CHAPTER 10

Deep Learning

To get a deep-learning system to recognize a hot dog, you might have to
feed it 40 million pictures of hot dogs. To get [a two year old] to recognize a
hot dog, you show her a hot dog."

The newest and shiniest member of the data science algorithm toolbox
is deep learning. Today deep learning has captured the imagination of
scientists, business leaders, and lay people. A local bank teller may not
understand what deep learning is but talk to her about artificial intelligence
(AI)—which is the ubiquitous avatar of deep learning and it would be
surprising to learn how much she may have heard about it. The mentioned
quote humorously captures the essence of what makes today’s Al methods.
Deep learning is a vast and rapidly emerging field of knowledge and requires
a book on its own merit considering the wide-ranging architectures and
implementation details it encompasses.

This chapter aims to provide an intuitive understanding of this complex
topic. The hope is that this would establish a solid framework for a much
more sophisticated understanding of the subject. Firstly, what constitutes
the core of deep learning will be discussed and in order to do that a little
computing history will be covered. The similarities between deep learning
and familiar algorithms like regression will then be discussed and how
deep learning is an extension of regression and artificial neural networks
encountered in Chapter 4, Classification will be demonstrated. The essential
differences between “traditional” algorithms like multiple linear regression,
artificial neural networks and deep learning will, be pointed out by introduc-
ing the core concepts of deep learning that set it apart. One type of deep
learning technique will then be explored in sufficient detail and implementa-
tion information will be provided to make this knowledge applicable to real
life problems. Finally, a quick overview of some of the other newly emerging
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m CHAPTER 10: Deep Learning

BRINGING ARTIFICIAL INTELLIGENCE TO ENGINEERING

Computer-aided engineering (CAE) is a mainstay of analyt-
ical methods used by engineers (Fig. 10.1). CAE works by
solving higher order partial differential equations to pre-
dict how engineered products respond to service loads
that are put on them. This helps engineers design shapes
and select materials for different components. For exam-
ple, how does an F-15 wing behave at supersonic speeds?
How much energy does the front bumper of a car absorb
in a crash event?.

So how can Al help in such sophisticated activities? To
understand this, one needs to dissect CAE its constituent
steps. CAE is not a monolithic endeavor, but involves
interaction between designers, engineers, and oftentimes
computer systems people. The core activities include:
creating geometric models of products, subdividing the
geometries into discrete “finite elements” on which the
laws of physics are applied, converting these physical laws
into mathematical equations or formulations, solving these
formulations, visualizing the solutions on the original geo-
metric models (using intuitive heat maps, such as the one
shown in Fig. 10.1.7). This entire process is not only time
consuming, but also requires deep domain knowledge in
graphics, mechanics, math, and high-performance
computing.

All this would suggest that today's state-of-the-art Al
could probably not help a whole lot. After all, from what is
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FIGURE 10.1
Computer-aided engineering.

heard on the popular press Al is mostly chat-bots and
identifying cats on the internet! However, that would be a
superficial assessment. There are many smaller steps in
each of the mentioned processes which are prime candi-
dates for some of the techniques that will be learnt in this
chapter.

As an illustration, we can expand on one of these tasks:
subdivide the geometries in CAE. This is a crucial step and
poor handling of this step will compromise all of the
downstream activities. Unfortunately, it is also highly
dependent on the skill of the designer who actually works
on the discretization. Luckily CAE process engineers have
developed many “expert” rules which even an entry level
designer can use to make sure that the end product of
their activities will meet rigorous standards. One expert
rule is something like this: “if a part looks like a rubber
gasket, use method A to discretize the geometry; if it
looks like an aluminum fastener, then use method B.”
One can imagine in a modern-day car, for example, that
there are hundreds of such similar looking parts. It is a
time-consuming task—to go through an entire vehicle to
correctly identify components and apply the right discreti-
zation method. It would be real value added if an Al could
take over the determination of what “a part looks like"
before letting an automated process apply the proper
method to discretize. In a way this is essentially an appli-
cation of the “cat identification” Al in a new—and more
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serious domain. But that is not the only task which Al can
turbocharge. As will be covered in this chapter, neural
networks are at the core of deep learning. But what does
a neural network really do? ANN's establish a mapping
between the behavior of a complicated system and the
environment it functions in. For instance, they help create
a mapping between the behavior of a customer (churn vs
stay) and the customer’s shopping and purchasing habits.
Or they create a mapping between the nature of a trans-
action (fraud vs legitimate) and the characteristics of the
transactional environment (location, amount, frequency,
and so on).

Another challenging task in CAE is to determine the per-
formance of a system given highly variable environmental
conditions. Will the fuselage require maintenance after
10,000 hours of flying or 1000 hours? Will an airbag deploy
as intended by design, in tropical climates? Will the reduc-
tion in gage thickness still meet the crash safety require-
ments? Today CAE helps to answer these questions by
utilizing physics based computational models to make
predictions—this is the mathematical formulation and
solution phase identified earlier. Such computations can
be costly (in CPU time] and cumbersome (model develop-
ment time) so that minor changes in design cannot be
quickly studied. Deep learning can help speed these up by
creating mappings between the product’'s design elements
and its final on-field performance provided sufficient data is

generated (a one-time process) to train a model initially.
This idea is not new—classical CAE can be used to develop
what are called response surfaces to help with this. The
objective of a response surface is to effectively map the
design space and then attempt to find an optimum. But a
crucial problem with response surfaces was that highly
nonlinear or discontinuous behavior that physical systems
often exhibit would make it impossible to find optima using
conventional mathematical techniques and, thus, would
reduce response surfaces to mere toys. In an engineering
setting, the independent variable could represent a geo-
metric design feature such as the gage thickness of a
metal part whereas the dependent variable could represent
a performance metric such as energy absorption.” If the
data is linearly separable it can be handled by many of the
traditional classification algorithm we encountered earlier.

However, complex physical systems rarely exhibit such
behavior. Classifying (or mapping) such responses is not
possible without ANNs and more specifically without
“deep” neural networks. As will be seen in this chapter, a
key strength of deep learning networks is in generating
nonlinear mappings.

2https://commons.wikimedia.org/wiki/File:
Static_Structural_Analysis_of_a_Gripper_Arm.jpg.

3For an actual example, see Fig. 3 here: https://pdfs.semanticscholar.
org/2f26/c851cab16ee20925c4e556eff5198d92ef3c. pdf.

techniques will be provided, which are now considered as part of the deep
learning repertoire of techniques.

10.1 THE Al WINTER

The first ANN were the Perceptrons developed in the 1950s which were a
class of pattern recognition elements that weighed evidence and tested if it
exceeded a certain threshold in order to make a decision, that is, to classify
patterns. Fig. 10.2 shows the architecture of a single perceptron (later on
called neuron) which has retained its basic structure through the years.

