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 The Central Conic Sections Revisited

 AYOUB B. AYOUB
 The Pennsylvania State University
 Abington, PA 19001

 If a central conic section is given by the general quadratic equation

 f(x,y)=ax2+2nxy+by2+2hx+2ky+c=O, (1)

 how do we find its center, the equations of its principal axes and the radii along these
 axes? Usually by translating and rotating the coordinate axes. Here, however, we will
 use a combination of techniques that will shed more light on this topic.

 First, we will get the center by using the fact that it is the midpoint of any diameter

 passing through it. Assume that the center of the conic is (x0, yo). Then the equation
 of the diameter parallel to the x-axis is y = yo, and if we substitute that in (1), we get
 ax2 + (2nyO + 2h)x + by2 + 2kyo + c = 0. If the roots of this equation are x1 and X2,
 then the x value of the center, x0, is given by

 =1 coefficient of x
 x0 =2 (+ 2 coefficient of x2 J

 Thus,

 xo B 2fYoa 2h) that is,

 axo+nyo+h=O. (2)

 Similarly if we use the diameter x = x0, we get

 nxo+by0+k=0. (3)

 Equations (2) and (3) will determine the center (x0, y0) of the conic given by (1), and
 it is easy to see that these equations are equivalent to df/dx = 0 and df/dy = 0.

 One may ask: What's so special about the diameters represented by (2) and (3)?
 You may notice that if (x0, y0) was a midpoint of any chord parallel to the x-axis, it
 also would have satisfied the equation ax + ny + h = 0. Hence this equation repre-
 sents the diameter bisecting all chords parallel to the x-axis. The endpoints of the
 diameter, being the limiting cases of the chords, are the points where the tangents
 parallel to the x-axis touch the conic, and that explains why these points satisfy the
 condition df/dx = 0. By the same token nx + by + k = 0 represents the diameter
 bisecting the chords parallel to the y-axis. FIGURE 1 depicts such two diameters in a
 case of an ellipse.

 Solving equations (2) and (3) we get x0 = H/C and yo = K/C, where H, K, C are
 the cofactors of h, k, c, respectively, in the determinant

 a n h
 A= n b k.

 h k c

 Of course, if C = 0, this indicates that we are dealing with noncentral conic section,
 i.e. either a parabola or a pair of parallel lines.
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 FIGURE 1

 If we replace x and y of (1) by x + xo and y + yo to translate the origin to the
 center of the conic we get

 ax2+ 2nxy +by2+xo(axo +nyo +h) +yo(nxo +byo +k) +hxo +kyo + c = 0.

 Making use of (2), (3), xo = H/C, yo = K/C, and hH + kK + cC = A the equation of
 the conic, with its center now at the origin, becomes

 2 2 A ax +2nxy+by2+ =O

 or

 ax2+2nxy+by2+ =0.
 ab - n2

 If A = 0 then the equation represents a pair of straight lines. Let us assume that
 A 0 0 and proceed to find the extreme radii of the conic in the nontrivial case when
 n 0 0. To that end we use polar coordinates and in this case the previous equation
 takes the form

 r2(acos20+2nsin cos0+bsin20) + abn2=

 Since A/(ab - n2) is constant then r is maximum or minimum if (a cos2 0 +
 2n sin 0 cos 0 + b sin2 0) is minimum or maximum, respectively, and this occurs when
 its derivative is equal to zero. But

 -2a cos 0 sin 0 + 2n cos20 - 2n sin2 0 + 2b sin 0 cos 0 = 0

 is equivalent to

 ntan20+ (a- b)tan0-n =O. (4)

 If we let tan 0 = m, then

 nm2+ (a-b)mr-n=0 (5)

 will produce the slopes of the principal axes of the conic section. Now using the
 substitution m = (A - a)/n (or m = u/(A - b)) equation (5) takes the form

 (A -a)(A -b) -n2 = 0 (6)

 or

 |A-a n =0.
 n A -b
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 The roots A1 and A2 of equation (6) are the eigenvalues of the matrix

 A = a n]
 Ln bJ

 Hence A is similar to the diagonal matrix

 [A1 0]
 L A2|

 through some orthogonal matrix (isometric) transformation [1]. This implies that the
 equation ax2 + 2nxy + by2 + A/(ab - n2) = 0, which can be written as

 [x Y][n iJ[q]+bA2 =0, would take the form

 [ x Y ] [ 0 A2 ][Y] ab =0.

 Thus, Aix2 + A2y2 + A/(ab - n2) = 0. But (6) implies that A1A2 = ab - n2. Hence,

 Ax2 + A2y2 + A A= (7)
 A1A2

 is the equation of the conic section referred to its principal axes. And this is exactly
 the equation we get if we rotate the coordinate axes through an angle 0 of (4). From
 (7) we conclude that the squares of the radii along the principal axes are

 -A2A and
 A~~~~A2 A

 and the equations of the corresponding principal axes are

 y - YO = ml(x - xo) and y - y0 = m2(x -xX),

 where

 A1 - a A2 -a
 ml= and m2= n 2 n

 and (xo, yo) is the center of the conic section.

 Example. Consider the equation 17X2 -12xy + 8y2 + 12x - 16y - 12 = 0. Here

 17 -6 6

 A= -6 8 -8 =-2000,
 6 -8 -12

 and

 A -17 -6
 -6 A 8 = ? A1 = 5 and A2 = 20.

 The equation of the ellipse referred to its principal axes is

 2 2 ~2000 x2 2 5x2+20y2- =0, thatis, + -1.
 5(20) ' 4 1

 Since the center satisfies 17x - 6y + 6 = 0 and -6x + 8y - 8 = 0, the center is
 (0, 1).
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 The slopes of the principal axes are

 A1-a 5-17 A2-a 20-17 1

 nl = -6 = 2 and m2= n -6 =
 The equations of the principal axes are

 y - 1 = 2(x - 0) and y - 1 = (X - 0), or equivalently,

 y=2x+1 and y=-2x+1.

 REFERENCE

 1. H. Anton, Elementary Linear- Algebra, 6th edition, John Wiley & Sons, Inc., New York, 1991, p. 418.

 Proof without Words: Sum of Pentagonal Numbers

 1 2 2 5 3 8 n(3n-1) n2(n +1)

 ~2~+2~+2+ +** 2 2

 n+ 1

 -WILLIAM A. MILLER

 CENTRAL MICHIGAN UNIVERSITY

 MOUNT PLEASANT, MI 48859
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