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Abstract

This paper presents a simple multimembered evolution strategy (SMES) to
solve global nonlinear optimization problems. The approach does not require the
use of a penalty function and it does not require any extra parameters (besides
those used with an evolution strategy). Instead, it uses a simple diversity mecha-
nism based on allowing infeasible solutions to remain in the population This tech-
nique helps the algorithm to find the global optimum despite reaching reasonably
fast the feasible region of the search space. Some simple selection criteria are used
to guide the process to the feasible region of the search space. Also, the initial
step size of the evolution strategy is reduced in order to perform a finer search
and a combined (discrete/intermediate) recombination technique improves its ex-
ploitation capabilities. The approach was tested with a well-known benchmark.
The results obtained are very competitive, when comparing the proposed approach
against other state-of-the art techniques and its computational cost (measured by
the number of fitness function evaluations) is lower than the required cost of the
other techniques compared.

1 Introduction

Evolutionary algorithms (EAs) have been widely used to solve several types of opti-
mization problems [10, 3, 8]. Nevertheless, they are unconstrained search techniques
and lack an explicit mechanism to bias the search in constrained search spaces. This

�
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has motivated the development of a considerable number of approaches to incorporate
constraints into the fitness function of an EA [22, 6].

The most common approach adopted to deal with constrained search spaces is the
use of penalty functions [24]. When using a penalty function, the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions
are favored by the selection process. Despite the popularity of penalty functions, they
have several drawbacks from which the main one is that they require a careful fine
tuning of the penalty factors that accurately estimates the degree of penalization to be
applied so that we can approach efficiently the feasible region [28, 6].

Evolution Strategies (ES) have been found not only efficient in solving a wide va-
riety of optimization problems [27, 11, 4, 2, 1], but also have a strong theoretical back-
ground [26, 3, 5].

Our approach uses the self-adaptive mutation mechanism of a multimembered evo-
lution strategy to explore constrained search spaces. This mechanism is combined
with three simple selection criteria to guide the search towards the global optima of
constrained optimization problems. To avoid a high selection pressure and maintain
infeasible solutions in the population, a simple diversity mechanism is added. The idea
is to allow the individual with the lowest amount of constraint violation and the best
value of the objective function to be selected for the next population. This solution can
be chosen with a

�����
of probability either from the parents or the offspring population.

A hybrid crossover operator that combines discrete and intermediate recombination is
used to improve the exploitation mechanism of our algorithm.

With these combined elements, the algorithm first focuses on reaching the feasible
region of the search space. After that, it is capable of moving over the feasible region
as to reach the global optimum. The infeasible solutions that remain in the population
are used to sample points in the boundaries between the feasible and the infeasible
regions. Thus, the main focus of this paper is to show how a multimembered evolution
strategy coupled with very simple mechanisms is able to produce results that are highly
competitive with respect to other constraint-handling approaches that are representative
of the state-of-the-art in evolutionary optimization.

This paper is organized as follows: In Section 2 we define the global nonlinear
optimization problem that we aim to solve. After that, in Section 3 a description of
previous approaches based on similar ideas is provided. Section 4 presents a detailed
description of our approach. Then, in Section 5, we present the experimental design
and show the obtained results which are discussed in Section 6. In Section 7 some con-
clusions are established. Finally, some possible paths for future research are provided
in Section 8.

2 Statement of the Problem

We are interested in the general nonlinear programming problem in which we want to:

Find �� which optimizes �	�
���� (1)

subject to:
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��� �
�� � 	 ������	�����
�
�
����
(3)

where �� is the vector of solutions �� 	�� �! � �#" ��
�
�
�� �#$�%'& ,
�

is the number of inequality
constraints and

�
is the number of equality constraints (in both cases, constraints could

be linear or nonlinear).
If we denote with ( to the feasible region and with ) to the whole search space,

then it should be clear that (+*,) .
For an inequality constraint that satisfies ��� �
�� � 	 �

, then we will say that is active
at �� . All equality constraints

� �
(regardless of the value of �� used) are considered

active at all points of ( .

3 Previous Work

The inspiration of our approach was motivated by the idea of exploring the capabilities
of multiobjecitve optimization concepts to solve global optimization problems. We
compared four representative approaches using the same test functions adopted in this
paper [17, 19]. One of the conclusions of this work was the importance of a mechanism
to maintain diversity in the population (i.e., to allow feasible and infeasible solutions
to remain in the population during all the evolutionary process).

Motivated by the fact that the most recent and competitive approaches to solve
constrained optimization problems are based on an Evolution Strategy (e.g. Stochastic
Ranking [25] and ASCHEA [12]) we hypothesized the following:

1. The self-adaptation mechanism of an ES helps to sample the search space well
enough as to reach the feasible region reasonably fast.

2. The simple additional of tournaments based on feasibility to an ES should be
enough to guide the search in such a way that the global optimum can be ap-
proached efficiently.

Thus, based on these ideas, we implemented a generic ES-based approach to solve
constrained optimization problems. Then, we performed an empirical study in which
we varied the type of selection (“+” or “,”) and the type of mutation (noncorrelated or
correlated) [21]. We also implemented a simple ��-/. � � with the “1/5 successful rule”
to self-adapt the sigma value [21]. Constraints were handled using tournaments based
on feasibility (see Section 4 for details).