Each input, x; has a weight w;, associated with it and a dot product Yw;y; is
computed at the perceptron and passed to the activation function g. If g
(Xwix;) evaluates above a threshold then the output is set to 1 (true) or
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FIGURE 10.2
Conceptual architecture of a perceptron.

otherwise to 0 (false). The process of obtaining the weights, w; is called
“learning” or “training” the perceptron. The perceptron learning rule was origi-
nally developed by Frank Rosenblatt (1957). Training data are presented to
the network’s inputs and the output is computed. The weights w; are modi-
fied by an amount that is proportional to the product of the difference
between the actual output, y, and the desired output, d, and the inputs, x;.

The perceptron learning rule is basically:

1 Initialize the weights and threshold to small random numbers.
2 Feed the inputs x; to the perceptron and calculate the output.
3 Update the weights according to: w;(t + 1) = w;(t) + n(d —y)x
Where:
d is the desired output,
t is the time step, and
7 is the learning rate, where 0.0 < 7 < 1.0
4 Repeat steps 2 and 3 until:
a. the iteration error is less than a user-specified error threshold or
b. a predetermined number of iterations have been completed.

Note that learning only happens when the error is above a preset threshold,
otherwise the weights are not updated. Also, every time the weights need an
update, reading the input data (i.e., step 2) is required.

Al Winter: 1970’s

Perceptrons were able to solve a range of decision problems, in particular
they were able to represent logic gates such as “AND”, “OR,” and “NOT.”
The perceptron learning rule tended to converge to an optimal set of weights
for several classes of input patterns. However, this was not always guaran-
teed. Another limitation arose when the data were not linearly separable—
for example, the classic “XOR.” A XOR gate resolves to “true” if the two
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RapidMiner XOR example.

inputs are different and resolves to “false” if both inputs are the same
(Fig. 10.3). Minsky and Papert published these and other core limitations of
perceptrons in a 1969 book called Perceptrons, which arguably reduced fur-
ther interest in these types of ANN and the so-called Al Winter had set in.

Mid-Winter Thaw of the 1980s

ANN, however, had a brief resurgence in the 1980s with the development of
the multi-layer perceptron (MLP) which was heralded as the solution for
nonlinearly separable functions: for example, changing the activation
function in an MLP from a linear step function to a nonlinear type (such as
sigmoid) could overcome the decision boundary problem seen in the
XOR case.

Fig. 10.4 shows that with a linear activation function a two-layer MLP still
fails to achieve more than 50% accuracy on the XOR problem using
TensorFlow * playground. However, a simple switch of the activation func-
tion to the nonlinear “sigmoid” helps achieve more than 80% accuracy with
the same architecture (Fig. 10.5).

Another important innovation in the 1980s that was able to overcome some
of the limitations of the perceptron training rule was the use of “backpropaga-
tion” to calculate or update the weights (rather than reverting back to the

* playground.tensorflow.org.
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Exploring network architectures using TensorFlow playground.
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inputs every time there was an error—step 2 of the perceptron learning rule).
The perceptron learning rule updated the weights by an amount that was
proportional to the error times of the inputs (the quantity n(d — y)x in step 2).
These weights w; are the heart of the network and training an multi-layer
perceptron (MLP) or ANN is really all about finding these weights. Finding a
robust and repeatable process for updating the weights becomes critical. To do
this an extra layer of neurons were added in between the input and the output
nodes. Now the error quantity (d —y) becomes a summation and to avoid
sign bias, the error may be squared, that is, X(d; —y;)”. The challenge now was
determining which direction to change the weights, w; so that this error quan-
tity is minimized. The algorithm now involved these steps:

1. Computing the output vector given the inputs and a random selection
of weights in a “forward” computational flow.

2. Computing the error quantity.

3. Updating the weights to reduce this error at the output layer.

4. Repeat two and three for the hidden layer going backward.

This backpropagation method was introduced by Rumelhart, Hinton, and
Williams (1986).” Their network was trainable to detect mirror symmetry; to
predict one word in a triplet when two of the words were given and other
such basic applications. More sophisticated ANNs were built using backpro-
pagation, that could be trained to read handwriting (LeCun, 1989).°
However, successful business applications of ANN were still limited and it
failed to capture the public imagination the way it has currently.

Part of the reason was the state of computing hardware at the time when these
algorithms were introduced. But one can argue that a bigger hurdle preventing
a wider adoption back in the 1980s and 1990s was a lack of data. Many of
the machine learning algorithms were developed and successfully demon-
strated during this time: Hidden Markov Models and Convolutional Neural
Nets were described in 1984 and 1989 respectively. However, a successful
deployment of these algorithms on a practical business scale did not occur
until nearly a decade later. Data (or lack thereof) was the primary reason for
this. Data became more readily available and accessible only after the intro-
duction of the internet in 1993. Wissner-Gross (2016) cites several interesting
examples of breakthroughs in Al algorithms, effectively concluding that the
average time period for an Al innovation to become practical was 18 years
(after the introduction of the algorithm) but only 3 years after the first large
scale datasets (that could be used to train that algorithm) became available.”

® https://www.iro.umontreal.ca/ ~ vincentp/ift3395/lectures/backprop_old.pdf.
¢ http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf.
7 http://www.spacemachine.net/views/2016/3/datasets-over-algorithms.
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This brings us to the defining moment in the short but rapidly evolving
history of deep learning. In 2006, Hinton (the same Hinton who was part of
the team that introduced backpropagation) and Salakhutdinov, demon-
strated that by adding more layers of computation to make neural networks
“deep,” larger datasets could be better utilized to solve problems such as
handwriting recognition (Hinton and Salakhutdinov, 2006). These 3-hidden
layer deep learning networks had significantly lower errors than the tradi-
tional single hidden layer ANNs that were discussed in Chapter 5, Regression
Methods. With this innovation, the field of Al emerged from its long winter.
This emergence is best summarized in the authors’ own words”:

It has been obvious since the 1980s that backpropagation through deep
autoencoders would be very effective...provided that computers were fast
enough, data sets were big enough, and the initial weights were close
enough to a good solution. All three conditions are now satisfied.

Using massive datasets, deep network architectures with new and powerful gra-
phics processing units (GPUs) originally developed for video games, real-world
Al applications such as facial recognition, speech processing and generation,
machines defeating humans at their own board games have become possible.
ANNSs had moved decisively from the research lab to mainstream media hype.

The Spring and Summer of Artificial Intelligence:
2006—Today

In spite of all these exciting developments, today’s Al is still far from being
what is considered artificial general intelligence (AGI). The quote at the
beginning of the chapter summarizes the main aspect of today’s Al: the need
for massive amounts of data to train a machine to recognize concepts which
seem simple even to a 2-year-old human brain. There are two main ques-
tions one would have at this point: How far away from AGI is Al today?
What are the hurdles that stand in the way?

