596 CHAPTER 11 / COMPUTATIONAL GEOMETRY

Before we give a formal statement of the closest-pair algorithm, there several technical points to resolve.

In order to terminate the recursion, we check the number of points the input and if there are three or fewer points, we find a closest pair direct Dividing the input and using recursion only if there are four or more point ensures that each of the two parts contains at least one pair of points and therefore, that there is a closest pair in each part.

Before invoking the recursive procedure, we sort the entire set of point by x-coordinate. This makes it easy to divide the points into two nearly equiparts.

We use mergesort (see Section 5.3) to sort by y-coordinate. However, instead of sorting each time we examine points in the vertical strip, we assume as in mergesort that each half is sorted by y-coordinate. Then we simply merge the two halves to sort all of the points by y-coordinate.

We can now formally state the closest-pair algorithm. To simplify the description, our version outputs the distance between a closest pair but not a closest pair. We leave this enhancement as an exercise (Exercise 5).

ALGORITHM 11.1.2 Finding the Distance Between a Closest Pair of Points

Input: p_1, \ldots, p_n $(n \ge 2$ points in the plane) Output: δ , the distance between a closest pair of points

procedure $closest_pair(p, n)$

sort $p_1, ..., p_n$ by x-coordinate return($rec_ccl_pair(p, 1, n)$) end $closest_pair$

procedure $rec_cl_pair(p, i, j)$ // The input is the sequence p_i, \ldots, p_j of points in the plane // sorted by x-coordinate.

// At termination of rec_cl_pair, the sequence is sorted by
// y-coordinate.

// rec_cl_pair returns the distance between a closest pair
// in the input.

// Denote the x-coordinate of point p by p.x.

// trivial case (3 or fewer points)

if j - i < 3 then

begin

sort p_i, \ldots, p_j by y-coordinate directly find the distance δ between a closest pair return(δ) end // divide $k := \lfloor (i + j)/2 \rfloor$ $l := p_k.x$ $\delta_L := rec_cl_pair(p, i, k)$

 $\delta_R := rec_cl_pair(p, k+1, j)$

 $\delta := \min\{\delta_L, \delta_R\}$

 $|| p_{k+1}, ...$ merge pi, // assume t $|| p_i, ...,$ // now p_i , // store poi t := 0for k := iif $p_k x >$ begin t := t $v_t := F$ end // points in // look for // compar for k := 1for s := $\delta := \pi$ $return(\delta)$ end rec_cl.

 $|| p_i, ..., l$

We show the The procedure we use an optim $\Theta(n \lg n)$. Nex case time of real tself with inpupoints in the s Thus we obtain

This is the sa rec_cl_pair ha worst-case tim closest_pair is finds a closest our algorithm

It can be rectangle of recluded. The in the rectanguing the rectanguing compare each seven). This not lead to a // p_i, \ldots, p_k are now sorted by y-coordinate // p_{k+1}, \ldots, p_j are now sorted by y-coordinate merge p_i, \ldots, p_k and p_{k+1}, \ldots, p_j by y-coordinate // assume that the result of the merge is stored back in // p_i, \ldots, p_j

// now p_i, \ldots, p_j is sorted by y-coordinate

// store points in the vertical strip in vt := 0

```
for k := i to j do

if p_k . x > l - \delta and p_k . x < l + \delta then

begin

t := t + 1

v_t := p_k

end

// points in strip are v_1, ..., v_t

// look for closer pairs in strip

// compare each to next seven points

for k := 1 to t - 1 do

for s := k + 1 to min\{t, k + 7\} do

\delta := min\{\delta, dist(v_k, v_s)\}

return(\delta)

end rec\_cl\_pair
```

We show that the worst-case time of the closest-pair algorithm is $\Theta(n \lg n)$. he procedure *closest_pair* begins by sorting the points by x-coordinate. If e use an optimal sort (e.g., mergesort), the worst-case sorting time will be $(n \lg n)$. Next *closest_pair* invokes rec_cl_pair . We let a_n denote the worstset time of rec_cl_pair for input of size n. If n > 3, rec_cl_pair first invokes kelf with input size $\lfloor n/2 \rfloor$ and $\lfloor (n + 1)/2 \rfloor$. Each of merge, extracting the bints in the strip, and checking the distances in the strip takes time O(n). hus we obtain the recurrence