The use of tournaments based on feasibility has been explored in the past by other
authors. Jiménez and Verdegay [14] proposed an approach similar to a min-max for-
mulation used in multiobjective optimization combined with tournament selection. The
rules used by them are similar to those adopted in this work. However, Jiménez and
Verdegay’s approach lacks an explicit mechanism to avoid the premature convergence
produced by the random sampling of the feasible region because their approach is
guided by the first feasible solution found.
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Deb [9] used the same tournament rules adopted in our approach. However, Deb
proposed to use niching as a diversity mechanism, which introduces some extra com-
putational time (niches are an � ���

" � procedure). Also, in Deb’s approach, feasible
solutions are always considered better than infeasible ones. This contradicts the idea of
allowing infeasible individuals to remain in the population. Therefore, this approach
will have difficulties in problems in which the global optimum lies on the boundary
between the feasible and the infeasible regions.

Coello & Mezura [7] used tournament selection based on feasibility rules (this is
one of four different multiobjective-based techniques compared). They also adopted
nondominance checking using a sample of the population (as the multiobjective op-
timization approach called NPGA [13]). In this approach, a user-defined parameter� $ is used to control the diversity in the population. This approach provided good re-
sults in some well-known engineering problems and in some benchmark problems, but
presented problems when facing high dimensionality [7].

From our ES’s comparative study, the best results were provided by a ��-�. � � -ES
[21] in which one child created from - mutations of the current solution competes
against it and the better one is selected as the new current solution. However, the
approach presented premature convergence in some test functions [21]. A � � .�� � -ES
was proposed in [18], which improved the robustness and quality of the previous ES
proposed by the same authors. In this case, a self-adaptive parameter called Selection
Ratio (

� $ ) (similar to that proposed by Coello & Mezura and mentioned before [7])
refers to the percentage of selections that will be performed in a deterministic way (as
used in the original version of our SES where the child replaces the current solution
based on the three selection criteria). In the remaining

��� � $ selections, there are
two choices: (1) either the parent (out of the � ) with the best value of the objective
function will replace the current solution (regardless of its feasibility) or (2) the best
parent (based on the three selection criteria) will replace the current solution. Both
options are given a

� � �
probability each.

The � � .�� � -ES approach proposed in [18] made evident that having a good mecha-
nism to maintain diversity is one of the keys to produce a constraint-handling approach
that is competitive with the techniques representative of the state-of-the-art in the area.

However, these two approaches, based on a non-population ES lack the explorative
power that allows them to sample larger search spaces. Thus, we decided to re-evaluate
the use of a ��- .	� � -ES to solve this limitation, but in this case, adding the diversity
mechanism implemented in our previous approaches.

4 Our approach

Our new approach is based on the same concepts that its predecessors discussed in
Section 3: (1) the self-adaptation mechanism of an ES and (2) three simple selection
criteria:

1. Between 2 feasible solutions, the one with the highest fitness value wins.

2. If one solution is feasible and the other one is infeasible, the feasible solution
wins.
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3. If both solutions are infeasible, the one with the lowest sum of constraint viola-
tion is preferred.

Also, it has a simple diversity mechanism similar to that used in the � � . � � -ES and
a combination of discrete and intermediate crossover.

The detailed features of our algorithm are the following:

� Diversity Mechanism: With an idea similar to that used in the � � .�� � -ES ver-
sion, we allow infeasible solutions to remain in the population. However, unlike
this previous approach, where the best parent based only on the objective func-
tion (regardless of its feasibility) can survive, in this new approach we allow the
infeasible individual with the best value of the objective function and with the
lowest amount of constraint violation to survive for the next generation. This
solution (called by us as the best infeasible solution) can be chosen either from
the parents or the offspring population, with a

�����
of probability. This pro-

cess of allowing the best infeasible solution to survive for the next generation
happens

�
times every

� � �
during the same generation. However, it is a de-

sired behavior because a few copies of this solution will allow its recombination
with several solutions in the population, specially with feasible ones. Recom-
bining feasible solutions with infeasible solutions in promising areas (based on
the good value of the objective function) and close to the the boundary of the
feasible region will allow the ES to reach global optimum solutions located in
the boundary of the feasible region of the search space (which are known as the
most difficult solutions to be reached). Following the idea of allowing just a few
infeasible solutions (one in case of the � � . � � -ES approach) we allow the best
infeasible solution to be copied into the population for the next generation just
3 times for every 100 attempts. It works in the following way: When the se-
lection process occurs, the best individuals among the parents and offspring are
selected based on the three selection criteria previously indicated. The selection
process will pick feasible solutions with a better value of the objective function
first, followed by infeasible solutions with a lower value of constraint violation.
However, 3 times from every 100 picks, the best infeasible solution (from ei-
ther the parents or the offspring population with a

� � �
of probability each) the

best infeasible solution is copied in the population for the next generation. The
pseudocode is listed in Figure 1.

� Combined crossover: We use global crossover, but with a combination of the
discrete and intermediate recombination operators. Each gene in the chromo-
some can be processed with any of these two crossover operators with a

�����
of

probability. This operator is applied to both, strategy parameters (sigma values)
and decision variables of the problem. The pseudocode is shown in Figure 2.

� Reduction of the initial stepsize of the ES: Based on the results obtained in
the previous versions of our algorithm, which only use a sigma value to define
the stepsize of the mutation operator, we decided to experiment with just a per-
centage of the quantity obtained by the formula proposed by Schwefel [26]. We
initialize the sigma values for all the individuals in the initial population with
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function selection()
For i=1 to � Do

If flip(0.97)
Select the best individual based on the selection criteria
from the union of the parents and offspring population,
add it to the population for the next generation and delete
it from this union.