Defense Advanced Research Projects Agency (DARPA) has developed a nice
classification” of the evolution of Al into three “waves” based on the main
dimensions which reflect the capabilities of the systems: ability to learn, abil-
ity to abstract, and ability to reason.'’

8 https://www.cs.toronto.edu/ ~ hinton/science.pdf.

° https://www.darpa.mil/attachments/AlFull.pdf.

19 DARPA also lists a 4th dimension: ability to perceive. However this dimension is very close to
“ability to learn”. According to Webster, the difference between ‘learn’ and ‘perceive’ is tied to the
senses. Learning is defined as understanding by study or experience, perception is defined as
understanding or awareness through senses. For our purposes, we ignored these subtle differences.”
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The first wave of Al evolution includes “handcrafted knowledge” systems.
These are the expert systems and chess playing programs of the 1980s and
1990s. Humans encode into the machines an ability to make decisions based
on input data from a specific domain. In other words, these systems have a
limited ability to reason but no ability to learn let alone abstract.

Second wave systems include today’s machine learning and deep learning
systems and are generally terms systems capable of “statistical learning.” The
uniqueness of these systems is the ability to separate data into different sets
or patterns based on learning by relying on large volumes of data. While a
rule engine can be added to these statistical learners, these systems still lack
the ability to abstract knowledge. To clarify this: consider that while a facial
recognition system is successful at identifying faces, it cannot explicitly
explain why a particular face was categorized as such. On the other hand, a
human can explain that a particular face was classified as a man because of
the facial hair and body dimensions, for example.

In the yet-to-be developed third wave systems, Al cannot only apply encoded
rules and learn from data, but can also explain why a particular data point
was classified in a particular way. This is termed a “contextually adaptive”
system. DARPA also calls these systems “Explainable AI” or XAI'' that
“produce more explainable models, while maintaining a high level of learning perfor-
mance (prediction accuracy).” A first step toward developing XAl is the integra-
tion of the now conventional deep machine learning with reinforcement
learning (RL), which is introduced later in this chapter.

To conclude this section, before the technical brass-tacks of deep learning are
explained, it is helpful to acknowledge/recognize these facts:

e Majority of Al today is machine learning and deep learning.
e Majority of that learning is supervised.
e Majority of that supervised learning is classification.

10.2 HOW IT WORKS

In this section, the connection between conventional machine learning and
deep learning will be further discussed. Firstly, linear regression and how it
can be represented using an ANN will be examined more closely and then
logistic regression will be discussed to reinforce the similarities between con-
ventional machine learning techniques and deep learning. This will serve as
an entry point to introduce some of the fundamental concepts in ANN and
by extension deep learning. This in-depth understanding is essential to

" https://www.darpa.mil/program/explainable-artificial-intelligence.
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confidently navigate some of the more sophisticated and specialized deep
learning techniques that will come later.

To begin with, ANNs (and deep learning) should be regarded as a mathemati-
cal process. An ANN basically creates a mapping of data between outputs and
inputs that is established using calculus-based optimization techniques. In a
simplified mathematical format, an ANN can be essentially represented as:

Y =£(X)

Y =f(g(b)) where X = g(b) (10.1)

where b, X and Y are vectors or more generally, tensors. In this context,
vectors are one dimensional array of numbers, matricies are two dimensional
arrays and tensors are more general n-dimensional arrays. The process
of training ANN is mostly about finding values for the coefficients, b, to
complete the mapping. The coefficients are calculated by performing a
constrained optimization of an error function (error is the difference between
a predicted output y and the known output, y). A technique to iteratively
perform this optimization is called backpropagation which will be discussed
in this section. A basic difference between deep learning and “shallow”
machine learning is in the count of the coefficients, b. Deep learning deals
with weight or coefficient counts in the hundreds of thousands to millions
whereas conventional machine learning may deal with a few hundred at best.
This enhancement of the numerosity in the computation gives deep learning
their significant power to detect patterns within data.

10.2.1 Regression Models As Neural Networks

Eq. (10.1) is a vectorized form of Eq. (5.1) which was the general statement
of a multiple linear regression problem. Section 5.1.1 discussed how a
linear regression problem would be solved using methods of calculus, in
particular, gradient descent. The gradient descent technique is the corner-
stone of all deep learning algorithms and it is advisable to revisit
Section 5.1.1 at this time to become comfortable with it. The linear regres-
sion model of Section 5.1.1 can be rewritten as an ANN: Fig. 10.6 is the
simple linear regression model shown as a network. Note that when x, =1,
this captures Eq. (5.2). This network is only two layers deep: it has an input
layer and an output layer. Multiple regression models simply require addi-
tional nodes (one node for each variable/feature) in the input layer and no
additional/intermediate layers.

Similarly, a logistic regression model can also be represented by a simple
two-layer network model with one key difference. As was discussed in
Section 5.2.2 on Logistic Regression, the output of logistic regression is the
probability of an event, p rather than a real number value as in linear
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FIGURE 10.6
Regression depicted as a network.

regression. So, what needed to be done was transform the output variable in
such a way that its domain now ranges from 0 to 1 instead of —o0—to + o0.
It was observed that by replacing the right-hand side expression of 5.6 with
the log of the odds-ratio or the logit, this transformation was achieved.'”

1
=p= (1 " e‘z) where z = by + byx; after rearranging the terms (10.3a)

more generally, the output is summarized as:

p(y) = o(z) (10.3b)

So, the output node in the above network could be rewritten as shown in
Fig. 10.7.

Egs. (10.3a) and (10.3b) represent the sigmoid function. The sigmoid'’s
domain is [0,1] for z e = — o0, 00] so that any arbitrary values for b and x
will always result in p(y,) =[0,1]. Note that p(y,) is the prediction from the
logistic regression model for sample n, which needs to be compared with the
actual class value, p, for that sample, in order to evaluate the model. How
would one quantitatively compare these two across all data samples? Recall
that in linear regression squared error (y,—y,’)> was used. The binary
nature of p, requires that the error be maximum when the predicted p(y,)
and actual p,, are opposite and vice versa.

10.2.2 Gradient Descent

In Section 5.2.2 on Logistic Regression, an error function or a cost function
was introduced, which can now be generalized by taking a log on the terms
so that a summation is obtained instead of a product when one needs to

12 Note that we are shortening probability of y, that is p(y) to p for ease of notation in this line.

10.2 How It Works
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by

FIGURE 10.7
Adding an activation function to the regression “network.”

compute across all samples. Note that y,, is the calculated value of probability
based on the model and can range between [0—1] and p, is the target which
is either 0 or 1. N is the number of samples.

