered in

Section IV-A, recommendations (R1–R7) are partially covered

by most of the test problems, being the WFG test suite, the

only set of problems that satisfies entirely such requirements.

In the case of features related to the search space (F2–F5),

most of the test problems do not adhere or cannot fit in a

specific or desirable combination of features, as can be seen

in Table II. While these features can be studied separately,

there is no reason to assume that a real-world problem does

not adhere simultaneously to several of these features at the

same time.

Although one might doubt the existence of multi-objective

problems having a combination of characteristics different

from the ones formulated in the existing scalable test suites,

according to the No-Free Lunch theorem, this overestimation

does not hold. In other words, there is an immense number

of formulated and unformulated real-world problems and it is

reasonable to think that any of them may have a wide variety of

features not contemplated in any already formulated artificial

test problem. Thus, the inflexibility of configuring (in an easy

way) scalable test problems with a desirable combination of

6Note that to provide a better view, the Pareto optimal fronts are normalized
in the cube [0, 1]M

features, becomes also a limitation of the existing scalable test

suites.

On the other hand, difficult PS topologies (F6) are not

considered by most of the test suites, which, as pointed out by

some authors [40], [58], becomes a limitation because these

test problems do not reflect the features observed in real-world

problems, see the work reported in [36], [26].

An important issue to consider in scalable test problems

refers to the shape of the Pareto optimal front. In this regard,

the Pareto optimal fronts of the existing scalable test problems

combine a variety of different geometries including convexity,

concavity and/or linearity.

In Fig. 5, it can be seen that the Pareto optimal fronts

from Figs. 5a, 5b, 5d, 5f, and 5g, can be characterized by

an (M − 1)-simplex. As discussed in Section II-B2, test

problems having this type of shapes are easy to solve for

some evolutionary approaches. However, there is no reason

to assume that real-world problems have this type of shapes.

In the specialized literature, we can find several MOPs in

which their PF approximations draw strange geometries that

do not follow exactly the shape of an (M − 1)-simplex, see

for example the problems presented in [8], [19], [62]. Most of

these PFs do not follow the property of difficult PF shape (F7)

that has been suggested to evaluate diversity mechanisms in

MOEAs. This, in fact, becomes a limitation of the constructed

test problems and motivates to design new geometries different

from those included in the state-of-the-art test suites.

Another important property that should be considered in

the construction of scalable test problems is regarding the

correlation between position and distance functions (F8). From

Table II, it can be seen that most of the test problems do

not follow this property which complicates the identification

of position and distance parameters. Although there exist ap-

proaches employed to correlate position and distance functions

(e.g. the modular approach), the investigation and development

of a more flexible design approach for constructing scalable

test problems—where position and distance variables are in-

distinguishable and the true PS and PF can be analytically

known—is in fact a good path for future investigations.

From Table II, it can be seen that most of the test problems

adhere to the property that a single solution is optimal for

multiple objectives positively correlated. As discussed before,

the presence of positive correlation among different objectives,

allows to evaluate certain types of approaches. Particularly,

the presence of positive correlation places obstacles for the

good performance of approaches based on the reduction of

objectives [5], [3]. In general, it is desirable to have test

problems with different degrees of correlation among the

objectives.

As we can see from the review of the test problems analyzed

in this paper, the properties of scalable test problems vary sig-

nificantly between each other and they can be complemented

among different problems. We consider that many-objective

approaches can be tested on different scalable test problems

and the well-performing approaches should be good candidates

to solve a real-world problem. However, as we pointed out

before, this does not necessarily hold in real-world problems.

There are different reasons for this observable behavior. One of
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TABLE II: Properties of DTLZ, WFG, LSS, SZDT, LSMOP, and MNI Test Problems
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DTLZ1 ✓ ✗ ✓ ✓ ✗ ✗ ✓ linear S − + M − − − + −
DTLZ2 ✓ ✗ ✓ ✓ ✗ ✗ ✓ concave S − + U − − − + −
DTLZ3 ✓ ✗ ✓ ✓ ✗ ✗ ✓ concave S − + M − − − + −
DTLZ4 ✓ ✗ ✓ ✓ ✗ ✗ ✓ concave S + + U − − − + −
DTLZ7 ✗ ✓ ✓ ✓ ✗ ✗ ✓ mixed, disconnected S − − M − + − − −

WFG1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ mixed S + +† U − − − + +§

WFG2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ convex, disconnected NS − +† M − + − + +§

WFG4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave S − +† M − − − + +§

WFG5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave S − +† D − − − + +§

WFG6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave NS − +† U − − − + +§

WFG7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave S +† +† U − − − + +§

WFG8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave NS +† +† U − − − + +§

