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Abstract Many structural design problems in the field

of civil engineering are naturally multi-criteria, i.e., they

have several conflicting objectives that have to be op-

timized simultaneously. An example is when we aim to

reduce the weight of a structure while enhancing its ro-

bustness. There is no a single solution to these types

of problems, but rather a set of designs representing

trade-offs among the conflicting objectives. This pa-

per focuses on the application of multi-objective meta-

heuristics to solve two variants of a real-world structural

design problem. The goal is to compare a representa-

tive set of state-of-the-art multi-objective metaheuris-

tic algorithms aiming to provide civil engineers with

hints as to what optimization techniques to use when

facing similar problems as those selected in the study

presented in this paper. Accordingly, our study reveals
that MOCell, a cellular genetic algorithm, provides the
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best overall performance, while NSGA-II, the de facto

standard multi-objective metaheuristic technique, also

demonstrates a competitive behavior.

Keywords Multi-objective optimization · metaheuris-

tics · structural optimization · real-world problems

1 Introduction

The design of structures such as bridges, buildings, ma-

chinery, or any other item that supports or resists loads

is a complex problem within the field of civil engineer-

ing, where structural integrity affects the safety and

functionality. As usually happens in this and other dis-

ciplines, structural design problems require several con-

flicting objectives to be optimized, such as minimizing

the total investment cost while maximizing the safety

of the final structure.

Problems with more than one objective function to

be optimized are known as Multi-objective Optimiza-

tion Problems (MOPs), and their main characteristic

is the non existence of a single solution that can opti-

mize all the objectives at the same time. Instead, the

solution to these problems consists of a set of alterna-

tive trade-off solutions. This set is usually referred to

as Pareto set or Pareto front, depending on whether it

refers to the space of the decision variables defining the

problem (solution space) or to the space of the objec-

tive function values (objective space). Solutions within

these sets are said to be non-dominated, as no solution

among them is better than the others for all the objec-

tive functions. In we focus on the context of structural

design, the implication is that there is no single design

that minimizes the structure’s weight (to reduce the

investment cost as much as possible) and, at the same

time, maximizes the stiffness (to provide the highest
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possible degree of safety). Instead, there is a set of de-

signs providing a trade-off between these two conflicting

optimization criteria.

Addressing a MOP basically consists of two different

phases. First, it requires computing the Pareto front of

that problem, which in most cases is impractical prin-

cipally for two reasons: (1) it may contain an infinite

number of non-dominated solutions; and (2) there are

MOPs that are NP-hard (Knowles and Corne 2003;

Lust and Teghem 2010) and, therefore, there is no poly-

nomial time algorithm to solve them. In this situation,

the goal when solving a MOP is usually to produce a

set of solutions that constitute a reasonably good ap-

proximation of the true Pareto front of the MOP be-

ing solved. Second, the computed approximation set

is given to the decision maker, who is the expert in

charge of selecting the final design of the structure to

be adopted as the solution. The decision maker selects

one solution (or several) from the approximation set

in such a way that it best fits his/her desired require-

ments and preferences. While this second phase clearly

depends on user preferences and on other external con-

ditions, computing a high quality approximation is a

real challenge in the context of complex problems, as is

the optimization of the design of civil structures.

Metaheuristics (Glover and Kochenberger 2003) are

a class of approximation algorithms which have be-

come popular alternatives for solving multi-objective

optimization problems. For example, Evolutionary Al-

gorithms (EAs) (Bäck et al 1997), which are a specific

type of metaheuristic, are highly suitable for solving

MOPs due to their ability to compute an approxima-

tion to the Pareto front in a single run of the algorithm,

mainly because of their population-based nature.

In spite of the popularity of multi-objective meta-

heuristics, a recent survey on multi-objective optimiza-

tion applied to structural design (Zavala et al 2013) re-

vealed that the application of metaheuristic techniques

in this field has been scarce until very recently. Specif-

ically, their application has been mainly restricted to

multi-objective evolutionary algorithms (MOEAs) such

as the Nondominated Sorting Genetic Algorithm-II

(NSGA-II) (Deb et al 2002) and the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) (Zhang and Li 2007),

which are two of the most popular MOEAs in the lit-

erature. It is worth noting, however, that NSGA-II and

SPEA2 date back to 2000 and there have been signifi-

cant developments since then. For example, new meta-

heuristic techniques, evolutionary and non-evolutionary

based, have been proposed but rarely have they been

applied to structural design problems.

Furthermore, the second major conclusion of the

aforementioned survey is that many of these previous

studies were based either on benchmark problems or

on tiny instances of real-world problems, real world in-

stances being largely ignored (see for example (Kaveh

and Laknejadi 2011; Kelesoglu 2007)). In many cases,

the instances adopted to validate multi-objective meta-

heuristics do not have any connection with real world

applications (see for example (Zapotecas Mart́ınez and

Coello Coello 2014)) and, therefore, the conclusions ob-

tained in these studies may have little (or no) relevance

to civil engineers responsible for designing real struc-

tures.

The idea of this paper is to bridge the existing gap

between multi-objective metaheuristics and their appli-

cation to real world structural design problems. To do

so, we use two instances of a real-world problem for

the case study: the dimensioning of two cable-stayed

bridges. Then, we carry out a study to solve these two

instances by applying seven multi-objective metaheuris-

tics which are representative of the state-of-the-art. The

selected techniques include both classic and recent al-

gorithms. Our goal is to provide civil engineers with

experimental insights regarding the solver which seem

promising in this case study, analyzing the advantages

and disadvantages of the algorithm adopted in each

case. In addition, when comparing these techniques, we

follow a rigorous methodology to measure the quality

of the approximations computed by the different tech-

niques and to statistically validate the differences be-

tween them.

The full list of the scientific contributions of this

work can therefore be summarized as follows:

1. To solve two real world instances of a multi-objective

structural design problem.

2. Application of a wide set of representative multi-

objective metaheuristics, based on different working

principles.

3. Detailed and accurate performance comparison be-

tween different metaheuristic algorithms

4. Analysis of the obtained solutions from a civil engi-

neering point of view.

The rest of this paper is organized as follows. The

next section provides a short review of the preceding

related work. Readers interested in a thorough review

of this topic, should refer to Zavala et al (2013), where a

detailed and comprehensive description of multi-objec-

tive techniques for solving structural design problems

is presented. Section 3 is devoted to formally describe

the problem tackled in this paper. Some background to

multi-objective optimization is explained in Section 4.

An introduction to multi-objective metaheuristics as

well as the description of the algorithms used in our

study are included in the next section. Section 6 de-
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scribes in detail, the experiments conducted, with an

emphasis on the description of the applied metaheuris-

tics and the quality indicators adopted. The results ob-

tained are analyzed in Section 7. Finally, the main con-

clusions of this paper and some of the possible lines of

work for the future are given in Section 8.

