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Abstract

The least-squares "tting minimizes the squares sum of error-of-"t in prede"ned measures. By the geometric "tting, the
error distances are de"ned with the orthogonal, or shortest, distances from the given points to the geometric feature to be
"tted. For the geometric "tting of circle/sphere/ellipse/hyperbola/parabola, simple and robust nonparametric algorithms
are proposed. These are based on the coordinate description of the corresponding point on the geometric feature for the
given point, where the connecting line of the two points is the shortest path from the given point to the geometric feature
to be "tted. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The "tting of geometric features to given 2D/3D points
is desired in various "elds of science and engineering (e.g.
astronomy [1], physics [2], biology [3], quality control
and metrology [4}7]). In particular, circle and conic are
the most common geometric features for the application
of image processing. In the past, "tting problems have
usually been solved through the least-squares method
(LSM) [1] with respect to e!ective implementation and
acceptable computing costs. The main alternative
methods for the detection and analysis of geometric fea-
tures, are Hough transform [8}10] and the moment
method [11}13].
LS "tting minimizes the squares sum of error-of-"t in

prede"ned measures. There are two main categories of
LS "tting problems for geometric features, algebraic and
geometric "tting, and these are di!erentiated by their

respective de"nition of the error distances involved
[14}16]. By algebraic xtting, a geometric feature is de-
scribed by implicit equation F(x, a)"0 with the para-
meters vector a"(a

�
,2, a

�
). The error distances are

de"ned with the deviations of the implicit equation from
the expected value (i.e. zero) at each given point. The
nonequality of the equation indicates that the given point
does not lie on the geometric feature (i.e., there is some
error-of-"t). Most publications about the LS "tting of
circle [2,17}24], and ellipse [3,15,25}36], have been con-
cerned with the squares sum of algebraic distances or
their modi"cations:
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for the conic "tting. In spite of the advantages in imple-
mentation and computing costs, algebraic "tting has
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drawbacks in accuracy and in relation to the physical
interpretation of the "tting parameters and errors
[29,32,37]. The known disadvantages of algebraic "tting
are [16,29,31}33,38]:

� its de"nition of error distances does not coincide with
measurement guidelines;

� it is very di$cult to test the reliability of the estimated
"tting parameters;

� the "tting parameters are not invariant to the coordi-
nate transformation (e.g. by ellipse "tting, a simple
parallel translation of the given points causes changes
not only in the center coordinates, but also in the axis
lengths and angle of the ellipse);

� the estimated "tting parameters are biased;
� the "tting errors are unwillingly weighted;
� the "tting procedure sometimes ends in an unintended
geometric feature (e.g. a hyperbola instead of an
ellipse).

By geometric xtting, also known as best "tting, the
error distances are de"ned with the orthogonal, or shor-
test, distances from the given points to the geometric
feature to be "tted. Geometric "tting is possibly the only
solution to all of the above problems of algebraic "tting.
This geometric error measure has been used as the
benchmark by the goodness-of-"t test of various error
measures. Especially for ellipse "tting, the papers of
Safaee-Rad et al. [29] and Rosin [31,32] provide a good
overview of the various error de"nitions.
The geometric "ttings of circle/sphere and ellipse/hy-

perbola/parabola, are nonlinear problems and must be
solved with iteration. For the geometric "tting of
circle/sphere, there are some well established methods
[4,39}41]. On the other hand, the geometric "tting of
ellipse/hyperbola/parabola has been attacked in the last
few years and is being further developed. Gander et al.
[39] have proposed a geometric ellipse "tting algorithm
in parametric form, which has a large number of "tting
parameters (m#5 unknowns by 2m equations from
m measurement points). Consequently, it has an unnec-
essarily deteriorative performance of convergence. Fur-
thermore, their algorithm cannot directly take the results
of a circle "tting as the reasonable initial values for the
iterative ellipse "tting, because of the singularity in their
Jacobian, occurring when the two axes of ellipse have the
same length. The paper of Cui et al. [42] describes a geo-
metric ellipse "tting with a minimum variance estimator
and parameter space decomposition technique. SpaK th's
papers [43}45] describe geometric "tting algorithms in
parametric form for ellipse/hyperbola/parabola. By
SpaK th's ellipse "tting algorithm, it is also assumed that
the two axis lengths of ellipse are di!erent.
In this paper, we propose very simple and robust

nonparametric algorithms for geometric "ttings of

circle/sphere and ellipse/hyperbola/parabola. Our algo-
rithms are based on the coordinate description of the
corresponding point on the geometric feature for a given
point, where the connecting line of the two points is the
shortest path from the given point to the geometric
feature. For the geometric circle/sphere "tting, the corre-
sponding point on the circle/sphere is de"nitely described
with the circle/sphere parameters and with the given
point. On the other hand, in the geometric ellipse/hyper-
bola/parabola "tting, the corresponding point on the
ellipse/hyperbola/parabola is described only implicitly
through the orthogonal contacting conditions. When
the corresponding point on the geometric feature for
the given point is de"nitely or implicitly known, we can
derive the Jacobian matrix at this point and apply the
iterative nonlinear least-squares method.
Section 2 describes the applied nonlinear LS "tting in

a general form. In Section 3, we present an algorithm for
the geometric "tting of circle/sphere in an n-dimensional
space (n*2). Sections 4 and 5 contain the geometric
"tting of ellipse/hyperbola/parabola in greater detail.
This paper ends with a conclusion and summary of our
discussion.

2. Nonlinear least-squares 5tting

Suppose that q parameters a are assumed to be related
to the p(*q) measurements X according to

X"F(a)#e, (3)

where F represents some nonlinear continuously di!er-
entiable observation functions of a, and e denotes errors
with zero mean, whose in#uence is to be eliminated. The
nonlinear least-squares estimate of a given X must min-
imize the performance index

��
�
"[X!F(aL )]�[X!F(aL )]. (4)

For convenience, the weighting matrix (or the noise
covariance matrix) is chosen as an identity matrix. The
existence of the unbiased optimal solution, which is gen-
erally nonlinear in the estimate of a, can be referenced
from elsewhere [46]. There are various methods for the
numerical solution of the above nonlinear estimation
problem. In this paper, we have chosen the Gauss}
Newton iteration with initial parameters vector a

�
and

step-size parameter �

�F
�a �a

�

�a"X!F(a
�
), (5)

a
���

"a
�
#��a. (6)
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Fig. 1. A circle/sphere centered at X
�
with radius R.

