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Abstract In civil and industrial engineering, structural
design optimization problems are usually characterized

by the presence of multiple conflicting objectives, as to

get the minimum investment cost and the maximum

safety of the final design. This issue makes these prob-

lems to have not only one single solution, but a set
them. Such solutions represent the possible trade-offs

among the different objectives to be optimized. This pa-

per reviews the latest developments in the field of multi-

objective metaheuristics for solving design problems fo-
cusing on the optimization of the topology, shape, and

sizing of civil engineering structures. We review both

the algorithms and the applications, and the most

relevant features of the solvers and the design

optimization problems are analyzed. The paper
ends by addressing a number of relevant and open is-

sues that can be the subject of further research.
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1 Introduction

Civil engineering is a discipline that deals with the de-

sign, construction, and maintenance of the physical and

naturally built environment, which includes works such
as bridges, roads, canals, dams, and buildings (Insti-

tution of Civil Engineers (2012)). By determining

the stability of structures, it can materialize, among

others, works for the shelter, protection, a livability

of the society and its goods against inclement weather
and environmental phenomena.

In this field, as in other disciplines (e.g, industrial

engineering, telecommunications, economics, etc.), op-

timization problems appear everywhere and they bring

a constant challenge, not only because of the appear-
ance of new materials that may be used along with tra-

ditional ones, but also because this leads to cutting-edge

methodologies that enable to realize complex designs in

unexpected places.

When considering civil structures there are many
issues to take into consideration, but there is always a

common denominator for the concretion of a project:

getting the minimum investment cost and the maxi-

mum safety of the final design. These are opposite goals

indeed, because enhancing one of them involves wors-
ening the other one. An example, is the design of a

bridge, in which it is normally desirable to minimize

cost, but with the aim of simultaneously maximizing

safety. These are two conflicting goals, since a higher
safety implies a higher economical cost. As a conse-

quence, multi-objective optimization techniques are a

highly valuable tool in this context. Compared to single-
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objective optimization, where a single objective func-

tion f(x) has to be optimized and a single optimal solu-

tion x∗ is searched for, in multi-objective optimization

a set of so-called non-dominated solutions, known as

the Pareto optimal set, is the goal of the search Coello
et al (2007); Deb (2001). Non-dominated solutions rep-

resent the best possible trade-offs among the objectives

of the problem (i.e., these are solutions for which no

improvement can be obtained for one objective with-
out worsening another). Such non-dominated solutions

are provided to the decision maker (e.g., the designer

of a bridge) so that he/she can select a single one that

best fits his/her particular needs and requirements (i.e.,

his/her user preferences). Among the available com-
putational methods that can be used to solve multi-

objective optimization problems, we focus on metaheuris-

tics Blum and Roli (2003), which are high level stra-

tegies governing a set of underlying techniques
(usually, heuristics) in the search of optimal or

quasi-optimal solutions of a given optimization

problem. Metaheuristics are considered as particularly

useful algorithms in structural engineering because, be-

ing randomized black box algorithms, they are able to
handle problems with non-linear, non-differentiable, or

noisy objectives, which are features normally found in

structural engineering. Also, as opposed to traditional

mathematical programming techniques used for solving
multiobjective optimization problems Miettinen (1999),

metaheuristics are able to generate several elements of

the Pareto optimal set in a single run.

The main goal of this paper is to provide both

regular users and newcomers with a comprehensive
survey of multi-objective metaheuristic techniques ap-

plied to structural design, along with a review of

applications. To the best of our knowledge, this is

the first attempt in the literature devoted to analyz-

ing these two topics together. One can find an ex-
tensive study of evolutionary computing approaches

in Kicinger et al (2005), but no non-evolutionary meta-

heuristics are not considered in that study and the at-

tention paid to multi-objective optimizations is limited
to a section whose length is only of one page. A survey

of multi-objective optimization methods for engineering

was presented in Marler and Arora (2004), where only

genetic algorithms, a particular type of metaheuris-

tic, were included. However, since 2005 (the publica-
tion date of such survey), the multi-objective research

community has developed numerous and major algo-

rithmic advances, many of which have been applied to

structural design problems. Thus, we consider that it
is worth reviewing such research work and such is the

motivation for this work. This paper aims to provide

an overall view of the work conducted on the use of

multi-objective metaheuristics for solving structural op-

timization problems, thus facilitating the exploration of

the literature for those interested in pursuing research

in this area. It is worth mentioning that we provide not

only a fairly comprehensive list of the different meta-
heuristics that have been used to address structural

design problems, but also details about each particu-

lar problem in which they have been applied (namely,

type and domain, number of decision variables, objec-
tives, and constraints, number of nodes, elements and

groups) as well as details of the specific type of algo-

rithm adopted (i.e., algorithm type, population size,

termination condition, operators, type of local search

(if adopted)).

The remainder of this paper is structured as fol-

lows. Section 2 introduces basic concepts about multi-
objective optimization. Basic concepts about meta-

heuristics, their main features, and the implications of

dealing with multi-objective optimization problems are

issues dealt with in Section 3. The next section is de-

voted to presenting a classification of the different types
of structural design problems. The survey of solved

problems and used techniques is provided in Section 5,

and an analysis is included in Section 6. Finally, we

present our conclusions as well as some open research
lines in this area in Section 7.

2 Multi-objective Optimization Background

In this section, we provide some background on multi-

objective optimization fundamentals. We define first

basic concepts such as multi-objective optimization

problem, Pareto optimality, Pareto dominance, Pareto

optimal set, and Pareto front. Then, the goals of multi-

objective optimization are discussed. We will assume,

without loss of generality, that all the objective func-
tions are to be minimized.

A general multi-objective optimization problem

(MOP) can be formally defined as follows:

Definition 1 (MOP) Find a vector x∗ =

[x∗

1, x
∗

2, . . . , x
∗

n] which satisfies the m inequality

constraints gi (x) ≥ 0, i = 1, 2, . . . , m, the p equality

constraints hi (x) = 0, i = 1, 2, . . . , p, and minimizes
the vector function f (x) = [f1(x), f2(x), . . . , fk(x)]T ,

where x = [x1, x2, . . . , xn]
T

is the vector of decision

variables.

The set of all the values satisfying the constraints

defines the feasible region Ω and any point x ∈ Ω is
a feasible solution. In order to determine those points

that are solutions to a given MOP, the concept of Pareto

optimality has to be introduced:
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Definition 2 (Pareto Optimality) A point x∗ ∈ Ω is

Pareto Optimal if for every x ∈ Ω and I = {1, 2, . . . , k}
either ∀i∈I (fi (x) = fi(x

∗)) or there is at least one i ∈ I

such that fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if

no feasible vector x exists which would improve some

criteria without causing a simultaneous worsening in at

least one other criterion. A related definition associated
with Pareto optimality is Pareto dominance:

Definition 3 (Pareto Dominance) A vector u =
(u1, . . . , uk) is said to dominate v=(v1, . . . , vk) (denoted

by u 4 v) if and only if u is partially less than v, i.e.,

∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

This way, a Pareto optimal point is that which is

not dominated by any other point in Ω. Pareto dom-

inance relates two solutions and it can be used as a

binary operator. Thus, the application of this operator
to two solutions in objective space returns that one so-

lution dominates another or that the solutions do not

dominate each other (i.e., they are non-dominated so-

lutions).

The optimization of a MOP consequently will be
aimed at finding the set of all the Pareto optimal solu-

tions. This is the so-called Pareto optimal set, or simply

Pareto set, and it is defined as follows:

Definition 4 (Pareto Optimal Set) For a given MOP

f(x), the Pareto optimal set is defined as P∗ = {x ∈
Ω|¬∃x′ ∈ Ω, f (x′) 4 f(x)}.

Each vector in the Pareto optimal set has a corre-

spondence in objective function space, leading to the

so-called Pareto front:

Definition 5 Pareto Front For a given MOP f(x) and

its Pareto optimal set P∗, the Pareto front is defined as

PF∗ = {f(x)|x ∈ P∗}.

Let us take into consideration as an example the

four-bar plane truss design problem depicted in Fig-

ure 1. It is a bi-objective optimization problem, in which
two objectives are to be minimized: the volume of the

truss (f1) and its joint displacement ∆ (f2). This prob-

lem can be formulated as follows:

MinF = (f1(x), f2(x))

f1(x) = L(2x1 +
√

2x2 +
√

x3 + x4)

f2(x) =
FL

E
(

2

x1
+

2
√

2

x2
− 2

√
2

x3

2

x4
)

such that:

Fig. 1 Four-bar plane truss problem.
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Fig. 2 Pareto front of the four-bar plane truss.