2 Related Work

In the survey of multi-objective metaheuristics applied

to structural optimization presented in Zavala et al

(2013), 51 references were reported and analyzed. With

the exception of one, all of these references have been

published since the year 2000. The survey classifies struc-

tural problems according to the next two criteria:

– Bar or element design

– Area optimization (1.x)

– Size optimization (2.x)

– Shape optimization (3.x)

– Topological cross-section optimization (4.x)

– Topological design

– No topological optimization (y.1)

– Discrete topological optimization (y.2)

– Continuous topological optimization (3)

Note that a compact notation has been defined (ty-

ped at the end of each entry of the previous list) so

that each problem type is assigned a code , [X.]Y, which

shows the problem category under the first (X) and sec-

ond (Y) criteria, respectively (please note that the first

part is optional as in continuous topological optimiza-

tion problems the bar or element design does not hold).

The kind of structural problem we are considering

in the work presented here fits into category (2.1), i.e.,

we are concerned with the optimization of the size of

the elements of the structure, i.e., the dimensioning of

the structure, with no topological optimization.

The analysis carried out in the survey indicated

that 17 of the 84 problems found, fall into category

2.1. An in-depth look at the algorithms used to address

these problems show that NSGA-II was the most widely

used algorithm (in 6 out of 15 papers) and there is a

wide spread use of other techniques: SPEA2 (4), the

Pareto Archived Evolution Strategy (PAES) (Knowles

and Corne 2000) (1), several ad-hoc Genetic Algorithms

(4), Particle Swarm Optimization (PSO) (1), Tabu Search

(TS) (1), Simulated Annealing (SA) (1), the Population-

Based Incremental Learning (PBIL) (Baluja 1994) (1),

etc.

One of the main conclusions of the aforementioned

survey was that most of the applied algorithms (NSGA-

II, SPEA2, PAES) were proposed about fourteen years
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Fig. 1 Types of cross-section elements (hollowed rectangle,
circular, I-beam) and parameters to be optimized.

ago (i.e., around the year 2000) and, therefore, the sig-

nificantly large amount of research on multi-objective

evolutionary algorithms carried out since then has been

partially ignored in the papers reviewed in the survey.

Furthermore, it also found an evident lack of rigorous

comparative studies of state-of-the-art techniques in the

papers dealing with the solution of structural problems

(including the 2.1 category) using MOEAs. As a conse-

quence, a civil engineer interested in solving a particu-

lar problem would not have an up-to-date reference that

could help guide her/him towards the most suitable al-

gorithm (or at least, the most promising approaches)

to use in a specific application.

The work presented here, aims to contribute in this

way, by studying the optimization of two variants of a

cable-stayed bridge, using seven different multi-objective

metaheuristics. To the best of our knowledge, no study

of this kind has been previously reported in the special-

ized literature. Furthermore, a closer look at the infor-

mation in Zavala et al (2013) about the MOEAs that

have been applied in the field indicates that basic data

about the parameters settings of each technique is, in
many cases, missing. This turns the replication of any

of these studies into an almost impossible task. In this

paper, we provide not only detailed information about

the algorithms adopted, but we also have made their

source codes available in the public domain, through

the website: http://ebesjmetal.sourceforge.net.

3 Problem Description

The target problem of our work is the dimensioning

of two cable-stayed bridges, formed by elements with

different cross-section shapes and sizes. Each element

can have one out of three different cross-sections: box-

shaped girder (hollowed rectangle), I-shaped girder (I-

beam), and circular shape. Each of these element types

feature several geometric parameters that need to be

determined for each element composing the bridge in

order to reach an optimal design (see Figure 1).
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We assume the hypothesis that the total bridge load

is composed by both invariable and variable loads. The

former are the linearly distributed loads formed by the

weights of the road and the rolling plate surface, and the

effect of the side wind on the suspended main beams;

the latter are due to the weight of the elements, which

depends on the particular geometric measurements that

are subject to the optimization process.

The numerical model for analyzing the structures is

the direct stiffness method also known as the matrix

stiffness method (Turner et al Setember 1956). This

model is based on the use of the first-order conven-

tional linear elastic stiffness matrix, so that the forces

and deformations are linear. The second order effects

include the geometric stiffness matrix (Przemieniecki

1968) and (Yang and McGuire 1986), which considers

the effects of axial load on the bending stiffness of a

member. The effect of buckling can also be considered

in the calculation.

Below, we detail the features of the two bridges con-

sidered in our study.

3.1 Target Problem: 25N 35E Bridge

The smallest of the two problems is called 25N 35E,

as it is composed of 25 nodes and 35 elements (see

Fig. 2). The bridge has two columns supporting part of

the weight of the deck, and the rest of the board weight

is supported by the parallel tension of the cables.

It is an asymmetric bridge with a one-way road

circulation lane, composed of a single tranche, a to-

tal length of 9.00m and the deck length and width are

6.00m and 3.50m, respectively. In addition, the bridge

contains two pillars (columns) 3.50m in height, anchored

by two cables to an upper beam. The main longitudi-

nal beam, made of malleable steel, is suspended using

ten high resistant tensioners, so two materials with dif-

ferent elastic properties are used. The calculation takes

into consideration the entire bridge and considers that

the loads are asymmetric.

For the sake of simplifying the construction, we have

configured groups of elements, in such a way that the el-

ements composing the groups have the same shape, ma-

terial and similar position in the structure. The 25N 35E

bridge has 8 groups of elements, as shown in Figure 2.

After applying this grouping strategy, the total num-

ber of variables to optimize is 26, the total number of

geometric constraints is 24, and the sum of mechanical

and deflection constraints are 24 and 20, respectively,

as summarized in Table 1 (the description and formu-

lation of the constraints are in Section 3.4).

3.2 Target Problem: 133N 221E Bridge

The second problem, referred to as 133N 221E (133

nodes and 221 elements), has a one-way road and a

pedestrian circulation lane which is illustrated in Fig-

ure 5. The bridge has a total length of 44.00m and

the deck length and width are 32.00m and 6.40m, re-

spectively. In addition, the bridge contains four pillars

6.00m high joined at the top and anchored by cables.

The main longitudinal beam, made of malleable steel,

is suspended using ten high resistant tensioners, so two

materials with different elastic properties are used like

in the 25N 35E instance. From a mechanical point of

view, we consider only half of the bridge and symmetric

loads. For the sake of simplifying the construction, the

grouping strategy has been again used: the 133N 221E

bridge has 33 groups of elements, as shown in Figure 3.

It results in 108 decision variables, 100 geometric con-

straints, and the sum of mechanical and deflection con-

straints are 99 and 68, respectively (see Table 2).

In the middle of the bridge there is a structural joint

that allows a controlled descent of up to 0.10m between

the two symmetric parts. These two symmetric parts

work independently up to this measure and, beyond it,

they work together. By assuming that the horizontal

and vertical loads are symmetric, the calculation of the

structure is also symmetric.

Figure 4 shows a schematic view of the cross and

longitudinal sections of the bridge 133N 221E. We can

see that the main parts of the structure have variable

measurements, which correspond to the measurements

of the element shapes (length, width, and thickness) to

be optimized.

Fig. 5 Bridge 133N 221E.

3.3 Objective Functions to be Optimized

In both cases, the optimization problems are formulated

as having two different objective functions: the first (f1)

is to minimize the total weight of the structure and the

second (f2) is to minimize the summation of the de-

formations in some selected nodes. Given a structure

design composed of B elements and D nodes where the

deformation has to be checked, the two objective func-

tions to be optimized can be formally defined as follows:
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Fig. 2 Bridge 25N 35E and element grouping.