The matrix of partial derivatives appearing in Eq. (5) is
the Jacobian matrix J

J
��

,

�F
�

�a
�

. (7)

For this type of numerical solution the user must supply
the function values vector F and the Jacobian matrix J,
of course, at the nearest corresponding points on the
geometric feature from each given point. This is a neces-
sary requirement for the least-squares orthogonal distan-
ces "tting to work with the performance index of Eq. (4).
We can locate, without di$culty, the nearest point on
a circle/sphere from a given point. Unfortunately, in the
case of ellipse/hyperbola/parabola "tting, it is not easy to
locate the nearest point on the ellipse/hyperbola/para-
bola from a given point. We compare the cases of
circle/sphere and ellipse/hyperbola/parabola "tting in
Sections 3}5. When the function values vector F and the
Jacobian matrix J are provided, the Jacobian matrix can
be decomposed by SVD [47,48].

�F
�a �a

�

"UWV�

withU�U"V�V"I,W"[diag(w
�
,2,w

�
)].

(8)

After a successful termination of the iteration procedure,
along with the performance index ��

�
of Eq. (4), the

information about the quality of the "tting parameters
will be provided.
The parameter covariance matrix:

Cov(a)"(J�J)��"(VWU�UWV�)��"VW��V�,

thus
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Consequently, the variance of the estimated parameters:
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and the correlation coe$cients:
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3. Geometric 5tting of circle and sphere

The circle/sphere in an n-dimensional space (n*2)
with the center at X

�
and radius R can be described as

below (Fig. 1)

��X!X
�
���"R�. (11)

For a given point X
�
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�
), the nearest corresponding

point X�
�
on the circle/sphere is
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with the orthogonal error distances vector
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From Eq. (12), the Jacobian matrix J for the Gauss}
Newton iteration can be directly derived:

JX�
� �a

"

�
�a�X�

#R
X

�
!X

�
��X

�
!X

�
���

"

�X
�

�a
#

X
�
!X

�
��X

�
!X

�
��

�R

�a
!

R

��X
�
!X

�
��

��I!
(X

�
!X

�
)(X

�
!X

�
)�

��X
�
!X

�
��� �

�X
�

�a
. (14)

For example, in the case of sphere "tting (n"3), if we
de"ne the parameters vector a

a�"(R,X�
�
)"(R,X

�
,>

�
,Z

�
), (15)
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Table 2
(a) Result of the circle xtting to the coordinate pairs in ¹able 1

Parameters R X
�

Y
�

Iteration steps/	�a	

a
�
I 2.967 4.500 6.667 9/5.4�10��

II 4.109 4.742 3.835 8/3.6�10��

11/2.1�10�� (Gander)
116/1.0�10�	 (SpaK th)

aL 4.71423 4.73978 2.98353 �
�
"1.1080

�(aL ) 0.6595 0.2672 0.8274

(b) Correlation coezcients of the circle parameters in (a)

�(aL ) R X
�

>
�

R 1.00
X

�
!0.31 1.00

>
�

!0.97 0.34 1.00

Fig. 2. Geometric circle "tting to the set of points in Table 1: (a)
the center of gravitation and the RMS central distance are used
as the initial parameter values; (b) the results of an algebraic
circle "tting are used as the initial parameter values.

Table 1
Six coordinate pairs used for circle "tting [39]

X 1 2 5 7 9 3
Y 7 6 8 7 5 7

then we will have

�R

�a
"(1 � 0�) and

�X
�

�a
"(0 � I). (16)

With the Jacobian matrix JX�
� �a

of Eq. (14), and the error
distances vector X�

�
of Eq. (13) at each point X�

�
, we

construct p("m ) n) linear equations for the m given
n-dimensional points. In the case of sphere "tting (n"3,

p"3m, q"4), the linear equations (5) look like
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�. (17)

The initial parameters vector, starting the Gauss}
Newton iteration, may be supplied from an algebraic
circle "tting. Since the above algorithm is very robust, we
can also take the center of gravitation and the RMS
central distances.

X
�
"X� "

1

m

�
�
���

X
�
, R"�

1

m

�
�
���

�X
�
!X� ��.

(18)

For an experimental example of the geometric circle
"tting, we have taken m"6 coordinate pairs (n"2)
from Gander's paper (Table 1) [39], the initial para-
meters vector a

�
from Eq. (18), and the step size �"1.3.

After 9 Gauss}Newton steps for the norm of the terminal
correction vector 	�a	"5.4�10��, we have obtained
�
�
"1.1080 (Fig. 2a, Table 2a and b). Table 2b reveals

a strong anti-correlation between the radius R and the
coordinate >

�
of the circle which is caused by the distri-

bution of the given points. With the initial parameters
vector from an algebraic circle "tting [17], and the step
size �"1.2, the same estimations are reached after
8 Gauss}Newton steps for 	�a	"3.6�10�� (Fig. 2b).
Gander's algorithm [39] with the initial parameter
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Table 4
Result of the sphere "tting to the coordinate triples in Table 3

Parameters R X
�

>
�

Z
�

Iteration steps/	�a	

a
�

5.152 !0.124 0.839 0.168 4/1.2�10��

32/1.0�10�	 (SpaK th)

aL 5.14973 !0.15433 0.87425 0.18060 �
�
"0.8832

�(aL ) 0.0862 0.1651 0.1764 0.1145

Table 3
Eight coordinate triples for sphere "tting [41]

X 0 !4 3 !1 !3 4 !2 !1
Y !1 1 !3 !3 5 !1 1 !2
Z 5 !3 3 !3 !1 !1 !5 4

Table 5
Six coordinate triples for sphere "tting [41]

X 1 2 5 7 9 3
Y 1 2 3 4 5 6
Z 7 6 8 7 5 7

values from an algebraic "tting, delivers the same estima-
tions after 11 Gauss}Newton steps for 	�a	"

2.1�10��. SpaK th's algorithm [40] needed 116 iterations
for 	�a	+1.0�10�	.
For an experimental comparison of geometric sphere
"tting algorithms, we have taken m"8 coordinate
triples (n"3) from SpaK th's paper (Table 3) [41], the
initial parameters vector from an algebraic "tting [17],
and the step size �"1.0. After 4 Gauss}Newton steps
for 	�a	"1.2�10��, we have obtained �

�
"0.8832

(Table 4). SpaK th's algorithm [41] needed 32 iterations for
	�a	+1.0�10�	.
For another set of 6 coordinate triples in Table 5 [41],

we have taken the initial parameters vector from an
algebraic "tting [17], and the step size �"1.3. After
9 Gauss}Newton steps for 	�a	"5.3�10��, we have
obtained �

�
"1.1962 (Table 6). SpaK th's algorithm [41]

needed 150 iterations for 	�a	+1.0�10�	.