N
J= =Y [palog(yn) + (1 = py)log(1 —y)] (10.4)
n=1
J is called the cross-entropy cost function. In the spirit of considering this as a
cost function, a negative sign is added in front and with the aim of
minimizing the value. Thus, V's need to be found which minimizes this
function."” This has been done before using calculus in the case of linear
regression (Section 5.1.1). It is easy to use the chain rule of differentiation
to compute the derivative. But as will be seen this will turn out to be a con-
stant and, thus, b cannot be solved for by setting it equal to 0. Instead, once
an initial slope is obtained, gradient descent will be used to iteratively find
the location where it is minimum.

Note that the cross-entropy cost function is easily expressed in terms of

weights b, by substituting:

1
y=o0(z)= m where z = byxg + b1x;

The weights, b, can now be found by minimizing J, expressed in terms of b
by using the chain rule of differentiation and setting this derivative to O:

a

%_0

J_dy  de

I x LI = .
oz w (10.5)

'3 Why can the same cost function not be used that was used for linear regression? That is, /> X (p,, —
yu)?2 It turns out that this function is not a “convex” function—in other words does not necessarily
have a single global optimum.
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Calculate each derivative listed in 10.5 with these three steps:

Step 1. 4 = (’y’—) = (1:’;:) using Eq. (10.3a) and (10.3b)

StepIl.y=1/1+¢*

dy —e*

= 2L =
dz  (1+e?)

with proper substitution and rearrangement of terms, the right side of the
derivative can be reduced to:

- dy _

dz (1—yp)
Finally, Step III. z = bgxo + byx; = b + byx1, noting that x, is usually set to 1
for the bias term, b,

Using subscript notation:

dz .
= — =% where i=1,2,...,n.

db
Putting them all together now, the derivative can be written as:
dl 5[ (1 Pa B
= 2| ()~ (=)< b -l <o

which simplifies to:

dj N
=== (Pa—yu)x
B 2

Expanding it to a general matrix form, where B, P, X, and Y are vectors:

o
75 = (Pa= )X (10.6)

Note that B is a (d X 1) vector, where d is the number of independent
variables and the other three vectors are (n X 1) where n is the number of
samples. ] and its derivative are scalars. The dot product between the two
vectors in 10.6, will account for the summation.

As mentioned before, rather than setting the above equation to 0, an iterative
approach is adopted to solve for the vector B using gradient descent. Start
with an initial value for weight vector, B;, where j is the iteration step and a
step size (called the learning rate) and use this slope Eq. (10.6), to iteratively
reach the point where J is minimized.

Bj+1 = Bj — Learning Rate X [P, —Y,]" -X (10.7)
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In practice one would stop after a set number of iterations or when the incre-
mental difference between B; and Bj;; is very small. In general, one can
calculate the weights for any error function using a formula similar to 10.6.
The key is to compute the gradient of the cost function, dJ/dB, and plug it
into this form:

d
Bj+1 = Bj + Learning Rate X d—é -X (10.8)

Notice that the iterative update component of gradient computation for
logistic regression in (10.6) is remarkably similar to the one derived for lin-
ear regression, X' (Y — Y;)—see Section 5.1.1. They both have the same form:

(Predicted Vector — Target Vector)-(Matrix of Input Data)

if the slight inconsistency in the nomenclature of Y is disregarded. The
key difference is the way the Y’s and the P are computed. In logistic
regression these are evaluated using the sigmoid transformation (y = o(by
+ byx)), whereas in linear regression a unit transformation (y =by + byx)
is used that is, no scaling or transformation is applied to the computed
output.

This is essentially the concept of an activation function in ANN and deep
learning. Think of activation functions like a rule based weighted averaging
scheme. If the weighted average (b, + bix) crosses a preset threshold, the
output evaluates to 1, if not it evaluates to 0—which is what happens if the
activation function is the sigmoid. Clearly there are many candidate functions
which can be used (sigmoid is simply one of them). Shown below are exam-
ples of the most commonly used activation functions used in deep learning:
(1) sigmoid, (2) tanh, and (3) rectified linear unit (RELU) (Fig. 10.8).

Observe the similarity in shape between sigmoid and tanh—the only differ-
ence between the two is the scaling: tanh scales the output between [ — 1, 1].
The RELU is also an interesting function—the output linearly increases if the
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FIGURE 10.8

Commonly used activation functions: sigmoid (left), tanh (center), and RELU (right). RELU, Rectified linear unit.



weighted average exceeds a set threshold, otherwise it is set to 0. Note that
all three are nonlinear functions which is an important characteristic that
enables ANN and deep learning networks to classify linearly nonseparable
data discussed in Section 10.2.

The table below summarizes the formulation of some common quantities
that arise in the application of gradient descent for linear and logistic regres-
sion. For the cost functions that arise in a general ANN, calculation of the
gradient in a closed form, like in Section 5.1.1, is not feasible, and it has to
be computed using numerical approximation. In practice, this is what
packages such as TensorFlow (TF) help implement. Such implementations
rely heavily on TF for the purposes of gradient calculation and associated ten-
sor or matrix method bookkeeping that is required.

10.2 How It Works

Derivative of Closed Form
Method Cost Function Cost Function Solution Gradient Form Solution
Linear N . N B=X"X)"YTX bi+1 =b; —n dJ/dB,
egression  J= 1//\/; vi=b'x) aJjab=2/N where 1 is the learning
=1 rate and dJ/dB =
i = b X)(— X)) XTo(Y =)
Logistic J=— ZCO” log y,, dJ _dddyadz None bi+1 = b; — ndJ/dB; where
regression db ~ dydzdb aJdB = (P,—Yn)"-X
9 +(1=pog(i —y)) 9 YF (Fn=Yn)
y=o(z) and
z=Xbix;

10.2.3 Need for Backpropagation

Weighted averaging is one intuition that would allow a full ANN to be
conceptualized starting from the simple two-layer models of logistic and
linear regression. As discussed, in Section 10.2.2, gradient descent is about
incrementally updating the weights based on the output generated from a
previous iteration. The first iteration is kicked off by randomly choosing the
weights. Can the process be made a bit more efficient and “well-rounded”
by choosing a series of starting weights in parallel? That is, can one start by
building, say 3 logistic (or linear) regression units or models in parallel so
that instead of (b;, b,) as the starting weights, there are 3 sets: (byy, b21),
(b12, by2), and (by3, by3)? Here the first subscript refers to the input node
or feature and the second subscript refers to the node in the intermediate or
so-called “hidden” layer. This is illustrated in the Fig. 10.9. It turns out
that by doing this, a small computational price might be paid at each
iteration, but the output may be arrived at quicker by reducing the number
of iterations. Finally, the output from the hidden layer is once again
weight-averaged by 3 more weights (c;, ¢, and ¢;) before the final output
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FIGURE 10.9

Combining multiple logistic regression models into a neural network.

is computed. Also observe that the right-hand side figure is exactly
equivalent to the left-hand side, but representationally simpler. With the
hidden layer in place, the output is first computed starting from left to
right: that is, o(z1), 0(2,), and o(z3) are computed as usual and weights
for c¢;:c; are assumed in order to compute the final sigmoid o(v).
This would be the first iteration. The output can now be compared to the
correct response and the model performance evaluated using the cross-
entropy cost function. The goal is now to reduce this error function for
which one would first need to incrementally update the weights ¢;:c; and
then work backwards to then update the weights b;;:b,3. This process is
termed “backpropagation” for obvious reasons. Backpropagation remains
relevant no matter how many hidden layers or output nodes are in question
and is fundamental to understanding of how all ANNs work. The actual
mechanics of this computation was described with a simple example in
Section 4.6 and will not be repeated here. The main difference between the
example used in that case and this present one is the computation of the
error function.