Shape Elements Groups Variables Geometric Mechanic Deflection
(gr) (var) constraints constraints constraints

Circle 6 2 1var/gr x 2gr = 2 3const/gr x 2gr = 6
20I-beam 14 1 4var/gr x 1gr = 4 4const/gr x 1gr = 4 3const/gr x 1gr = 3

Hollowed rectangle 15 5 4var/gr x 5gr = 20 4const/gr x 5gr = 20 3cont/gr x 5gr = 15
Total 35 8 26 68

Table 1 Variables and constraints of the 25N 35E bridge.

Shape Elements Groups Variables Geometric Mechanic Deflection
(gr) (var) constraints constraints constraints

Circle 46 8 1var/gr x 8gr = 8 3const/gr x 8gr = 24
68I-beam 39 4 4var/gr x 4gr = 16 4const/gr x 4gr = 16 3const/gr x 4gr = 12

Hollowed rectangle 136 21 4var/gr x 21gr = 84 4const/gr x 21gr = 84 3cont/gr x 21gr = 63
Total 221 33 108 267

Table 2 Variables and constraints of the 133N 221E bridge.

f1 = ΣB
i=1γiliΩi (1)

f2 = ΣD
j=1δj (2)

The first equation states that the bridge weight con-

sists of the summation of the weight of each element i,

which is computed according to its length (li), specific

weight (γi), and cross-section area Ωi. The second one

indicates that the deformation on the selected nodes is

computed as the summation of the allowable deflection

(δj) for each node j.

3.4 Problem constraints

The side constraints that must be satisfied to obtain ac-

ceptable dimensions for element cross sections fall into

three categories:

– Geometric proportions.

– Mechanical properties of the materials (strength),

which will determine the admissible stresses through

the permissible elastic resistance.

– The allowable deformations (deflection) of the struc-

ture at predefined nodes.

The geometrical constraints are four, and are de-

fined in Equations (3) to (6). They represent, respec-

tively, the maximum ratio between height and width,

the minimum ratio between height and width, the ra-
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Fig. 3 Bridge 133B 221E and grouping of its elements.

tio between width and plate thickness, and the ratio

between height and plate thickness:

Constr1Gi=1 = +
Yi
Zi
− 0.75Ryzi (3)

Constr2Gi=1 = −Yi
Zi

+ 1.50Ryzi (4)

Constr3Gi=1 = Max(−15tbi + Yi, 15tbi − Yi) (5)

Constr4Gi=1 = Max(−10tai + Zi,−20tai + Zi) (6)

The terms of all the equations that define the con-

straints are included in Table 3.

All bridges are subject to primary shear and bend-

ing moment effects as well as vertical deflections and

end rotations. The constraints related to the strength

of materials are defined in Equations (7) and (8) (pri-

mary normal stresses, as illustrated for the I-beam ele-

ments in Figure 6), and Equation 9 (primary shear and

torsional stresses):

Constr5Gi=1 = σ− =

(−ωi
Nxxi
Ωi

−Mxzi
Yi
Izi
−Mxyi

Zi
Iyi

) + σac (7)

Constr6Gi=1 = σ+ =

− (
Nxxi
Ω

+Mxzi
Yi
Izi

+Mxyi
Zi
Iyi

) + σas (8)

Constr7Gi=1 = τ =

− (
Qxyi Azi
Zi Izi

+
Qxzi Ayi
Yi Iyi

+Mxxi
Zi
Iti

) + τa (9)

Fig. 6 I-beam total normal stress.

Finally, there is also a deflection constraint, which

is specified in Equation (10):

Constr8Dj=1 = −δnj + δ anj (10)

So as to provide an illustrative example, Fig-

ure 7 shows two displacement restricted nodes for the

133N 221E bridge.
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Term Description

G number of element groups
Yi section height in y-axis for the elements in the ith group
Zi section height in z-axis for the elements in the ith group
tbi plate thickness in y-axis
tai plate thickness in z-axis

Ryzi
constant value relating the proportions
of the geometrical shape (defined by design)

σas allowable stress
σac allowable compression
τa allowable shear stress
ωi buckling coefficient
±Nxxi maximum and minimum axial force
±Mxzi maximum and minimum bending moment with respect to the z-axis
±Mxyi maximum and minimum bending moment with respect to the y-axis
Izi inertia moment with respect to the z-axis
Iyi inertia moment with respect to the y-axis
Qxyi shear force with respect to the y-axis
Qxzi shear force with respect to the z-axis
Azi statical moment with respect to the z-axis
Ayi statical moment with respect to the y-axis
Iti a torsional moment with respect to the x-axis
j constraint number for selected nodes
D maximum number of nodes with constraint
δnj deflection in jth node belonging to position n

δ anj maximum allowed deflection jth node belonging to position n

Table 3 Description of the terms in Equations (3) to (6), (7)- (9), and (10)

Fig. 7 Sample of displacement constraint nodes for Bridge
133N 221E

4 Multi-objective Optimization Background

The bridge design problem we are dealing with is com-

posed of two contradictory objectives that have to be

optimized at the same time, so it belongs to the disci-

pline known as multi-objective optimization. This sec-

tion is devoted to presenting some background to this

field.

In a formal way, the formulation of a multi-objective

optimization problem (MOP) extends the classic defini-

tion in single-objective optimization by considering the

existence of a vector of (at least two) objective func-

tions, as follows:

Definition 1 (MOP) A MOP is defined as a tuple

(S, f, g, h), where S 6= ∅ is called the solution space (or

search space), f = [f1, f2, . . . , fk] is a vectorial func-

tion, where fi : S → R, are the objective functions, and

g = [g1, g2, . . . , gm] and h = [h1, h2, . . . , hp] are also vec-

torial functions, where gi : S → R and hi : S → R are

the constraint functions. Thus, solving an optimization

problem, consists in finding a set of solutions X∗ ⊆ S

such that, for all x∗ ∈ X∗:

fj(x
∗) ≤ fj(x), ∀ x ∈ S . (11)

for some 1 ≤ j ≤ k, subject to:

gi(x
∗) ≤ 0 i = 1, 2, . . . ,m (12)

hi(x
∗) = 0 i = 1, 2, . . . , p (13)

where gi, hj : S → R, i = 1, ...,m, j = 1, ..., p are the

constraint functions of the problem.

The set of all values satisfying the constraints de-

fines the feasible region Ω and any point x ∈ Ω is a

feasible solution. For simplicity, in the following defini-

tions we consider Ω = S.

A key concept in muti-objective optimization is

Pareto dominance, which is defined next:

Definition 2 (Pareto dominance) Given two vec-

tors x,y ∈ Rk, we say that x ≤ y if xi ≤ yi for

i = 1, ..., k, and that x dominates y (denoted by

x ≺ y) if x ≤ y and x 6= y.

Pareto dominance can be used as a binary opera-

tor, in such as way that when applied to two solutions
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in objective space it returns the solution that domi-

nates the other one unless neither of the compared so-

lutions dominate each other (i.e., when both they are

non-dominated solutions). Many multi-objective meta-

heuristics apply Pareto dominance as a basic compo-

nent of their search strategies.