(F/σ) ≤ x1, x4 ≤ 3(F/σ)√
2(F/σ) ≤ x2, x3 ≤ 3(F/σ)

where:

F = 10kN, E = 2 × 105kN/cm2,

L = 200cm, σ = 10kN/cm2

This problem has four decision variables x =

[x1, x2, x3, x4], and its true Pareto front is shown in

Figure 2.

The main goal of multi-objective optimization algo-
rithms is to obtain an approximation of the true Pareto

front of a given MOP. In general, multi-objective opti-

mization problems can have a Pareto front composed
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by a huge (possibly infinite) number of solutions. When

using stochastic techniques, such as metaheuristics, the

goal is thus to obtain a Pareto front approximation (also

called approximation set), i.e., a subset of solutions that

represents the true Pareto front. We want to emphasize
here that we are approaching multi-objective optimiza-

tion using a posteriori techniques, that is, we produce

first an approximation of the Pareto front and then, we

pass the solutions obtained to the decision maker (the
civil engineer in the case of structural design problems),

so that he/she can choose the most appropriate solution

to be implemented, based on his/her own preferences.

There are multi-objective optimization approaches that

can be used in an a priori or in interactive form (Coello
et al (2007)), but they will not be discussed here.

In general, it does not make sense to search for a

huge number of Pareto optimal solutions, since nor-

mally a reasonably low number of solutions is enough.
Thus, multi-objective metaheuristics normally aim to

obtain a limited set of Pareto optimal solutions (typ-

ically, around 100), although this is clearly a user-

defined parameter and other values (e.g., 50, 200, or

any other value) can be adopted as well, depending on
the specific requirements from the user (Das (1999);

Gobbi et al (2013); di Pierro et al (2007)).

When producing an approximation of the Pareto

optimal set using multi-objective metaheuristics, two
main properties are normally aimed for: (1) convergence

(i.e., we want to produce solutions as close as possible to

the true Pareto front) and (2) diversity (i.e., we want

to produce solutions that are spread along the entire

Pareto set, and not only clustered around a few specific
parts of it).

These concepts are illustrated in Figure 3. The

Pareto front approximation in the top left is on the

true Pareto front, but there are some regions in which

no solutions were found; this means that the decision
maker would not know whether or not there are any

useful solutions in this region. The example in the top

right of Figure 3 shows a Pareto front with an excellent

distribution of points along the Pareto front, but they
have not converged to the true Pareto front. This is

evidently undesirable, since a good distribution of solu-

tions is relevant only when having a good convergence.

Finally, the approximation set shown in the bottom of

the figure shows a desirable result which has both a
good convergence and a good diversity.

It is important to indicate that, in practice, other

goals may also be desirable. For example, it may be

required to obtain more solutions only on a specific part
of the Pareto front. This may be particularly relevant

when dealing with computationally expensive objective

functions (e.g., in aeronautical engineering problems).
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Fig. 3 Pareto front approximations: good convergence (top
left), good diversity (top right), good convergence and diver-
sity (bottom)

In such cases, it may happen, for example, that the
solutions shown in the top left part of Figure 3 are

preferred if they can be reached in a significantly shorter

time than that required to obtain the solutions shown

at the bottom of the figure.

3 Metaheuristics and Multi-objective

Optimization

In the previous section we provided a back-

ground of basic multi-objective optimization

concepts. Here we include a complement of that
information by presenting some fundamentals

of multi-objective metaheuristics. First, we de-

fine the concept of metaheuristic and how this
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family of solvers can be classified. Second, we

describe Evolutionary Algorithms, which are,

by far the most well-known metaheuristic tech-

niques. Third, a number of issues that are

particular to multi-objective optimization algo-
rithms are highlighted. Finally, we elaborate on

the solution encoding, which is an important

feature because of its influence in the algorithms

than can be chosen to solve a specific problems
.

3.1 Definition of Metaheuristic and Classification

Metaheuristics are a broad family of non-deterministic

optimization methods aimed at finding accurate solu-

tions to complex optimization problems when exact
methods are not applicable. Metaheuristics cannot, in

general, guarantee to find optimal solutions but they

tend to produce near-optimal solutions with a reason-

ably low computational effort. This class of approaches

includes, among others, Evolutionary Algorithms (by
far, the most well-known metaheuristic), Ant Colony

Optimization, Scatter Search, Simulated Annealing,

and Particle Swam Optimization. In fact, many meta-

heuristics have been designed in the last 20 years, and
a number of approaches to classify them according to

some criteria have been proposed (see for example Blum

and Roli (2003)). One of the most accepted taxonomies

is that distinguishing between nature-inspired and non-

nature inspired metaheuristics. Table 1 contains a list
of metaheuristic algorithms according to this classifica-

tion.

Of the many definitions of metaheuristics that can

be found in the literature, a number of basic properties
of them can be stated (Blum and Roli (2003)):

– They are general strategies or templates that guide

the search process.

– Their goal is to provide an efficient exploration of

the search space to find (near-) optimal solutions.

– They are not exact algorithms and their behavior is
generally nondeterministic (stochastic).

– They may incorporate mechanisms to avoid visiting

non promising regions of the search space.

– Their basic scheme has a predefined structure.
– They may use specific problem knowledge for the

problem at hand, by using some specific heuristic

controlled by the high level strategy.

This way, metaheuristics can be considered as high

level strategies for exploring search spaces by using dif-
ferent low level search operators. From an algorithmic

point of view, the provided templates can be instan-

tiated or tuned to perform an efficient search of any

Algorithm 1 Template of a metaheuristic

1: A(0)← GenerateInitialSolutions()
2: t← 0
3: Evaluate(A(0))
4: while not StoppingCriterion( ) do

5: S(t) ← Generation(A(t))
6: Evaluate(S(t))
7: A(t + 1) ← Update(A(t), S(t))
8: t← t + 1
9: end while

given optimization problem. Algorithm 1 shows the

pseudocode of a generic metaheuristic, where a set A of
some initial solutions (A may be eventually initialized

to ∅), is iteratively updated by generating a set S of

new solutions from it until a stopping condition is met.

3.2 Evolutionary Algorithms

As an example, we describe next an evolutionary algo-

rithm (EA), the most popular and widely used member

of the metaheuristics family. A typical EA follows the
pseudocode included in Algorithm 2.

In EAs, candidate solutions are called individuals,
which are composed of a chromosome (the repre-

sentation of the variables of the problem) and

a fitness (an indicator of the quality of the solu-

tion in the context of the problem being solved).
Groups of individuals are referred to as popula-

tions. As in real life, some selected individuals

from a population mate (i.e., are selected) for re-

production, generating new child or offspring in-

dividuals which, according to the natural selec-
tion process, can replace some other individuals.

Whenever a new solution is created, it is eval-

uated to be assigned its corresponding fitness

value. When the current population is replaced by a
new one, a generation has taken place. The process of

iterating through successive generations is called evolu-

tion, and ends when a termination condition is fulfilled.

Algorithm 2 Template of an Evolutionary Algorithm

(EA) algorithm.

1: P (0)← GenerateInitialPopulation()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion( ) do

5: P ′(t) ← Selection(P (t))
6: P ′′(t) ← Reproduction(P ′(t))
7: Evaluate(P ′′(t))
8: P (t + 1) ← Replacement(P (t), P ′′(t))
9: t← t + 1

10: end while
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Table 1 Classification of metaheuristics in Nature-inspired and Non-nature-inspired techniques.