4. Geometric 5tting of ellipse and hyperbola

In this section, we describe a new algorithm for geo-
metric ellipse "tting. The geometric hyperbola "tting can
be accomplished through a minimal modi"cation of the
geometric ellipse "tting. An ellipse in a plane can be
uniquely described with 5 parameters, the center coordi-
nates X

�
,>

�
, axis lengths a, b (a*b), and pose angle

� (!�/2(�)�/2) (see Fig. 3). For the least-squares
orthogonal distances "tting of ellipse with the algorithm
described in Section 2, we must locate the nearest corre-
sponding point X�

�
(orthogonal contacting point) on the

ellipse for the given point X
�
, and evaluate the Jacobian

matrix at X�
�
. To locate the points X�

�
(i"1,2,m) on the

ellipse, Gander et al. [39] and SpaK th [43] have introduc-
ed additional m unknown parameters, where each point

X�
�
has an individual angular parameter to be simulta-

neously estimated with the 5 ellipse parameters. As a con-
sequence, their linear system has a bulky and sparse
Jacobian matrix and shows only a deteriorative conver-
gence. Both algorithms assume that the two axis lengths
of ellipse are di!erent. We have solved these problems
of orthogonal contacting point and Jacobian matrix by
introducing a temporary coordinate system xy posi-
tioned at (X

�
,>

�
) and rotated with the angle � [29]. The

use of the temporary coordinate system xy is not new at
all, and very common for an ellipse "tting, but we exploit
it as well as the orthogonal contacting conditions in
order to derive the Jacobian J at the nearest correspond-
ing pointsX�

�
on the general rotated ellipse from the given

pointsX
�
. We show the detailed procedures in the follow-

ing subsections. The coordinate transformation between
the two coordinate systems xy and X> is (Fig. 3)

x"R(X!X
�
) (19)

or

X"R��x#X
�
, (20)

where

R"�
C S

!S C� and R��"R�,

withC"cos �,S"sin �. (21)

4.1. Orthogonal contacting point on ellipse

In the xy coordinate system, the 3 of 5 ellipse para-
meters disappear (X

�
,>

�
and �) and the ellipse will be
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Table 6
Result of the sphere "tting to the coordinate triples in Table 5

Parameters R X
�

>
�

Z
�

Iteration steps/	�a	

a
�

4.739 4.541 3.137 3.410 9/5.3�10��

150/1.0�10�	(SpaK th)

aL 5.60325 4.46679 3.27374 2.21017 �
�
"1.1962

�(aL ) 0.6912 0.3173 0.4964 0.8530

Fig. 3. An ellipse centered at (X
�
,>

�
) with axis lengths a, b and

angle �. The nearest point (X�
�
,>�

�
) on the ellipse from a given

point (X
�
,>

�
) satis"es the orthogonal contacting conditions, and

lies in the same quadrant of standard position as the given point.

described only with axis lengths a, b as below (standard
position):

x�

a�
#

y�

b�
"1. (22)

For a given point (x
�
, y

�
) in xy system, the tangent line at

the orthogonal contacting point (x, y) on the ellipse, and
the connecting line of the two points are perpendicular to
each other:

dy

dx
)
y
�
!y

x
�
!x

"

!b�x

a�y
)
y
�
!y

x
�
!x

"!1. (23)

Rewrite Eqs. (22) and (23)

f
�
(x, y)"�

�
(a�y�#b�x�!a�b�)"0 (24)

and

f
�
(x, y)"b�x(y

�
!y)!a�y(x

�
!x)"0. (25)

The orthogonal contacting point (x, y) on the ellipse must
simultaneously satisfy Eqs. (24) and (25) (orthogonal con-
tacting conditions). Safaee-Rad et al. [29] have combined
two Eqs. (24) and (25) into one quartic equation and

chosen one solution which has the shortest connecting
line length among the maximum 4 real solutions. The
numerical method solving this quartic equation is unsta-
ble, if �x

�
�+0 or �y

�
�+0. Thus, we have not combined

two Eqs. (24) and (25) into one quartic, but have simulta-
neously solved these equations using the generalized
Newton method as below:

Q"�
�f

�
�x

�f
�

�y

�f
�

�x

�f
�

�y �
"�

b�x a�y

(a�!b�)y#b�y
�

(a�!b�)x!a�x
�
�, (26)

Q
�
�x"!f(x

�
), (27)

x
���

"x
�
#�x. (28)

We supply the initial values x
�
as below in Eq. (29), from

the fact that the given point and its nearest correspond-
ing point on the ellipse lie in the same quadrant of the
standard position (see Fig. 3).

x
�
"�

�
(x

��
#x

��
), (29)

where

x
��

"�
x
�

y
�
�ab/�b�x�

�
#a�y�

�

and

�
x
�

sign(y
�
)

b

a
�a�!x�

�
� if �x

�
�(a,

x
��

"� �sign(x�
)a

0 � if �x
�
�*a.

The iteration in Eqs. (27) and (28) with initial values
x
�

from Eq. (29) ends after 3}4 cycles providing
adequately accurate coordinates for the orthogonal
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contacting point. The Jacobian matrix Q in Eq. (26) is
singular, if the given point x

�
lies in the ellipse center and

if the two axes of the ellipse have the same length. In
other words, there is no unique orthogonal contacting
point on a circle for the circle center.
After the given point X

�
in X> system is transformed

into x
�
in xy system, using Eq. (19), the orthogonal

contacting point x�
�
will be found by the above generaliz-

ed Newton method. Finally, we will have the point
X�

�
through a backward transformation of x�

�
into X>

system using Eq. (20). And the orthogonal error distances
vector will be

X�
�
"X

�
!X�

�
. (30)

4.2. Jacobian matrix at the orthogonal contacting point
on ellipse

If we de"ne the parameters vector a

a"(X
�
,>

�
, a, b, �)�, (31)

we get from the derivatives of coordinate transformation
Eqs. (19) and (20):

�x
�

�a
"

�R
�a

(X
�
!X

�
)!R

�X
�

�a

"�
!C !S 0 0 y

�

S !C 0 0 !x
�
� (32)

and

JX
� �a
"

�X
�a �X�X�

�

"�R��
�x
�a

#

�R��

�a
x#

�X
�

�a ��x�x
�

"R��
�x
�a �x�x�� #�

1 0 0 0 !xS !yC

0 1 0 0 xC !yS��x�x
� .
(33)

The derivatives matrix �x/�a appearing on the right hand
side of Eq. (33) is to be derived from Eqs. (24), (25) and
(32), since the point x� is only implicitly known through
the orthogonal contacting conditions. We di!erentiate
f
�
and f