Solving a MOP can be viewed as the process of find-

ing the set of solutions that dominate every other point

in the solution space; this means that the solutions in

that set are Pareto optimal for that problem. Formally:

Definition 3 (Pareto Optimality) We say that a so-

lution x∗ ∈ S is Pareto optimal if it is non-dominated

by any other solution x′ ∈ S.

The set of solutions composed of all the Pareto op-

timal solutions is known as the Pareto optimal set (or

simply the Pareto set):

Definition 4 (Pareto Optimal Set) The Pareto

Optimal Set P∗ is defined by:

P∗ = {x ∈ S|x is Pareto optimal}

While the solutions in the Pareto set belong to the

variable decision space (S), their correspondence in the

objective function space (Rk) leads to a set known as

the Pareto front:

Definition 5 (Pareto Front) The Pareto Front

PF∗ is defined by:

PF∗ = {f(x) ∈ Rk|x ∈ P∗}

The solutions in the Pareto front are usually referred

to as non-inferior, acceptable, or efficient. The Pareto

front is also known in some contexts as efficient frontier.

As discussed in the introduction, the Pareto front of

a given MOP could contain a large (even infinite) num-

ber of points so, in practice, we only aim for an approx-

imation of the Pareto front containing a limited (pre-

defined) number of points. Thus, an important goal of

multi-objective optimization is to provide accurate ap-

proximations to the Pareto front. In this context, accu-

rate means that the approximation set should fulfill two

properties: be as close as possible to the Pareto front, to

ensure that it contains optimal or quasi-optimal solu-

tions, and be uniformly spread along the Pareto front,

meaning that a good exploration of the search space

has been carried out, without leaving unexplored ar-

eas of the Pareto front. These two properties are called

convergence and diversity, respectively.

To assess the performance of multi-objective algo-

rithms, quality indicators are applied to measure the

degree of convergence and/or diversity of Pareto front

approximations (Knowles et al 2006).

5 Metaheuristics and Multi-Objective

Optimization

Metaheuristics are a family of non-exact optimization

methods for finding high quality solutions to complex

optimization problems which cannot be solved effec-

tively by exact techniques. Although in general, meta-

heuristics do not guarantee optimal solutions will be

found, they usually compute near-optimal solutions

within a reasonable amount of time and resources. Ex-

amples of metaheuristic techniques are Evolutionary

Algorithms (or EAs, which are by far the most well-

known and widely used metaheuristics), and many oth-

ers, such as Particle Swarm Optimization (PSO), Scat-

ter Search, Simulated Annealing, Tabu Search, etc.

Algorithm 1 Template of a metaheuristic

1: P (0)← GenerateInitialSolutions()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion( ) do
5: Q(t) ← Variation(P (t))
6: Evaluate(Q(t))
7: P (t+ 1) ← Update(P (t), S(t))
8: t← t+ 1
9: end while

From a behavioral point of view, a metaheuristic

typically follows an iterative process in which a set of

tentative solutions are manipulated by a number of

variation operators, aiming to progressively generate

better solutions. Algorithm 1 shows the pseudo-code of

a generic metaheuristic. In that code, a set P of some

initial solutions (P may be eventually initialized to ∅),
is iteratively updated by generating a set Q of new so-

lutions from it until a stopping condition is met.

Algorithm 1 can be considered as a template that

can be instantiated to yield most metaheuristic algo-

rithms in current use. For example, in the case of EAs,

the solutions and the set P are called, respectively, indi-

viduals and population, and the variation operators are

crossover and mutation. If we focus on PSO, the solu-

tions and the set P are referred to as particles and

swarm, respectively, and the variation operators are

equations that modify the position and velocity of the

particles.

Metaheuristics have become very popular tech-

niques for solving both single- and multi-objective opti-

mization problems. In the latter case, one reason is that

a Pareto front approximation can be obtained in a sin-

gle run of the algorithm. Multi-objective metaheuristics

also follow the template of Algorithm 1 incorporating

a few extra components to deal with the fact that an

approximation to the Pareto front, instead of a single
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point, is aimed for. An example may be the use of an

external archive to keep only the non-dominated solu-

tions found during the search, which is a policy adopted

by many state-of-the-art multi-objective solvers.

An important issue that must be considered in the

multi-objective domain is that comparing solutions is

not as trivial as in single-objective optimization. The

dominance relationship provides a partial order, which

makes it difficult to compare different solutions.

To cope with this issue, there are currently three

main different approaches used by multi-objective

metaheuristics:

1. Pareto dominance + density estimator. This is the

most popular approach. The idea is to make use

of Pareto dominance relationships to compare solu-

tions and, when two solutions are non-dominated, a

density estimator is applied to break the tie.

2. Decomposition. The multi-objective optimization

problem is decomposed in a number of single-

objective problems by applying an aggregation-

based scheme. Algorithms based on this approach

compare solutions based on the aggregations.

3. Quality indicator based. A current trend is to use

a quality indicator to compare solutions. Therefore,

a solution a is better than b if a provides a better

indicator value than b.

In the work presented here we will use metaheuris-

tics from the three categories: NSGA-II, PAES, MO-

Cell, GDE3, and SMPSO belong to 1, while MOEA/D

and SMS-EMOA fit into the categories 2 and 3, respec-

tively. We briefly describe these techniques next.

5.1 Description of the Metaheuristics Considered

In this section, we briefly describe the algorithms we

have used in our study. The criterion for selecting the

techniques is to cover a range of representative tech-

niques, covering both classic algorithms and modern

techniques.

With regard to classical techniques, we have selected

NSGA-II and PAES. The first one has become the de

facto standard multi-objective metaheuristic, being the

most widely used algorithm to date. In fact, this is the

case for structural design problems as indicated before

in the related work section. The reason for selecting

PAES lies in its simplicity. This approach only requires

the user to set a few control parameter which makes it

easy to configure.

The next group of techniques comprises MOCell,

SMPSO, and GDE3 as examples, respectively, of cellu-

lar evolutionary algorithms, PSO, and differential evo-

lution. These metaheuristics have proven to be very ef-

fective in many studies.

Finally, as stated in the previous section, we have se-

lected MOEA/D and SMS-EMOA as representatives of

decomposition and quality indicator based algorithms,

respectively.

We provide a description of all these algorithms in

the following paragraphs (detailed information about

them can be found in the included references).

The Non-dominated Sorting Genetic Algorithm - II

(NSGA-II) was proposed in (Deb et al 2002). It works

with a (parents) population of solutions which is used

to create an offspring population in each iteration of the

algorithm using the typical genetic operators (selection,

crossover, and mutation). Both populations are merged

at the end of each iteration and the former population

is updated by considering the best solutions from this

union. Pareto dominance is used in NSGA-II to rank

the solutions, and a density estimator called crowding

distance is applied to diversify the set of solutions gen-

erated by the algorithm.

The PAES (Pareto Archive Evolution Strategy) is a

simple (1+1) evolution strategy (Knowles and Corne

1999), which uses a single individual that undergoes

mutation (no crossover operator is adopted in this

case). PAES uses an external archive where the non-

dominated solutions found during the search are stored.