10.2.4 Classifying More Than 2 Classes: Softmax

Recall that by using logistic regression one is able to address a binary classifi-
cation problem. However, most real-world classifications require categoriza-
tion into one of more than two classes. For example, identifying faces,
numerals, or objects, and so on. One needs a handy tool to identify which of
the several classes a given sample belongs to. Also recall that in the network
models discussed so far in this chapter, there was only one output node and
the probability that a given sample belonged to a class was obtained. By
extension, one could add an output node for every class that needs to be cat-
egorized into and the probability that a sample belonged to that particular
class (see Fig. 10.10) could simply be computed. This is intuitively how the
“softmax” function works.

Softmax does two calculations: it exponentiates the value received at each
node of the output layer and then normalizes this value by the sum of the
exponentiated values received at all the output nodes. For instance, when the
output layer has two nodes (one each for class one and class two), the proba-
bility of each class can be expressed as:

ra
p(Y = class 1) m
p(Y = class 2) W

FIGURE 10.10
Softmax output layer in a network.

10.2 How It Works
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If one divides the numerator and the denominator of the first class by ¢,
one would get:

p(Y = class 1) m

which is the same expression as the sigmoid, Eq. (10.3a), if one had only
one output node for a binary classification problem (i.e. z, = 0). In general,
for a k-class problem, softmax is computed as:

k

pY =k) = (10.9)

L]

I
i=1
Note that what the z; are has not been stated. In practice they have the same
form as in Eq. (10.3a), that is, z; = Xbx; Another thing to keep in mind is
that in logistic regression based on the sigmoid, the thresholding is used or
the cut-off value of the output probability to assign the final class—if the
value is >0.5 then a “hard maximum” is applied to assign it to one class

over the other.

The triple concepts of activation functions, backpropagation, and (calculus
based) gradient descent form what may be loosely termed as the “ABCs” of
deep learning and remain at the mathematical core of these algorithms.
Hopefully this section provided an intuitive understanding of these impor-
tant concepts using simple networks such as linear and logistic regression
models. In combination with the material presented on ANN in Chapter 4,
on Classification one should now be in a strong enough position to grasp
the extension of these techniques to larger scale networks such as convolu-
tional neural networks.

There is no strict definition of what constitutes a “deep” learning network. A
common understanding is that any network with three or more hidden layers
between the input and output layers is considered “deep.” Based on the
math described in the preceding section it should be easy to understand how
adding more hidden layers increases the number of weight parameters, b;. In
practice it is not uncommon to have networks where the number of weight
parameters (termed trainable parameters) run into millions. In the next few
sections some typical use cases or applications of deep learning methods will
be explored and the practical implementations discussed.

10.2.5 Convolutional Neural Networks

A convolution is a simple mathematical operation between two matrices.
Consider a 6 X 6 matrix A, and a 3 X 3 matrix B.
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Convolution between A and B, mathematically denoted as A (*) B, results in
a new matrix, C whose elements are obtained by a sum-product between the
individual elements of A and B. For the given example,

€11 =10X1+9X1+9IX1I+9X0+8X0+8X0+9X —-1+8X —-1+8X —-1=3
c12=9X1+8X1+8X1+8X0+8X0+7X0+8X —1+8X —1+7X —-1=3

and so on.

It is easier to understand this operation by visualizing as shown in
Fig. 10.11. Matrix B is the lighter shaded one which essentially slides over
the larger matrix A (darker shade) from left (and top) to right (and bottom).
At each overlapping position, the corresponding elements of A and B are
multiplied and all the products are added as indicated in the figure to obtain
the corresponding element for C. The resulting output matrix C will be smal-
ler in dimension than A but larger than B. So, what is the utility of this

c,= sum.product of overlapping cells

C11 = a11b1‘| +a12b12+a13b13+'"+a33b33 C12 = a12b11+313b‘12+a14b13+'“+a34b33 C13 = a13b11+a14b12+a15b13+“‘+635b33

FIGURE 10.11
Computing a convolution.
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convolution operation? Matrix A is typically a raw image where each cell in
the matrix is a pixel value and matrix B is called a filter (or kernel) which
when convolved with the raw image results in a new image that highlights
only certain features of the raw image.

As shown in the Fig. 10.12, A and B are basically pixel maps which
when convolved together yield another pixel map, C. One can see that C
accentuates or highlights the horizontal edge in A where the pixels jump
from a high value to a low value. In this case, the accent appears to be
thick—but in the case of a real image where the matrix sizes are in the order
of 1000s (e.g., a 1-megapixel image is approximately a 1000 X 1000 matrix
of pixels)—the accent line will be finer and clearly demarcate or detect any
horizontal edge in the picture. Another thing to note about the filter is that
when it is flipped by 90 degrees or transposed, that is, use B” instead of B, a
convolution performed on a raw image would be able to detect vertical edges.
By judiciously choosing B, it will be possible to identify edges in any
orientation.

Thus, convolutions are useful in order to identify and detect basic features in images
such as edges. The challenge is of course to determine the right filter for a
given image. In the example this was done intuitively—however, machine
learning can be used to optimally determine the filter values. Observe that
determining the filter was a matter of finding the 3 X 3 =9 values for the
matrix B in the example. A couple of things to note: the matrix A is ny;qq X
Nheight iN terms of pixels for a grayscale image. Standard color images have
three channels: red, green, and blue. Color images are easily handled by con-
sidering a 3-dimensional matrix fwigth X 7height X Mchannels Which are con-
volved with as many different filters are there are color channels.

-0.5
-0.5
0 0.0 0.0
0.5 05
1 10 10
1.5 = .
2.0 1.5
2.0
25
3.0
35

25
-0.50.00.51.01.52.02.5

A W N

FIGURE 10.12
Effect of performing a convolution on a raw image.