�
of Eqs. (24) and (25) relatively to the parameters

vector a

�
�f

�
�a
�f

�
�a �"�

�f
�

�X
�

�f
�

�>
�

�f
�

�a

�f
�

�b

�f
�

��
�f

�
�X

�

�f
�

�>
�

�f
�

�a

�f
�

�b

�f
�

�� �"0. (34)

After a series of substitutions and reductions in Eqs.
(32)}(34), we will get

JX�
� �a

"(R��Q��B)�x�x
� , (35)

where Q is the Jacobian matrix as in Eq. (26), and

B"(B
�
B
�
B
�
B
	
B
�
)

with

B
�
"�

b�xC!a�yS

b�(y
�
!y)C#a�(x

�
!x)S� ,

B
�
"�

b�xS#a�yC

b�(y
�
!y)S!a�(x

�
!x)C� ,

B
�
"�

a(b�!y�)

2ay(x
�
!x)� ,

B
	
"�

b(a�!x�)

!2bx(y
�
!y)� ,

B
�
"�

(a�!b�)xy

(a�!b�)(x�!y�!xx
�
#yy

�
)� . (36)

4.3. Orthogonal distances xtting of ellipse

With the Jacobian matrix JX
� �a of Eq. (35), and the
error distances vector X�

�
of Eq. (30) at each point X�

�
, we

construct p("2m) linear equations for the m given two-
dimensional points. The linear equations (5) look like

�
J
�
� � ��

J
�
� � 	�

J
�
� � �

J
�
� � �

J
�
� � �

J
	
� � ��

J
	
� � 	�

J
	
� � �

J
	
� � �

J
	
� � �


 
 
 
 


J
�
� � ��

J
�
� � 	�

J
�
� � �

J
�
� � �

J
�
� � �

J
	
� � ��

J
	
� � 	�

J
	
� � �

J
	
� � �

J
	
� � �

� �
�X

�

�>
�

�a

�b

�� �
"�

X�
�
>�

�



X�
�

>�
�
�. (37)

The initial parameters vector starting the Gauss}Newton
iteration may be supplied from an algebraic ellipse "t-
ting, or from a circle "tting. The use of the results from
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Table 8
(a) Result of the ellipse xtting to the coordinate pairs in Table 7

Parameters a b X
�

>
�

� Iteration steps/	�a	

a
�
I 3.391 3.391 4.840 4.797 0.000 19/4.2�10��

II 3.391/2.0 0.000 17/1.2�10��

III 3.391/2.0 !1.211 23/5.2�10��

IV 3.880 2.896 4.918 5.006 !0.224 21/1.1�10��

71/1.0�10�� (Gander)

aL 6.51872 3.03189 2.69962 3.81596 0.35962 �
�
"1.1719

�(aL ) 3.9751 0.4750 3.2719 1.6488 0.1547

(b) Correlation coezcients of the ellipse parameters in (a)

�(aL ) a b X
�

>
�

�

a 1.00
b 0.85 1.00
X

�
!0.99 !0.87 1.00

>
�

!0.98 !0.92 0.98 1.00
� 0.80 0.84 !0.79 !0.87 1.00

Table 7
Eight coordinate pairs used for ellipse "tting [39]

X 1 2 5 7 9 3 6 8
Y 7 6 8 7 5 7 2 4

a circle "tting as the initial parameter values for iterative
ellipse "tting is also recommended, since:

� The algebraic "tting of ellipses sometimes delivers ob-
viously incorrect parameters.

� Circles are a special case of ellipses.
� Circle "tting is more robust than ellipse "tting, thus it
guarantees a reasonable initial values set starting iter-
ative ellipse "tting.

When the results from a circle "tting are to be used as the
initial values for ellipse "tting, we set

(X
�
,>

�
)
�������

"(X
�
,>

�
)
��	���

, a"b"R, and �"0.
(38)

If a"b during iteration, the elements of B
�
in Eq. (36)

are all zero, and consequently, the last column of the
Jacobian matrix in Eq. (37) will be "lled with zeros. In
other words, the parameter � is redundant for a circle. In
this case, �� will have the solution ��"0 from SVD and
subsequent backsubstitution in Eqs. (5) and (8) [48].
When a(b after an updating of the parameters during
iteration, we simply exchange the two values and set
�Q�!sign(�)�/2.

For an experimental example of the ellipse "tting, we
have taken 8 coordinate pairs in Table 7 [39], the initial
parameters vector a

�
from the geometric circle "tting,

and the step size �"1.2. After 19 Gauss}Newton steps
for the norm of the terminal correction vector
	�a	"4.2�10��, we have obtained �

�
"1.1719

(Figs. 4a and b, Table 8a and b). Table 8b shows strong
correlations between a and X

�
,>

�
, caused by the

distribution of the given points. For the initial parameter
values from the algebraic conic "tting with the constraint
of F"1 in Eq. (2), the same "nal estimations are re-
ached after 21 Gauss}Newton steps for 	�a	"1.1�
10�� (Figs. 4g and h). The comparable algorithm of
Gander et al. [39] delivers the same estimations after
71 Gauss}Newton steps. Furthemore, they could not
directly use the results of a circle "tting as the initial
values for ellipse "tting because of the singularity in their
Jacobian matrix by a"b. In order to bypass the singu-
larity problem, they have used a"R, b"R/2. But gen-
erally said, an arbitrary modi"cation of one parameter,
without proper adjustments to the others, can cause
a divergence!
In order to directly demonstrate the robust conver-

gence of our algorithm, in comparison with Gander's, we
have also tested the use of the initial values a"R,
b"R/2 and �"0 from the geometric circle "tting. The
"nal estimations are reached after 17 Gauss}Newton
steps for the norm of the terminal correction vector
	�a	"1.2�10�� (Figs. 4c and d). For another set of
initial values a"R, b"R/2 and �"!1.211, as this
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Fig. 4. Geometric ellipse "tting to the set of points in Table 7: (a) and (b) the results of the geometric circle "tting are used as the initial
parameter values, a"b"R and �"0; (c) and (d) a"R, b"R/2 and �"0; (e) and (f ) a"R, b"R/2 and �"!1.211; (g) and (h) the
results of the algebraic conic "tting with the constraint of F"1 in Eq. (2) are used as the initial parameter values.
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Table 10
Result of the ellipse "tting to the coordinate pairs in Table 9

Parameters a b X
�

>
�

� Iteration steps/	�a	 Constraints

a
�

3.986 3.986 5.752 4.404 �/2 9/7.8�10�� �!�/2"0,
32/1.0�10�	 (SpaK th) w"1.0�10�

aL 5.32689 2.62537 5.04101 4.78989 1.57080 �
�
"1.5582

�(aL ) 0.4628 0.2824 0.2228 0.3777 0.0000

Table 9
Seven coordinate pairs used for ellipse "tting [43]