To promote diversity within the archive, it uses an

adaptive grid which partitions objective function space

into several hypercubes. When a solution has to be dis-

carded from the archive, higher priority is given to the

hypercubes containing a higher number of solutions.

MOCell (Nebro et al 2006) is a multi-objective cellu-

lar genetic algorithm (cGA). The main characteristic of

this type of algorithms is that each solution belongs to a

cell and can only be recombined with a reduced number

of solutions (the surrounding cells or neighbors). The

main idea of this limitation is to perform a greater ex-

ploration of the search space. MOCell also considers an

external archive to store non-dominated solutions. This

archive is bounded and uses the crowding distance of

NSGA-II to maintain a diverse set of solutions. We have

used here an asynchronous version of MOCell, called

aMOCell4 in Nebro et al (2007), in which the cells are

updated sequentially (asynchronously).

SMS-EMOA (Beume et al 2007) (S Metric Selec-

tion Evolutionary Multi-Objective Algorithm) is an al-

gorithm based on NSGA-II which adopts the hyper-

volume (Zitzler and Thiele 1999) quality indicator to

select the best solutions. In the selection scheme of this

approach, given two solutions, the one contributing the

most to the hypervolume of the current population is

preferred. SMS-EMOA can become a very slow algo-
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rithm due to the high computational cost involved in

the calculation of the hypervolume contribution.

The Multi-Objetive Evolutionary Algorithm based

on Decomposition MOEA/D (Zhang and Li 2007) is

the multi-objective metaheuristic that popularized the

use of a decomposition of MOPs into several single-

objective problems (subproblems) by using a scalar-

ization approach. By combining this idea with the

use of neighboring relationships between sub-problems,

MOEA/D has been shown to be very competitive when

solving difficult problems, and its version based on dif-

ferential evolution (Li and Zhang 2009) has become

very popular. The original MOEA/D does not incor-

porate any constraint handling mechanism, so we have

used the variant described in (Asafuddoula et al 2012).

SMPSO (Speed-constrained Multi-Objective PSO al-

gorithm) is a particle swarm optimization algorithm for

solving MOPs (Nebro et al 2009). From a high level of

abstraction, in a PSO algorithm a set (swarm) of can-

didate solutions (particles) to the problem navigates

through the search space of an optimization problem.

This navigation takes place based on a velocity equa-

tion, which rules the way in which particles change their

position. Among the factors that govern that velocity

equation, two of them can be highlighted: the current

position of the particle and the best positions visited

so far, also referred to as leaders. Usually, the best po-

sition visited by a particle (local leader) and the best

particle visited by the whole swarm (global leader) are

considered. The main innovation of SMPSO is the in-

corporation of a constriction velocity mechanism, al-

ready applied in single-objective PSO algorithms, which

modulates the speed at which particles fly (Clerc and

Kennedy 2002).

The Generalized Differential Evolution (GDE) al-

gorithm (Kukkonen and Lampinen 2005) is also based

on NSGA-II, but the crossover and mutation variation

operators are changed to use the differential evolution

operator. Another difference is that GDE3 modifies the

crowding distance of NSGA-II in order to provide a

better distributed set of solutions.

6 Experimentation

In this section, we detail the experimentation method-

ology we have used in our study. First, we describe

the quality indicators called Hypervolume and Two

Set Coverage, which are used to assess the quality of

the computed Pareto front approximations. Second, we

summarize the way in which we compared the different

metaheuristics. After that, we describe the tools that

we used to produce the results included in this work.

Finally, we include the parameters settings used by the

evaluated techniques.

6.1 Quality Indicators

In single-objective optimization, assessing the perfor-

mance of a metaheuristic principally requires observ-

ing the best value yielded by an algorithm (i.e., the

lower the better, in case of minimization problems).

However, in multi-objective optimization, performance

assessment is a more difficult matter, because multi-

objective metaheuristics aim to converge on a set of so-

lutions (our approximation of the Pareto optimal set),

and not on a single one. As we have stated, two prop-

erties are usually required: convergence and a uniform

distribution along the Pareto front. A number of quality

indicators for measuring these two criteria either sepa-

rately or together have been proposed in the literature.

For the purposes of this paper, we have chosen the Hy-

pervolume (IHV ) (Zitzler and Thiele 1999) quality indi-

cator, which assesses both convergence and maximum

spread at the same time, and Two Set Coverage (IC),

which provides a relative comparison between two so-

lution sets based upon the dominance relationship (i.e.,

it assesses convergence).

6.1.1 Hypervolume (IHV )

The IHV calculates the volume, in objective function

space, enclosed between the computed approximation

to the Pareto front and a reference point. Figure 8 clar-
ifies how this indicator works in the case of a minimiza-

tion problem. In this example, the approximation to the

optimal Pareto front (the continuous curve) consists of

the points Q = {A,B,C} and the reference point is W .

Usually, the latter is chosen using the highest possible

value (minimum for a maximization problem) known

for each objective function, although it does not have

to be done this way. The closer the approximation is

to the Pareto optimal front, the higher the value is for

this indicator. Conversely, the wider the spread of the

solutions along the Pareto front, the higher the value of

this indicator. Therefore, approximations that produce

the highest possible values of this indicator are our aim.

Given the approximation and the reference point in-

cluded in that figure, IHV can be computed as follows.

For each solution i ∈ Q, a hypercube vi is constructed

with the reference point W and the solution i as the

diagonal corners of the hypercube. Thereafter, the IHV
consists in the union of all these hypercubes. Mathe-

matically:



Title Suppressed Due to Excessive Length 11

IHV = volume

 |Q|⋃
i=1

vi

 . (14)

f1

f2

Pareto-optimal front

W

A

B

C

Fig. 8 The hypervolume enclosed by the set of non-
dominated solutions {A,B,C}.

In some cases, the IHV of an approximation may

take a value equal to 0, meaning that all the points are

outside the limits defined by the reference point W .

In our work, we consider W as a point consisting

of the highest value of each objective in the Pareto

front. To do this, it is necessary to know beforehand

the Pareto front of the problem. As in the problems

analyzed in this study these fronts are unknown, we

have built for each instance a reference Pareto front as

indicated in Section 6.2.

6.1.2 Two Set Coverage (IC)

When comparing two Pareto fronts produced by dif-

ferent metaheuristics, it is normally desirable to know

which of them has a better convergence towards the

Pareto front. This can be quantitatively measured by

the Two Set Coverage metric or ISC (Zitzler et al 2000),

which provides a relative comparison between two so-

lution sets based upon the dominance relationship.

Given two sets of solutions X ′ and X ′′, ICS(X ′, X ′′)

gives the ratio of points of X ′′ that are dominated by

X ′ according to the following formula:

IC(X ′, X ′′) =
|{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ � a′′}|

|X ′′|
(15)

If all the solutions in X ′ dominate or are equal

to all the points in X ′′ then IC(X ′, X ′′) = 1, and

IC(X ′, X ′′) = 0 if none of the solutions in X ′′ are dom-

inated by X ′. Both IC(X ′, X ′′) and IC(X ′′, X ′) have

to be considered for performance assessment because

IC(X ′, X ′′) is not necessarily equal to 1− IC(X ′′, X ′).

