Before we give a formal statement of the closest-pair algorithm, thereat several technical points to resolve.

In order to terminate the recursion, we check the number of pointin the input and if there are three or fewer points, we find a closest pair diract Dividing the input and using recursion only if there are four or more poinf ensures that each of the two parts contains at least one pair of pointrand therefore, that there is a closest pair in each part.

Before invoking the recursive procedure, we sort the entire set of point by x-coordinate. This makes it easy to divide the points into two nearly equad parts.

We use mergesort (see Section 5.3) to sort by y-coordinate. Howert instead of sorting each time we examine points in the vertical strip, we assumat as in mergesort that each half is sorted by y-coordinate. Then we simply mergi the two halves to sort all of the points by y-coordinate:

We can now formally state the closest-pair algorithm. To simplifithe description, our version outputs the distance between a closest pair but nota closest pair. We leave this enhancement as an exercise (Exercise 5).

ALGORITHM 11.1 .2
Finding the Distance Between a Closest Pair of Points

Input: p_{1}, \ldots, p_{n} ($n \geq 2$ points in the plane)
Output: δ, the distance between a closest pair of points

```
procedure closest_pair (p,n)
    sort }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}\mathrm{ by }x\mathrm{ -coordinate
    return(rec_cl_pair (p,1,n))
end closest_pair
procedure rec_cl_pair ( p,i,j)
    // The input is the sequence }\mp@subsup{p}{i}{},\ldots,\mp@subsup{p}{j}{}\mathrm{ of points in the plane
    // sorted by }x\mathrm{ -coordinate.
    // At termination of rec_cl_pair, the sequence is sorted by
    // y-coordinate.
    // rec_cl_pair returns the distance between a closest pair
    // in the input.
    // Denote the x-coordinate of point p by p.x.
    // trivial case (3 or fewer points)
if }j-i<3\mathrm{ then
    begin
    sort pi,\ldots, p
    directly find the distance }\delta\mathrm{ between a closest pair
    return(\delta)
    end
// divide
k:= \lfloor(i+j)/2\rfloor
l:= p p},
\deltaL := rec_cl_pair (p,i,k)
\delta
\delta:= min}{\mp@subsup{\delta}{L}{},\mp@subsup{\delta}{R}{}
```

// p_{i}, \ldots,
// p_{k+1}, \ldots
merge p_{i},
// assume t
// p_{i}, \ldots,
// now p_{i},
// store pol
$t:=0$
for $k:=i$
if $p_{k} \cdot x=$ begin
$t:=t$
$v_{t}:=I$
end
// points i1
// look for
// compar
for $k:=$
for $s:=$
$\delta:=$
return (δ
end rec_cl
We show
The procedure
we use an opti
$\Theta(n \lg n)$. Nex
case time of re Itself with inpu points in the s Thus we obtai

This is the sa rec_el_pair ha Werst-case tim morst-case ti closest_pair is finds a closes our glgorithm

It can Fstangle of Excluded. Th in the rectang in the rectan compare eac seven). This not lead to a
$/ / p_{i}, \ldots, p_{k}$ are now sorted by y-coordinate
$/ / p_{k+1}, \ldots, p_{j}$ are now sorted by y-coordinate
merge p_{i}, \ldots, p_{k} and p_{k+1}, \ldots, p_{j} by y-coordinate
// assume that the result of the merge is stored back in
/I p_{i}, \ldots, p_{j}
// now p_{i}, \ldots, p_{j} is sorted by y-coordinate
// store points in the vertical strip in v
$t:=0$
for $k:=i$ to j do
if $p_{k} \cdot x>l-\delta$ and $p_{k}: x<l+\delta$ then begin
$t:=t+1$
$v_{t}:=p_{k}$
end
$/ /$ points in strip are v_{1}, \ldots, v_{t}
// look for closer pairs in strip
// compare each to next seven points
for $k:=1$ to $t-1$ do
for $s:=k+1$ to $\min \{t, k+7\}$ do $\delta:=\min \left\{\delta, \operatorname{dist}\left(v_{k}, v_{s}\right)\right\}$
return(δ)
end rec_cl_pair
We show that the worst-case time of the closest-pair algorithm is $\Theta(n \lg n)$. procedure closest_pair begins by sorting the points by x-coordinate. If : use an optimal sort (e.g., mergesort), the worst-case sorting time will be $(n \lg n)$. Next closest_pair invokes rec_cl_pair. We let a_{n} denote the worstwe time of rec_cl_pair for input of size n. If $n>3$, rec_cl_pair first invokes felf with input size $\lfloor n / 2\rfloor$ and $\lfloor(n+1) / 2\rfloor$. Each of merge, extracting the fints in the strip, and checking the distances in the strip takes time $O(n)$. hus we obtain the recurrence

$$
a_{n} \leq a_{\lfloor n / 2\rfloor}+a_{\lfloor(n+1) / 2\rfloor}+c n, \quad n>3
$$

