next up previous contents
Siguiente: Field operations with the Arriba: Multiplication in Finite Fields Anterior: Ring multiplication

Representation of Galois fields of characteristic 2

Let $\mathbb{F}_2=\{0,1\}$ be the prime Galois field consisting of just two elements. For most integer values $n\geq 2$ there is a minimum $k$, with $0<k<n$, such that the polynomial $p_{nk}(X) = X^n + X^k + 1$ is irreducible over the field $\mathbb{F}_2$. In Table 6 we display such pairs $(n:k)$, for $n=2,\ldots,101$. The cases in which there is no such $k$ are distinguished by making $k=n$, in them any irreducible polynomial of degree $n$ shall involve more than one intermediate powers $X^k$. Whenever $p_{nk}(X)$ is irreducible, the Galois field $\mathbb{F}_{2^n}$ is isomorphic to the quotient $\mathbb{F}_2[X]/\left(p_{nk}(X)\right)$, and, consequently, the arithmetic in the field can be realized as the polynomial arithmetic reduced modulus $p_{nk}(X)$. Each element in $\mathbb{F}_{2^n}$ is of the form $p_{\mbox{\scriptsize\boldmath$\epsilon$}}(X) = \sum_{i=1}^{n} \epsilon_i X^{i-1}$ and is naturally identified with the integer $I_{\mbox{\scriptsize\boldmath$\epsilon$}} = \sum_{i=1}^{n} \epsilon_i 2^{i-1} \in [\![0,2^n-1]\!]$.


Table 6: Pairs $(n:k)$ such that $p_{nk}(X) = X^n + X^k + 1$ is an irreducible polynomial over the field $\mathbb{F}_2$.
(2 : 1) (3 : 1) (4 : 1) (5 : 2) (6 : 1) (7 : 1) (8 : 2) (9 : 1) (10 : 3) (11 : 2)
(12 : 2) (13 : 13) (14 : 2) (15 : 1) (16 : 4) (17 : 3) (18 : 2) (19 : 19) (20 : 3) (21 : 2)
(22 : 1) (23 : 5) (24 : 4) (25 : 3) (26 : 26) (27 : 27) (28 : 1) (29 : 2) (30 : 1) (31 : 3)
(32 : 8) (33 : 10) (34 : 6) (35 : 2) (36 : 4) (37 : 37) (38 : 38) (39 : 4) (40 : 6) (41 : 3)
(42 : 4) (43 : 43) (44 : 2) (45 : 45) (46 : 1) (47 : 5) (48 : 8) (49 : 9) (50 : 6) (51 : 51)
(52 : 3) (53 : 53) (54 : 9) (55 : 7) (56 : 2) (57 : 4) (58 : 4) (59 : 59) (60 : 1) (61 : 61)
(62 : 6) (63 : 1) (64 : 16) (65 : 18) (66 : 3) (67 : 67) (68 : 9) (69 : 69) (70 : 4) (71 : 6)
(72 : 8) (73 : 25) (74 : 35) (75 : 75) (76 : 21) (77 : 77) (78 : 8) (79 : 9) (80 : 12) (81 : 4)
(82 : 6) (83 : 83) (84 : 5) (85 : 85) (86 : 21) (87 : 13) (88 : 4) (89 : 38) (90 : 27) (91 : 91)
(92 : 2) (93 : 2) (94 : 10) (95 : 11) (96 : 16) (97 : 6) (98 : 11) (99 : 99) (100 : 12) (101 : 101)



next up previous contents
Siguiente: Field operations with the Arriba: Multiplication in Finite Fields Anterior: Ring multiplication
Guillermo M. Luna
2010-02-19