When comparing a set of fronts of two algorithms

after performing a number of independent runs, the re-

ported value of IC is the mean of applying this perfor-

mance measure to the fronts obtained by each technique

taken in pairs.

6.2 Experimentation Methodology

This section describes the steps followed to analyze the

performance of the evaluated metaheuristics.

For each of the two problem instances considered

we have run each of the 7 algorithms 30 times, result-

ing in a total of 7 × 30 = 240 runs per instance. The

non-dominated solutions from these 240 runs have been

taken as the reference Pareto front in each case. After

this, IHV has been computed for each of the runs using

the reference front, and the results are reported using

boxplot representations.

In addition, when comparing the values yielded by

two algorithms on a given problem, we check whether

differences in the computed IHV by different algorithms

are statistically significant. To address this issue, we

have applied the unpaired Wilcoxon rank-sum test, a

non-parametric statistical hypothesis test, which allows

us to make pairwise comparisons between algorithms to

analyze the significance of the data obtained (Demšar

2006). A confidence level of 95% (i.e., significance level

of 5% or p-value under 0.05) has been used in all cases,

meaning that the differences are unlikely to have oc-

curred by chance with a probability of 95%. The results

of these tests have been summarized in the form of a ta-

ble for each instance. Each cell in these tables contains

the results of this test for a pair of algorithms. These

results are summarized using three different symbols for

the sake of clarity:“–” indicates that there is no statis-

tical significance between these algorithms, “N” means

that the algorithm in the row has yielded better re-

sults than the algorithm in the column with statistical

confidence, and “O” is used when the algorithm in the

column is statistically better than the algorithm in the

row.

6.3 Implementation Details

In this section, we describe the tools we have considered

in the work presented here, providing interested read-

ers with the chance to reproduce our study, or even to

extend it to other domains.

We have used two Open Source tools that can work

together. On the one hand, the design of the structures
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has been carried out using Ebes, a software for the de-

sign and analysis of spatial bar structures, which we

developed. On the other hand, all the algorithm im-

plementations adopted in this paper are available in

jMetal (Durillo and Nebro 2011), a Java based multi-

objective optimization framework widely known in the

field of multi-objective optimization, which was also de-

veloped by us.

The structures designed with Ebes are stored in text

files which contain all the information describing them.

These files can be loaded into jMetal so that any of

the algorithms provided by this can later be applied to

optimize the associated problem. The output of jMetal

consists of two files: one containing the computed ap-

proximation to the Pareto set, and another one con-

taining the corresponding approximation to the Pareto

front. These files can be loaded again in Ebes, allow-

ing an engineer or person with expertise in the area to

explore all the obtained solutions and choose the most

promising one(s) taking into consideration specific de-

sign goals.

Both tools, Ebes and jMetal, work as an integrated

software (Zavala et al 2014). The codes (both source

and binary codes), as well as the Ebes files describ-

ing the problems solved in this paper, can be found at

http://ebesjmetal.sourceforge.net.

6.4 Parameter Settings

The adopted parameterization of the algorithms is sum-

marized in Table 4. These parameters have been cho-

sen after an initial experimental phase where a sensi-

tivity analysis for each parameter for the 25N 35E in-

stance was carried out. To ensure a fair comparison, all

the algorithms have to find a Pareto front approxima-

tion of 100 individuals. The total number of evaluations

has been set to 150,000 for the smallest bridge and to

500,000 for the 133N 221E.

7 Analysis of Results

This section includes the analysis of the results ob-

tained after evaluating the seven metaheuristic tech-

niques adopted. The section is divided into three parts.

The first and the second are devoted to the algorithm

comparison from the numerical point of view; and the

third contains a discussion from a civil engineer’s point

of view.
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Fig. 9 Boxplot representation of the IHV values obtained
for the 25N 35E bridge.

7.1 Metaheuristics Comparison

We now provide the analysis of the results from each

bridge by assessing the performance of the metaheuris-

tics by using the IHV quality indicator.

7.1.1 Bridge 25N 35E

The values obtained after applying IHV to each of

the fronts gathered from the 30 independent runs per-

formed by the algorithms when solving the 25N 35E

bridge are summarized in Figure 9 in the form of box-

plots. It’s important to keep in mind that the bigger

the hypervolume the better.

The analysis of the boxplots shows that there is a

group of four techniques (MOEA/D, MOCell, NSGA-

II, and SMS-EMOA), which are clearly ahead of the

rest. The algorithms in that group not only provide

the best median values, but they are also robust in the

sense that the differences between the maximum and

minimum values represented by each boxplot are very

small.

The ranking of the best performing algorithms is led

by MOEA/D, followed by MOCell and NSGA-II. To

have a clearer view of the statistical significance of the

results we can take a look at the output of applying the

Wilcoxon rank-sum test, which is included in Table 5.

The results reported by the test indicate that there are

significant differences in all the pair-wise comparisons

between all the algorithms.
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Parameterization used in NSGA-II
Population Size 100 individuals
Selection of Parents binary tournament
Recombination simulated binary crossover, pc = 0.9
Recomb. distribution index 40
Mutation polynomial, pm = 1.0/L
Mutation distribution index 20

Parameterization used in PAES
Mutation polynomial, pm = 1.0/L
Mutation distribution index 5
Archive Size 100

Parameterization used in MOCell
Population Size 100 individuals (10× 10)
Neighborhood 8 surrounding neighbors
Selection of Parents binary tournament
Recombination simulated binary crossover, pc = 0.9
Recomb. distribution index 40
Mutation polynomial, pm = 1.0/L
Mutation distribution index 10
Archive Size 100 individuals

Parameterization used in SMS-EMOA
Population Size 100 individuals
Selection of Parents binary tournament
Recombination simulated binary crossover, pc = 0.9
Recomb. distribution index 20
Mutation polynomial, pm = 1.0/L
Mutation distribution index 5
Offset 100

Parameterization used in SMPSO
Particles 100 particles
Inertia weight 0.1
Mutation polynomial (to 1/6 of the population)
Mutation distribution index 40
Leaders Size 100

Parameterization used in MOEA/D
Population Size 100 individuals
Neighborhood parameters T = 20, delta = 0.9, nr = 2
Mutation polynomial, pm = 1.0/L
Mutation distribution index 40
Recombination Diff. Evolution, CR = 1.0, F = 0.5

Parameterization used in GDE3
Population Size 100 individuals
Recombination Diff. Evolution, CR = 0.1, F = 0.5

Table 4 Parameterization of the evaluated algorithms (L = solution length).

PAES MOCell SMS-EMOA MOEA/D SMPSO GDE3
NSGAII N O N O N N
PAES O O O N N
MOCell N O N N
SMS-EMOA O N N
MOEA/D N N
SMPSO O

Table 5 Statistical comparison (Wilcoxon rank-sum test) summary for the IHV values of the 25N 35E bridge instance. The
symbols mean: the algorithm in the row is statistically better than the one in the column (‘N’), the opposite (‘O’), and no
statistically significant difference (‘–’).