X 8 3 2 7 6 6 4
Y 1 6 3 7 1 10 0

Fig. 5. Geometric ellipse "tting to the points set in Table 9:
(a) with the angle constraint of �"�/2; (b) and (c) with the
angle and area constraints of �"0, ab"20.

was a worse initial values set, our algorithm needed 23
Gauss}Newton steps for 	�a	"5.2�10�� (Figs. 4e and f).
SpaK th's algorithm [43] "ts ellipses in normal positions

(�"0 or �/2). In another paper [44], SpaK th has also
considered additional constraints on the area of an el-
lipse. In order to directly compare the performance of our
algorithm, we have inserted additional constraints on the
angle and on the area of an ellipse into our algorithm.We
simply modify the linear equations (5) as below, where
w
�
,w

	
are the constraint weighting factors with some

large values:

f
�
(a)"�!const."0, (39)

f
	
(a)"ab!const."0, (40)

�
JX
��a



JX
��a

w
�

�f
�
(a)

�a

w
	

�f
	
(a)

�a
�
a
�

�a"�
X

�
!X�

�




X
�

!X�
�

!w
�

f
�
(a

�
)

!w
	

f
	
(a

�
)� . (41)

For the set of 7 coordinate pairs in Table 9 [43], we have
taken the initial parameters vector from the geometric
circle "tting, the step size �"1.2, and the angular con-
straint and weighting �"�/2, w

�
"1.0�10�, respective-

ly. After 9 Gauss}Newton steps for 	�a	"7.8�10��,
we have obtained �

�
"1.5582 (Fig. 5a, Table 10). SpaK th's

algorithm [43] gives the same result after 32 iterations
for 	�a	+1.0�10�	. With the constraints on angle
and on area of �"0, ab"20 with w

�
"w

	
"1.0�10�,

our algorithm delivers the "nal estimations where
�
�
"2.5525 after 13 Gauss}Newton steps for 	�a	"

7.4�10�� (Figs. 5b and c, Table 11a and b). Table 11b
shows a maximal anti-correlation between the axis
lengths a and b while there is no correlation of the pose
angle � with the other parameters which are caused by
the constraints on the area and on the pose angle, respec-
tively. SpaK th's algorithm [44] delivers the same result
after 61 iterations for 	�a	+1.0�10�	.
For another set of 8 coordinate pairs in Table 12 [43],

we have used the initial parameters vector from the
geometric circle "tting, the step size �"1.2, and the
angular constraint and weighting �"0, w

�
"1.0�10�.

After 10 Gauss}Newton steps for 	�a	"4.7�10��, we
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Table 11
(a) Result of the ellipse xtting to the coordinate pairs in Table 9

Parameters a b X
�

>
�

� Iteration steps/	�a	 Constraints

a
�

3.986 3.986 5.752 4.404 0.000 13/7.4�10�� �"0,
61/1.0�10�	 (SpaK th) ab!20"0,

aL 4.89636 4.08467 6.59091 4.39588 0.00000 �
�
"2.5525 w"1.0�10�

�(aL ) 0.4323 0.3606 0.5910 0.3361 0.0000

(b) Correlation coezcients of the ellipse parameters in (a)

�(aL ) a b X
�

>
�

�

a 1.00
b !1.00 1.00
X

�
0.38 !0.38 1.00

>
�

!0.06 0.06 !0.07 1.00
� !0.00 0.00 0.00 0.00 1.00

Table 12
Eight coordinate pairs used for ellipse "tting [43]

X 1 2 5 7 9 6 3 8
Y 7 6 8 7 5 7 2 4

Fig. 6. Geometric ellipse "tting to the points set in Table 12:
(a) with the angle constraint of �"0; (b) without constraint.

have obtained �
�
"1.3030 (Fig. 6a, Table 13). SpaK th's

algorithm gives the same result after 28 iterations for
	�a	+1.0�10�	. Without any constraint for the same
points set, our algorithm needed 14 Gauss}Newton steps
for 	�a	"2.1�10�� and �

�
"1.2049 (Fig. 6b, Table 14).

All these experimental results show that our algorithm
is very rigorous, and the use of the results of the geomet-
ric circle "tting is a good choice for the initial values for
a geometric ellipse "tting.

4.4. Orthogonal distances xtting of hyperbola

A hyperbola in a plane can also be uniquely described
with 5 parameters as the case of an ellipse, the center
coordinates X

�
,>

�
, axis lengths a, b, and pose angle

�(!�/2(�)�/2) (see Fig. 7). A hyperbola in standard
position xy can be described as below:

x�

a�
!

y�

b�
"1. (42)

The only di!erence in comparison with an ellipse in
standard position, is the sign of b�, and thus, hints at the
possibility of a simple modi"cation of the ellipse "tting
algorithm into a hyperbola "tting algorithm. What we
have yet to do is, change the sign of b� in all deduced
equations from Eq. (22), and supply proper initial values
for the orthogonal contacting points and for the hyper-
bola parameters. In detail,

� allow a to be smaller than b;
� substitute each b� in Eqs. (23)}(26) and (36) with !b�;
� substitute b of B

	
in Eq. (36) with !b;

� instead of Eq. (29), use

x
�
"

�
sign(x

�
)a

0 � if �x
�
�)a,

�
x
�

sign(y
�
)

b

a
�x�

�
!a�� if �x

�
�'a and a*b (43)

�
sign(x

�
)
a

b
�y�

�
#b�

y
� � if �x

�
�'a and a(b�

� as the initial parameter values for the iterative geomet-
ric hyperbola "tting, take the results of an algebraic
conic "tting.

SpaK th's algorithm [43] "ts hyperbola in a normal
position (�"0 or$�/2). For the purpose of a direct
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Table 13
Result of the ellipse "tting to the coordinate pairs in Table 12

Parameters a b X
�

>
�

� Iteration steps/	�a	 Constraints

a
�

3.470 3.470 4.720 4.570 0.000 10/4.7�10�� �"0,
28/1.0�10�	 (SpaK th) w"1.0�10�

aL 4.00931 2.85782 4.57351 4.74942 0.00000 �
�
"1.3030

�(aL ) 0.2783 0.2410 0.2360 0.1997 0.0000

Table 14
Result of the ellipse "tting to the coordinate pairs in Table 12

Parameters a b X
�

>
�

� Iteration steps/	�a	

a
�

3.470 3.470 4.720 4.570 0.000 14/2.1�10��

aL 5.58854 2.49072 3.53260 4.62307 0.20740 �
�
"1.2049

�(aL ) 1.7018 0.2170 1.2773 0.3377 0.0906

Fig. 7. A hyperbola centered at (X
�
,>

�
) with axis lengths a, b

and angle �. The nearest point (X�
�
,>�

�
) on the hyperbola from

a given point (X
�
,>

�
) satis"es the orthogonal contacting condi-

tions, and lies in the same quadrant of standard position as the
given point.