Else
If flip(0.5)

Select the best infeasible individual from the parents
population and add it to the population for the next
generation.

Else
Select the best infeasible individual from the offspring
population and add it to the population for the next
generation.

End If
End If

End For
End

Figure 1: Pseudocode of the selection procedure with the diversity mechanism incor-
porated. � � �'� ��� � is a function that returns TRUE with probability �

only a � ��� of the value obtained by the following formula (where
�

is the num-
ber of decision variables):

� � � � � 	 ��
 ��� �
	 � �� �
� (4)

where
	 � � is approximated with the expression (suggested in [25]),

	 � ���
���� � ��� � , where ���� � ��� � are the upper and lower limits of the decision variable

�
.

The idea of this reduction is to favor finer movements in the search space, be-
cause the previous versions were capable of reaching optimum solutions when
the sigma value was close to

��
 �
.

Summarizing, our approach works over a simple multimembered evolution strat-
egy: � - . � � -ES. The only modifications introduced are the reduction of the initial
stepsize of the sigma values, the global combined (discrete-intermediate) crossover
and the changes to the original deterministic selection of the ES (made by sorting the
solutions based on the three selection criteria discussed in Section 3), allowing the best
infeasible solution, from either the parents or the offspring population, to remain in the
next generation.

5 Experiments and Results

To evaluate the performance of the proposed approach we used the 13 test functions de-
scribed in [25]. The test functions chosen contain characteristics that are representative
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function crossover()
Select mate 1 from the parents population
For i=1 to NUMBER OF VARIABLES Do

Select mate 2 from the parents population
If flip(0.5)

If flip(0.5)���������
	���
��
��� ��	
Else���������
	���
��
��� ��	
End If

Else ���������
	���
��
��� ��	�������
������ ��	�� 
��
��� ��	�!"�$#&%
'
End If

End For
End

Figure 2: Pseudocode of the global combined (discrete-intermediate) crossover oper-
ator used by our approach. � � �'� ��� � is a function that returns TRUE with probability�
of what can be considered “difficult” global optimization problems for an evolutionary
algorithm. Their expressions are provided next.

1. g01:
Minimize: �	� ���� 	 �)(+* ��,  � � � �)(+* ��,  � "� �-(  /.��,10 � � subject to:

�  �
�� � 	32 �  . 2 � " . �  /4 . �   � � � � �
� " �
�� � 	32 �  . 2 � . . �  /4 . �  " � � � � �
�5. �
�� � 	32 �#" . 2 �6. . �   . �  " � � � � �

� * � �� � 	 �87 �  . �  94 � �
� 0 � �� � 	 �87 � " . �   � �
�5: � �� � 	 �87 �;. . �  " � �

�5< �
�� � 	 �=2 � * � � 0 . �  94 � �
�5> �
�� � 	 �=2 � : � � < . �   � �
�5? �
�� � 	 �=2 �;> � �;? . �  " � �

where the bounds are
� � � � � �

(
� 	�����
�
�
��A@

),
� � � � � � � �

(
� 	��
�����������$2

)
and

� � �  �. � �
. The global optimum is at �CB 	 � ����������������������������������� ��� ��� ����� �

where �	� � B � 	 � � � . Constraints �  , ��" , �5. , � * , � 0 and �5: are active.
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2. g02:

Maximize: �	�
���� 	�����
������	��

��������� ���
� "�� ����	��

��������� ���� � ����	� � � �� ���� subject to:

�  �
�� � 	 ��
�� � ��� 
� ,  

� � � �

��" �
�� � 	 �!
� ,  

� � �"��
 � � � �
(5)

where
�+	 2��

and
� � � � � � � � � 	 ����
�
�
�� � � . The global maximum is

unknown; the best reported solution is [25] �	� �1B
� 	 ��
 7 � ��#��$@
. Constraint �  is

close to being active ( �  	 � �
�
� >

).

3. g03:
Maximize: �	�
���� 	 � � � � �%$ �� ,  � �
subject to:

� �
�� � 	 ( �� ,  � "� � � 	 �

where
��	 � �

and
� � � � � � � � 	 ����
�
�
���� � . The global maximum is at� B� 	��'& � � � �
	�����
�
�
�� � � where �	� � B � 	��

.

4. g04:
Minimize: �	�
���� 	 ��
 � �(� 7 � � � � ". . ��
 7 � �)# 75@�� �  �60 . �	��
 25@ � 2 �5@ �  � � �*��@ 2�
 � � �
subject to:�  �
�� � 	 7 ��
 � � � � �	� . ��
 � � ��#57 �57 � " �;0 . ��
 � � ��#�2)# 2 �  � * � ��
 � � 2 2�� � � � . �60 �
@�2 � �
� " �
�� � 	 �87 ��
 � � � � �*� � ��
 � � �+# 7 � 7 � " �;0 � ��
 � � �(# 2�# 2 �  � * . ��
 � � 2 2�� � � � . �;0 � �
�5. �
�� � 	 7 ��
 ��� 2 � @ . ��
 � �	��� ���'� � " � 0 . ��
 � ��2 @5@ � � �  �#" . ��
 � � 2�� 7�� � � ". � ���
� � �
� * �
�� � 	 �87 ��
 ��� 2 � @ � ��
 � �	� � ���'� � " � 0 � ��
 � ��2 @ @ � � �  �#" � ��
 � ��2�� 7�� � � ". . @ � ��
� 0 �
�� � 	 @�
 � � � @�#�� . ��
 � � � � � 2)# �;. � 0 . ��
 � ���$2 � � � �  �6. . ��
 � ��� @ � 7 � �6. � * � 2 � ��
� : �
�� � 	 �8@�
 � � �5@�#�� � ��
 � � � � � 2�# � . �;0 � ��
 � ���$2 � � � �  � . � ��
 � ��� @ �57 � � . � * .2 � � �

where:
� 7 � �  � �
��2

,
� � � � " � � � ,

2	� � �#� � � � � ��	 ��� � � � � . The opti-
mum solution is � B 	 � � 7�� � ���"2 @�
 @5@ �52 �)# ��2 �+# 752�� � ��� ��#�
,��� ��7�� 25@�� �(��7 7 � where
�	� � B � 	 � � ��#(# ��
 � �5@

. Constraints �  y � : are active.

5. g05

Minimize: �	� ���� 	 � �  . ��
 � � � � ��� � .  . 2 �#" . � ��
 � � � � ��2(& � � � ."

subject to:�  �
�� � 	 � � * . �6. � ��
 � � � �
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� " �
�� � 	 � � . . � * � ��
 � � � �
� . � �� � 	��
� � ������� � � � . � ��
 2 � � . � � � ������� � � � * � ��
 2 � � . 7 @ � 
 7 � �  	 �
� * � �� � 	��
� � ������� � �6. � ��
 2 � � . � � � ������� � �;. � � * � ��
 2 � � . 75@ � 
 7 � �#" 	 �
� 0 � �� � 	��
� � ������� � � * � ��
 2 � � . � � � ������� � � * � �;. � ��
 2 � � . �$25@ � 
 7 	 �

where
� � �  �� �$2�� �

,
� � � " � �$2 � �

,
� ��
 � � � �6. � ��
 � �

, and
� ��
 � � �

� * � ��
 � �
. The best known solution is � B 	 � #	� @�
 @ � � �����
� 2�#�
 ��#*� � ��
 ����757(�)# � �� ��
 � @�#�2 � �(# � where �	� � B � 	 ��� 2)#�
 � @ 7�� .

6. g06
Minimize: �	� ���� 	 � �  � �
� � . . � � " � 2 � � .
subject to:�  �
�� � 	 � � �  � � � " � � � " � � � " . �
� � � �
� " �
�� � 	 � �  � # � " . � � " � � � " � 7 2�
 7�� � �

where
� � � �  � �
� �

and
� � �#",� �
� �

. The optimum solution is � B 	
� � � 
 � @ ��� ��
 7 � 2 @�# � where �	� � B
� 	 �%# @�#���
 7�� � 757

. Both constraints are active.

7. g07
Minimize: �	�
�� � 	 � "  . � "" . �  � " � � � �  � � # � " . � � . � �
� � " . ��� � * � � � " .
� �60 � � � " . 2 � � : � � � " . � � "< . � � �6> � ��� � " . 2 � �6? � � � � " . � �  /4 � � � " . � �
subject to:�  �
�� � 	 � � � � . � �  . � � " � � � < . @ �;> � �
� " �
�� � 	�� � �  � 7 � " � �'� � < . 2 �6> � �
� . �
�� � 	 �87 �  . 2 � " . � �6? �-2 �  94 � �$2 � �
� * �
�� � 	 � � �  � 2 � " . � � � " � � � " . 2 � ". � � � * � � 2�� � �
� 0 �
�� � 	 � � "  . 7 � " . � �6. � # � " �-2 � * � � � � �
�5: �
�� � 	 � "  . 2 � � " �-2 � " �-2 �  � " . � � � 0 � # �6: � �
�5< �
�� � 	 ��
 � � �  � 7 � " . 2 � �#" � � � " . � � "0 � �6: � � � � �
� > �
�� � 	 � � �  . # � " . � 2 � � ? � 7 � " �"� �  /4 � �

where
� �
� � � � � �
� � � 	 ����
�
�
���� � � . The global optimum is �CB 	 � 2�
 �'��� @ @�#��"2�
 ��# ��#57 ���A7�
���� � @�2+#��

��
 � @ �5@57 � � ��
 @ @ ��# � � 7���� 
 � � � ��� � ����
 ��2 � # � � �@�
 7�2 7*� 2)#��A7�
 257 � � @ 2 � 7�
 �(��� @ 2�� � where �	� � B � 	 2 � 
 � �(# 2�� @��
. Constraints �  ,� " , � . , � * , �50 and � : are active.

8. g08
Maximize: �	�
���� 	

�	� 
���� "�
 � � � �	� 
�� "�
 � � �� � � � � ��� � � �
subject to:�  �
�� � 	 � "  � � " . � � �
� " �
�� � 	�� � �  . � � " � � � " � �

where
� � �  � � �

and
� � � " � �
�

. The optimum solution is located at� B 	 � ��
 2 2(��@*� � ��� � 
 2 � � �	� � � � where �	� � B � 	 ��
 �5@ � 7�2 �
.