Nature-inspired Non-nature-inspired

• Simulated annealing (SA) • Tabu Search (TS)
• Swarm Intelligence • Variable Neighborhood Search (VNS)
• Particle Swarm Optimization (PSO) • Scatter Search (SS)
• Ant Colony Optimization (ACO) • Iterated Local Search (ILS)

• Evolutionary Computation (EC) • Guided Local Search (GLS)
• Genetic Algorithm (GA) • Path Relinking (PR)
• Evolution Strategy (ES) • Greedy Randomized Adaptive
• Genetic Programming (GP) Search Procedure (GRASP)

• Estimation of Distribution
Algorithm (EDA)

The pseudocode in Algorithm 2 can be instantiated

also to yield particular EA variants. Thus, if the repro-

duction is based on crossover and mutation operators,

the resulting EA is a Genetic Algorithm (GA), which,

by the way, is the best-known EA. Other EA variants
are Evolution Strategies (ESs) and Genetic Program-

ming (GP). It is important to note that some param-

eters, such as the population size or the probability of

applying the crossover and mutation operators, have to
be carefully tuned so that the EA can have a good per-

formance. In fact, this topic has been subject of a con-

siderable amount of research in the evolutionary com-

putation literature (see for example Lobo et al (2007)).
Most metaheuristics, single and multi-objective, fol-

low a pattern similar to the one used by EAs, i.e., the

algorithms consist of a loop where a number of tenta-

tive solutions are combined and modified in a certain

way, in order to produce new solutions, and at each it-
eration the loop tries to improve the managed solutions

towards the optimum of the problem to be solved. All of

these techniques have control parameters whose values

have an important influence in the search capabilities
of the algorithm.

3.3 Issues When Solving Multi-objective Optimization

Problems

When the goal is to solve a multi-objective optimization

problem (MOP) with metaheuristics, there are new is-
sues to consider due to the fact that we aim to produce

a set of solutions (i.e., our approximation of the Pareto

set) rather than a single value. Comparisons between

solutions are required in many selection operators used

within metaheuristics (e.g., binary tournament within
an EA) and in replacing policies. When dealing with

single-objective optimization problems, the relationship

“is better than” between two solutions is trivial: the

one with the lower or higher fitness value, depending
whether function has to be minimized or maximized,

is better. In the case of MOPs, this relationship has

to be redefined, because when comparing two solutions

which are non-dominated there is no a way to assess

which of them is better, unless we impose certain user’s

preferences. The consequence is that a new kind of fit-

ness measurement is needed. On the other hand, as

commented in Section 2, the set of solutions that we
aim to produce has to have at the same time satisfac-

tory convergence and diversity properties. This means

that not only Pareto optimal solutions are sought for,

which would guarantee a high degree of convergence,
but also that such solutions must be evenly distributed

along the Pareto front. Again, and in order to illustrate

these issues, we will analyze next an example using the

Nondominated Sorting Genetic Algorithm-II (NSGA-
II), which is the most popular multi-objective evolu-

tionary algorithm (MOEA) in current use.

The NSGA-II (Deb et al (2002)) is a multi-objective

genetic algorithm that is characterized by two features:
the use of a Pareto ranking mechanism to classify so-

lutions and a density estimator known as crowding dis-

tance. The ranking of solutions classifies a population

in ranks (1, 2, ...) in such a way that the non-dominated

solutions are assigned a rank equal to 1; then, they are
removed and the procedure is successively applied yield-

ing to solutions with ranks 2, 3, and so on. By select-

ing the solutions with best ranking, NSGA-II tries to

converge towards the true Pareto front. However, when
choosing the best ranked solutions it is possible that

Algorithm 3 Pseudocode of the NSGA-II algorithm.

1: P (0) GenerateInitialPopulation()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion( ) do

5: P ′(t) ← BinaryTournament(P (t))
6: P ′′(t) ← Crossover & Mutation(P ′(t))
7: Evaluate(P ′′(t))
8: P (t + 1) ← Ranking(P ′′(t) ∪ P (t))
9: if P (t + 1) not full then

10: R← CrowdingDistanceSelection(P ′′(t) ∪ P (t))
11: P (t + 1) ← P (t + 1) ∪R
12: end if

13: t← t + 1
14: end while
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only a subset of solutions of a given rank be needed.

In this case, it is necessary to carefully select the most

promising solutions in order to promote diversity, and

the approach taken in NSGA-II is to define a density

estimator. The idea of a density estimator is to assign
to a set of non-dominated solutions a value indicat-

ing in some way the degree of proximity (or density)

of nearby solutions in the set. This way, solutions in

sparse regions are preferred compared to those in most
crowded regions. As indicated before, the density esti-

mator in NSGA-II is called crowding distance, and it

is detailed in Deb et al (2002). NSGA-II has become

de de facto multi-objective optimization metaheuristic,

and it has influenced many other techniques proposed
in the last ten years (Coello et al (2007)).

Another popular MOEA is the Strength Pareto Evo-

lutionary Algorithm 2 (SPEA2) Zitzler et al (2001). As

the NSGA-II, SPEA2 is a genetic algorithm based on
Pareto dominance. SPEA2 adopts a scheme known as

strength, that takes into account, for each solution in

the population, not only the number of solutions that

dominate it, but also the number of solutions by which

it is dominated. This provides a finer grained estima-
tion of the actual ranking of a solution. The density

estimator adopted in SPEA2 is based on measuring the

distance to the k-th nearest neighbor (i.e., it is a clus-

tering approach).

NSGA-II, SPEA2 and most of the multi-objective

metaheuristics developed in the last ten years con-

form the so-called second generation of multi-objective

metaheuristics (characterized for adopting some form of

elitism to retain the globally non-dominated solutions
that they generate), leading to the period when research

in this field grew in a very important manner, thus be-

coming a hot research topic. A set of representative

multi-objective metaheuristics is depicted in Table 2.

A popular scheme to deal with multi-objective op-
timization problems before the raising of the second-

generation algorithms was the use of aggregating func-

tions. Under this sort of approach, a multi-objective

optimization problem is transformed into a single-
objective one, thus allowing to apply single-objective

metaheuristics. However, this sort of approach has a

number of drawbacks, from which the main one is that

it cannot generate non-convex portions of the Pareto

front Das and Dennis (1997). Scalarizing functions are
a better choice if one is interested in using single-

objective optimizers for solving multi-objective opti-

mization problems, since they don’t have the same lim-

itations of aggregating functions and can be very effec-
tive when dealing with complicated Pareto sets. When

using scalarizing functions, the solution of a multi-

objective optimization problem is decomposed into a

set of single-objective optimizations (a set of weights

are used for this sake). This idea is indeed the basis

of the Multiobjective Evolutionary Algorithm Based

on Decomposition (MOEAD, Zhang and Li (2008)), in

which the several single-objective optimization prob-
lems generated are solved at the same time. By com-

bining this idea with the definition of neighborhood re-

lations among the subproblems that are being solved,

MOEA/D (and, particularly, its MOEA/D-DE vari-
ant Li and Zhang (2009)), is considered as one of the

most powerful MOEAs currently available.

3.4 The Influence of Solution Encoding

A key point when using metaheuristics (both for single-
and multi-objective optimization) to solve a given prob-

lem is the encoding of the solutions. To illustrate this

issue, the four-bar plane truss depicted in Figure 2

will be used. This problem has four real variables, so
a natural encoding in this case is to use an array of

real values (i.e., real numbers encoding), but it is also

possible to use a binary encoding, where each deci-

sion variable is encoded as a binary string. Choos-

ing between these two representation has two conse-
quences. First, many reproduction operators are appli-

cable only to a given encoding; for example, single point

crossover (SPX) and bit-flip mutation are used with bi-

nary strings, while simulated binary crossover (SBX)
and polynomial-based mutation are operators intended

for real numbers encoding. Given that each operator

has a different behavior, the performance of the algo-

rithm using it, gets affected. Second, some metaheuris-

tics are designed to work with a given type of encoding.
Differential Evolution (DE) and Particle Swarm Opti-

mization (PSO) are typically adopted for solving con-

tinuous optimization problems, while other such as Ant

Colony Optimization (ACO) or Tabu Search (TS) are
intended mainly to work with combinatorial problems.

Thus, encoding is an important feature that will be in-

cluded in the survey (see Tables 6 and 7 in Section 5).

4 Structural Design Optimization Problems

It is difficult to determine when was the first time that

optimization was applied to structural design, but we

can say as a historical review that in the ancient times,

before the Roman aqueducts, there were stone arches
and curved bar structures aimed at covering long spans

by reducing the weight or the amount of material.

Ohsaki and Swan included a historical review

in Ohsaki and Swan (2003) about a number of optimiza-
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Table 2 Examples of representative multi-objective metaheuristics.