In Fig. 10.12, one can observe that C is smaller than the raw image A. If the
dimensions of A and B are known, the dimensions of C can be determined.
For simplicity, assume that f.iqmn = height = 1 Which is quite common in real
applications. If the filter is also a square matrix of size f, then the output C is
square of dimension n — f+ 1. In this case n =6, f=3 and, therefore, C was
4 X 4.,

As the process of convolution reduces the raw image size, it is sometimes
useful to enlarge the raw image with dummy pixels so that the original size
is retained. This process is called “padding” as illustrated in Fig. 10.13. If p is
the number of padded pixels, then the output dimension is given by
n+2p — f+ 1. Thus, in the example, the output of C will be 6 X 6 if one unit
of padding is added.

Another important consideration in computing convolutions is the “stride.”
This is the number of pixels the filter is advanced each time to compute the
next element of the output. In the examples discussed so far, a stride of 1 has
been assumed. Fig. 10.14 illustrates this point. With stride, s, the output
dimension can be computed as (n +2p —f)/s + 1.

So far, it has been taken on intuition that a convolution helps to identify
basic image features such as edges. Thus, a filter strides over an image and
at each location of the output a sum-product of the corresponding
elements can be computed between the image and filter. However, instead of
performing a sum-product if one simply used the highest pixel value in the
overlapping cells at each compute location (Fig. 10.15), a process called max
pooling would be obtained. Max pooling can be thought of as an operation
that highlights the most dominant feature in an image (e.g., an eye within a
face). Max pooling is another feature detection tactic that is widely used for

6x6 + 1 unit padding 3x3 6%x6

FIGURE 10.13
Padding a convolution.

10.2 How It Works
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FIGURE 10.14
Visualizing the stride during a convolution.

Max pooling

FIGURE 10.15
Max pooling visualized.

image processing. Similar to max pooling, an average pooling can also be
done to somewhat “airbrush” the raw image, where the values are averaged
in the overlapping cells instead of doing a sum-product. The calculation for
output dimension after pooling still remains (n + 2p-f)/s + 1.

A convolution is a linear function similar to Eq. 10.1 which is a general
form of any neural networkwhere the weights, B are now the pixels of the fil-
ter matrix and the inputs, A are the image pixel values. The sum-product



output C is analogous to z in 10.3a . Similar to applying a nonlinear opera-
tor to z in 10.3b, the elements of C are typically passed through a RELU non-
linearity. This entire process, as will be summarized, forms one
convolutional layer. The output of this convolutional layer is sent to the next
layer which can be another convolutional layer (with a different filter) or
“flattened” and sent to a regular layer of nodes, called a "Fully Connected"
layer which will be described later on.

In the Fig. 10.16, A[0] is the raw image and C is the result of its convolution
with the filter B. A[1] is the result of adding a bias term to each element of C
and passing them through a RELU activation function. B is analogous to a
weight matrix b of 10.1, while C is analogous to o(z) in 10.2b. The point of
making these comparisons is to highlight how convolutions can be used as a
part of a deep learning network. In a neural network, backpropagation can
be used to compute the elements of the weight matrix, b, and a similar pro-
cess can be applied to determine the elements of the filter matrix B.

One additional note: TF and such tools allow one to apply multiple filters in
the same layer. So for example, one can let B; be a horizontal edge detector,
B, be a vertical edge detector, and apply both filters on A[0]. The output C
can be tensorially represented as a volume, in this example, C will have the
dimension of 4 X 4 X 2, which is essentially a stack of two 4 X 4 matrices, each
one is the result of convolution between A and B; (i =1,2). Fig. 10.17 shows
how adding multiple filters at a layer will result in a volumetric network.

In order to determine the filter elements, remember that backpropagation
will be used. So, a cost-function will need to be computed, such as the one
in 10.3, and minimize/maximize it using gradient descent. The cost function
is now dependent on 3 X 3 X 2 = 18 parameters in this example. In order to

X = RELU =

Al0] X B = RELU (C) =

FIGURE 10.16
Combining a convolution with an activation function.
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FIGURE 10.17

Multiple filters of convolution.
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FIGURE 10.18
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Architecture of a typical CNN model.

completely define the cost-function one can “flatten” the output 4 X 4 X 2
matrix into 32(=4 X 4 X 2) nodes and connect each node to a logistic regres-
sion output node or softmax output nodes.

Fig. 10.18 shows a classic CNN architecture introduced by LeCun (1989). It
consists of several convolutional layers interspersed with max pool layers and
finally followed by what are known as fully connected layers where the last
convolution output matrix is flattened into its constituent elements and passed
through a few hidden layers before terminating at a softmax output layer. This
was one of the first CNNs and was used to recognize handwritten digits.

CNNs are highly capable deep learning networks which function highly effi-
ciently because of a couple of reasons. The feature detection layers (such as



Convl, Conv2, etc.,) are computationally quite quick because there are few
parameters to train (e.g., each Conv1 filter is 5 X 5 which yields 25 + 1 for
bias = 26 times 6 filters = 156 parameters) and not every parameter in the
output matrix is connected to every other parameter of the next layer as in a
typical neural network (as happens in the fully connected layers down the
network). Thus the fully connected layers FC1 and FC2 have 576 times
120 = 69,120 parameters to train. Because of their flexibility and computa-
tional efficiency, CNNs are now one of the most common deep learning
techniques in practical applications.

Layers are the high-level building blocks in deep learning. As observed in
Fig. 10.18, there are several convolutional layers and several fully connected
layers (also called “Dense” layers) Each layer receives the inputs from the pre-
vious layer, applies the weights and aggregates with an activation function. A
couple of other key concepts that are in usage in deep learning are summa-
rized here.

10.2.6 Dense Layer

A dense or fully connected layer is one where all the nodes in the prior layer
are connected to all the nodes in the next layer. Several layers of dense layers
form different levels of representation in the data. (Fig. 10.19).

10.2.7 Dropout Layer

A dropout layer helps to prevent model overfitting by dropping the nodes
randomly in the layer. The probability of dropping a node is controlled by a
factor which ranges from 0 to 1. A dropout factor closer to one drops more
nodes from the layer. This is a form of regularization that reduces the com-
plexity of the model. This concept is depicted in Fig. 10.20

Input Dense Dense Output
layer layer layer layer

FIGURE 10.19
lllustrating a dense or fully connected layer.

10.2 How It Works
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lllustrating a dense or fully connected layer.

10.2.8 Recurrent Neural Networks

The field of deep learning has exploded in the last decade due to a variety of
reasons outlined in the earlier sections. This chapter provided an intuition
into one of the most common deep learning methodologies: CNN. These are
but one representation of a deep neural network architecture. The other
prominent deep learning method in widespread use is called recurrent neural
network (RNN). RNNs find application in any situation where the data have
a temporal component. Prominent examples are time series coming from
financial data or sensor data, language related data such as analyzing the sen-
timent from a series of words which make up a sentence, entity recognition
within a sentence, translating a series of words from one language to another
and so on. In each of these instances, the core of the network still consists of
a processing node coupled with an activation function as depicted in
Fig. 10.1.