9. g09
Minimize: �	�
���� 	 � �  � � � � " . � � � " � �$2 � " . � * . . � � � * � ��� � " . �
� � :0 .
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� � ": . � * < � � � : � < � �
� � : � 7 � <
subject to:

�  �
�� � 	 � � 2(� . 2 � "  . � � * " . � . . � � "* . � �60 � �
� " �
�� � 	 �=257 2 . � �  . � � " . �
� � ". . � * � �60 � �
� . �
�� � 	 � �$@�# . 2 � �  . � "" . # � ": � 7 � < � �
� * �
�� � 	 � � "  . � "" � � �  � " . 2 � ". . � � : � ��� � < � �

where
� �
� � �#� � �
� � � 	�����
�
�
�� � � . The global optimum is � B 	 � 2�
 � � � � @5@����
 @ ��� �	� 2�� � ��
 � ����� � � � � � 
 ��# �(��2�#�� � ��
 # 2 � � 7*� ����� 
 � � 7�� ��� ����
 ��@ � 2 2�� � where �	� � B � 	# 7 ��
 # � � � �(� �

. Two constraints are active ( �  and � * ).
10. g10

Minimize: �	� ���� 	 �  . � " . � .
subject to: �  �
�� � 	 � � . ��
 � ��2 � � � * . � : � � �
��" �
�� � 	 � � . ��
 � ��2 � � � 0 . �6< � � * ��� �
�5. �
�� � 	 � � . ��
 ��� � � > � � 0 � � �
� * �
�� � 	 � �  �;: . 7 � ��
 � � 2 � 2 � * . �
� � �  � 7 � � � ��
 � � � � �
� 0 �
�� � 	 � � " �;< . � 2 � � � 0 . �#"
� * � �$2 ��� � * � �
�5: �
�� � 	 � �;. � > . � 2 � � � � � . �6.
� 0 �-2 � � � � 0 � �

where
� � � � �  � � � � � �

,
�
� � � � �#� � �
� � � �

, � � 	 2�� � � , �
� � � � � � � � �
,

� �
	 � ��
�
�
��A7 � . The global optimum is: �CB 	 � �	��@�
 ��� #	����� � � @�
 @ � ��� � ���
��
 �(� � �
�$7 2�
 ���'� � � 25@ ��
 � @ 7 � �"2�� ��
 @	��@ @�� 2�7(#�
 � � #52�� �5@ ��
 � @(� @ � , where �	� � B � 	 ��� � @�
 � � �*�

.�  , � " and � . are active.

11. g11
Minimize: �	� ���� 	 � "  . � � " � � � "
subject to:� �
�� � 	 � " � � "  	 �

where:
� � � �  �� �

,
� � � �#" � �

. The optimum solution is �CB 	
��� �'& � 2����'&52 � where �	� � B
� 	 ��
�� �

.

12. g12
Maximize: �	�
���� 	

 /4A4 � � � � � 0 � � � � � � � 0 � � � � � � � 0 � � /4 4
subject to:�  �
�� � 	 � �  ��� � " . � � " ��� � " . � � . ��� �

" � ��
 �(# 2 � � �

where
� � � � � � � � � 	 ���"2�� � � and

� ��� ��� 	 ��� 2���
�
�
 �A@
. The feasible re-

gion of the search space consists of
@ .

disjointed spheres. A point � �  � � " � � . �
is feasible if and only if there exist

� ��� ���
such the above inequality (12) holds.

The global optimum is located at �CB 	 � ��� ��� � � where �	� � B
� 	 �
.

13. g13

Minimize: �	� ���� 	�� � � � � � � � � �
	
subject to:
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Problem n Type of function � LI NI LE NE

g01 13 quadratic
��
 � � � � �

9 0 0 0
g02 20 nonlinear

@ @�
 @5@	� � �
2 0 0 0

g03 10 nonlinear
��
 � � 2�# �

0 0 0 1
g04 5 quadratic

2	� 
 � �*��@ �
4 2 0 0

g05 4 nonlinear
��
 � � � � �

2 0 0 3
g06 2 nonlinear

��
 � � �	� �
0 2 0 0

g07 10 quadratic
��
 � � � � �

3 5 0 0
g08 2 nonlinear

��
 7 � 7�� �
0 2 0 0

g09 7 nonlinear
��
 ��� @ @ �

0 4 0 0
g10 8 linear

��
 � ��2�� �
6 0 0 0

g11 2 quadratic
��
 �5@	� � �

0 0 0 1
g12 3 quadratic � 
,�+#5@*� � 0

@ .
0 0

g13 5 nonlinear
��
 � � � � �

0 0 1 2

Table 1: Values of � for the 13 test problems chosen.

�  �
�� � 	 � "  . � "" . � ". . � "* . � "0 � �
� 	 �
��" �
�� � 	 � " �;. � � � * � 0 	 �
�5. �
�� � 	 � .  . � ." . � 	 �

where
�=2�
 � � � � � 2�
 � � � 	 ���"2 � and

� ��
 2 � �#� � ��
 2 � � 	 ��� � � � � . The
optimum solution is �CB 	 � � ��
����'� � � ������
 � @ �(��� @���� 
 7�2�� 2 � � � � ��
��)# ��# � � ���
� ��
,�+# ��# � � � where �	� � B
� 	 ��
 � � �5@ � @ 7 .

To get a measure of the difficulty of solving each of these problems, a � metric (as
suggested by Koziel and Michalewicz [16]) was computed using the following expres-
sion:

� 	�� ��� &�� � � (6)

where
� ���

is the number of feasible solutions and
� � �

is the total number of solutions
randomly generated. In this work,

� 	 ��� � � ��� � � �
random solutions.