Whis is the same recurrence that mergesort satisfies, so we conclude that Lcl_pair has the same worst-case time $O(n \lg n)$ as mergesort. Since the Drst-case time of the sorting of the points by x-coordinate is $\Theta(n \lg n)$ and the bist-case time of rec_cl_pair is $O(n \lg n)$, the worst-case time of Isest_pair is $\Theta(n \lg n)$. In Section 11.2 we will show that any algorithm that lds a closest pair of points in the plane has worst-case time $\Omega(n \lg n)$; thus or algorithm is asymptotically optimal.

It can be shown (Exercise 10) that there are at most six points in the changle of Figure 11.1.2 when the base is included and the other sides are icluded. This result is the best possible since it is possible to place six points bhe rectangle (Exercise 8). By considering the possible locations of the points hthe rectangle, D. Lerner and R. Johnsonbaugh have shown that it suffices to pmpare each point in the strip with the next three points (rather than the next ven). This result is the best possible since checking the next two points does lot lead to a correct algorithm (Exercise 7). fie, the alfithm sorts to the line id discards
le sort. To $1, p, q)<$ horizontal, len $p<q$. we define ther from
foint is not e points in re were no xample, in st point we en continue

As another example, suppose that we have retained p_{1}, \ldots, p_{5} (see Figure 11.3.9). This time, since p_{4}, p_{5}, p make a right turn, we discard p_{5}. We then back up to examine p_{3}, p_{4}, p. Since these points also make a right turn, we discard p_{4}. We then back up to examine p_{2}, p_{3}, p. Since these points make a left turn, we retain p_{3}. We continue by examining the point following p. The pseudocode for Graham's Algorithm is given as Algorithm 11.3.6.

ALGORITHM 11.3 .6

Graham's Algorithm to Compute the Convex Hull

This algorithm computes the convex hull of the points p_{1}, \ldots, p_{n} in the plane. The x - and y-coordinates of the point p are denoted $p . x$ and $p . y$, respectively.

Input: $\quad p_{1}, \ldots, p_{n}$ and n
Output: $\quad p_{1}, \ldots, p_{k}$ (the convex hull of p_{1}, \ldots, p_{n}) and k
procedure graham_scan (p, n, k)
// trivial case
if $n=1$ then
begin
$k:=1$
return
end
// find the point with minimum y-coordinate
$\min :=1$
for $i:=2$ to n do
if $p_{i} . y<p_{\text {min }} . y$ then
$\min :=1$
// Among all such points, find the one with minimum
// x-coordinate
for $i:=1$ to n do
if $p_{i} . y=p_{\text {min }} . y$ and $p_{i} . x<p_{\text {min }} . x$ then
$\min :=i$
$\operatorname{swap}\left(p_{1}, p_{\text {min }}\right)$
// sort on angle from horizontal to p_{1}, p_{i}
sort p_{2}, \ldots, p_{n}
$/ / p_{0}$ is an extra point added to prevent the algorithm from
// backing up forever
$p_{0}:=p_{n}$
// discard points not on the convex hull
$k:=2$
for $i:=3$ to n do
begin
while p_{k-1}, p_{k}, p_{i} do not make a left turn do
$/ /$ discard p_{k}
$k:=k-1$
$k:=k+1$
$\operatorname{swap}\left(p_{i}, p_{k}\right)$
end
end graham_scan

Figure 11.3.9
A situation in the convex hull algorithm when point p is examined. Before p is examined, the convex hull of the points so far examined is $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$. Since p_{4}, p_{5}, p make a right turn, p_{5} is discarded. This leaves the points p_{3}, p_{4}, p, which also make a right turn; thus, p_{4} is also discarded. This leaves the points p_{2}, p_{3}, p, which make a left turn; thus p_{3} is retained. The current convex hull is p_{1}, p_{2}, p_{3}, p. The algorithm continues by examining the point following p.