Type Algorithm Citation

Evolutionary Algorithm

PAES Knowles and Corne (1999)
SPEA2 Zitzler et al (2001)
PESA-II Corne et al (2001)
NSGA-II Deb et al (2002)
IBEA Zitzler and Knzli (2004)
GDE3 Kukkonen and Lampinen (2005)
SMS-EMOA Beume et al (2007)
MOEA/D Zhang and Li (2008)

Particle Swarm Optimization
OMOPSO Reyes and Coello Coello (2005)
SMPSO Nebro et al (2009a)

Simulated Annealing AMOSA Bandyopadhyay et al (2008)

Scatter Search
MOSS P. and Beausoleil (2006)
AbYSS Nebro et al (2008b)

tion techniques applied to discrete structural topology.

There periods were stated as follows:

– Initial period where J.C. Maxwell (in 1894) and
A.G.M. Michel (in 1904) made their pioneering

studies in the field.

– Second period in the 1960s and 1970s, when the use

of computers began to arise.
– Third period, during the 1980s and 1990s, character-

ized by the extremely dramatic grown in computer

technologies.

The first applications of metaheuristics to structural

optimization problems can be found in works devel-

oped in the 1970s and the begin of the 1980s, as it

was pointed out in Kicinger et al (2005). If we focus
in multi-objective approaches, we can trace back works

in the mid-1980s (Goldberg and Samtani (1986)) and

the beginning of the 1990s (Hajela (1990)). Surveys

about structural optimization including both single-

and multi-objective optimization techniques were pub-
lished in Andersson (2000) and in Kicinger et al (2005).

These techniques and others were discussed in Saitou

et al (2005).

The problems analyzed in these surveys can be di-

vided in two main categories:

– Bar or element design: it is a local optimiza-
tion process that affects the shapes and sizes of the

elements of a structure. It is addressed by finding

the measures of a pre-defined geometry transverse

to the main axis of the structure, or determining

the variables that lead to the optimum geometric
shapes.

– Topological design: It is a global optimization

process aimed at defining the entire topology (lay-

out) of a structure. It is known as topological opti-
mum design (TOD), and it can be applied to dis-

crete and continuous structures. TOD takes into

account the number of elements and the links or

continuities among them in order to determine the

optimum distribution of masses in the considered

domain, with the goal of obtaining the stability of

the structure. In this process, while new elements

are incorporated or existing ones are removed, the
shape and/or size of each element is also optimized.

4.1 Bar or element design

In this section, bar design problems (Chapman (1994))

are classified. These problems are related to structures

composed of flat and spatial bars, such as trusses and
frames.

Truss structures are composed of bar elements that

are linked by articulated joints. The calculation of the

equilibrium requires to determine the areas of the cross

section of each bar, with no information about shape
and sizes. A frame structure is a more complex prob-

lem because, besides the areas, the flexural inertia must

be calculated, so the cross shape and sizes must be pre-

viously defined in order to determine the stability of
the structure. The problem complexity might increase

in case of three dimensional structures, because there

are four variables for the design: the area, two inertia

moments, and a torsional inertia.

So, in this category, the cross geometry of each bar
of the structure must be calculated, which defines the

decision variables of the problem that is to be opti-

mized. Four sub-categories can be distinguished, as il-

lustrated in Figure 4:

1. Area optimization: The decision variables rep-
resent the areas of the bars without considering

the sizes nor the shapes of the cross sections (Fig-

ure 4.1).

2. Size optimization: As shown in Figure 4.2, the
shape is pre-defined, so the problem to optimize is

related to finding the values that define the size of

each part of the shape.
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(1) (2)

(3) (4)

Fig. 4 Bar dimensioning or geometrical design problem vari-
ants: (1) Area without sizing, (2) sizing, (3) shape, and (4)
topology cross-section

3. Shape optimization: The goal is to find the ge-

ometry and dimensions of a closed polygon inscribed
within a known frame or border (Figure 4.3) by the

discretization of the shape into lines or curves linked

together by nodes.

4. Topological optimization of cross-section. The

fourth sub-category is illustrated in Figure 4.4.
Starting from a known elemental section, it must

be discretized into small elements having triangu-

lar or square sections. The optimization process is

then based on removing pieces and re-arranging the
linked elements with their neighbors by their sides.

Empty spaces can appear inside.

4.2 Topological design

As commented before, TOD comprises the distribution
of internal elements, the links, and the external shape

of the structure to optimize, and it basically relies on

distributing the resistant masses of material where re-

(1.a)

(1.b)

(2)

(3)

Fig. 5 Topological design classification: No topological op-
timization with two variants, (1.a) bars and (1.b) continu-
ous structures; (2) bar topology optimization; (3) continuous
topological optimization.
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quired as well as defining their size. The optimization

process starts from an initial state and the final shape,

trying to find the optimum design satisfying the objec-

tive functions and constraints.

Three categories can be established to classify this
type of problems. The issues to consider are the type of

the used element or the way in which the subdivisions

are made (bars or elements components interconnected

by nodes, sides, or surfaces). The categories are the fol-
lowing:

1. No topological optimization (pre-defined

topological design): the topology of the structure

is defined by the designer, and it is fixed and re-

mains unchanged during the optimization process
concerning the number of elements, links, restric-

tion of movements, etc. This category is considered

because it allows to classify those TOD problems in

which only bar design issues and continuous struc-

tures are considered, as illustrated in Figure 5.1.a
and Figure 5.1.b, respectively. In the first case, the

problems are composed of 2D or 3D bar structures

where one of the measures stands of the other two

(length on the measures of the cross section), us-
ing a linear representation of the bar element that

matches the centroid of the cross section describ-

ing a longitudinal axis; each element is linked to

the others through its nodes. Examples are truss

and frame structures. The second kind of problems
include continuous structures in which there is no

variation of shape, and the optimization is limited

to the thickness equal for all elements of the struc-

ture or the suitability of the main lengths of the
structure.

2. Discrete topological optimization: this case is

similar to the previous one, but the design of the

structure is not defined in advance, i.e., it is un-

known (see Figure 5.2). The starting point is the
design domain, which is the zone of study, and con-

sists of a figure or wire body, containing the bound-

ary conditions, which can be in the 2D or 3D do-

main. It is divided internally by grids in which the
coordinates of the vertices are known. The design of

the structure shall be defined by the required unions

of these points, allowing the links among the longi-

tudinal elements to represent the bars.

3. Continuous topological optimization: Depicted
in Figure 5.3, it is applied to plate-like structures

or continuous 2D and 3D structures. The thickness

can be constant or not, so the decision variables of

the optimization problem take values between the
limits of the exploration space and boundary con-

ditions. The starting point is a figure or basic body

with pre-established peripheral measures and with

excess material known as design domain. In both

cases, 2D and 3D, the design domain is discretized

in small elements. The final result will be a differ-

ent figure depending on the grouping obtained with

the optimization of the resistance and distribution
of the material, discarding the decking material on

the strength of the assembly. In general, these kinds

of structures evolve to adopt bar shapes through

the discrete elements linked among them by the ad-
jacent sides between neighbors. When the problems

are in 3D, the design is a spatial one and evolves

by varying the sizes in the three dimensions, cou-

pling and uncoupling volumetric finite elements at-

tached to their neighbors through the contact sur-
faces. After the optimization, the required condi-

tions of shape and size to meet the stability of the

structure will be obtained.

5 The Survey

After doing an in-depth analysis of the literature,

we have selected more than 50 references related to

multi-objective optimization applied to structural de-
sign problems, which we have found to be the most

representative of the work that has been done in this

area. Even though we have tried to encompass a wide

and thorough review, it is important to clarify that the

aim was not to be comprehensive, and there may be
other relevant works that are not included here.

The analysis of this published material is divided

in two parts. First, Section 5.1 provides all the details

about the particular structural design problem tack-
led by the analyzed works. Then, an in-depth review

based on the particular algorithmic details such as the

algorithm used, the encoding of the tentative solutions,

the search operators adopted, the number of solutions

managed, etc., is provided.

5.1 Structural design problems addressed by
multi-objective metaheuristics

Tables 3 to 5 summarize the main features of the struc-
tural design problems that have been addressed with

multi-objective metaheuristics in the analyzed papers.

