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Abstract—In this paper will be prove that fitting an ellipse,
according to the minimization of the squares of algebraic
distances, is equivalent to calculate the roots of three cubic
equations. The programming code to implement this solution
is very small, without to need any special numeric library.
Futhermore, posible numeric problems of the implementation
are analized and several simulation results are shown to validate
the proposed implementation.

I. INTRODUCTION

The fitting of geometric features is an important problem
in several fields of science and engineering. In particular,
circle and conic are the most common geometric features for
the aplication of image processing. Fitting an ellipse is an
important task in Computer Vision, e.g. circle projections may
become ellipses, and it has many practical applications as face
detection [1], quality control [2] and analysis of grain [3], to
mention just a few.

The simplest algorithm to fit an ellipse to a given set of
points is based in the minimization of the sum of algebraic
distances, from those given points to the ellipse [4]. Although
this algorithm is also very easy to code, in fact in [4] is
implemented in ten lines of Matlab code, it is not very robust
and in [5] authors conclude –erronously, as will be shown in
this article– that “the method does not work”.

The goal of this work is to implement a program to solve
the minimization problem without to need special numeric
libraries. The method in [4] needs a procedecure to solve the
generalized eigenvalue problem of a 6× 6 matrix. Also, it is
required that our solution must be robust, this is, the program
must give a correct result even if five input points are used.
The solution in [4] does not give a result when only five points
are used.

Futhermore, having a procedure to fit an ellipse with the
minimum set of points (five) is basic to the robust fit us-
ing the RANdom SAmple Consensus (RANSAC) algorithm.
RANSAC is the state of the art algorithm to solve a robust
estimation problem (with outliers and noise in the input data)
in the field of computer vision [6]. The way which RANSAC
solves an robust ellipse fitting problem is as follow: (1) Select
randomly five points from the whole set of input points, (2)
use the LS procedure to estimate a model with that five points,
(3) evaluate the model (e.g, counting the number points on the
model), (4) if the number of points on the model is gretear
that a previous iteration, accept the ellipse model. This model

is called the consensus set, (5) Go to step (1) until a certain
number of iterations is reached.

In addition, the direct procedure in [4] (in fact, it is a least-
square procedure) can be user as the initial solution for non-
linear fitting methods [7].

The paper is organized as follows; in next Sec. II the linear
algorithm in [4] and the solution in [8] are described; in Sec.
III our solution is explained; in Sec. IV simulations results are
shown, and a brief discussion is given in Sec. V. Finally in
Sec. VI conclusions of this work are drawn.

II. DESCRIPTION OF THE LINEAR ALGORITHM

The method [4] fit a set of points to an ellipse, it is based in
the minimization of the sum of square of algebraic distances
from the the points to the ellipse, this is, the method minimizes
the function:

ga(a) =

n∑
i=1

(aTvi)
2 (1)

where a = [a, b, c, d, e, f ]T is the vector of coeficients of the
general conic equation ax2 + bxy + cy2 + dx + ey + f = 0,
and v is the vector [x2, xy, y2, x, y, 1]T that is built from
the coordinates of each point. The general conic equation
represents an ellipse if b2 − 4ac < 0. The term aTvi in
(1) represents the algebraic distance from point (x, y) to the
ellipse represented by vector a.

Applying Lagrange multiplier to (1) and fixing the constrain
scale to 4ac− b2 = 1, we obtain the system of equations:

Sa = λCa, subject to:

aTCa = 1,
(2)

where S = DTD, D = [vT
1; vT

2; . . . ; vT
n], and C is the

constraint matrix; S and C are in R6×6. C is a matrix of
zeros, except C(2, 1) = C(1, 2) = 2 and C(1, 1) = −1.

Equation (2) can be rearranged by taking submatrices in
R3×3 as in [8]:[

S1 S2

ST
2 S3

] [
a1
a2

]
=

[
C1 0
0 0

] [
a1
a2

]
, subject to: (3)

aTC1a = 1 (4)

where

C1 =

0 0 2
0 −1 0
2 0 0

 (5)
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Developing (3) we arrive to:

(S1 − S2S
−1
3 ST

2 )a1 = λC1a1 (6)

aT
1C1a1 = 1 (7)

a2 = −S−1
3 ST

2a1 (8)

a =

[
a1
a2

]
(9)

III. PROPOSED SOLUTION TO THE PROBLEM

Equation (6) represents the generalized eigenvalues and
eigenvectors problem [9]. We can see more clearly this if it
is changed in (6) M = S1 − S2S

−1
3 ST

2 , and also doing X the
eigenvectors matrix, and E the diagonal matrix of eigenvalues,
giving

MX = C1XE (10)

The eigenvectors of a symmetric matrix are all real (or
no one is a complex number) [10]. Now, can be solved (10)
without lost the symmetry propierties of matrices M and C1?,
or in other words, can be changed the general eigenproblem
to a standard eigenproblem? [10, Ch. 15]. Answer is yes. The
solution is obtained rewriten (10) in the form

C1X =MXE−1, (11)

and if we calculate the eigenvectors of M = PE2
2P

T (it will
proved later M is symmetric, and then P is orthonormal), then
we obtain:

C1X = PE2E2P
TXE−1,

P TC1X = E2E2P
TXE−1,

E−1
2 P TC1X = E2P

TXE−1.