comparison, if necessary, we additionally apply the angu-
lar constraint of Eq. (39) to our hyperbola "tting algo-
rithm.
For the 8 coordinate pairs in Table 15 [43], we have

used the initial parameters vector a
�
from the algebraic

conic "tting with the constraint of A!C"1 in Eq. (2),
the step size �"1.0, and the angular constraint and
weighting �"0, w

�
"1.0�10�. After 8 Gauss}Newton

steps for 	�a	"5.2�10��, we have obtained
�
�
"1.3151 (Figs. 8a and b, Table 16a and b). SpaK th's

algorithm [43] could not deliver a comparable result to
our estimations even after about 100 iterations for
�
�
"1.8992. In order to assess this questionable perfor-

mance of SpaK th's algorithm, we have taken its estimation
results as the initial values for our algorithm. After only
11 Gauss}Newton steps for 	�a	"1.4�10��, in com-
parison with about 100 iterations by SpaK th's algorithm,
our "nal estimations where �

�
"1.3151 are reached

(Figs. 8c and d). Without any constraint on the para-
meters, our algorithm needed 10 Gauss}Newton steps for
	�a	"8.9�10� and �

�
"1.0776 (Fig. 8e, Table 17).

For another set of 8 coordinate pairs in Table 18 [43],
we have used the initial parameters vector from the
algebraic conic "tting, the step size �"1.0, and the
angular constraint and weighting �"0, w

�
"1.0�10�.

After 5 Gauss}Newton steps for 	�a	"2.2�10�, we
have obtained �

�
"0.6064 (Fig. 9, Table 19). SpaK th's

algorithm [43] could only reach a two digit accuracy
of our estimations after about 100 iterations for
�
�
"0.6071. Using the result of SpaK th's algorithm as the

initial values for our algorithm, after only 3 more
Gauss}Newton steps for 	�a	"3.6�10��, our "nal
estimations where �

�
"0.6064 are reached. Without

any constraint, we needed 5 Gauss}Newton steps for
	�a	"2.6�10� and �

�
"0.6045 (Table 20).

The robust convergence and the high accuracy of the
estimated parameters by our hyperbola "tting algorithm
are experimentally proven. Especially in direct compari-
sons with other algorithms, it demonstrated a superior
performance.

5. Geometric 5tting of parabola

The mathematical frame used for the geometric ellipse
"tting in Section 4, including the derivatives of the coor-
dinate transformation equation and of the orthogonal
contacting condition equations relatively to the "tting
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Table 16
(a) Result of the hyperbola xtting to the coordinate pairs in Table 15

Parameters a b X
�

>
�

� Iteration steps/	�a	 Constraints

a
�
I 1.218 0.620 !1.100 4.166 !0.107 8/5.2�10�� �"0,

100/1.0�10�	 (SpaK th) w"1.0�10�
II 0.748 0.537 1.154 3.338 0.000 11/1.4�10��

aL 0.748 0.537 1.154 3.338 0.000 �
�
"1.8992 (SpaK th)

2.35016 1.10858 !1.66958 3.40627 0.00000 �
�
"1.3151

�(aL ) 3.7699 1.4760 3.1904 0.1657 0.0000

(b) Correlation coezcients of the hyperbola parameters in (a)

�(aL ) a b X
�

>
�

�

a 1.00
b 1.00 1.00
X

�
!0.99 !0.98 1.00

>
�

0.35 0.35 !0.34 1.00
� !0.00 !0.00 0.00 !0.00 1.00

Table 15
Eight coordinate pairs used for hyperbola "tting [43]

X 1 2 3 5 7 5 9 4
Y 4 2 6 6 !1 0 8 2

parameters, is generally applicable to the "tting of other
geometric features in plane and space. In this section,
we describe the geometric "tting of parabola as another
application example of the proposed mathematical
frame.
A parabola in a plane can be uniquely described

with 4 parameters, the vertex coordinates X
�
,>

�
, focus

distance p('0) from directrix, and pose angle
�(!�(�)�) (Fig. 10). Analogously to the case of
ellipse "tting, we use the temporary coordinate system xy
centered at (X

�
,>

�
) and rotated with the angle �.

5.1. Orthogonal contacting point and its Jacobian matrix

In the xy coordinate system, a parabola can be de-
scribed with only one parameter, the focus distance p, as
below:

y�"2px. (44)

In a similar way to the ellipse "tting, we derive the
orthogonal contacting conditions:

f
�
(x, y)"�

�
(y�!2px)"0 (45)

and

f
�
(x, y)"y(x

�
!x)#p(y

�
!y)"0. (46)

The orthogonal contacting point x�
�
will be searched

using a generalized Newton method as in Eqs. (27) and
(28) with the Jacobian matrix

Q"�
�f

�
�x

�f
�

�y
�f

�
�x

�f
�

�y �"�
!p y

!y x
�
!x!p� (47)

and with the initial starting point for iteration (Fig. 10)

x
�
"

0 if x
�
(0,

�
x
�

sign(y
�
)�2px

�
� if x

�
*0. (48)�

Now, if we arrange the parameters of parabola

a"(X
�
,>

�
, p, �)�, (49)

the derivatives of the coordinate transformation Eqs. (19)
and (20) relatively to the parameters vector, will be

�x
�

�a
"�

!C !S 0 y
�

S !C 0 !x
�
� (50)

and

JX
� �a"R��
�x
�a �x�x
��

1 0 0 !xS !yC

0 1 0 xC !yS ��x�x
� . (51)
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Fig. 8. Geometric hyperbola "tting to the set of points in Table 15 with the constraint of �"0: (a) and (b) the results of the algebraic
conic "tting with the constraint of A!C"1 for Eq. (2) are used as the initial parameter values; (c) and (d) the results of SpaK th's paper
[43] are used as the initial parameter values; (e) free "tting without constraint.