We use n/a for those cases in which we did not find

the required information as well as in cases when that
feature is not applicable. The entries in these tables

include the following information:

– Cite: Bibliographic reference. The citations are ar-
ranged according to their publication year and, in

a given year, they are presented alphabetically con-

sidering the first author name.
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– Mat.: Material used in the structure, e.g., steel,

wood, reinforced concrete (RF ), prestressed con-

crete (PC ), etc. If the material is not available,

this field will include its mechanical feature such as

(Elastic), when a linear relation exists between ten-
sion and distortion, or (Plastic), when this relation

is not linear.

– Dom.: Domain of the problem. It can be either (2D)

or (3D) if the analysis of the structure is carried out
in the plane or the space, respectively.

– Calc.: Calculation method used to determine the ef-

fects of loads in the structure and stability. We have

used the acronyms and names detailed next. SDC:

Seismic Design Criteria (for problems related to seis-
mic analysis of structures), DNV-CSR: Det Norske

Veritas - Common Structural Rules (certification re-

lating to calculus and quality of ships), DGV-CPH

and NBE AE-88: Spanish construction regulations,
Damage: identification of damaged members and es-

timation of severity, FEM: Finite Element Method,

FEM-P: FEM and parallel processing, FEM-NRH:

Nonlinear Response History FEM, SRSM: Stochas-

tic Response Surface Method, CFDM: Constrained
Force Density Method, Equ: Algebraic Equations,

Ad Hoc: other method, different from the ones pre-

viously mentioned.

– Type: type of structure. We consider here Truss,
Frame, SMRF: Special Moment-Resisting Frame,

Cantilever plate, Tall building frame, etc.

– Nodes: number of nodes used in bar structures. Ad-

ditionally, we use the △ (triangular cell) and �

(quadrilateral cell) symbols to represent the shape
of the discrete structure forming a grid of continuous

real problem 2D, and solid45 and solid95 to repre-

sent linear and quadratic hexahedral solid elements,

respectively.
– Elem.: number of finite elements that form the

structure.

– Gr.: Number of groups of bars with similar mechan-

ical and geometrical features. Grouping bars means

simplifying the problem size with the goal of making
it more affordable to be solved.

– Design: Size, shape and topology optimization prob-

lem. An X.Y encoding of two variables has been

used only for structures with bars, where X indi-
cates the kind of structural component design (1:

area, 2: size, 3: shape, 4: topology), as presented in

Section 4.1, and Y represents the type of topology

design of the structure (1: no optimization, 2: dis-

crete, 3: continuous), as described in Section 4.2.
For example, an 1.1 code in this column means op-

timizing the cross section area without taking into

account shape or size, while the entire design of the

structure remains the same (number of trusses and

bars, external topology, etc.).

In the case of continuous structures, it is enough

to identify the type of optimization with one single

value, which is pointed by the Y variable. Bearing
in mind the classification of Section 4.2), Y = 1

means a size type design optimization and it corre-

sponds only to a plate thickness optimization (not

the geometry of the other two dimensions, which are
fixed and predefined). The value 3 indicates a design

change in the size and shape of the structure (topol-

ogy design). In the 2D domain, the optimization is

targeted to the main axis of the structure, being the

constant the thickness or depth. In the 3D domain,
the optimization is global, considering all the design

variables.

– Obj.: Objective functions to be optimized.

– Const.: Constraints used to define a feasible struc-
ture.

– No Var.: Number of decision variables of the prob-

lem.

We have used the following symbols, names, and

acronyms to refer to the different objectives and side
constraints that are considered in the analyzed works:

- α, β: function of the geometrical parameters

- δ: displacement of node or point
- δave: deviation between the actual output path of

the mechanism and the desired path

- γ: safety

- λ: compressive slenderness or buckling factor
- ωi: ith natural frequency

- σ: axil stress limits (or allowable); in case the values

of stress (+) and compression (-) are different, the

corresponding sign will appear

- σA: stress in the anchorages
- σB : Euler buckling stress

- σV M : Von Misses stress

- ϑ: allowable values for rotation

- a1 = e1: restriction associated with the dimensions
of each group

- A: cross sectional area

- c: structural compliance

- CMA: constrained mass average

- Cost: cost of material, design, analysis, execution,
etc.

- Da: boundary constraints of the numerical values of

damage that are acceptable

- Dcb: distance away from the constraint boundary
- DI: diversity index

- Dist: Euclidean distance considering the loading

point, desired support point and actual support
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- DR: interstory drift ratio among all stories corre-

sponding to all the seismic motions for the initial

Peak Ground Velocity (PGV) level

- DS: diversity of structure

- DyR: dynamic response
- Ei: input energy

- Ec: equations which take into account the allowable

stresses of materials and other features

- Env: counts the environmental impact of the struc-
ture

- Ep: dissipated energy

- Erh: hysteretic energy dissipation ratios

- EVS: first mode eigenvalue of the structure

- fv: vulnerability function (VF) of robust multi-
objective and multi-level optimization (RMOL)

- fv
M : VF for mass of the structure

- fv
δ VF to the maximum displacement at a specific

point
- F: force or load

- Fr: frequency

- Fb: bound on the applied load needed to cause the

mechanism to achieve the desired path

- FEV: first eigen period
- FRF(ωi): frequency response function crest param-

eter with respect to the ωi

- FRF : mean value of FRF crest parameters at

ω1, ω2, ω3

- FT(ωi): force transmissibility crest parameter with

respect to ωi

- FT : mean value of FT crest parameters at ω1, ω2, ω3

- gBDS : constraint requirement that each member

meets the AASHTO LRFD Bridge Design Speci-
fications (BDS) throughout opening

- GAM: geometric advantage of the mechanism.

- GC: geometric constraints related to the position of

nodes which support the distributed loads acting on
the deck

- HMAWV: hybrid mode aerial working vehicle

- L: length

- LSDC: life time seismic damage cost

- M: mass
- MD: modal damage

- MF: modal flexibility

- n: number of transversely stiffening flat bars which

expresses in a simple way the complexity of design
or workmanship expenses

- n/a: not available

- nt: dynamical and recursive constraint

- NCST: number of different cross-section type

- NEC: number of elements within this area that con-
tains material

- Ns: constructability through the number of longitu-

dinal bars

- p: lateral pressure

- PAS: prescribed area must be fully solid

- q: maximum non-dimensional ratio under a combi-

nation of axial force and bending moments

- r: normalized mass or the ratio of structural mass
to the maximum mass

- SDCV: standard deviation of the constraints viola-

tion

- SDL: standard deviation of ultimate load carrying
capacity taken as a measures of robustness of a

structure

- SIE: supplied input energy

- Sust: environmental cost of the most sustainable so-

lution
- t: plating of thickness

- t/h: ratio between flat bars of thickness t and height

h

- V: volume
- Vr: volume ratio

- W: weight

- WS: allowable modulus section

5.2 Algorithms and parameter settings

This section aims at analyzing the literature from the

point of view of the components of the multiobjec-

tive metaheuristic used for addressing structural design
problems.

The columns in the tables are the following ones:

– Algorithms: name of the multiobjective algorithm

used to solve the structural design problem. The al-
gorihtms in parentheses are included for comparison

purposes in the cited work.

– Fam.: metaheuristic family to which the algo-

rithm belongs (GA: Genetic Algorithm, SA: Sim-

ulated Annealing, ES: Evolution Strategy, GP: Ge-
netic Programming, AIS: Artificial Immune System,

PSO: Particle Swarm Optimization, EDA: Estima-

tion of Distribution Algorithm, TS: Tabu Search).

– PS: this column shows the number of solutions (PS
= Population Size) used by the algorithm (if appli-

cable).

– Encod.: representation used for the solutions ma-

nipulated by the multiobjective metaheuristics. The

values that may appear in this column are: B: Bi-
nary encoding; BG: Binary Gray, IN: Integer, FP:

Floating Point, DV: Discrete Values.

– Sel.: selection operator used (RW: Roulette Wheel,

T: Tournament, BT: Binary Tournament, UST:
Uniform Stochastic and Truncation, IS: Interval Se-

lection, SS: Sequential Selection, RS: Random Selec-

tion). This method is the one in charge of provid-
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Table 3 Synthesis of the problems solved with MOPs.

Cite
Optimized structure

Mat. Dom. Calc. Type Nodes Elem. Gr. Design Obj. Con. No Var.