The different values of � for each of the functions chosen are shown in Table 1, where�
is the number of decision variables, LI is the number of linear inequalities, NI the

number of nonlinear inequalities, LE is the number of linear equalities and NE is the
number of nonlinear equalities.

We performed
� �

independent runs for each test function. The learning rates values
were calculated using the formulas proposed by Schwefel [26] (where

�
is the number

of decision variables of the problem):

� 	 ��� 2 � � � �  �
	 	�� � 2 ��
 �  
(7)

The initial values for the standard deviations were calculated using the reduced
value proposed in Section 4.

For the experiments we used the following parameters:
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Statistical Results of Simple Multimembered Evolution Strategy (SMES)
Problem Optimal Best Mean Median Worst St. Dev.
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� � � � � � � � � � � �
� � � � � � � � � 	 � �
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� 	
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	 � �
	 	

Table 2: Statistical results obtained by the SMES for the 13 test functions with 30
independent runs.

� - 	��
� �
.

� � 	 � � �
.

� Number of generations =
7 � �

.

� Number of objective function evaluations =
2 � ��� � � � .

The combined crossover operator explained in detail in Section 4 was used both for
the decision variables of the problem and for the strategy parameters (sigma values).
Note that we do not use correlated mutation [20].

To deal with equality constraints, a parameterless dynamic mechanism originally
proposed in ASCHEA [12] and used in [21] and in [18] is adopted. The tolerance value

 is decreased with respect to the current generation using the following expression:


 � � � . � � 	 
 � � � � & ��
 � ���$@ � (8)

The initial 
 4 was set to
��
 � ���

. For problem g13, 
 4 was set to
��
 �

and, in con-
sequence, the factor to decrease the tolerance value was modified to 
 � � � . � � 	

 � � � � &���
 ��� � � . Also, for problems � � �

and � � �
the initial stepsize required a more

dramatic decrease of the stepsize. They were defined as
��
 ���

(just a
� �

instead of the� ��� ) for � � �
and

��
 � �
(a
2�
 � �

instead of the � � � ) for g13. These two test functions
seem to provide better results with very smooth movements. It is important to note
that these two problems share the following features: moderately high dimensionality
(five or more decision variables), nonlinear objective function, one or more equality
constraints, and moderate size of the search space (based on the range of the decision
variables). These common features suggest that for this type of problem, finer move-
ments provide a better sampling of the search space using an evolution strategy.

The statistical results of our SMES are summarized in Table 2.
In order to know how useful is the diversity mechanism we obtained the percentage

of feasible solutions per generation in the population. The results are shown in Figure
3.

We compare our approach against three state-of-the-art approaches: the Homomor-
phous Maps (HM) [16] in Table 3, Stochastic Ranking (SR) [25] in Table 4 and the
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(a) Feasible Solutions from Generation 0 to 800 (b) Feasible Solutions from Generation 0 to 200
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(c) Detail from Generation 0 to 800 (d) Detail from Generation 0 to 200
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Figure 3: Rate of Feasible Solutions (a) every 200 generations (from 0 to 800), (b)
every 20 generations (from 0 to 200), (c) a detailed oscillation of feasible and infea-
sible solutions (from 0 to 800) and (d) a detailed oscillation of feasible and infeasible
solutions (from 0 to 200)

Adaptive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA) [12]
in Table 5.

6 Discussion of Results

As described in Table 2, our approach was able to find the global optimum in seven
test functions (g01, g03, g04, g06, g08, g11 and g12) and it found solutions very close
to the global optimum in the remaining six (g02, g05, g07, g09, g10, g13). In Table 6
we show in how many runs the optimum was reached. In addition, we show the lowest
and the average generation in which the optimum was found. The results obtained
suggest that for these problems where the global optimum is reached, the algorithm
is capable of finding it using no more than

2 ���
generations (about

����� � � �
evaluations

of the objective function), except for function g01 where the number of generations is#	���
.
When compared with respect to the three state-of-the-art techniques previously in-

dicated, we found the following:
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Best Result Mean Result Worst Result
Problem Optimal SMES HM SMES HM SMES HM

g01 �
� 	

� ����������� �
� 	

� ����������� �
� � � 	���� � �

� 	
� ����������� �

� � � 	 � � � �
� 	

� ����������� �
� � � � � 	 �

g02
� � � � ���

��� � � � � ��� �
� � � 	

��� 	 � � � 	��
	 � � � � � 	

� � 	
� � � 	

	 � � � � � � 	
�
� �
�

g03

�
� �����������

�
� ���
� � � � � �

�����
	

�
� �����

�
�
� � �

���
�
� �

� �����
	
	
� � �

���
	
�

g04 � � � ���
	
�
	 � � ����� � � � ���

	
�
	 � � � � � � � � ��� � � 	 � � � ���

	
�
	 � � � � � � � � �

	 	
� � � � � ���

	
�
	 � � � � � � � � ��� 	 � �

g05
	 � ��� � � � � ��� 	 � ��� � 	 ��� � � � �

	 �
	 � � � � � � � � �

	 � � � � � ��� ��� � �
g06 � �

� � � � � � � ����� � �
� � � � � � � � � 	 � �

� 	 � � � � �
� � � � � � � � � � � � � � � � � � �

� 	 � � � � �
� � � �
	 � 	 � � �

g07 ��� � � � � ����� ��� � � ��� 	 � 	 ��� � � � � ��� � � 	 � � ��� � � � � ��� � � � � � � � � � � 	 � � � �
g08