From the derivatives of the orthogonal contacting
condition equations f

�
and f

�
of (45) and (46) relatively

to the parabola parameters, and using Eq. (50), we will
get the derivatives matrix �x/�a appearing on the right

hand side of Eq. (51) as below:

�x
�a

"Q��� 0 0 x 0
yC!pS yS#pC y!y

�
!yy

�
#px

�� , (52)
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Table 17
Result of the hyperbola "tting to the coordinate pairs in Table 15

Parameters a b X
�

>
�

� Iteration steps/	�a	

a
�

1.218 0.620 !1.100 4.166 !0.107 10/8.9�10�

aL 2.22229 1.11567 !1.28648 4.45735 !0.13217 �
�
"1.0776

�(aL ) 2.1997 0.8874 2.0269 0.4925 0.0531

Table 18
Eight coordinate pairs used for hyperbola "tting [43]

X !14 !8 !5 !4 5 6 9 13
Y !4 7 5 2 4 1 0 !3

Fig. 9. Geometric hyperbola "tting to the set of points in
Table 18 with the constraint of �"0.

where Q is the Jacobian matrix as in Eq. (47). Then, we
have all necessary mathematical formulas for orthogonal
contacting point and Jacobian matrix for the
Gauss}Newton procedures described in Section 2. We
now have to solve the practical problem of supplying
initial parameter values for iterative "tting procedures.

5.2. Initial parameter values for geometric parabola xtting

Once the parameter values set A,2,F� of the conic
equation

f

(x, y,A,B,C,D,E,F)

"Ax�#2Bxy#Cy�#2Dx#2Ey#F"0
(53)

is acquired through an algebraic conic "tting, we can
re"ne it precisely for a parabola with the additional
constraints of

B�!AC"0 and A#C!1"0. (54)

Furthermore, if the pose angle of the parabola must be
constrained, we must also consider

A

�A�#B�
"sin �

�
���	����
"c

�
(55)

and

!B

�A�#B�
"cos �

�
���	����
"c

�

For a set of m given points, we search iteratively the
6 conic parameters under the constraints of Eqs. (54) and
(55)

�
x�
�

2x
�
y
�

y�
�

2x
�

2y
�

1
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�
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�
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�
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�
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!w
�
C 2w

�
B !w

�
A 0 0 0

w
�

0 w
�

0 0 0

w
��

c�
�

w
��

c
�
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�

0 0 0 0

w
��

c
�
c
�

w
��

c�
�

0 0 0 0
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�

�
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�F�
"�

!f

(x

�
, y

�
,A,2,F)




!f

(x

�
, y

�
,A,2,F)

!w
�
(B�!AC)

!w
�
(A#C!1)

!w
��
(A!c

�
�A�#B�)

!w
��
(B#c

�
�A�#B�)

�
�

, (56)

where w
�
, w

�
and w

��
are the constraint weighting fac-

tors with some large values. After a successful termina-
tion of the parameter re"ning iteration, we obtain the
4 parabola parameter values [49] to be used as the
starting values for the iterative procedures of geometric
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Table 19
Result of the hyperbola "tting to the coordinate pairs in Table 18

Parameters a b X
�

>
�

� Iteration steps/	�a	 Constraints

a
�

4.647 2.479 0.497 3.300 !0.001 5/2.2�10� �"0,
I 100/1.0�10�	 (SpaK th) w"1.0�10�
II 4.015 2.024 0.612 3.125 0.000 3 / 3.6�10��

aL 4.015 2.024 0.612 3.125 0.000 �
�
"0.6071 (SpaK th)

4.04264 2.04223 0.60887 3.12768 0.00000 �
�
"0.6064

�(aL ) 0.1668 0.1158 0.1102 0.0913 0.0000

Table 20
Result of the hyperbola "tting to the coordinate pairs in Table 18

Parameters a b X
�

>
�

� Iteration steps/	�a	

a
�

4.647 2.479 0.497 3.300 !0.001 5/2.6�10�

aL 4.04353 2.04633 0.59623 3.13446 0.00202 �
�
"0.6045

�(aL ) 0.1730 0.1213 0.1241 0.0986 0.0076

Fig. 10. A parabola with vertex at (X
�
,>

�
), focus distance p, and

pose angle �.

parabola "tting:

�
A B

AD#2CD!BE

A#C

CE#2AE!BD

A#C � �X�

>
�
�

"�
!

AD#BE

A#C

!F � , p"

!(AE!BD)

(A#C)�A�#B�
,

�"tan���
A

!B�. (57)

Reversibly, from the parabola parameters, we will get the
conic parameters:

A�"sin� �, B�"!sin � cos �, C�"cos� �,

D�"!X
�
sin��#>

�
sin � cos �!p cos �,

(58)
E�"X

�
sin � cos �!>

�
cos� �!p sin �,

F�"(X
�
sin �!>

�
cos �)�#2p(X

�
cos �#>

�
sin �).

If p(0, we set pQ!p and �Q�!sign(�)�, also dur-
ing the Gauss}Newton iteration of Eqs. (5) and (6). We
have observed in practice that the resulting parameter
values set from the parameter re"ning iteration with Eqs.
(54)}(56) provides a set of proper initial parameter values
and guarantees a stable convergence of the Gauss}New-

ton iteration of Eqs. (5) and (6), when we have precon-
ditioned the results of the algebraic conic "tting of Eq.
(53) using Eqs. (57) and (58) successively before the start
of the parameter re"ning iteration. In summary, we ob-
tain the initial values set for the iterative parabola "tting
in the following steps:

� Obtain 6 conic parameters from an algebraic conic
"tting of Eq. (53).

� Condition the conic parameters using Eqs. (57) and
(58) successively.
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Fig. 11. Geometric parabola "tting to the set of points in Table 21: (a) and (b) free "tting without constraint; (c) with the constraint of
�"!�/2.

Table 22
Result of the parabola "tting to the coordinate pairs in Table 21

Parameters p X
�

>
�

� Iteration steps/	�a	

a
�

0.512 !4.707 !1.269 0.088 14/4.1�10��

aL 0.38164 !6.73135 !1.30266 0.08523 �
�
"1.4086

�(aL ) 0.1764 3.5745 0.6159 0.0730

Table 21
Five coordinate pairs used for parabola "tting [45]

X !1 2 5 10 !4
Y 1 !2 3 !4 !3

� Re"ne iteratively the conic parameters using Eqs.
(54)}(56).

� Calculate the 4 parabola parameters from Eq. (57).