Hajela and Lin (1992) Steel
2D

FEM
Truss static load

6 10 3 to 5
1.1 W, δ σ, δ

3 to 5
Truss dynamic load

3D Truss wind-box 14 28 16 16

Coello and Christiansen (2000) Elastic
2D

n/a Truss
77 200 29

1.1 W, δ, σ δ, σ
29

3D 10 25 8 8
Deb et al (2000) Elastic 2D Equ Truss 3 2 1.2 V, σ σ 3

Deb and Goel (2000) Elastic 2D FEM

Simply-supported plate

� cell
60

3 W, δ δ, σ n/a
Cantilever plate

Hoister plate 48
Bicycle Frame 107

Büche and Dornberger (2001) Elastic
2D FEM Truss 6 10 1.1 W, δ

σ
10

1D ad hoc Bricks tower 7 6 1.2 W, σ, Fr 6

Ray et al (2001) Elastic 2D Equ Truss
3 2 1.2 V, σ V, σ 3
4 4 1.1 V, δ A1 to 3 4

Hamda et al (2002) Elastic 2D FEM Plate cantilever � cell 200 3 W, δ σ n/a
Ray and Liew (2002) Elastic 2D Equ Truss 4 4 1.1 V, δ A1 to 3 4

Liu et al (2003) Steel 2D SDC
Frame

30 45 25 2.1
Cost, LSDC

n/a 25
5 storey 4 bay DI

Kicinger and Arciszewski (2004) Steel 2D ad hoc
Tall building frame

148 252 2.2 W, δ n/a n/a
36 storey 3 bay

Luh and Chueh (2004) Elastic
2D Equ

Truss
6 10

1.1 W, δ σ
10

3D FEM 10 25 8 25
Madeira et al (2004) Elastic 2D FEM-P Plate cantilever � cell 768 3 F1, F2 V n/a

Coello and Toscano (2005) Elastic 2D Equ Truss
4 4 1.1 V, δ A1 to 3 4
3 2 1.2 V, σ V, σ 3

Greiner et al (2005) Steel 2D n/a
Frame

35 55 2.1 M, NCST σ, λ, δ 55
5 store 5 bay

Lagaros et al (2005) Steel 3D SDC
Frame 6 storey 36 63 5

2.1
W, δ, FEV q, δ 10

Multi-layered Truss 3 614 12 974 6 W, δ σ, δ 6
Liu et al (2005) Steel 2D SDC SMRF 5 storey 4 bay 30 45 11 2.1 W, NCST n/a n/a
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Table 4 Synthesis of the problems solved with MOPs (cont).

Cite
Optimized structure

Mat. Doma. Calc. Type Nodes Elem. Gr. Design Obj. Con. No Var.

Tai and Prasad (2005) Elastic 2D PGCM
Target matching

� cell 2 500 3
Dist, NEC NEC, PAS n/a

Compliant mechanism δave, GAM Fb, σ n/a

Valdez Peña et al (2005) Elastic 2D FEM
Beam plate

△ cell
36

3 W, δ σV M n/a
Beam plate 144

Greiner et al (2007) Steel 2D FEM
Fame 2 bay 5 4

2.1 W, NCST σ, σB , δ
4

Frame 5 storey 5 bay 36 55 8 8
Herrero et al (2007) Elastic 2D Equ Truss 4 3 1.1 V, δ σ 3

Kelesoglu (2007) Elastic 3D FEM Truss 25 56 3 1.1 W, δ σ, δ 3

Kicinger et al (2007) Steel 2D FEM

Frame tall building 186 330

2.2 W, δ n/a n/a
30 storey 5 bay

Frame tall building 148 252
36 storey 3 bay

Perera et al (2007)
Elastic

2D Damage
Simply supported beam 10 11

1.1 MF, MD Da n/a
Aluminium Beam of supported fixed 20 21

Ohsaki et al (2007) Steel 2D SDC Frame 5 storey 4 bay 30 45 6 2.1 V, Ep DR 6

Izui et al (2008) Elastic
2D n/a

Truss
9 28 1.2 V, δ ±σ 28

3D n/a 10 25 8 1.1 V, δ ±σ, δ 8

Payá-Zaforteza et al (2008) RC 2D DGV-CPH
Building frame

21 30 18 2.1 Cost, Env n/a 115
6 storey 2 bay

Paya et al (2008) RC 2D NBE AE-88
Building frame

15 20 12 2.1
Cost, Ns

n/a 774 storey Cost, Sust
2 bay Cost, γ

Perera and Ruiz (2008) Elastic 2D Damage
Continuous beam 3 bays 101 100

1.1 MF, MD Da n/aFrame 2 storeys 73 72
I-40 bridge 16 15

Sharma et al (2008) Elastic 2D PGCM
Tracing curvilinear path

� cell 2 500 3 W, DS σ, δavg 633
Tracing straight line path

Shih and Kuan (2008) Elastic 2D Equ
Truss symmetric 4 3 1.1 W, δ σ 2
I-Beam design 2 1 2.1 A, δ n/a 4

Wang et al (2008) Aluminium 2D FEM Cantilever plate � cell 1 250 3 W, δ σ, δ, Vr n/a

Noilublao and Bureerat (2009) Elastic

2D

SDC

Truss bridge 12 21 1.1
M, 1/ω1

σ

14

3D Walking tractor handlebar 16 27 2.1
M, 1/

P

3

i=1
ωi

24

2D Truss bridge 12 25 1.2

M, FRF (ω1)

18
M, FRF

M, FT (ω1)
M, FT
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Table 5 Synthesis of the problems solved with MOPs (cont).

Cite
Optimized structure

Mat. Doma. Calc. Type Nodes Elem. Gr. Design Obj. Con. No Var.

Guedri et al (2009) Elastic 3D SRSM
Two sub-structure

� cell n/a 1 M, DyR n/a n/a
assemblies of plates

Sharma et al (2009) Elastic 2D PGCM Curvilinear path � cell 2 500 3 W, SIE σ, δavr 637

Bin et al (2010) Stell 3D FEM
Third flex arm solid45 715 000

1 V, L
σmax45 3

of the HMAWV solid95 670 000 σmax95

Su et al (2010) Elastic 2D FEM Truss
6 10 1.1

δ, W σ
n/a

8 15 1.2 n/a

Winslow et al (2010) Steel 3D
FEM Dome grid

n/a n/a 2.2 δ1, δ2 α, β 2/cell
unit cell Doubly curved surface

Sharma et al (2011) Elastic 2D PGCM
Curvilinear path

� cell 625 3 W, Ei σ, δ 637
Straight line generating

Byrne et al (2011) Wood 2D FEM Bridge n/a n/a 2.2 σ, W n/a n/a

Descamps et al (2011) Elastic 3D CFDM
Suspension bridge

n/a n/a 2.2
M, σA GC

3
Arch bridge M, L 4

Greiner et al (2011) Steel 2D FEM Frame 5 4 2.1 CMA, SDCV σ, λ, δ n/a

Ghanmi et al (2011) Elastic 2D FEM
Building frame

21 30 2 2.1
M, δ,

σ, a1 = e1 4/elem
6 storey 2 bay fv

M , fv
δ

Kunakote and Bureerat (2011) Elastic 2D FEM Cantilever plate � cell 300 3

c, r c, r

108
c1, c2, r c1, c2, r

c, r
σV M , r

EVS, r

Kaveh and Laknejadi (2011) Elastic 3D FEM Truss
10 25 8

1.1
W, δ ±σ 8

25 56 3 V, δ ±σ, δ 3

Nafchi et al (2011) Elastic
2D Equ

Truss
3 2

1.1
σ, δ σ, δ 2

3D FEM 49 120 7 W, δ ±σ, δ 7

Noilublao and Bureerat (2011) Elastic 3D SDC
Slender

4/level 16/level 6/level 1.2

M,
P

3

i=1
Fi δi σ

ad hoc
truss tower

M, ω1 + ω2 + ω3 λ
M,

P

3

i=1
FRF (ωi) ad hoc

M,
P

3

i=1
FT (ωi)

Stankovic et al (2011) Plastic 2D DNV-CRS
Calculus simplified

2.1
M, n WS, t, σ

4
ship hull structure SDL A, p, t/h

Tang et al (2011)

4 different

2D n/a

Square plate with

n/a n/a

4

1 W, σ

n/a 7
material a central hole

5 different Multilayer beam 5 σ, δ 11
material supported by springs

Gong et al (2012) Steel 2D FEM-NRH Frame 3 storey 4 bay 20 27 2 2.1 W, Ei, Erh δ, ϑ 2
El Semelawy et al (2012) PC 3D FEM Flat slab n/a n/a 2.1 Cost, Dcb Ec 11

Stanović et al (2012) Elastic 2D FEM Truss 6 9 2.2 M, σ σB, δ, L, nt 9

Thrall et al (2012)
Steel

2D BDS
Back-stay bascule 8 9

2.2 W, F gBDS 1Steel, piston Piston bascule 5 5
Steel Main-span operating rope 5 5
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Table 6 Algorithms and parameter settings.

