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Befare we give a formal statement of the closest-pair algorithm, there 
severa! technical points to resolve. 

In order to termina te the recursion, we check the number of pointsm 
the input and if there are three or fewer points, we find a closest pair directl1 
Dividing the input and using recursion only if there are tour or more poin~ 
ensures that each of the two parts contains at least one pair of points and 
therefore, that there is a closest pair in each part. 

Befare invoking the recursive procedure, we sort the en tire set of poin~ 
by x-coordina te. This makes it easy to divide the points into two nearly equa 
parts. 

We use mergesort (see Section 5.3) to sort by y-coordinate. Howem 
instead of sorting each time we examine points in the vertical strip, we assum¡ 
as in mergesort that each half is sorted by y-coordinate. Then we simplymerg¡ 
the two halves to sort all of the points by y-coordinate. 

We can now formally state the closest-pair algorithm. To simplifyt~¡ 
description, our version outputs the distan ce between a closest pair but not 
closest pair. We lea ve this enhancement as an exercise (Exercise 5). 

Finding the Distance Between a Closest PaJr 
of Points 

Input: Pl, ... , Pn (n ::::: 2 points in the plan e) 

Output: 8, the distance between a closest pair of points 

procedure closest_pair(p, n) 
sort Pl, ... , Pn by x-coordinate 
return(rec_cf_pair(p, 1, n)) 

end closest_pair 

procedure rec_cLpair(p, i, j) 
11 The input is the sequence p¡, ... , PJ of points in the plane 
11 sorted by x-coordinate. 

11 At termination of rec_cLpair, the sequence is sorted by 
11 y-coordinate. 

11 rec_cl_pair returns the distance between a closest pair 
11 in the input. 

11 Denote the x-coordina te of point p by p.x. 

11 trivial case (3 or fewer points) 
if j - i < 3 then 

begin 
sort p¡, ... , PJ by y-coordinate 
directly find the distance 8 between a closest pair 
return(8) 
end 

11 divide 
k:= L(i + J)/2J 
l := Pk·X 

8L := rec_cl_pair(p, i, k) 
8R := rec_cLpair(p, k+ 1, j) 
8 := min{8L, 8R} 

/1 p¡' ... ' 1 
11 Pk+l···· 
merge p¡, 
11 assume t 
11 p¡, ... ' J 

1/nowp¡, 

11 store po 
t :=o 
for k:== i 

if Pk ·X :; 

begin 
t :== t
Vt ::=: 1 
end 

11 points i1 
11 Iook fm 
11 campar 
for k :== 1 

for s :== 
8 := rr 

return(8) 
end rec.cl. 

Weshowtl 
The procedure 
we use an optir 
E>(n lg n). Next 
case time of rec 
itself with inpu· 
points in the st 
Thus we obtain 

This is the san 
rec_cLpair has 
worst-case time 
worst -case tirl 



JI p¡ , .. . , Pk are now sorted by y-coordinate 
JI Pk+l , .. . , Pi are now sorted by y-coordinate 
merge p¡, . . . , Pk and Pk+l • . . . , Pi by y-coordinate 
JI assume that the result of the merge is stored back in 

11 Pi,···, Pi 

JI now p¡, ... , Pi is sorted by y-coordinate 

JI store points in the vertical strip in v 
t :=o 
for k := i to j do 

if Pk ·X > l- 8 and Pk ·X < l + 8 then 
begin 
t := t + 1 
V¡:= Pk 
end 

JI points in strip are v1, ... , v1 

JI look for closer pairs in strip 
JI compare each to next seven points 
for k := 1 to t - 1 do 

for s :=k+ 1 to min{t, k+ 7} do 
8 := min{8, dist(vk. Vs)} 

return(8) 
end rec_cl_pair 
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We show that the worst-case time of the closest-pair algorithm is e (n lg n). 
procedure closest_pair begins by sorting the points by x-coordinate. If 

use an optimal sort (e.g., mergesort) , the worst-case sorting time will be 
lgn). Next closest_pair invokes rec_cLpair. We let a11 denote the worst
time of rec_cl_pair for input of size n. If n > 3, rec_cl_pair first invokes 
with input size Ln/2J and L(n + 1)/2J. Each of merge, extracting the 

in the strip, and checking the distan ces in the strip takes time O (n). 
we obtain the recurrence 

an ::=:: aLn/2J + aL(n+l)/2J +en, n > 3. 