The performance analysis reveals the numerical per-

formance of the algorithms, but does not give all the

information to the civil engineer about the pros and

cons of the techniques. To provide an insight into the

expected results, we include, in Figure 10, the fronts

corresponding to those with the median IHV value of

MOEA/D, MOCell and NSGA-II. We can see that

MOEA/D provides solutions from the extremes of the

reference Pareto front, with a progressive concentra-

tion of solutions towards the center of the fronts, which

presents a high degree of convergence. The front of MO-

Cell is characterized by having a uniform spread of so-

lutions, but the far right of the reference Pareto front

is not covered, and this is the reason why MOEA/D
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Fig. 11 Boxplot representation of the IHV values obtained
for the 133N 221E bridge

provides a better IHV value than MOCell in this prob-

lem. Finally, NSGA-II covers the full reference Pareto

front except for the far left (we can observe that the

leftmost solution does not achieve the value 0.5 in the

y-axis). In this case, the diversity of the solutions is

not as uniform as with MOCell, and we can also see

that the solutions in the middle of the front have not

fully converged. These two facts mean that MOEA/D

outperforms NSGA-II with respect to IHV .

7.1.2 133N 221E

The boxplots summarizing the IHV values obtained

when solving the 133N 221E bridge are included in Fig-

ure 11.

The results in this case are slightly different to the

ones obtained for the 25N 35E bridge. First, it is re-

markable that none of the best performing algorithms

have been as robust as in the previous instance. This

lack of robustness is an indication of the difficulty of the

problem, so we can guess that none of the algorithms

have fully converged towards the optimal Pareto front

after evaluating 500, 000 solutions. This suggests that

there is room for improvement if we can afford spend-

ing more computing time. Second, the best algorithm

in the 25N 35E bridge, MOEA/D, has suffered a down-

grade in its performance, so it has not scaled well with

the size of the problem.

The leading algorithms are MOCell and NSGA-II

which, according to the results of the Wilcoxon rank-

NSGAII MOCell
25N 35E bridge

NSGAII – 0.26
MOCell 0.41 –

133N 221E bridge
NSGAII – 0.38
MOCell 0.43 –

Table 7 IC(X′, X′′) metric values when comparing MOCell
and NSGA-II (X′ and X′′ represent the algorithm in the row
and in the column, respectively).

sum test, included in Table 6, do not yield significant

differences.

As in the case of the 25N 35E bridge, we analyze the

Pareto front approximations obtained for MOEA/D,

MOCell and NSGA-II which have the median IHV
value. The fronts are included in Figure 12. It is easy to

see that MOEA/D has difficulty in converging on the

left side of the reference Pareto front, hence its poor

IHV value. MOCell and NSGA-II present a front with

similar features to the one obtained in the 25N 35E

bridge: good diversity and lack of coverage of the far

right of the front (MOCell), as well as not such a good

diversity, lack of solutions in the far left, and an inap-

propriate convergence in the medium region (NSGA-

II). As a consequence, MOCell yields a more accurate

front than NSGA-II.

7.2 Discussion

The comparative study conducted in the previous sec-

tion indicates that, in the context of the considered

structural problems and the parameter settings applied

in the selected metaheuristics, there is a group of two

solvers, MOCell and NSGA-II, that are worth consid-

ering when dealing with structural problems such as

those adopted in our study, regardless of the problem

size.

A view of the fronts of these two metaheuristics in

Figures 10 and 12 seems to indicate that the Pareto

front approximations of MOCell have a higher degree

of convergence than NSGA-II. In order to provide a

quantitative confirmation of this claim we have applied

IC to the 30 Pareto front approximations generated by

the two algorithms in the two considered problems. The

results (see Table 7) indicate that in both problems

MOCell outperforms NSGA-II, although in the case of

the 133N 221E bridge, the difference is small.

Regarding the rest of the techniques adopted,

MOEA/D achieved the best result in the small instance

of the problem, but had trouble as the size of the prob-

lem grew. SMS-EMOA, the indicator-based algorithm,

ranked fourth and third in the two problems, respec-

tively, so it can be considered as a possible choice after
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PAES MOCell SMS-EMOA MOEA/D SMPSO GDE3
NSGAII N – N N N N
PAES O O – N N
MOCell N N N N
FastSMSEMOA N N N
cMOEAD N N
SMPSO O

Table 6 Statistical comparison (Wilcoxon rank-sum test) summary for the IHV values of the 133N 221E bridge instance.
The symbols mean: the algorithm in the row is statistically better than the one in the column (‘N’), the opposite (‘O’), and
no statistically significant difference (‘–’).

MOCell and NSGA-II. The performance of PAES shows

that it is behind SMS-EMOA. Finally, GDE and, in par-

ticular, SMPSO performed poorly in the two problem

instances, so they should be discarded in favor of the

other algorithms.

It is worth considering the issue of the total run-

ning time of the algorithms. The execution of NSGA-II

over 150,000 evaluations to solve the 25N 35E bridge

is about six minutes in a MacBook Pro (2.2 GHz In-

tel Core i7 processor, 8 GB 1333 MHz DD3, 256 GB

SSD) running MacOS X 10.9.2 and using Java 1.8.0.

The computing time increases to 4.4 hours when solv-

ing the 133N 221E bridge on the same machine. These

times are certainly affordable but it is clear that, as

the running time of the solvers is problem dependent,

more complex designs could require more computing

power. We addressed the design of a high dimensional

cable-stayed bridge, with 1584 elements and 837 nodes,

in Luna et al (2015). This problem instance is indeed

so large that we were forced to develop parallel versions

of the multi-objective algorithms (NSGA-II and SMS-

EMOA), which were able of using up to 420 processing

elements at the same time. Even with such a computing

platform, the algorithms required more than 18 hours

to compute 300,000 function evaluation and to reach an

accurate solution to the problem instance.

7.3 Evaluation from a Decision Maker’s Point of View

In real-world applications, the decision maker is nor-

mally interested in certain types of trade-offs. From

this point of view, the fronts produced by MOCell and

NSGA-II in Figures 10 and 12 appear similar, but if de-

signs with the minimum weight are desired, then MO-

Cell is preferable. As analyzed in the previous section,

this algorithm also generates solution sets with better

convergence than NSGA-II, although the differences are

not so remarkable as to discard this algorithm, which

has the advantage of being very well-known.

To demonstrate the kind of trade-off designs that

can be obtained after the multi-objective optimization

process, Figures 13 and 14 show five possible designs for

each bridge than can be selected from a set of solutions

yielded by MOCell. The figures allow us to clearly see

how the resulting bridges become robust (and heavier)

when taking solutions from the left to the right part

of the front. To illustrate the final outcome, we have

considered the criterion of choosing the least heavy so-

lutions from this front. The values of the decision vari-

ables and the objective functions for the 25N 35E and

133N 221E bridges are included in Tables 8 and 9, re-

spectively.

The resulting optimized design of the 133N 221E

instance can be observed in Figure 15, which shows

the values of the cross-sections of the elements of the

bridge. Furthermore, using a tool such as Ebes, the

performance of the design can be studied according to

different properties, such as elasticity of the structure

(Figure 16), bending moments (Figure 17), shear (Fig-

ure 18), and axial forces (Figure 19). In the figures, the

associated color ramps are intended to represent the in-

ternal strength intensity associated with each element.