� � �
� 	
� � 	 � � �

� 	
� ��� � � �

� 	
� � 	 � � � �

� 	
� ��� � � � �

�
� 	 � � � � �
� 	
� ��� � � � � �
� � � �

g09 � � � � � � ������� � � � � � �
� 	 � � � � � �

�
�
� � � � ��� ��� � � � �

�
�
� � � � � � 	

�
� � ��� � � � �
�
�

g10 	 � � � � � � � 	 ��� 	 �
	 �

�
� � � � � � 	

� � 	 � � 	 � 	 � � � � 	 ��� 	 �
� � � � � 	 � � � � ����� � � � � � 	 � � �

g11
� � 	
	 ������� � � 	 � � � � � � � 	

	 � � 	 � � � 	 � � � 	
	 � � 	 � � � � � � � 	

	
g12

�
� �����������

�
� ����������� � �

�����������
�
	
	

�
� ����������� � �

�����
�
����� � � �

� ����������� � �
��� �
� 	 � � � �

g13
� � �
	 � � 	 � � � �

	 � � � � ��� � �
� ��� � � 	 ��� � � ��� � � � � ���

Table 3: Comparison of our approach (SMES) with respect to the Homomorphous
Maps (HM).

Best Result Mean Result Worst Result
Problem Optimal SMES SR SMES SR SMES SR
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Table 4: Comparison of our approach (SMES) with respect to Stochastic Ranking (SR).
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Table 5: Comparison of our approach (SMES) with respect to the Adaptive Segrega-
tional Constraint Handling Evolutionary Algorithm (ASCHEA). � � = Not Available.
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Problem Runs that find the optimum Lowest generation Average

g01
� � # � � #*� �

g03
� � � � �$7 �

g04
� � ��� � � 2 @

g06
� � � � 2 � @

g08
� � ��� �$7

g11
� � 2 7 7 7

g12
� � # � �(�

Table 6: Number of runs (out of 30) where the optimum is found. We also show the
best and average generation number at which the optimum is found.

6.1 Compared with the Homomorphous Maps (HM)

Our approach found a better “best” solution in ten problems (g01, g02, g03, g04, g05,
g06, g07, g09, g10 and g12) and a similar “best” result in other two (g08 and g11).
Also, our technique reached better “mean” and “worst” results in ten problems (g01,
g03, g04, g05, g06, g07, g08, g09, g10 and g12). A “similar” mean and worst result
was found in problem g11. The Homomorphous maps found a “better” mean and
worst result in function g02. No comparisons were made with function g13 because
such results were not available for HM.

6.2 Compared with Stochastic Ranking (SR)

With respect to SR, our approach was able to find a better “best” result in functions g02
and g10. In addition, it found a “similar” best solution in seven problems (g01, g03,
g04, g06, g08, g11 and g12). Slightly better “best” results were found by SR in the
remaining functions (g05, g07, g09 and g13). Our approach found better “mean” and
“worst” results in four test functions (g02, g06, g09 and g10). It also provided similar
“mean” and “worst” results in six functions (g01, g03, g04, g08, g11 and g12). Finally,
SR found again just slightly better “mean” and “worst” results in function g05, g07 and
g13.

6.3 Compared with the Adaptive Segregational Constraint Han-
dling Evolutionary Algorithm (ASCHEA)

Compared against ASCHEA, our algorithm found “better” best solutions in three prob-
lems (g02, g07 and g10) and it found “similar” best results in six functions (g01, g03,
g04, g06, g08, g11). ASCHEA found slightly “better” best results in function g05 and
g09. Additionally, our approach found “better” mean results in four problems (g01,
g02, g03 and g07) and it found “similar” mean results in three functions (g04, g08 and
g11). ASCHEA surpassed our mean results in four functions (g05, g06, g09 and g10).
We did not compare the worst results because they were not available for ASCHEA.
We did not perform comparisons with respect to ASCHEA using functions g12 and

15



g13 for the same reason.
As we can see, our approach showed a very competitive performance with respect

to these three state-of-the-art approaches.

6.4 Advantages of the Approach

Our approach can deal with moderately constrained problems (g04), highly constrained
problems, problems with low (g06, g08), moderated (g09) and high (g01, g02, g03,
g07) dimensionality, with different types of combined constraints (linear, nonlinear,
equality and inequality) and with very large (g02), very small (g05 and g13) or even
disjoint (g12) feasible regions. Also, the algorithm is able to deal with large search
spaces (based on the intervals of the decision variables ) with a very small feasible
region (g10). Furthermore, the approach can find the global optimum in problems
where such optimum lies on the boundaries of the feasible region (g01, g02, g04, g06,
g07, g09). This behavior suggests that the mechanism of maintaining the best infeasible
solution helps the search to sample the boundaries.

Besides still being a very simple approach, it is worth reminding that our algorithm
does not require any extra parameters (other than those used with an evolution strat-
egy). In contrast, the Homomorphous maps require an additional parameter (called � )
which has to be found empirically [16]. Stochastic ranking requires the definition of
a parameter called ��� , whose value has an important impact on the performance of
the approach [25]. ASCHEA also requires the definition of several extra parameters,
and in its latest version, it uses niching, which is a process that also has at least one
additional parameter [12].