Cite Metaheuristics
Algorithms Fam. PS Encod. Select. Rec. Mutat. FA-DP

Hajela and Lin (1992) Sharing GA, VEGA GA 100 B RW DPX BF Sharing
Coello and Christiansen (2000) GAminmax GA 100 B, FP BT DPX BF Weighted Min-Max

Deb et al (2000) NSGA-II (NSGA) GA 100 FP BT SBX Pol. PR+CD
Deb and Goel (2000) NSGA-II + LS GA 30 B BT FCX BF PR+CD+Cl.

Büche and Dornberger (2001) SDM (SPEA, NSGA) GA 60 B IS UX UM UIS
Ray et al (2001) MOEA GA n/a n/a Ad hoc Ad hoc No Mut. PR

Hamda et al (2002) NSGA-II GA 300 Voronoi BT Ad hoc Mult. PR+CD
Ray and Liew (2002) PSO PSO 100 FP SS n/a n/a PR+CD

Liu et al (2003) MOGA GA 1000 IN BT DPX UM Weighted Min-Max
Kicinger and Arciszewski (2004) ES ES 12 + 60 B UST UX UM WS

Luh and Chueh (2004) CMOIA (NSGA-II) AIS 100, 160 B T Ad hoc Ad hoc PR
Madeira et al (2004) NSGA-II GA 768 B BT Ad hoc Ad hoc PR+CD

Coello and Toscano (2005) µGA (NSGA-II, PAES) GA 4+100 B BT DPX UM PR+AG
Greiner et al (2005) NSGA-II, SPEA2 GA 100 BG BT UX n/a PR+CD/SD
Lagaros et al (2005) ESMO ES n/a DV Ad hoc Ad hoc Ad hoc FS

Liu et al (2005) GA GA 1000 IN BT DPX UM PR+CD
Tai and Prasad (2005) GA GA 100 B Ad hoc Ad hoc Ad hoc PR

Valdez Peña et al (2005) MASO EDA B n/a n/a n/a PR
Greiner et al (2007) DENSEA (NSGA-II, SPEA2) GA 50 B, BG RW UX n/a PR+CD
Herrero et al (2007) ǫ-MOGA GA 100 FP RS Ad hoc RM G

Kelesoglu (2007) GA GA 100 B SS DPX BF n/a
Kicinger et al (2007) SPEA2 GA 100∼500 IN BT UX RM St+SD

Perera et al (2007) NPGA GA 50∼100 n/a BT n/a n/a FS
Ohsaki et al (2007) SA, TS SA, TS n/a IN n/a n/a n/a FS

Izui et al (2008) MPOSO PSO 100 FP SS n/a Ad hoc AG
Payá-Zaforteza et al (2008) SMOSA SA 1 FP n/a n/a n/a n/a

Paya et al (2008) SMOSA SA 1 FP n/a n/a n/a n/a
Perera and Ruiz (2008) SPGA GA 100 n/a T SPX n/a St.

Sharma et al (2008) NSGA-II GA 240 B BT Ad hoc 1/n PR+CD
Shih and Kuan (2008) IMEA AIS 200 FP RS Ad hoc Ad hoc WS

citeWYT08 GA+LS GA 200 FP n/a n/a n/a PR

ing (either explicitly or implicitly) an ordering for

the solutions managed by the multiobjective meta-

heuristic.

– Rec.: recombination operator used (SBX: Simulated
Binary Crossover, UX: Uniform crossover, IX: In-

termediate Crossover, DPX: Two-points crossover).

When more than one operator is used, we use the

label “Mult.”.
– Mut.: mutation operator (BF: Bit Flip, UM: Uni-

form Mutation, PM: Polynomial Mutation, DM:

Displacement Mutation, SM: Shift Mutation, RM:

Random Mutation). When more than one operator

is used, we use the label “Mult.”.
– FA-DP (Fitness Assignment and Diversity Preser-

vation): these are the two most important design

issues when proposing a new multiobjective meta-

heuristic. It is worth noting that in some cases, these
two components are merged into a single measure

that translates the vector of objective functions of a

multiobjective problem into one single scalar value

which is used to rank solutions properly. We con-

sider here the following techniques: UIS: Uniform
Interval Selection, St.: Strength, PR: Pareto Rank-

ing, CD: Crowding Distance (density estimator of

NSGA-II), WS: Weighted sum, G: Grid, AG: Adap-

tive Grid, SD: SPEA2’s Density estimator, FS: Fit-
ness Sharing, Cl.: Clustering

It must be noted that the columns including the

selection, recombination, and mutation operators are

mainly applicable to EAs (such as GA and ES). How-

ever, we can find in the literature that, for example, sev-
eral PSO algorithms employ mutation as a perturbation

operator. The choice of considering these three opera-

tors has its rationale in that more than the 90% of the

found works are about EAs, and the information about
the used operators is, therefore, relevant. Detailing the

operators used by non-EA algorithms (e.g., PSO, SA,

AIS) would make the tables very complex to understand

and, therefore, we omitted such details.

Whenever an item is not applicable to a given al-

gorithm, or the paper does not report information to

infer it, we write ‘n/a’ in the corresponding cell.

6 Analysis

In this section, we perform an analysis of the table
contents presented in the previous section. We use bar

plots to summarize the most relevant issues that can

be extracted from all the collected data. We have con-

sidered: the number of publications per year, the type
of problems addressed within each design category, and

the multi-objective metaheuristics used to tackle theese

problems.
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Table 7 Algorithms and parameter settings (cont).

Cite Metaheuristics
Algorithms Fam. PS Encod. Select. Rec. Mutat. FA-DP

Noilublao and Bureerat (2009)

PAES ES 1 B n/a n/a n/a AG
NSGA-II GA 50 B, FP BT n/a n/a PR+CD
SPEA2 GA 50 B, FP BT n/a n/a St.+SD
OMPSO PSO 50 FP SS n/a n/a AG
PBIL EDA 50 B n/a n/a n/a AG

Guedri et al (2009) NSGA GA 20 n/a n/a n/a n/a FS
Sharma et al (2009) NSGA-II GA 240 B BT Ad hoc Ad hoc PR+CD

Bin et al (2010) NSGA-II GA n/a n/a n/a n/a n/a PR+CD
Su et al (2010) AMISS-MOP (NSGA-II) GA 100 Ad hoc BT Ad hoc Ad hoc PR+CD

Winslow et al (2010) NSGA-II GA 100 FP BT SBX, UXNon-uniform PR+CD
Sharma et al (2011) NSGA-II GA 240 B BT Ad hoc Ad hoc PR+CD

Byrne et al (2011) GE GP 100 n/a T n/a n/a PR
Descamps et al (2011) MOGA GA n/a FP+IN n/a n/a n/a n/a

Greiner et al (2011) NSGA-II, SPEA2 GA 200 BG BT UX n/a PR/St.+CD/SD
Ghanmi et al (2011) GA GA 30 FP n/a n/a n/a PR

Kunakote and Bureerat (2011)

PAES ES n/a B n/a n/a n/a AG
SPEA2, NSGA-II GA 35 B, FP n/a n/a n/a PR/St.+CD/SD

MPSO PSO 35 FP n/a n/a n/a AG
PBIL EDA 35 B n/a n/a n/a AG

Kaveh and Laknejadi (2011) CSS-MOPSO PSO 50 FP n/a n/a RM Ad hoc
Nafchi et al (2011) Bees Bees 80, 100, 150 n/a n/a n/a n/a n/a

Noilublao and Bureerat (2011)
SPEA2 GA 200 FP BT Ad hoc Ad hoc St.+SD
AMOSA SA 1 FP n/a n/a n/a SD

PBIL EDA 200 B n/a n/a n/a AG
Stankovic et al (2011) NSGA-II GA 60 BG BT SPX BF PR+CD