If we do X = PE−1
2 Y results

E−1
2 P TC1PE

−1
2 Y = E2P

TPE−1
2 Y E−1.

In the right part of this last equation we can see that
E2P

TPE−1
2 = I and if we let E−1

2 P TC1PE
−1
2 = N we

obtain
NY = Y E−1, (12)

that is the standar eigenproblem.

A. Some details about our implementation

The eigenvalues of a symmetric matrix, for example A, are
all real [9], and then we can calculate directly its eigenvalues
by solving the cubic equation that results from det(A−λI) =
0. Therefore, to solve the ellipse fitting problem, three times
can be used the eigendecomposition of a symmetric matrix of
size 3 × 3: the first one to find the inverse of matrix S3 in
(6). The second one to find the eigendecomposition of matrix
M , in expression (11). And the third one to find the final
eigendecomposition of matrix N in (12).

Matrix S3 is symmetric because of the form that it is built,
but it is not evident how M and N are. From the expression
to calculate M = S1 − S2S

−1
3 ST

2 , we can see that S1 is

symmetric, and S2S
−1
3 ST

2 is symmetric too1 therefore M is
symmetric.

From the expression to calculate N = E−1
2 P TC1PE

−1
2 ,

E−1
2 is diagonal, C1 is symmetric (see (5)) then P TC1P is

also symmetric, and the multiplication by E−1
2 does not afect

(because it is diagonal), therefore N is finaly also symmetric.
Therefore, in order to solve the algebraic fitting problem

of an ellipse we only need a very simple subroutine that
calculates the eigenvectors and eigenvalues of a matrix of size
3×3, as the one presented in [11] or to solve a cubic equation
as in [12].

In our imprementation we use function dsyevv3() [11]
to calculate the eigendecomposition of matrices S3, M and N .
With the first eigendecomposition S3 = PDP T, we calculate
S−1
3 = PD−1P T. Here, S3 is also positive definite, then its

three eigenvalues are greater than zero and there is not any
problem to calculate D−1.

With the second eigendecomposition, M = PDP T =
PE2

2P
T, we only know M is symmetric and we cannot

calculate E2 =
√
D if one if its eigenvalues is zero or negative.

In practice we observe that M is positive definite, and the
ellipse cannot be calculated if two eigenvalues are negative or
one of them is greater than 1010. Also, if only one eigenvalue
is very small and negative, its sign is changed.

Neither exist any problem to calculate the eigendecompo-
sition of the third matrix N . Only we need to remember that
the solution of the fitting problem is one of the eigenvectors
X = PE−1

2 Y , and if any of them does not satisfy the
constraint aT

1C1a1 > 0, then the ellipse cannot be calculated.

IV. SIMULATIONS

To test our implemented program we perform the following
experiment: four points were fixed at positions (120, 120),
(480, 120), (480, 280) and (120, 280). The values of the
fifth point (x, y) were taken inside ranges 0 ≤ x < 600
and 0 ≤ y < 400. The algebraic distance was measured
for each point over the canonical ellipse in the origin as
f(a, b, x, y) = x2b2 + y2a2 − a2b2. The image in Fig. 1(a)
show a white pixel where the algebraic distance of any of the
five points was greater than 500; black pixels show where was
posible to calculate an ellipse and the algebraic distances to
any point was less than 500. For this image in Fig. 1(a) can be
considered that fitted ellipse pass through the points, such as
the ellipse shown in Fig. 2(a) (with its fifth point at (300, 50)).
Images in Figs. 1(b), (c), (d), (e) and (f) were generated in the
same manner that image in Fig. 1(a), but to algebraic distances
105, 5 · 107, 3 · 108, 5 · 108 and 1 · 109, respectively. Distance
3 · 108, corresponding to image in Fig. 1(d) could appers very
big, but two exemplas of such ellipses fitted with two distint
point on the white zones (where distance is greater than a
3 ·108): ellipse in Fig. 2(b) was calculated with the fifth point
at (200, 200), and ellipse in Fig. 2(c) was calculated with
the fifth point at (60, 60); both ellipses are correct, such as

1The inverse, if it exists, of a symmetric matrix is also symmetric and for
any matrix A and a symmetric matrix B (both with real elements), the product
ABAT is a symmetric matrix.
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they resulted of our proposed program as visually as can be
observed on the images.