8 Conclusions and Future Work

In this paper, we have studied the performance of

seven state-of-the-art multi-objective metaheuristics

when solving two instances of a real-world civil engi-

neering problem, namely, the design of two variants of

a cable-stayed bridge. The design problem has been for-

mulated as having two conflicting objectives: reduce the

overall structure weight and minimize the deformation

in selected nodes.

After describing the problem formulations in detail

and presenting the chosen algorithms, we carry out a

rigorous comparative study to assess the performance of

the seven techniques. The results obtained when solv-

ing the simpler design problem (the so-called 25N 35E

bridge) show that the best performing algorithm is

MOEA/D, followed by MOCEll and NSGA-II.

The second instance, referred to as the 133N 221E

bridge, is more complex than the 25N 35E, which is ev-

idenced by the fact that the algorithms have not fully

converged. The results indicate that the best perform-

ing techniques are NSGA-II and MOCell, and, to a

lesser extent, SMS-EMOA, while MOEA/D has been
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Shape Description Gr. Y Z ty tz σmax σmin τ σa τa
m m mm mm MPa MPa MPa MPa MPa

I-single Transversal beam 3 0.26 0.11 9 6 146.8 -146.9 0.5

±150 90
Hollowed rectangle

Longitudinal beam 1 4 0.39 0.19 15 13 64.4 -120.3 26.7
Longitudinal beam 2 5 0.33 0.16 11 8 56.7 -144.8 11.8
Longitudinal beam 3 6 0.29 0.12 10 6 52.4 -147.7 2.6
Column 0 0.52 0.21 18 11 37.8 -144.2 11.2
Link beam of columns 2 0.33 0.20 13 11 0.4 -79.2 0.5

Circle
Anchored cable 1 0.07 134.4

750
Stayed cable 7 0.04 189.7

f1 = 0.030293MN , f2 = 0.387m

Table 8 Decision variables and function values from a solution returned by NSGA-II for the 25N 35E bridge.

Shape Description Gr. Y Z ty tz σmax σmin τ σa τa
m m mm mm MPa MPa MPa MPa MPa

I-single

Beam Cantilever 1 of deck 22 0.20 0.14 13 13 39.23 -39.23 7.22

±150 90

Beam Cantilever 2 of deck 23 0.20 0.14 13.0 13.0 17.11 -18.64 6.68
Beam 1 of deck 11 0.22 0.16 8.5 9.3 147.9 -146.08 0.52
Beam 2 of deck 12 0.25 0.17 9.3 8.7 149.92 -148.25 0.34

Hollowed rectangle

Longitudinal beam 1 3 0.48 0.38 20.0 22.1 0.00 -102.9 0.46
Longitudinal beam 2 4 0.48 0.33 26.9 22.1 0.00 -95.17 0.32
Longitudinal beam 3 5 0.50 0.39 17.6 21.8 0.00 -100.27 0.65
Longitudinal beam 4 6 0.39 0.42 20.0 23.2 0.00 -87.49 1.10
Longitudinal beam 5 7 0.46 0.48 18.5 27.3 0.00 -80.90 1.06
Longitudinal beam 6 8 0.52 0.42 20.0 23.2 0.00 -126.08 0.70
Longitudinal beam 7 13 0.43 0.42 20.8 22.5 2.03 -121.17 0.28
Longitudinal beam 8 14 0.520 0.46 18.7 29.7 0.00 -58.54 0.31
Longitudinal beam 9 15 0.41 0.28 16.3 21.6 0.00 -132.11 2.27
Longitudinal beam 10 17 0.43 0.30 14.6 16.7 0.00 -136.06 0.55
Longitudinal beam 11 18 0.40 0.28 20.7 23.0 0.00 -114.50 2.58
Longitudinal beam 12 19 0.55 0.39 20.0 20.0 28.99 -78.08 1.69
Longitudinal beam 13 20 0.41 0.36 19.6 18.2 14.29 -77.18 0.55
Longitudinal beam 14 25 0.31 0.32 17.1 22.8 0.0 -59.95 0.69
Longitudinal beam 15 26 0.40 0.28 15.7 22.3 0.7.95 -60.46 1.22
Longitudinal beam 16 27 0.35 0.25 12.0 17.4 55.01 -55.44 3.69
Link beam of columns 2 0.46 0.34 15.7 18.7 0.00 -70.71 0.07
Column 1 29 0.61 0.46 24.5 23.6 0.00 -145.04 0.00
Column 2 30 0.54 0.55 18.8 29.6 0.00 -148.67 0.00
Column 3 31 0.57 0.48 29.6 25.2 0.00 -150.70 0.00
Column 4 32 0.59 0.49 23.7 25.6 0.00 -149.37 0.00

Circle

Diagonal tensor 22 0.08 2.43 -146.72
Anchored cable 1 0 0.12 256.67

750

Anchored cable 2 1 0.02 183.15
Stayed cable 1 10 0.04 198.47
Stayed cable 2 9 0.06 259.41
Stayed cable 3 16 0.02 272.30
Stayed cable 4 21 0.07 209.18
Stayed cable 5 28 0.07 175.13

f1 = 0.28312 MN , f2 = 3.118 m

Table 9 Decision variables and function values from a solution returned by MOCell for the 133N 221E bridge.

unable to properly scale with the problem’s complex-

ity.

By considering the two problems together, MOCell

has emerged as the best performing algorithm, followed

by NSGA-II. The worst algorithms in the comparative

study were GDE3 and SMPSO, which yielded a very

poor performance.

At the end of our study, we have selected a solution

from each problem and provided details of the designs

obtained.

We can conclude that multi-objective metaheuris-

tics are a very useful tool for civil engineers, as they

are able to provide a wide range of trade-off designs

when applied to problems such as those addressed in

this paper. From our study, we can make some hints as

to what techniques are more promising to find the solu-

tions to similar design problems. MOCell and NSGA-II

are very competitive in this context, and they could be

the primary choice over the other algorithms analyzed.

Extending our study to other structural design

problems is an interesting research path that we in-

tend to explore in the near future. Another interesting

research line has to do with the fact that the variation

operators used in the metaheuristics operate without

any knowledge of the problem, with suggests that ad-

hoc operators could be designed to provide more effec-

tive and efficient search capabilities, which could speed

up the optimization process.
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Fig. 10 Pareto front approximations corresponding to the median IHV for the 25N 35E Bridge.
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Fig. 12 Pareto front approximations corresponding to the median IHV for the 133N 221E bridge
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Fig. 13 Designs obtained by selecting different solutions of the Pareto front approximation for the 25N 35E bridge.
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Fig. 14 Designs obtained by selecting different solutions of the Pareto front approximation for the 133N 221E bridge.
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Fig. 15 Cross-section values for the selected design of the 133N 221E bridge.

Fig. 16 Elasticity of the 133N 221E bridge
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Fig. 17 Bending moment diagram of the 133N 221E bridge

Fig. 18 Shear diagram of the 133N 221E bridge

Fig. 19 Axial forces diagram of the 133N 221E bridge