5.3. Experimental examples of orthogonal distances xtting
of parabola

For the 5 coordinate pairs in Table 21 [45], we
obtained the initial parameters vector a

�
through the

procedures described in the previous section with

w
�
"w

�
"1.0�10� (without angular constraint). After

14 Gauss}Newton steps for 	�a	"4.1�10�� with the
step size �"1.0, we have obtained �

�
"1.4086 (Figs. 11a

and b, Table 22).
To the same points set in Table 21, SpaK th's paper

[45] "tted a parabola in normal position. For a direct
comparison of our algorithm, we "x the pose angle at
�
�
���	����

"!�/2. We obtained the initial parameters
vector from the procedures in Section 5.2 using
w
�
"w

�
"w

��
"1.0�10�. After 14 Gauss}Newton

steps for 	�a	"8.3�10��, �"1.3, with the angular
constraint and weighting �"!�/2 and w

�
"1.0�10�,

respectively (Eqs. (39) and (41)), we have obtained
�
�
"3.6821 (Fig. 11c, Table 23). SpaK th's algorithm de-

livered the same results after about 100 iterations.
For another set of 6 coordinate pairs in Table 24

[45], we obtained the initial parameters vector from the
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Table 23
Result of the parabola "tting to the coordinate pairs in Table 21

Parameters p X
�

>
�

� Iteration steps/	�a	 Constraints

a
�

2.927 2.912 3.048 !�/2 14/8.3�10�� �#�/2"0,
100/1.0�10�	 (SpaK th) w"1.0�10�

aL 3.40131 3.80624 2.49235 !1.57080 �
�
"3.6821

�(aL ) 1.2533 0.8666 1.1827 0.0000

Table 24
Six coordinate pairs used for parabola "tting [45]

X !7 !3 0 1 1 0
Y 9 5 4 3 5 8

Fig. 12. Geometric parabola "tting to the set of points in
Table 24.

Table 25
Result of the parabola "tting to the coordinate pairs in Table 24

Parameters p X
�

>
�

� Iteration steps/	�a	

a
�

0.526 0.668 3.228 2.170 7/5.4�10��

aL 0.42196 1.21252 3.31011 2.25500 �
�
"0.6888 (SpaK th)

�(aL ) 0.0782 0.3102 0.2019 0.0476 �
�
"0.6881

algebraic parabola "tting of Section 5.2. After 7
Gauss}Newton steps for 	�a	"5.4�10��, we have ob-
tained �

�
"0.6881 (Fig. 12, Table 25). SpaK th's algorithm

[45] could only reach a two digit accuracy of our estima-
tions. If we convert our results into the parameter format
of SpaK th's paper (change the order of translation/
rotation), we get a"3.03178, b"1.79870, c"1.18495.
SpaK th's algorithm had a"3.015, b"1.826, c"1.158
where �

�
"0.6888.

6. Discussion and conclusions

We have proposed simple and robust nonparametric
algorithms for the least-squares orthogonal distances "t-
ting of circle/sphere and ellipse/hyperbola/parabola. For
the geometric circle/sphere "tting, the Jacobian matrix at
the nearest point on the circle/sphere from a given point
is directly available from the circle/sphere parameters
and the given point. The proposed circle/sphere "tting
is very robust and we can simply take the center of
gravitation and the RMS central distance as the initial
parameter values. By the geometric ellipse/hyperbola/
parabola "tting, the nearest point on the ellipse/hyper-
bola/parabola and the Jacobian matrix are not directly
available. We have overcome these di$culties through
the transformation of the ellipse/hyperbola/parabola
into a standard position, and by utilizing the orthogonal
contacting conditions. All necessary information for the
iterative orthogonal distances "tting could be obtained
from the derivatives of the coordinate transform equa-
tion, and of the orthogonal contacting equations. For
ellipse "tting, the results from a circle "tting without
modi"cation can be used as the reasonable initial para-
meter values. Our experimental comparison with other
geometric "tting algorithms shows that the proposed
"tting algorithms have a superior performance in conver-
gence, and in accuracy of the estimated parameters, both
for geometric features in normal and rotated positions.
Additionally, the parameter covariance matrix is im-
mediately available with the termination of the iteration
procedures, from which the reliability of the estimated
parameters can be tested. If we would like to weight the
given individual points, we multiply each row in Eq. (5),
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for example, with the image gradient across the contour
of the image object. In contrast to the algorithms of
Gander, or of SpaK th, the memory space and computing
costs of our algorithms are proportional to the number of
the data points. In conclusion, the distinct features of the
"tting algorithms presented in this paper are the deriva-
tives of the coordinate transformation equation, and of
the orthogonal contacting condition equations, relatively
to the "tting parameters as in Eqs. (32)}(34) and (50)}(51),
through which the orthogonal distances "tting could be
made very simple, robust and comprehensible. The math-
ematical frame described in this paper for the orthogonal
distances "tting is generally applicable to the other geo-
metric "tting problems. Recently, we have extended the
presented mathematical frame to the orthogonal distan-
ces "tting of three-dimensional surfaces and have suc-
cessfully implemented it.

7. Summary

The "tting of geometric features to given 2D/3D points
is desired in various "elds of science and engineering. In
particular, circle and conic are the most common geo-
metric features for the application of image processing. In
the past, the least-squares method (LSM) has often been
applied to "tting of geometric features, and this method
has proven its usability in e!ective implementation and
acceptable computing costs. LS "tting minimizes the
squares sum of error-of-"t in prede"ned measures. The
two main categories of LS "tting problems for geometric
features, algebraic and geometric "tting, are di!erenti-
ated by their respective de"nition of the error distances.
In spite of the advantages in implementation and com-
puting costs, the algebraic xtting has drawbacks in accu-
racy and physical interpretation of the "tting parameters
and errors. In geometric xtting, frequently cited as best
"tting, the error distances are de"ned with the ortho-
gonal, or shortest, distances from the given points to the
geometric feature to be "tted. In this paper, we have
proposed simple and robust algorithms for least-squares
orthogonal distances "tting of circle/sphere in an n-di-
mensional space, and of ellipse/hyperbola/parabola in
plane. The geometric "ttings of circle/sphere and el-
lipse/hyperbola/parabola are nonlinear problems and
must be solved with iteration. For the geometric "tting of
circle/sphere, there are some well established methods.
On the other hand, the geometric "tting of ellipse/hyper-
bola/parabola has been attacked since last few years and
is being further developed. In this paper, we have proposed
new algorithms of geometric "tting of circle/sphere and
ellipse/hyperbola/parabola. Our algorithms are based on
the coordinate description of the corresponding point on
the geometric feature for a given point, where the con-
necting line of the two points is the shortest path from the
given point to the geometric feature. By the geometric

circle/sphere "tting, the corresponding point on the
circle/sphere is de"nitely described with the circle/sphere
parameters and with the coordinates of the given point.
On the other hand, in the geometric ellipse/hyper-
bola/parabola "tting, the corresponding point on the
ellipse/hyperbola/parabola is described only implicitly
through the orthogonal contacting conditions, and the
Jacobian matrix at this corresponding point are not
directly available. We have overcome these di$culties
through the transformation of ellipse/hyperbola/para-
bola into a standard position, and by utilizing the ortho-
gonal contacting conditions. All necessary information
for iterative orthogonal distances "tting could be ob-
tained from the derivatives of the coordinate transform
equation, and of the orthogonal contacting equations.
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