 $a_n \leq a_{\lfloor n/2 \rfloor} + a_{\lfloor (n+1)/2 \rfloor} + cn, \quad n > 3.$

his is the same recurrence that mergesort satisfies, so we conclude that $u_{cl}pair$ has the same worst-case time $O(n \lg n)$ as mergesort. Since the brst-case time of the sorting of the points by x-coordinate is $\Theta(n \lg n)$ and the brst-case time of $rec_{cl}pair$ is $O(n \lg n)$, the worst-case time of $rest_pair$ is $\Theta(n \lg n)$. In Section 11.2 we will show that any algorithm that hds a closest pair of points in the plane has worst-case time $\Omega(n \lg n)$; thus we algorithm is asymptotically optimal.

It can be shown (Exercise 10) that there are at most six points in the retangle of Figure 11.1.2 when the base is included and the other sides are cluded. This result is the best possible since it is possible to place six points the rectangle (Exercise 8). By considering the possible locations of the points at rectangle, D. Lerner and R. Johnsonbaugh have shown that it suffices to impare each point in the strip with the next three points (rather than the next two points does not lead to a correct algorithm (Exercise 7).

As another example, suppose that we have retained p_1, \ldots, p_5 (see Figure 11.3.9). This time, since p_4 , p_5 , p make a right turn, we discard p_5 . We then back up to examine p_3 , p_4 , p. Since these points also make a right turn, we discard p_4 . We then back up to examine p_2 , p_3 , p. Since these points make a left turn, we retain p_3 . We continue by examining the point following p. The pseudocode for Graham's Algorithm is given as Algorithm 11.3.6.

ALGORITHM 11.3.6

Graham's Algorithm to Compute the Convex Hull

This algorithm computes the convex hull of the points p_1, \ldots, p_n in the plane. The x- and y-coordinates of the point p are denoted p.x and p.y, respectively.

Input: p_1, \ldots, p_n and nOutput: p_1, \ldots, p_k (the convex hull of p_1, \ldots, p_n) and k procedure graham_scan(p, n, k) // trivial case if n = 1 then begin k := 1return end // find the point with minimum y-coordinate min := 1for i := 2 to n do if $p_i . y < p_{min} . y$ then min := 1// Among all such points, find the one with minimum // x-coordinate for i := 1 to n do if $p_i \cdot y = p_{min} \cdot y$ and $p_i \cdot x < p_{min} \cdot x$ then min := i $swap(p_1, p_{min})$ // sort on angle from horizontal to p_1 , p_i sort p_2, \ldots, p_n $// p_0$ is an extra point added to prevent the algorithm from // backing up forever $p_0 := p_n$ // discard points not on the convex hull k := 2for i := 3 to n do begin while p_{k-1} , p_k , p_i do not make a left turn do // discard p_k k := k - 1k := k + 1 $swap(p_i, p_k)$ end

end graham_scan

FIGURE 11.3.9

A situation in the convex hull algorithm when point p is examined. Before p is examined, the convex hull of the points so far examined is p_1, p_2, p_3, p_4, p_5 . Since p_4, p_5, p make a right turn, p_5 is discarded. This leaves the points p_3, p_4, p , which also make a right turn; thus, p_4 is also discarded. This leaves the points p_2, p_3, p , which make a left turn; thus p_3 is retained. The current convex hull is p_1, p_2, p_3, p . The algorithm continues by examining the point following p.

),

ple, to a left nce the ositive] ey must

< 0.) > 0. (11.3.1) x_0 , the ize these

< 0.) > 0.

minimum te, the alithm sorts to the line d discards

the sort. To (p, q) < phorizontal, en p < q. we define ther from

oint is not e points in re were no xample, in xt point we en continue