WFG9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ concave NS +† +† D − − − + +§

LSS ✓ ✗ ✓ ✓ ✗ ✗ ✓ linear/convex/concave† NS − + U/M† − − − + −

mirror-LSS ✓ ✗ ✓ ✓ ✗ ✗ ✓ linear/convex/concave† NS − + U/M† − + − − −

SZDT1 ✓ ✓ ✓ ✓ ✗ ✗ ✓ degenerate (for M > 2) S + − U + + + − +§

SZDT2–SZDT5 ✓ ✓ ✓ ✓ ✗ ✗ ✓ degenerate (for M > 2) S − − U + + + − +§

SZDT6 ✓ ✓ ✓ ✓ ✗ ✗ ✓ degenerate (for M > 3) S − + U + + + + +§

SZDT7 ✓ ✓ ✓ ✓ ✗ ✗ ✓ degenerate (for M > 3) S − + U + + + − +§

LSMOP1 ✓ ✓ ✓ ✓ ✗ ✗ ✓ linear S − + U − − + + +§

LSMOP2–LSMOP4 ✓ ✓ ✓ ✓ ✗ ✗ ✓ linear NS − + M − − + + +§

LSMOP5 ✓ ✓ ✓ ✓ ✗ ✗ ✓ concave S − + U − − + + +§

LSMOP6–LSMOP8 ✓ ✓ ✓ ✓ ✗ ✗ ✓ concave NS − + M − − + + +§

LSMOP9 ✓ ✓ ✓ ✓ ✗ ✗ ✓ mixed, disconnected S − − M − + + − +§

MNI1 ✓ ✓ ✓ ✓ ✗ ✗ ✓ convex NS − − U + + + − −
MNI2 ✓ ✓ ✓ ✓ ✗ ✗ ✓ concave NS − − M + + + − −

†Parameter dependent (see the specification of the concerned test problem)
§Possibility of reconfiguring the features by modifying the source code (its modification could be not straightforward)

the main reasons is that some real-world problems may present

features that are not included in the currently available test

suites. However, since the features of a real-world problem

can not be known a priori, our recommendation is still to

consider the use of MOEAs that offer the highest robustness

(i.e., good performance in most test problems), as the first

choice to deal with real-world problems.

V. CONCLUSIONS

Scalable test problems are regularly employed to evaluate

and understand the working principles of many-objective

evolutionary approaches. From a practical point of view,

scalable test problems provide several advantages to assess the

performance of MOEAs, including the fact that it is possible

to know the Pareto optimal solutions of such problems. As

discussed throughout the paper, properties of the existing

test problems should simulate the characteristics observed in

real-world problems. This paper has presented a review of

the existing scalable test suites that have been developed in

the headway of many-objective optimization. Additionally, a

review of recommendations and features for the design of

scalable test problems was presented. As an important part

of our contribution, new features were added to the list of

properties (see Table I) which were analyzed and discussed in

Section II-B. We noticed that in spite of the wide variety of

scalable test problems found in the specialized literature, most

of them do not consider simultaneously a difficult PS and a

difficult PF.

As discussed in Section II-B, this becomes a limitation for

the development of new strategies able to solve problems with

these features. On the other hand, the correlation of position

and distance functions is also not considered by the majority of

the currently available test problems, which becomes a lim-

itation since distinguishing position and distance parameters

in real-world problems turns out to be very difficult. Finally,

flexibility should be considered, given that currently, only

three existing scalable test suites consider this characteristic,

limiting the configuration of new test problems based on

the already formulated problems. These issues, in fact, mark

some of the possible lines of research in the design of new

multi/many-objective test problems.
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DTLZ2–DTLZ4,
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(d) PF for: LSS with γ =
1/2, 1, 2, respectively
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(f) PF for WFG1

 0.2
 0.4

 0.6
 0.8

 1f
1  0

 0.2
 0.4

 0.6
 0.8

 1

f
2

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

 0

 0.5

 1

 0.5

 1

 0

 0.5

 1

f
3

f
1

f
2

f
3

(g) PF for WFG2

 0.2
 0.4

 0.6
 0.8

 1f
1  0

 0.2
 0.4

 0.6
 0.8

 1

f
2

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

 0

 0.5

 1

 0.5

 1

 0

 0.5

 1

f
3

f
1

f
2

f
3
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 0.2 0.4 0.6 0.8  1
f
1  0  0.2 0.4 0.6 0.8  1

f
2

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

 0

 0.5

 1

 0.5

 1

 0

 0.5

 1

f
3

f
1

f
2

f
3

(i) PF for MNI2

Fig. 5: Summary of Pareto optimal fronts for the state-of-the-art scalable test suites
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