
596 CHAPTER 11 1 COMPUTATJONAL GEOMETRY

Befare we give a formal statement of the closest-pair algorithm, there
severa! technical points to resolve.

In order to termina te the recursion, we check the number of pointsm
the input and if there are three or fewer points, we find a closest pair directl1
Dividing the input and using recursion only if there are tour or more poin~
ensures that each of the two parts contains at least one pair of points and
therefore, that there is a closest pair in each part.

Befare invoking the recursive procedure, we sort the en tire set of poin~
by x-coordina te. This makes it easy to divide the points into two nearly equa
parts.

We use mergesort (see Section 5.3) to sort by y-coordinate. Howem
instead of sorting each time we examine points in the vertical strip, we assum¡
as in mergesort that each half is sorted by y-coordinate. Then we simplymerg¡
the two halves to sort all of the points by y-coordinate.

We can now formally state the closest-pair algorithm. To simplifyt~¡
description, our version outputs the distan ce between a closest pair but not
closest pair. We lea ve this enhancement as an exercise (Exercise 5).

Finding the Distance Between a Closest PaJr
of Points

Input: Pl, ... , Pn (n ::::: 2 points in the plan e)

Output: 8, the distance between a closest pair of points

procedure closest_pair(p, n)
sort Pl, ... , Pn by x-coordinate
return(rec_cf_pair(p, 1, n))

end closest_pair

procedure rec_cLpair(p, i, j)
11 The input is the sequence p¡, ... , PJ of points in the plane
11 sorted by x-coordinate.

11 At termination of rec_cLpair, the sequence is sorted by
11 y-coordinate.

11 rec_cl_pair returns the distance between a closest pair
11 in the input.

11 Denote the x-coordina te of point p by p.x.

11 trivial case (3 or fewer points)
if j - i < 3 then

begin
sort p¡, ... , PJ by y-coordinate
directly find the distance 8 between a closest pair
return(8)
end

11 divide
k:= L(i + J)/2J
l := Pk·X

8L := rec_cl_pair(p, i, k)
8R := rec_cLpair(p, k+ 1, j)
8 := min{8L, 8R}

/1 p¡' ... ' 1
11 Pk+l····
merge p¡,
11 assume t
11 p¡, ... ' J

1/nowp¡,

11 store po
t :=o
for k:== i

if Pk ·X :;

begin
t :== t
Vt ::=: 1
end

11 points i1
11 Iook fm
11 campar
for k :== 1

for s :==
8 := rr

return(8)
end rec.cl.

Weshowtl
The procedure
we use an optir
E>(n lg n). Next
case time of rec
itself with inpu·
points in the st
Thus we obtain

This is the san
rec_cLpair has
worst-case time
worst -case tirl

JI p¡ , .. . , Pk are now sorted by y-coordinate
JI Pk+l , .. . , Pi are now sorted by y-coordinate
merge p¡, . . . , Pk and Pk+l • . . . , Pi by y-coordinate
JI assume that the result of the merge is stored back in

11 Pi,···, Pi

JI now p¡, ... , Pi is sorted by y-coordinate

JI store points in the vertical strip in v
t :=o
for k := i to j do

if Pk ·X > l- 8 and Pk ·X < l + 8 then
begin
t := t + 1
V¡:= Pk
end

JI points in strip are v1, ... , v1

JI look for closer pairs in strip
JI compare each to next seven points
for k := 1 to t - 1 do

for s :=k+ 1 to min{t, k+ 7} do
8 := min{8, dist(vk. Vs)}

return(8)
end rec_cl_pair

11.1 1 THE CLOSEST-PAIR PROBLEM 597

We show that the worst-case time of the closest-pair algorithm is e (n lg n).
procedure closest_pair begins by sorting the points by x-coordinate. If

use an optimal sort (e.g., mergesort) , the worst-case sorting time will be
lgn). Next closest_pair invokes rec_cLpair. We let a11 denote the worst
time of rec_cl_pair for input of size n. If n > 3, rec_cl_pair first invokes
with input size Ln/2J and L(n + 1)/2J. Each of merge, extracting the

in the strip, and checking the distan ces in the strip takes time O (n).
we obtain the recurrence

an ::=:: aLn/2J + aL(n+l)/2J +en, n > 3.

is the same recurrence that mergesort satisfies, so w~ conclude that
has the same worst-case time O (n lg n) as mergesort. Since the

time of the sorting of the points by x-coordinate is e (n Ig n) and the
time of rec_cLpair is O(n lgn), the worst-case time of

'"''"'co< .. vu"' is e(n lgn). In Section 11.2 we will show that any algorithm that
a closest pair of points in the plan e has worst-case time Q (n lg n); thus

algorithm is asymptotically optimal.
It can be shown (Exercise 10) that there are at most six points in the

of Figure 11.1.2 when the base is included and the other sides are
''"c"'U'-''U. This result is the best possible since it is possible to place six points

the rectangle (Exercise 8). By considering the possible locations of the points
the rectangle, D. Lerner and R. Johnsonbaugh ha ve shown that it suffices to

each point in the strip with the next three points (rather than the next
. This result is the best possible since checking the next two points does

not lead toa correct algorithm (Exercise 7).

O,

o.
>o.

•

11.3 / AN ALGORITHM TO COMPUTE THE CONVEX HULL 605

As another example, suppose that we have retained PJ, ... , Ps (see Fig
ure 11.3.9). This time, since p 4 , p 5 , p make a right turn, we discard PS· We
then back up to examine p 3 , p 4 , p. Since these points also make a right turn,
we discard p 4 . We then back up to examine p 2 , p 3 , p. Since these points make
a Ieft turn, we retain P3· We continue by examining the point following p. The
pseudocode for Graham's Algorithm is given as Algorithm 11.3.6.

Graham's Algorithm to Compute
the Convex Hull

This algorithm computes the convex hull of the points Pl, ... , Pn in the plan e.
The x- and y-coordinates of the point p are denoted p .x and p. y, respectively.

Input: Pl, ... , Pn and n
Output: Pl, ... , Pk (the convex hull of Pl, ... , Pn) and k

procedure graham_scan(p, n, k)
11 trivial case
if n = 1 then

begin
k:= 1
return
end

11 find the point with minimum y-coordinate
min := 1
for i := 2 to n do

if Pi .y < Pmin·Y then
min := 1

11 Among all such points, find the one with minimum
11 x-coordinate
for i := 1 to n do

if Pi .y = Pmin·Y and p¡ .X < Pmin·X then
min := i

swap(pJ, Pmin)
11 sort on angle from horizontal to P1, p¡
sort pz, ... , Pn
11 Po is an extra point added to prevent the algorithm from
11 backing up forever
Po:= Pn
11 discard points not on the convex hull
k:= 2
for i := 3 to n do

begin
while Pk-1, Pk. p¡ do not make a left turn do

11 discard Pk
k:= k -1

k:= k+ 1
swap(pi, pk)
end

end graham_scan

p •,',>,
',:,

Ps

P2

Pl

FIGURE 1 1.3.9
A situation in the convex hull
algorithm when point p is examined.
Before p is examined, the convex
hull of the points so far examined is
P1, pz, PJ, p4, Ps· Since /)4, JJs, p
make a right turn, p5 is discarded.
This leaves the points p3 , p4 , p,
which also make a right turn; thus,
p4 is also discarded. This leaves the
points pz, /)3, p, which make a left
turn; thus p3 is retained. The current
convex hull is p¡, pz, /)3, p. The
algorithm continues by examining
the point following p.