is the same recurrence that mergesort satisfies, so w~ conclude that 
has the same worst-case time O (n lg n) as mergesort. Since the 

time of the sorting of the points by x-coordinate is e (n Ig n) and the 
time of rec_cLpair is O(n lgn), the worst-case time of 

'"''"'co< .. vu"' is e(n lgn). In Section 11.2 we will show that any algorithm that 
a closest pair of points in the plan e has worst-case time Q (n lg n); thus 

algorithm is asymptotically optimal. 
It can be shown (Exercise 10) that there are at most six points in the 

of Figure 11.1.2 when the base is included and the other sides are 
''"c"'U'-''U. This result is the best possible since it is possible to place six points 

the rectangle (Exercise 8). By considering the possible locations of the points 
the rectangle, D. Lerner and R. Johnsonbaugh ha ve shown that it suffices to 

each point in the strip with the next three points (rather than the next 
. This result is the best possible since checking the next two points does 

not lead toa correct algorithm (Exercise 7). 
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As another example, suppose that we have retained PJ, ... , Ps (see Fig
ure 11.3.9). This time, since p 4 , p 5 , p make a right turn, we discard PS· We 
then back up to examine p 3 , p 4 , p. Since these points also make a right turn, 
we discard p 4 . We then back up to examine p 2 , p 3 , p. Since these points make 
a Ieft turn, we retain P3· We continue by examining the point following p. The 
pseudocode for Graham's Algorithm is given as Algorithm 11.3.6. 

Graham's Algorithm to Compute 
the Convex Hull 

This algorithm computes the convex hull of the points Pl, ... , Pn in the plan e. 
The x- and y-coordinates of the point p are denoted p .x and p. y, respectively. 

Input: Pl, ... , Pn and n 
Output: Pl, ... , Pk ( the convex hull of Pl, ... , Pn) and k 

procedure graham_scan(p, n, k) 
11 trivial case 
if n = 1 then 

begin 
k:= 1 
return 
end 

11 find the point with minimum y-coordinate 
min := 1 
for i := 2 to n do 

if Pi .y < Pmin·Y then 
min := 1 

11 Among all such points, find the one with minimum 
11 x-coordinate 
for i := 1 to n do 

if Pi .y = Pmin·Y and p¡ .X < Pmin·X then 
min := i 

swap(pJ, Pmin) 
11 sort on angle from horizontal to P1, p¡ 
sort pz, ... , Pn 
11 Po is an extra point added to prevent the algorithm from 
11 backing up forever 
Po:= Pn 
11 discard points not on the convex hull 
k:= 2 
for i := 3 to n do 

begin 
while Pk-1, Pk. p¡ do not make a left turn do 

11 discard Pk 
k:= k -1 

k:= k+ 1 
swap(pi, pk) 
end 

end graham_scan 
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FIGURE 1 1.3.9 
A situation in the convex hull 
algorithm when point p is examined. 
Before p is examined, the convex 
hull of the points so far examined is 
P1, pz, PJ, p4, Ps· Since /)4, JJs, p 
make a right turn, p5 is discarded. 
This leaves the points p3 , p4 , p, 
which also make a right turn; thus, 
p4 is also discarded. This leaves the 
points pz, /)3, p, which make a left 
turn; thus p3 is retained. The current 
convex hull is p¡, pz, /)3, p. The 
algorithm continues by examining 
the point following p. 