Suppose the time series problem is a text entity recognition. So, here is a set
of training examples consisting of sentences from which one can identify cer-
tain named entities in each sentence such as proper nouns, places, dates, and
so on. The training set, thus, looks like:

Sample x<1> X<2> X<3> x<4>

1 This is an egg

2 | love scrambled eggs

3 Do you like omelettes?
4 Green eggs and Ham

5 My name is Sam




<t—1> <t>

— a

<t>

FIGURE 10.21
A basic representation of RNN. RNV, Recurrent neural network.

The objective here is to predict that y=/~ is a named entity such as a proper

noun. So, y=*~ would be 1, whereas y =22~ are 0’s. The idea behind an
RNN is to train a network by passing the training data through it in a
sequence (where each example is an ordered sequence). In the schematic in
Fig. 10.21, x='7 are the inputs where <t> indicates the position in the
sequence. Note that there are as many sequences as there are samples. y ~*~
are the predictions which are made for each position based on the training
data. What does the training accomplish? It will determine the set of weights
of this (vertically depicted) network, b, which in a linear combination with
;~'~ and passed through a nonlinear activation (typically tanh), produces

xl
an activation matrix a ~*~. So:

a<£> :g(bxx<l>)

However, RNNs also use the value of the activation from the previous time
step (or previous word in the sequence) because typically in most
sequences—such as sentences—the prediction of a next word is usually
dependent on the previous word or set of words. For example, the previous
words “My”, “name”, and “is” would almost certainly make the next word a
proper noun (so y=1). This information is helpful in strengthening the
prediction. Therefore, the value of the activation matrix can be modified by
adding the previous steps’ activation multiplied by another coefficient, b,:

a<t> :g(bua<t—1> +bxx<l>)

10.2 How It Works
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Finally, the prediction itself for the position <t> is given by:
y<t> =g(byu<t>)

where b, is another set of coefficients. All the coefficients are obtained during
the learning process by using the standard process of backpropagation.
Because of the temporal nature of data, RNNs typically do not have struc-
tures that are as deep as in CNNs. It is not common to see more than 4—5
layers which are all temporally connected.

10.2.9 Autoencoders

So far, deep learning has been discussed in the context of supervised learning
where an explicit labeled output dataset was used to train a model. Deep
learning can also be used in an unsupervised context and this is where
Autoencoders are useful.

An autoencoder is deep learnings answer to dimensionality reduction (which
is introduced in chapter 14 on Feature Selection). The idea is pretty simple:
transform the input through a series of hidden layers but ensure that the
final output layer is the same dimension as the input layer. However, the
intervening hidden layers have progressively smaller number of nodes (and
hence, reduce the dimension of the input matrix). If the output matches or
encodes the input closely, then the nodes of the smallest hidden layer can be
taken as a valid dimension reduced dataset.

This concept is illustrated in Fig. 10.22.
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FIGURE 10.22
Concept of dropout.
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10.2.10 Related Al Models

Two other algorithms will briefly be mentioned which fall more into the
domain of Al rather than the straightforward function approximation objec-
tive used so far. However, many researchers and experts tend to consider
these as newer applications of deep learning because deep networks may be
used as part of the algorithms.

Reinforcement Learning (RL) is an agent-based goal seeking technique where
an (Al) agent tries to determine the best action to take in a given environ-
ment depending on a reward. The agent has access to data which correspond
to the various states in an environment and a label for each action. A deep
learning network may be used to take in an observation or state-array and
output probabilities for each action (or label). The most popular implemen-
tation of RL is Google’s alpha-go Al which defeated a top-ranked human Go
player. Practical applications of RL include route optimization strategies for a
self-driving vehicle, for example. Most such applications are experimental as
of this publication.

Generative adversarial network (GAN) are at the cutting edge of deep
learning implementations—they were first introduced in 2014 and are yet
to find mainstream applications. GANs are proposed to be used to generate
new samples similar to the data they were originally trained on. For
example, creating new “photographs of faces” after being trained on a large
set of facial recognition data. GANs consist of two parts: A Generator and a
Discriminator. Both of these are deep neural networks, the generator
“mashes” up new samples while the discriminator evaluates if the new
samples are “valid” or not. One can think of the analogy of counterfeiting
currency. A counterfeiter tries to pass off poorly forged notes at first to
be rejected by say, a vendor. The counterfeiter learns from this experience
and gets increasingly sophisticated in his forgery until such time that the
vendor can no longer discriminate between a forged note and a real one
and, thereby, accepts the new note as a valid sample of the known
distribution.

10.3 HOW TO IMPLEMENT

Deep-learning architecture in RapidMiner can be implemented by a couple
of different paths. The simple artificial neural networks with multiple hidden
layers can be implemented by the Neural Net operator introduced in
Chapter 4, Classification, Artificial Neural Network. The operator parameter
can be configured to include multiple hidden layers and nodes within each
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layer. By default, the layer configuration is dense. This operator lacks the vari-
ety of different layer designs that distinguishes deep-learning architecture
from simple Neural Networks.

The Keras extension for RapidMiner offers a set of operators specific
for deep learning. It utilizes the Keras neural network library for Python.
Keras is designed to run on top of popular deep learning frameworks like
TensorFlow and Microsoft Cognitive Toolkit. The Keras extension in
RapidMiner enables a top-level, visual, deep-learning process along with
data science preprocessing and postprocessing. The Keras extension requires
Python and related libraries to be installed.'* The modeling and execution
of the deep-learning process in production application requires machines
running GPUs as computation using normal machines can be time consum-
ing. The following implementation uses Keras extension operators and can
be run on general-purpose machines'”.

Handwritten Image Recognition

Optical character recognition is an image recognition technique where
handwritten or machine-written characters are recognized by computers. A
deep learning-based (convolutional neural network) numeric character rec-
ognition model is developed in this section. As with any deep-learning
model, the learner needs plenty of training data. In this case, a large num-
ber of labeled handwritten images are needed to develop a deep learning
model. The MNIST database'® (Modified National Institute of Standards
and Technology database) is a large database of labeled handwritten digits
used commonly for training image processing systems. The dataset consists
of 70,000 images of handwritten digits (0,1,2,...,9). Fig 10.23 shows sample
training images for the digits 2, 8, and 4.

The complete RapidMiner process for implementing handwritten image rec-
ognition on the MNIST dataset is shown in Fig. 10.24."” The process has a
Execute Python operator to convert the 28 x 28 image pixels to a data frame.
The Keras Model contains a deep-learning model with several convolutional
and dense layers. The model was applied to the test dataset and performance
was evaluated. The dataset and the process are available at www.
IntroDataScience.com

™ https://community.rapidminer.com/t5/RapidMiner-Studio-Knowledge-Base/Keras-Deep-Learning-
extension/ta-p/40839.

!5 Note that on CPU the runtime is likely to be 100x to 1000x slower than on GPU. For this example,
the run time was 37 hours on a 2.5 GHz core i7.