Regarding computational cost, we can say that the number of fitness function evalu-
ations (FFE) performed by our approach is lower than the other techniques with respect
to which it was compared. Our approach performed

2 � ��� � � � FFE. Stochastic ranking
performed

� ����� � � �
FFE, the Homomorphous maps performed

��� � � ��� � � � FFE, and
ASCHEA required

��� ��� ��� � � �
FFE.

6.5 Reaching the Feasible Region

After discussing the quality, robustness and competitiveness of our approach, we wanted
to verify how fast the algorithm reaches the feasible region, because in real-world prob-
lems it is important for an optimization algorithm to provide results (in some cases,
at least feasible solutions) with a moderate number of objective function evaluations.
Therefore, we performed an analysis of the rate of feasible solutions at every 200 gen-
erations (let’s keep in mind that the total number of generations was fixed to 800). The
results are presented in Figure 3(a). As it can be seen, for all the test problems our
approach finds the feasible region between the initial generation and generation 200.
For problem g05, more than

2����
of the population is feasible and for the remaining

functions almost all the population is feasible. Then, we were interested in analyzing
two issues:

1. What is the behavior before generation 200 (how fast the population becomes
almost feasible).
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2. How well the diversity is maintained late in the evolutionary process.

The results obtained for these two questions are on Figure 3(b) and (d) for question
1 and in Figure 3(c) for question 2. Figure 3(b) shows that the feasible region was
reached at generation 20. This means that the approach only required

#���� � �
FFE to

find feasible solutions. In Table 7, we show the statistical results obtained at this stage
of the search. Note that although the results are still far from the optimum, except
for problem g05, most of the solutions are feasible. In Figure 3(d) we observe in a
close-up of figure 3(b) that the algorithm has the capacity to maintain some infeasible
solutions despite the almost-feasible population (as originally proposed in the diversity
mechanism). In addition, we show the statistical results obtained in generation

2�� �
in

Table 8. A marginal improvement of the quality and robustness of the results is shown
in generation

2�� �
where only

2���� � � �
FFE have been performed. Indeed, the results are

close to the optimum in most of the problems (for problems g08 and g12 the algorithm
has reached the global optimum). This means that the approach is about to converge.
This highlights the importance of the diversity mechanism in order to avoid that the
algorithm gets trapped in local optima.

On the other hand, Figure 3(c) shows a zooming of Figure 3(a), where it is possible
to see again in detail the smooth oscillation on the rate of feasible solutions during the
evolutionary process after generation

2 � �
. This behavior suggests that the diversity

mechanism still works well, maintaining close-to-be-feasible solutions with a good
value of the objective function in the population (between 1 and 3 infeasible solutions
are enough based on the previous results of the � � . � � -ES approach [21], which is able
to avoid local optima with only a few copies of the best infeasible solution).

The final results (on generation
7 � �

) provided in Table 2, compared with those on
generation

2 � �
(Table 8), suggest that our diversity mechanism does its job of avoiding

premature convergence and, when coupled with the combination of discrete/intermediate
recombination and the self-adaptation mechanism of the ES leads the evolutionary
search towards the global optimum of a problem.

It is important to remark that the process of finding the global optimum takes almost
�	& � of the evolutionary search and only

�'& � (or less) is necessary to find the feasible
region of the search space. We argue that this behavior depends mostly of the landscape
of the function, but such idea is not explored any further in this work.

The point here is that our approach is fast on finding the feasible region and, de-
pending of the difficult of the landscape of the function, it can avoid local optima and
reach the global one.

7 Conclusions

A new simple approach to handle constraints in evolutionary optimization was pro-
posed. The proposed approach does not require the use of a penalty function and it
does not require the definition by the user of any extra parameter (other than those
required by an evolution strategy). The proposed approach uses the self-adaptation
mechanism of a multimembered ES to sample enough the search space in order to
reach the feasible region and it uses three simple selection criteria based on feasibility
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Table 7: Statistical Results of our approach after 20 generations. (“*” means infeasible)
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Table 8: Statistical Results of our approach after 200 generations.

to guide the search towards the global optimum. Furthermore, the proposed technique
adopts a diversity mechanism which consists of allowing infeasible solutions close to
the boundaries of the feasible region to remain in the next population. Additionally, a
combination of discrete and intermediate crossover is used to improve the exploitation
effort. Finally, in order to favor finer movements in the search space, the initial val-
ues of the stepsize (sigma values) are decreased

# � �
. This approach is very easy to

implement and the computational cost (based on the number of fitness function evalu-
ations) is considerably lower than the cost reported by other three constraint-handling
techniques which are representative of the state-of-the-art in evolutionary optimization.

8 Future Work

Our future paths of research consist of applying our approach in the solution of real-
world problems in engineering design problems. Additionally we will implement our
constraint handling mechanism using other heuristics such as Differential Evolution
[23] and Particle Swarm Optimization [15]. This aims to explore the possibility of
decreasing its computational cost (measured in terms of the number of fitness function
evaluations), after reaching the feasible region, since in the current approach almost
3/4 part of the search process is spent on this task.
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Apizaco, Tlaxcala, México, IEEE Computer Society, July 2003. Accepted for
Publication.

20



[20] Efrén Mezura-Montes and Carlos A. Coello Coello. On the Usefulness of the
Evolution Strategies Self-Adaptation Mechanism to Handle Constraints in Global
Optimization. Technical Report EVOCINV-01-2003, Evolutionary Computa-
tion Group at CINVESTAV, Sección de Computación, Departamento de Inge-
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