Finally, there are two cases where an ellipse cannot be
calculated. First is when two of the eigenvalues of matrix
M are negative or when any of them is greater to 1010; this
result form the parallel lines on image Fig. 1(f), and in fact
two parallel lines is a denegerated solution for an ellipse.
Second case is when the eigenvectors of matrix X in (11)
do not satisfy the constraint aT

1C1a1 = 1, these points form
the central cross (+) in image of Fig. 1(f). This second case
can be visualized when four points are on the corners of a
square and the fifth point is on the square’s center: the fitted
curve is a circle and not an ellipse.

V. DISCUSSION

The Matlab subrutine presented in [4] fails to calculate the
ellipse with input points (120, 120), (480, 120), (480, 280),
(120, 280) and (60, 60) (the solution in [4] to eq. (2) is the
eigenvector corresponding to the unique negative eigenvale,
but in this case two eigenvalues are negative). Our solution
gives a result, as is shown in Fig. 2(c).

Besides, our solution can be used perfectily to measure
the ellipticity [5] of a bidimensional form. Some 2D curves
are the ones used in [5] are shown in Fig. 3 (every form is
composed from 150 to 240 points); the corresponding fitted
ellipses can be observed in Fig. 4. Clearly, we can observe
that our proposed solution gives a good result, and contrarily to
authors say in [5], our proposed solution to the linear algorithm
in [4] does work.

In summary, our implementation performs:
1) For each point calculate incrementally matrices S1, S2

and S3

2) Invert matrix S3 (using its eigendecomposition)
3) Calculate matrix M
4) Calculate the eigendecomposition of matrix M
5) If two eigenvalues of M are negative or one of them is

greater than 1010, stop.
6) If the smallest eigenvalue of M is negative, invert its

value.
7) Calculate matrix N
8) Calculate the eigendecomposition of matrix N
9) Calculate the eigenvectors X

10) If eigenvectors of X do not satisfy the constraint, stop.
11) Optionally calculate the ellipse parameters

[a, b,Xc, Yc, α].
Step 1 is performed, using example matrix S1, as S1 ←

S1 + vT
i vi, where vector vi is [x2i , xiyi, y

2
i ] for each point i in

the input set of points.
In Step 11, a and b are the semi-major and semi-minor

ellipse lenght axes, respectively; (Xc, Yc) is the ellipse center
respect the global coordinate system, and α is the rotation
angle respect the semi-major ellipse axis. These are calculated
from the general conic coefficients a, b, c, d, e and f as:

α = arctan [2b/(a− c)] ,

Xc =
cd− bf
b2 − ac

, Yc =
af − bd
b2 − ac

.

Considering these auxiliary values:

u1 = 2(ae2 + cd2 + fb2 − 2bde− acf),

u2 = (b2 − ac)[(c− a)

√
1 +

4b2

(a− c)2
− (c+ a)],

u3 = (b2 − ac)[(a− c)

√
1 +

4b2

(a− c)2
− (c+ a)],

a and b are calculated as:

a =
√
u1/u2, b =

√
u1/u3.

And only if a < b, these values are interchanged and α is
updated as α← α+π/2 if α < 0, or α← α−π/2 otherwise.

VI. CONCLUSIONS

A new implementation of the general algorithm in [4] to
fit an ellipse according the minimization of algebraic distance
was presented. We prove that it is only neccesary to solve three
cubic equations to solve the fitting problem. We consider that
our implementation generate the smallest executable program
because no external numerical library (such as LAPACK) is
required. Futhermore, our implementation is more stable and
robust that the solution presented in [4].

The source code of our implementation is available at
http://cs.cinvestav.mx/˜fraga/Softwarelibre/DirectFitting.tar.gz.
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(a) 500 (b) 105 (c) 5 · 107

(d) 3 · 108 (e) 5 · 108 (f) 1 · 109

Fig. 1. Images resulted of our simulation. The value on each image mean that for black pixels, the algebraic distance of any of the five used points is less
than the given value
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(a) Fifth point in (300, 50)
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(b) Fifth point in (200, 200)
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(c) Fifth point in (60, 60)

Fig. 2. Three ellipses fitted with the proposed algorithm. The other four points used in the fit are (120, 120), (480, 120), (480, 280) and (120, 280).

Fig. 3. Four images of 2D forms Fig. 4. Ellipses fitted to the 2D forms in Fig. 3.
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