' MNIST Database - http://yann.lecun.com/exdb/mnist/.

'7 This implementation example was generously provided by Dr. Jacob Cybulski of Deakin University,
Australia.
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FIGURE 10.23
Three different handwritten samples of the digits 2,8, and 4 from the MNIST dataset.
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FIGURE 10.24
RapidMiner process for Deep learning

Step 1: Dataset Preparation

The key challenge in implementing this well-known model using
RapidMiner is in preparing the dataset. RapidMiner expects the data in the
form of a standard data frame (a table of rows as samples and columns as
attributes) organized into rows and columns and in its current version (as
of this publication) cannot use the raw image data. The raw data consist of
70,000 images which are 28 x 28 pixels. This needs to be transformed into
a Pandas data frame which is 70,000 rows (or samples) by 784 columns
(pixel values) and then split up into 60,000 sample training and 10,000
sample test sets. The 28 x 28 (pixels) yields 784 pixel values. The first
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Reshaping the MNIST image tensor into a data frame.

operator in this process is a Python script executor which takes the raw
data and transforms it. In the Execute Python operator (Note: this is
very similar to the Execute R operator discussed in Chapter 15: Getting
started with RapidMiner, and works analogously), the data is read from the
MNIST dataset, its shape saved, the pixel data transformed into floats from

u_n u__n

integers, and finally both training and test “x” and “y” vectors are
“unfolded” and merged into Pandas data frames with the “y” column
defined as a “label” (using rm_metadata attribute). Fig. 10.25 shows
graphically what the Execute Python block accomplishes. The shape infor-
mation is alsoreturned as a data frame, so that it can later be used to set
image sizes and shapes in the convolutional nets. The results from the
Execute Python block consists of three data frames: (i) a training data frame
60,000 rows x 785 columns; (ii) test data frame 10,000 x 785; and (iii) and
a shape information data frame which stores information about the
data (each image is 28 x 28 x 1 tensor, the 1 refers to the channel). After
flattening the 28 x 28 image we have 784 columns and we add one more
column to contain the “label” information (i.e., which digit is encoded by
the 784 columns).

Step 2: Modeling using the Keras Model

The rest of process is very straightforward after the image data is transformed.
It passes the training data through the Keras Model and applies the
model on the test dataset (Apply Keras Model) and then checks the model
performance. The Extract Macro and Generate Macro operators pull the shape
information into variables called img shape, img row, img cols, and
img_channels which are the used to reshape the data frame into a tensor that
the Keras Model operator can then use. The main modeling operator for
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FIGURE 10.26
Deep learning subprocess for keras operators.

deep learning is the Keras Model operator under Keras > Modelling folder.
The Keras operator is a meta operator which has a subprocess of deep-learn-
ing layers within it. The main parameters for the Keras modeling operator
chosen are: Input shape: [img size (=img rows*img_cols*img channels)],
Loss: categorical_crossentropy, Optimizer: Adadelta, Learning rate, Epochs,
batch_size are initially set at 1.0, 12 and 128 respectively. These can be
adjusted later for optimal performance.

The architecture of the Keras deep learning network is shown in
Fig. 10.26. The main thing to note is that we need to include an extra
initial step (Add reshape) to fold the data back into its original form (28 x
28 x 1) based on the size and shape information passed into RapidMiner.
There are two Conv2D layers: the first uses 32 filters (n=32) and the
second uses 64 filters. All filters are 3 x 3 (i.e, f=3) and stride (s=1).
MaxPooling (with f=2 and s=2) and a Dropout layer which randomly
eliminates 25% of the nodes (see Fig. 10.20), complete the CNN portion of
the network before a flattened layer converts the 2D images into a column
of 9216 nodes. This is connected to a 128-node layer, and another Dropout
layer (50%) is applied before terminating in a 10-unit softmax output
layer. As an exercise, the reader is encouraged to write this process as a
schematic similar to Fig. 10.18 to make sure the internal workings of the
network are clearer. As you move from one layer to the next, Keras
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KerasModellOObject

Layer (type) Output Shape Param #
reshape_1l (Reshape) (None, 28, 28, 1) 0
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
conv2d_2 (Conv2D) (None, 24, 24, €4) 18496
max_pooling2d_l (MaxPooling2 (None, 12, 12, 64) 0
dropout_1 (Dropout) (None, 12, 12, €4) 0
flatten 1 (Flatten) (None, 9216) 0
dense_1 (Dense) (None, 128) 1179776
dropout_2 (Dropout) (None, 128) 0
dense_2 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainabkle params: 1,199,882
Non-trainabkle params: O

FIGURE 10.27
A summary of the deep-learning model and its constituent layers.

automatically calculates the output size (i.e., number of output nodes
for that layer). The user must make sure that the output of the previous
layer is compatible with the input of the next layer by specifying the correct
input_size. The reader should also try to calculate the number of weights or
parameters that need to be learned at each layer. Fig. 10.27 shows the
model summary. As seen, this model has more than one million weights
(called “Trainable params”) that need to be trained or learned making it a
truly deep-learning model. Observe that the largest number of weights
occur in the first dense layer.

Step 3: Applying the Keras Model
The model developed by the Keras modeling operator can be applied on the
test dataset using Apply Keras model under Keras > Scoring folder. This
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accuracy: 99.04%
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FIGURE 10.28
Comparing the deep learning predicted values to actual values.

operator is similar to other Apply Model operators. The input for the
operator is the test dataset with 10,000 labeled image data frame and the
model. The output is the scored dataset. The scored output is then connected
to the Performance (Classification) operator to compare the deep learning-
based digits recognition with the actual value of the label.

Step 4: Results

Fig. 10.28 shows the results of the prediction performed by the CNN-based
deep-learning model. As seen from the confusion matrix, the performance
measured via recall, precision, or overall accuracy is around 99% across all the
digits, indicating that the model performs exceptionally well. This implemen-
tation shows both the power and the complexity of the deep learning process.

10.4 CONCLUSION

Deep learning is a fast-growing field of research and its applications run the
gamut of structured and unstructured data (text, voice, images, video, and
others). Each day brings new variants of the deep architectures and with it,
new applications. It is difficult to do justice to this field within the scope of a
broad data science focused book. This chapter provided a brief high-level
overview of the collection of techniques known as deep learning. An over-
view on how the majority of today’s Al applications are supported solely by
deep learning was provided. The fundamental similarity between deep learn-
ing and function fitting methods such as multiple linear regression and logis-
tic regression were demonstrated. The essential differences between deep
learning and traditional machine learning was also discussed. Some time was
then spent detailing one of the most common deep learning techniques—
convolutional neural networks and how it can be implemented using
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Rapidminer was discussed. Finally, some of the other deep learning techni-
ques were highlighted which are rapidly gaining ground in research and
industry.
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