Tang et al (2011) NSGA-II GA 100 FP+B n/a n/a n/a PR+CD
Gong et al (2012) GA GA 15 B T n/a n/a CD

El Semelawy et al (2012) SPEA GA n/a n/a n/a n/a n/a St.+Cl
Stanović et al (2012) NSGA-II GA 60 B BT Ad Hoc BF PR+CD

Thrall et al (2012) MOSA SA 1 FP n/a n/a n/a Ad hoc

The total number of papers finally included in the

survey is 51. Figure 6 includes the number of publica-

tions per year. The first conclusion that can be drawn

from this figure is that, up to 2004, very few papers
(oscillating between 1 and 3 per year, and only one

before 2000) had been published. This makes sense be-

cause the use of multi-objective metaheuristics became

popular at the beginning of the last decade, when the
first two monographs on evolutionary multi-objective

optimization were published (Deb (2001) and the first

edition of Coello et al (2007), which became available in

2002). From 2005 onwards (with the exception of 2006,

in which no papers were found), the tendency increases
up to 2011, where 11 papers appeared in the specialized

literature. Regarding 2012, 4 papers have been consid-

ered for the survey. Our guess is that more papers are

expected in the following years due to the evident ben-
efits that multi-objective metaheuristics have produced

in structural optimization. We want to remark here that

this survey is intended to serve to both expert practi-

tioners and newcomers as the basis of cutting edge ideas
and state-of-the-art algorithms to further improve this

field.

We focus now on the 84 problems tackled according

to the design categories established in Section 4, which

are summarized in Figure 7. The most studied problems
fit into the categories with keys 1.1 (area optimization,

no topological optimization) where 26 problems have

been considered, and 2.1 (size optimization, no topolog-

Fig. 6 Number of reviewed publications per year.

ical optimization), with 17 problems addressed. Contin-

uous topological optimization (labelled as 3 in Table 7)

has received also a lot interest, with 17 problems. A sec-
ond group is formed by the 8 and 12 problems belonging

to area/size optimization plus discrete topological opti-

mization (categories 1.2 and 2.2 respectively). Finally,

no problems have been found related to the 3.1 and
4.1 types (shape/cross-section topology plus discrete

no topological optimization), and 4 problems belongs

to the class labelled as 1.
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Fig. 7 Number of problems in each design category.

Fig. 8 Multi-objective algorithms used in the reviewed pa-
pers.

Front the point of view of the algorithms that have
been applied, Figure 8 clearly confirms that NSGA-II is

the most widely used technique (it appears in 20 pub-

lications), as it could be expected a priori given the

popularity of this algorithm. The second metaheuris-

tic most frequently used is SPEA2 (7 occurrences), be-
ing the following ones different variants of MOPSO and

MOSA algorithms. The rest of algorithms include a mix

of techniques including PAES, PBIL, NSGA, SPEA,

etc.

7 Conclusions and Perpectives

Multi-objective optimization with metaheuristics has

become a hot research topic in the last decade mainly
because metaheuristics have shown to be an easy and

effective approach for solving real-world problems. The

survey carried out in this paper confirms this fact in

the field of structural design. Our purpose has been to
provide the reader with a comprehensive review of rel-

evant papers with the goal of offering a source of useful

information about the most salient studies in this area.

From the analyzed information, a summary of issues

and a number of open research lines can be indicated.

We can subdivide them in two classes: (1) those related

to structural design problems and (2) those having to

do with the multi-objective techniques.

Design problems. From the analyzed papers in Ta-

bles 3, 4, and 5 and Figure 7, we can conclude that

most of the studied engineering problems related to area

dimensioning with no structural topology design (1.1)
have been chosen because they are typically adopted as

benchmarks to test multi-objective algorithms. In these

problems, the use of static loads and truss structures is

common (e.g., truss bridges). Somewhat more complex

studies are those of class 2.2, e.g., tall building frames,
which include the design of bar sizes as well as struc-

tural topological design. Similarly, problems of designs

1.2 (trusses), 2.1 (frames), 1 (slab, cantilever plate, etc.)

and 3 (cantilever plate, beam, etc.) have been addressed
in the specialized literature. Among the problems that

have not been studied yet, we have the optimization

of the cross sections of bars defining the shape of the

boundary (design 3.1) and the transversal topology (de-

sign 4.1).

Multi-objective metaheuristics. A rather quick look

at the tables and figures suggests that, from an algo-

rithmic point of view, there are many open research

lines which can be largely exploited. For example, many
of the problems reported in the specialized literature

are encoded using floating point representation (i.e.,

real numbers are used for all the decision variables),

and we found no study in which differential evolu-

tion was used to solve any of these problems. This is
rather surprising if we consider that differential evolu-

tion is a very powerful approach for solving problems

in which all the decision variables are real numbers.

Some of the multi-objective metaheuristics based on
differential evolution that could be used for these prob-

lems are GDE3 (Kukkonen and Lampinen (2005)) and

MOSADE (Huang et al (2009)).

Another interesting finding is that NSGA-II and

SPEA2 are still the most commonly used multi-
objective metaheuristics in the literature on structural

optimization. This is a bit surprising considering that

these two MOEAs were introduced more than 10 years

ago. Remarkably, the use of other, more recent, MOEAs

such as those based on decomposition (e.g., MOEA/D
by Zhang and Li (2008); Li and Zhang (2009)), MOEAs

based on structuring the populations into a grid (Ne-

bro et al (2009b)), indicator-based MOEAs (e.g., SMS-

EMOA by Beume et al (2007) and HyPE byBader
and Zitzler (Spring, 2011)), algorithms based on lo-

cal approximations (e.g., ANC by Gobbi et al

(2013), NBI by Das and Dennis (1998), UPS-
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MOEA by Aittokoski and Miettinen (2010)),

and non-evolutionary metaheuristics such as scatter

search (Nebro et al (2008a)), has not been reported in

structural optimization problems. The use of coevolu-

tion and game theory (Sim and Kim (2004); Tan and
Teo (2009)) in structural optimization would also be

an interesting choice. In fact these approaches may be

quite useful in some applications (Barbosa (1997)). For

example, coevolutionary approaches are known to be
very effective for dealing with large-scale optimization

problems (i.e., problems having a very large number

of decision variables) (see for example the work of Li

and Yao (2012)). However, its use in large-scale multi-

objective optimization has been very rare until now.
The use of parallel MOEAs (Nebro et al (2005)),

surrogate methods (Ray et al (2009)), fitness approx-

imation (Reyes Sierra and Coello Coello (2005)) and

incorporation of domain knowledge during the search
(Landa-Becerra et al (2008)) could also bring impor-

tant savings in terms of CPU time when solving multi-

objective structural optimization problems. However,

the use of these techniques has been very relatively

scarce until now in multi-objective optimization prob-
lems (Ray and Smith (2006)).

Finally, another aspect that has been only scarcely

explored in multi-objective structural optimization us-

ing metaheuristics, is the incorporation of user’s prefer-
ences in the search engine (Sanchis et al (2008)). These

preferences allow, for example, to focus the search into

a specific region of the Pareto front, and also helps the

decision maker to choose one (or very few) solution from

the many that a multi-objective metaheuristic normally
generates (Thiele et al (2009)).

Evidently, more work in these directions is expected

to appear in the next few years, as we expect that

the use of multi-objective metaheuristics becomes more
common not only in structural optimization, but also

in engineering in general.
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juato, México, pp 664–676

Wang N, Yang Y, Tai K (2008) Hybrid genetic algorithm
for designing structures subjected to uncertainty. In: Sys-

tems, Man and Cybernetics, 2008. SMC 2008. IEEE In-
ternational Conference on, pp 565 –570

Winslow P, Pellegrino S, Sharma S (2010) Multi-objective
optimization of free-form grid structures. Structural and
Multidisciplinary Optimization 40:257–269

Zhang Q, Li H (2008) MOEA/D: A multiobjective evolution-
ary algorithm based on decomposition. IEEE Transac-
tions on Evolutionary Computation 8(11):712–731

Zitzler E, Knzli S (2004) Indicator-based selection in multiob-
jective search. In: in Proc. 8th International Conference
on Parallel Problem Solving from Nature (PPSN VIII,
Springer, pp 832–842

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improv-
ing the Strength Pareto Evolutionary Algorithm. Tech.
Rep. 103, Computer Engineering and Networks Labora-
tory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland


