Configurable REC*

Gerardo Cisneros'
Direccién de Computo para la Investigacion,
Direccién General de Servicios de Computo Académico,
Universidad Nacional Auténoma de México, Apartado postal 20-059,
01000 México, D.F., México

Abstract

This paper describes CREC, a library of C functions for
compiling and executing REC programs whose operators
and predicates are provided by the caller. Given a C pro-
gram with a menu-based interactive interface, REC can be
added as a programming language to the user interface
by assigning menu choices to REC operators and predi-
cates through entries in a table, and linking in the appro-
priate functions in CREC. Being a very concise language,
REC programs are easy to write in an interactive context.
The same conciseness allows the compiler to require only
a small amount of space. Experience whereby the library
benefitted some mathematics and physics programs is de-
scribed.

1 Introduction

When a reasonably complex program is designed with a
set of elementary operations to be chosen interactively, it
is impossible for the designer to foresee all the variations
that users will want to have (or wish they had) at one time
or another, even though a complete and versatile collec-
tion of elementary operations has been provided. The
user may likewise find the primitives quite satisfactory,
but tire of entering them repeatedly.

That is the reason that many programs in this category,
such as text editors, provide macro facilities. For interac-
tive use, instructions that the user must supply need to
be short, concise, easy to remember, and possessed of a
simple and readily understandable (if not familiar) syn-
tax. But this emphasis on conciseness at the keyboard

*Based on the paper “Biblioteca de REC para construccién
de interfaces interactivas flexibles” presented at the Seventh In-
ternational Conference Computers in Institutions of Education
and Research, Universidad Nacional Auténoma de México/Unisys,
México, October 1991.

TManuscript prepared while on sabattical leave from Departa-
mento de Aplicacién de Microcomputadoras, Instituto de Ciencias,
Universidad Auténoma de Puebla, Apdo. Postal 461, 72000 Puebla,
Pue., México, where the work described herein was performed. The
author is now with Cray Research de México, S.A. de C.V., Camino
a Sta. Teresa 480-A #302, Bosques del Pedregal, 14020 México,
D.F., México.

should not preclude the introduction of macro libraries,
containing the longer sequences that can be prepared at
leisure, and with greater care.

Rather than work up a macro package for each new
program, REC[1, 2] is proposed here as a model that can
be readily adapted to each new program, and a library
that serves this purpose is presented. REC is a concise
programming language that in its barest terms defines
only a control structure that is both completely general
and yet very simple; its design was intended to capture
the essence of programming much like group theory cap-
tures the essence of solving simple equations with a single
operation, which gets called multiplication.

Even programs with a graphical interface (like those
found under NextStep, Microsoft Windows or X win-
dows) might benefit by this approach. For example,
if there were a sequence of mouse-keypresses the user
wanted to perform repeatedly, it could be easier for him
to type in a REC program that invokes in turn the func-
tions corresponding to the keypresses and iterates the
sequence until a condition is satisfied or a certain num-
ber of iterations have occurred. Although the library was
originally built and used on a PC-type computer running
MS-DOS, it is sufficiently portable that incorporating it
into programs with graphical interfaces should pose no
great problems.

In summary, the idea of CREC is to make programma-
bility available at the application’s user interface, where
access to shell scripts or other tools provided by oper-
ating systems would not be relevant or appropriate to
operation of the application.

The syntax of REC may be described in a couple of
rules. Beyond this description, a specific REC implemen-
tation depends in assigning concrete operations to the
symbols in the predicate set; typically these symbols are
the printing ASCII characters. There have been REC ver-
sions for arithmetic operations,[3] graphic display[4] and
symbol manipulation,[2] among others; some have been
implemented as interpreters, others as compilers. Be-
cause of the compactness of REC’s syntax, the compiler
proper is quite small; in the symbol manipulation version
for microcomputers it only takes about 1 KB.

The main advantage of REC is its conciseness: the li-
brary described here allows C programmers to add to
their programs’ user interfaces a small compiler with
which the user may program frequently-used sequences
of operations (in the spirit of keyboard macros), run pre-
defined REC programs as provided by the programmer, or
modify and run those predefined REC programs if simple
editing capability is provided by the programmer. A set
of functions for editing a line under MS-DOS, developed
for the applications mentioned below, is available; under
Unix one could use the curses library or invoke an editor
as a child process. The single-character lexeme feature is
justified by the convenience it provides when program-
ming interactively; a compact compiler is an added ben-
efit. The loss in debugability and readability that could
be attributed to the use of single-character lexemes is not
an issue; as a language to be used interactively no pro-
gram is likely to be longer than one or two lines, and, if
the primitive operations are chosen carefully, many useful
programs would be a fraction of that.

This paper describes a threaded[5] interpreter for REC
in C, in which the compiler is a function whose main
arguments are

e the source program,

e an array of pointers where the compiled program is
to be placed, and

e a predicate table that contains, for each printing
ASCII character, a pointer to the function that com-
piles it, a pointer to the function that executes the
associated operation, and a pointer to a string (typi-
cally a short comment regarding the character’s func-
tion as a REC predicate, which may be displayed dur-
ing program editing).

The rest of the library includes the necessary functions
for compiling simple predicates and control symbols (the
minimum required by REC’s control structure), functions
to compile and execute some predicates with a more com-
plex structure than a single character (e.g., counters, nu-
meric constants, symbolic constants), and a function to
control the execution of a compiled REC program. Thus,
a given implementation only needs to provide the predi-
cate table and the functions implementing the operations
associated with each version-specific predicate.

The remainder of the paper is organized as follows.
First, REC syntax and semantics are reviewed. The fol-
lowing two sections give a rundown of the CREC library
contents, with an emphasis on what the components are
used for. Another section describes the steps required
to incorporate the components into an existing applica-
tion. In conclusion, some applications into which CREC
has been incorporated are described.

2 REC Syntax and Semantics

The syntax of REC in Extended BNF is the following

Prog ::= Expr | “-"{Prog char}Prog“"”

Expr ::= “("{{Prog | pred}(“:” | ;") }{Prog | pred}*)”

where Prog and Ezprrepresent a REC program and expres-
sion, respectively, char represents any printing ASCII
character except the right brace (“}”), and pred repre-
sents any predicate (usually one or two characters, but
in some cases a more complicated lexeme, for instance, a
quoted string).

A brace-enclosed REC program is a list of subroutines
(each of them a program followed by its name) and a
main program. The predicate @« is reserved for calling
the subroutine whose name is «. Subroutine calls are
made through a table and names are bound dynamically:
definitions given within a brace-enclosed list are activated
when the corresponding main program starts executing
and previous definitions for the same names are stored
for retrieval when the main program terminates.

A REC expression is a parenthesis-enclosed list of strings
of predicates or programs separated by colons and semi-
colons; there may be a final string terminated by the right
parenthesis. A REC expression is executed left to right,
with flow of control being altered in four cases:

1. A colon causes a jump to the beginning of the ex-
pression.

2. A semicolon causes execution to continue to the right
of the expression (the expression terminates true).

3. The execution of a predicate, besides its assigned op-
eration, results in a truth value. If it is true, flow
of control is not altered; if it is false, execution of
the string in which it appears terminates, and con-
tinues to the right of the string’s terminator (a colon,
semicolon or right parenthesis). Certain predicates
are always true, so they are distinguished by being
called “operators”.

4. Coming to a right parenthesis causes the expression
to become false thereby causing a jump to the next
segment in the enclosing expression, as with a false
predicate. If there is no enclosing expression, but the
terminating expression is a subroutine, or the main
program of a subroutine, the corresponding predi-
cate that called it becomes false; if the terminating
expression is the main program of a REC program
embedded in an expression, the embedded program
is treated as a false predicate in the containing ex-
pression.

With these rules it is easy to see how to construct
Boolean combinations of predicates or any structured
programming construct. Boolean combinations in gen-
eral do not commute due to the possible non-reversibility
of operations performed by the predicates; lazy evalua-
tion is implicit in the rules for flow of control. There are
no labels in REC, thus disallowing arbitrary jumps. Table
I lists some common constructs.

Construct® REC Fxpression

T, Or My Or - -+ OF T, (my 3 m -0 T 3)
m and o and ---and 7, (@ w9 - W, ;)

not m (m)

true’ G)

false O

(mw ;5 we ;)
(mw:;)

(wmy;:)

w, m, me and m, represent arbitrary predi-
cates (including programs and expressions); w, wq
and wy represent operators, i.e., permanently true
predicates.

b The null string e is also true within a REC
expression.

if 7 then w; else wy
while 7 do w

do w until 7
a

Table 1: REC expressions for common programming con-
structs

Outside of the formal definition given above, square
brackets are reserved for enclosing comments (which may
be nested), and the space and comma are reserved as no-
ops, for use in improving the readability of REC programs.
Other whitespace characters (tabs, carriage returns and
line feeds) are also skipped over.

3 Interpreter Library

In what follows, a thorough familiarity with C is assumed.
The CREC interpreter is a library of C functions to compile
and control the execution of REC programs. Functions
carrying out the operations associated to predicates and
operators in a given version are provided by the caller by
means of a table; this is what makes CREC configurable.

The library is available in both MS-DOS and UNIX
versions. There are two versions of each: a minimal one
that does not use malloc nor the stdio functions[6] and
in which the REC program to be compiled may only be
given directly in a character string argument; and an-
other that does use malloc and stdio, and allows having
the compiler read the program from a string, the stan-
dard input or an arbitrary file. The version using malloc
and stdio is described in this section; differences distin-
guishing the minimal version are given in the following
section.

The name of the library (under UNIX) is librec.a.
The main module, rec.o, contains the basic functions
for compiling and executing; other modules define certain
specialized predicates and operators programmers may
want to incorporate into their specific versions of REC.

Programs are compiled into an array of Inst, which
is defined as a pointer to a function that returns ints.
Operators are compiled by simply placing the executing
function’s address on the table; predicates use an extra
cell containing the address to jump to. Compound oper-
ators and predicates (e.g. @) use another cell to contain
or point at the argument. The idea for using an array
of pointers to functions (which early assembler versions
used, before the term “threaded code”[5] was coined),
rather than an array of integers as in the early Fortran
interpreter,[3] was derived for the present version from
Chapter 8 of Kernighan and Pike’s excellent book on
UNIX.[7]

The compiler uses an internal stack to account for
parenthesis and brace nesting. Three cells in the stack
are taken up for each level of parenthesis nesting, and one
cell per brace pair plus two cells per subroutine defined
within the pair for brace nesting. This same stack is used
during REC program execution to save subroutine defini-
tions when brace-enclosed programs are invoked. (Each
invocation takes one cell per subroutine defined within
the pair of braces.) The stack size is 1024 in the package
as released, but source code is included so that the size
may be increased if deeper recursion is required.

Two header files, rec.h and rectbl.h are included.
rec.h contains general declarations and definitions for
types Inst and Symbol. The latter is used by the op-
tional number and string operator subroutines. rectbl.h
contains the predicate table, which must be modified for
each specific predicate set and be included by only one
of the programmer’s modules, usually the one containing
the call to the compiling function, rec_c.

Global data structures or variables that are acted upon
by the programmer-provided predicates should be initial-
ized, if needed, before calling rec_x, the function that
executes a compiled REC program. Other possibilities are
to include an initializing operator, or to use predicates
with arguments such that a certain value of the argument
causes the required initialization.

To give an idea of the small size of CREC, Table II gives
the sizes of the modules on a NeXTstation. The en-
tire library, librec.a, takes only 23378 bytes. Sizes are
slightly larger for both a DECstation 5000/200 and a Sun
SPARCstation 2. Using Turbo-C to compile the modules,
the MS-DOS version of the library is 12800 bytes long.

3.1 Module rec.o

Of the functions in the list that follows, the first two
are CREC’s main interface to the programmer; others are

Module Text Size Data Size
rec.o 3376 4828
sym.o 292 0
tty.o 264 16
cnum. o 892 0
cquo.o 836 2068
ctr.o 260 0
mem. o 68 0

Table 2: Sizes of modules in librec.a

invoked indirectly through the predicate table, although
they could be called by predicate compilation or execu-
tion functions written by the programmer. Global vari-
ables included in the list are those required by some of
the predicates.

3.1.1 Function
int rec_c(int stype, char *source,
xprog, int plen, struct fptbl *table)

Inst

This is the compiling function. stype determines where
the source program comes from, as follows:

stype = 0, source is not used; the program is read
from standard input;

stype = 1, source is the name of a file containing the
program;

stype > 1, source is a pointer to the program itself,
stype is the string’s length.

prog is a pointer to an array of Inst (allocated by

the caller) where the compiled code is to be placed, plen
is this array’s length, and table is the predicate table
defining for each printing ASCII symbol (from space to
tilde inclusive) the function that compiles it, the function
that executes it, and a pointer to a string describing it.
Structure fptbl is declared in rec.h as follows:

struct fptbl {

int (xcfun) (); /* compiling function */
int (*xfun) (); /* executing function */
char *r_cmnt; /* descriptive comment */

};
and a typical entry in the table is a line such as

r_code, ropux, "X - store rule table on disk ",
where r_code is the CREC function to compile a simple
operator, ropux is the programmer-defined function that
carries out the function assigned to the corresponding
character, and the string (whose address is the third el-

ement of the fptbl structure) is intended as an aid for

display during program editing to remind the user of the
character’s assigned function as the cursor moves over
it; this helps overcome one disadvantage of using single-
character lexemes. The programmer may also prepare
help screens for display using the strings available in the
table; by placing these strings in the table alongside the
definitions, a string is more likely to be updated when
the corresponding character’s definition changes than if
it were located in a separate help section.

The file rectbl.h included in the distribution provides
a skeleton table that can be modified to suit the needs of
a given implementation.

rec_c returns 1 (true) if there were no errors and —1
if termination was due to an error. This value should be
used to control the execution of rec_x, since execution
of an incompletely compiled program is bound to cause
problems.

Upon succesful compilation of a REC program, the
global pointer r_pc points to the next available cell in
prog. This way one may define a freestanding subroutine
a that is not lost with the next compilation by assign-
ingrvst[’a’] = prog, copying r_pc to a local variable
(say, pp) and giving further calls to rec_c second and
third arguments pp and plen - (pp - prog), respec-
tively, or using a different program array altogether. If
the subroutine contains number or string operators (ref-
erencing r_cnum from cnum.o or r_dquote from cquo.o),
care should be taken to save also the linked list refer-
enced by the global pointer r_symlist, because rec_c
frees symbol space before each new compilation. To save,
copy r_symlist to a local pointer to Symbol (say sp) and
null r_symlist; to free the space, execute r_frsym(sp).
This feature lets programmers build their own internal
libraries of predefined REC functions.

3.1.2 Function int rec_x(Inst *pc)

The execution controller function; pc points to the place
where execution should begin; it should be the same as
the pointer previously passed as prog in a succesful call
to rec_c. The value returned is the final truth value of
the REC program (0 for false, 1 for true) if there were no
errors, or —1 if there was an error.

Before starting the execution of the REC program,
rec_x, sets up to trap the interrupting character (typ-
ically control-C), so that interruption of a running REC
program does not kill the entire application, but returns
to the caller of rec_x with an error indication. Since
this feature depends on the operating system, the mod-
ule containing this function (rec.c) is compiled with the
flag -DMSDOS for the MS-DOS library; without it for
UNIX.

3.1.3 Function int r_code(Inst func)

Compiler for simple operators, i.e., operators fully speci-
fied by a single character. func, taken from the predicate
table, is a pointer to the function that performs the op-
eration at runtime. The function is called r_code rather
than r_oper because other compiling functions also call
it to insert code into the program array.

3.1.4 Function void r_compile()

Compiles a program, recursively. It is provided so that, if
desired, it can be invoked at runtime by an operator that
compiles a program. Such an operator would have to set
up the appropriate input stream in the global variable
FILE *r fin. If r fin is NULL, the program is “read”
from a string specified by the globals char *r_pbufp
(a pointer to the string) and int r_pbufl (the string’s
length). Of course, a predicate would also have to be set
up to execute a program compiled this way, or provision
would have to be made to insert in the subroutine table,
r_vst, the address of the array where the code is stored
so that it is accessible to @a.

3.1.5 Function void r_errterm(char *msg)

Error termination. Writes the string msg to the standard
error file and executes longjmp, so that rec_c or rec_x
returns —1 to the calling program, no matter how deeply
nested in calls the error occurred.

3.1.6 Function int r_initvst()

Initializes r_vst to the state prevailing at start of exe-
cution: elements 0 through 32 and 127 (corresponding
to ASCII control characters) are set to zero; elements 33
through 126 (*!” through '~’) are set to point to an Inst
cell containing the address of an error subroutine, r_usub.

3.1.7 Function int r_oper1(Inst func)

Compiles an operator taking an ASCII argument (i.e.,
one in the form ya, where x is the operator and «a the
argument). Argument func is taken by the compiler from
the predicate table entry for y; r_oper1 reads the charac-
ter following x in the source program and places it after
the value of func in the compiled code. Given an int
variable ¢, the programmer’s code should use an expres-
sion such as ¢ = (int) *r_pc++; in the executing func-
tion to retrieve the character and leave r_pc pointing at
the next instruction.

3.1.8 Function int r_oper2(Inst func)

Compiles an operator with two ASCII arguments, i.e., an
operator in the form ya(. func is the execution address
for x. r_oper2 reads two more characters from the source

and places them packed into a cell following func in the
compiled program. The following would retrieve them
into variables one and two:

int one, two;
((int) *r_pc) >> 8;
((int) *r_pc++) & OxFF;

one =
two =

and would leave r_pc ready for the return.

3.1.9 Variable Inst *r_pc

The program counter. Access to it is required by the exe-
cution routines of predicates and operators with compiled
arguments.

3.1.10 Function int r_pred(Inst func)

Compiles a simple predicate. func points to the runtime
address. Function func must return 0 for a false exit
or 1 (or any other nonzero value, so as to conform to C
practice) for a true exit.

3.1.11 Function int r_predl(Inst func)

Compiles a predicate with one ASCII argument, such
as @a. func is the execution address. r_predl reads
one more character from the source and places it follow-
ing func in the compiled program. If c is an int, ¢ =
*r_pc++; retrieves the ASCII argument and leaves r_pc
ready for the return. func must return 0 for a false exit
or 1 (or any other nonzero value) for a true exit.

3.1.12 Function int r_pred2(Inst func)

Compiles a predicate with two ASCII arguments. func
is the execution address. r_pred2 reads two more char-
acters from the source and places them packed into a cell
following func in the compiled program. The following
would retrieve them into variables one and two:

int one, two;
one = ((int) *r_pc) >> 8;
two = ((int) *r_pc++) & OxFF;

leaving r_pc ready for the return. func must return 0 for
a false exit or 1 (or any other nonzero value) for a true
exit.

3.1.13 Array Inst *r_vst[128]

Addresses of subroutines are dynamically loaded into and
unloaded from this array. Array elements 0 through 32,
125 and 127 do not correspond to valid subroutine names,
so they are available for other pointer storage; a suitable
operator could be provided for this purpose (such as the
$ operator of REC/MARKOV).

Access to the source program for the compilation of
special operators is provided by rec.o through two vari-
ables: FILE *r_fin, a pointer to the source stream,
and int r_lastchar, the last character read, and two
functions: int r_nxtchar(FILE *inp), which returns
the next character from the source stream, and int
r_ungetch(int c, FILE #*inp), which returns the last
character read to the source stream.

Table TIT summarizes other symbols defined in rec.o.

Name Purpose

r_call Executes predicate @a.

r_colon Compiles colons.

r_comment “Compiles” comments by skipping
over them.

r_lbrace Compiles brace-enclosed programs.

r_lpar Compiles left parentheses.

r_noopc Compiles null operators (it generates
no code).

r_quit Ends execution through r_errterm.

r_rpar Compiles right parentheses.

r_semicol Compiles semicolons.

r_ubrace Ends compilation due to unbalanced
right brace.

r_ubrack Ends compilation due to unbalanced
right bracket.

r_usub Default function for undefined
subroutines.

r xbrace Executes brace-enclosed programs.

r_xpred Executes predicates.

Table 3: Additional symbols in rec.o

3.2 Module sym.o

Sym.o contains symbol table management routines. En-
tries in the symbol table are generated by the quoted
string and number operator compilers r_dquote and
r_cnum contained in cquo.o and cnum.o, respectively.
There are two global functions defined in sym.o. Function
Symbol *r_install(char *s, int len) enters string s
of length len into the symbol table (if it is not already
there) and returns a pointer to the entry. Function
Symbol *r_lookup(char *s, int len) looks up string
s of length len in the symbol table and returns a pointer
to the entry if found, the NULL pointer otherwise.

3.3 Module tty.o

This module, containing terminal control routines, must
be compiled with one of the flags -DMSDOS (for a com-
piler running under MS-DOS), -DSYSV (for a compiler

running under UNIX System V) or -DBSD (for a com-
piler running under BSD UNIX). The module contains
three functions. Function void r_ttget() gets the cur-
rent terminal settings, stores them in a static structure.
Function void r_ttreset() resets terminal to the set-
tings stored by r_ttget. Function void r_ttset() sets
the terminal to “raw” mode; this allows an operator such
as REC/MARKOV’s R to have character by character con-
trol over the keyboard.

3.4 Module cnum.o

Optional module for compiling numbers. Three types
are recognized: WORD (no decimal point, no exponent, no
leading zero, except for a single zero), LONG (no decimal
point and no exponent, must have at least two digits
the first of which is 0) and REAL (decimal point and/or
exponent must be present).

Inclusion of this module requires that the entry for the
compiling function name in the predicate table, for all
digits and the period, be r_cnum. The compilation entry
for the minus sign must be r_cnum if the minus sign is to
be used only in connection with numbers, or r_cmin if a
plain minus sign (not followed by a period or digit) is to
be compiled as a simple operator.

3.4.1 Function void r_cmin(Inst func)

Provided as an entry point for the compilation of “~” as
an operator. func is the execution entry point for a plain
“~”_ but if the “~” is immediately followed by a digit or
period, r_cnum is invoked with argument r_1d (which is
expected to be the programmer-provided entry point for
retrieving a number from the symbol table).

3.4.2 Function void r_cnum(Inst func)

Compiles a number, which is installed in the symbol ta-
ble. The pointer to the symbol table entry follows the
pointer func in the compiled program. The programmer
must provide the function that retrieves the number, and
this function’s name must be r_1d if r_cmin is used to
compile numbers preceded by a minus sign.

3.5 Module cquo.o

Optional module for compiling quoted strings. Both
singly quoted characters and doubly quoted strings are
considered. Backslash-escaped characters as in C are al-
lowed; they are processed by an internal (static) function
r_bslash.

3.5.1 Function void r_dquote(Inst func)

The enclosed string is stored in the symbol table. If the
string exceeds 2048 bytes (the size of the buffer), compila-

tion ends with an error message. func is the programmer-
provided execution function for the double quote charac-
ter. The execution function should retrieve the pointer
to the symbol table node as (Symbol *) (*r_pc++).

3.5.2 Function void r_squote(Inst func)

The enclosed character is coded into the program
array to be retrieved by the execution function as
(int) (xr_pc++).

3.6 Modules ctr.o and mem.o

Ctr.o provides the entry points necessary for compiling
and executing counter predicates, r_ctrc and r_ctrx,
respectively. The customary syntax is !'n!, with n a
fixed integer; other likely candidates for assignment of
this predicate could be n or #n#. A counter 'n! is a
predicate with n + 1 states. The first n times the predi-
cate is executed it returns true; the next time it returns
false. The n + 1 state cycle repeats and cannot be re-
set except by placing the counter in a subroutine of its
own and setting up another subroutine that exhausts the
cycle: {(In!;)a (@a:;) b (-}

Module mem. o provides a single entry point, (char *)
rmalloc(int size), which calls the standard library
function malloc and calls r_errterm if malloc returns
a null pointer. It is used by the functions in sym.o.

4 Minimal version

The minimal version was developed to comply with a re-
quest for a version that made minimal demands on the
standard C library, specifically one that would not invoke
malloc or file-handling functions in stdio. Thus, mod-
ules sym. o, cnum. o and cquo. o are not present. A source
file cannot be given to the compiling function rec_c; it
takes one less argument. Modules are provided that con-
tain functions to compile and execute operators for pro-
gram literals (strings, characters, integer constants, float-
ing point constants), which refer to the literals by means
of pointers to the source string or which save numeric
constants in the code array.

4.1 Module rec.o

Functions that are different in rec.o are rec_c,
r_errterm, r nxtchar, r_ungetch. The declarations for
these functions are as follows:

int rec_c(char *source, Inst *prog, int plen,
struct fptbl *table)

int r_errterm(int msgno)

int r_nxtchar()

int r_ungetch()

In rec_c, source must be a pointer to a string con-
taining the REC program to be compiled. Since stdio
is not invoked, the argument to r_errterm is an integer,
whose value is returned by execution of longjmp to rec_c
or rec_x, which in turn return the negative of the value
to the caller, providing it with an error indicator from
whose value the type of error may be discerned.

Again, since no files are involved, r_nxtchar and
r_ungetch need no arguments.

The globals r_fin and r_symlist of the malloc/stdio
version are not declared in the minimal version.

Two global variables are declared for string handling:
char *r_pbufp and int r_pbufl. At the beginning of
compilation, they hold the address and length, respec-
tively, of the input buffer from which the source program
is read, and are updated by r_nxtchar and r_ungetch
as compilation progresses. During execution, these two
variables are used by the functions in module str.o to
hold the address and length of strings quoted within the
program.

4.2 Module int.o

Provides the entry points necessary for compiling and
executing an (long) integer parameter operator. If used,
the names r_cintp and r_lintp must appear as the com-
pilation and execution entry points for a character other
than the decimal digits in the predicate table. The pa-
rameter is loaded at execution time into the global vari-
able long r_intpar.

4.2.1 Function int r_cintp()

Compiles an integer parameter. The syntax is énd, where
n is decimal and ¢ is the operator chosen as the delimiter;
is suggested as the character to be used both as the
operator and the delimiter.

4.2.2 Function int r_lintp()

Loads the integer parameter into the global variable
r_intpar. This may then be used by subsequent opera-
tors or predicates.

4.3 Module dbl.o

Provides the entry points necessary for compiling and ex-
ecuting a double parameter operator. If used, the names
r_cdblp and r_1dblp must appear as the compilation and
execution entry points for the character chosen as the op-
erator (which should not be a digit or the period) in the
predicate table. The parameter is loaded at execution
time into the global variable double r_dblpar.

4.3.1 Function int r_cdblp()

Compiles a double parameter. The syntax is dnd, where
n is a decimal number (with optional decimal point and
optional power-of-ten factor denoted by ek or Ek, where
k is the exponent) and ¢ is the operator chosen as the

delimiter. $ is the suggested character to use for this
operator.
4.3.2 Function int r_1dblp()

Loads the double parameter into the global variable
r_dblpar. This may then be used by subsequent opera-
tors or predicates.

4.4 Module fnum.o

This module contains functions with the same names as
those in cnum.o discussed in the previous section; how-
ever, in this version of the library all numbers are treated
as double precision numbers. No incompatibility arises
from using both fnum.o and dbl.o; fnum allows numbers
without delimiters to be compiled as operators in a REC
program.

Proper use of this module requires that the compilation
entry in the predicate table for all digits and the period
be r_cnum. The compilation entry for the minus sign
must be r_cnum if the minus sign is to be used only in
connection with numbers, or r_cmin if a plain minus sign
(not followed by a period or digit) is to be compiled as a
simple operator.

The programmer is responsible for providing a function
called r_dnum that must be listed as the execution name
for the digits and the period and that calls r_fnum() once
to fetch the number out of the program array. If the
compilation address for the minus sign is listed as r_cmin,
the user must also provide a function (whose name is not
fixed by module fnum.o) to be listed as the execution
address for a plain minus sign.

4.4.1 Function int r_cnum()

Compiles a floating point number. The syntax requires
that at least one digit or the decimal point be present; the
number may be preceded by a minus sign and followed
by a power-of-ten factor whose form is an e or E, an op-
tional sign (+ or =) and zero or more digits. No embedded
blanks are allowed. The string is converted by the stan-
dard function sscanf, defaulting to 0 if the string is not
converted by sscanf, as in the case of a single decimal
point. The resulting value is stored in the program array.

4.4.2 Function int r_cmin(Inst func)

Compiles a minus sign. This function looks ahead in the
input stream; if a digit or period is found, the minus sign

is assumed to be a part of a number, so compilation con-
tinues at r_cnum, with execution address of the operator
given as r_dnum. Otherwise, it compiles as a simple op-
erator with execution address given by argument func
(that is, from what is listed in the predicate table).

4.4.3 Function double r_fnum()

Returns the double value stored in the program array;
this function must be called once by the user-provided
function r_dnum that is to be the execution address for
all digits and the period.

4.5 Module chr.o

Provides the entry points necessary for compiling and
executing a character parameter operator. If used, the
names r_cchrp and r_lchrp must appear as the com-
pilation and execution function entries of the predicate
table element for the character chosen as operator (and
delimiter).

4.5.1 Function int r_cchrp()

Compiles a character parameter. The syntax is dad,
where « is a character and ¢ (typically the apostrophe)
is the character chosen as operator and delimiter. The C
conventions regarding the backslash as an escape charac-
ter are implemented. The quoted character « is stored in
the program array.

4.5.2 Function int r_ 1chrp()

Loads the quoted character into the global variable
r_chrpar. This may then be used by subsequent opera-
tors or predicates.

4.6 Module str.o

Provides the entry points necessary for compiling and ex-
ecuting a string parameter operator. If used, the names
r_cstrp and r_1strp must appear as the compilation and
execution entry names for the chosen operator (and de-
limiter) in the predicate table. Note that if a REC program
is to be included as a constant string in a C program,
and the REC program contains quoted strings, the outer
quotes must be escaped by a backslash, and any inner
characters needing escaping must be doubly escaped, e.g.,
"(\"Isn\\\’t this ridiculous?\";)". In this exam-
ple the string parameter compiler r_cstrp would compile
the string "Isn\’t this ridiculous?"

4.6.1 Function int r_cstrp()

Compiles a string parameter. The syntax is dwd, where
w is the string and § is the character chosen as oper-
ator and delimiter, usually the double quote character.

The C conventions regarding the backslash as an escape
character are implemented, but they are not interpreted
during compilation, because the string is not moved from
its location in the REC program source string.

4.6.2 Function int r_lstrp()

Loads the string parameters, address and length, into the
global variables r_pbufp and r_pbufl, respectively. The
length is that of the uninterpreted string without the de-
limiters, the address is that of the character following
the left delimiter. These variables are declared in module
rec.o, and may be used by subsequent operators or pred-
icates, which should use r_bslash to interpret properly
characters escaped by a backslash.

4.7 Module bsl.o

Contains a function, r_bslash, that interprets characters
escaped with \ according to C conventions. This func-
tion is called by r_cchrp in chr.o and is provided as a
separate module for use with the string-handling func-
tions in str.o. Function int r_bslash(int c) returns
c if not a backslash; if ¢ is a backslash, it returns a value
depending on the character following it:

\a alarm (BEL)

\b backspace (BS)

\f form feed (FF)

\n newline (LF)

\r carriage return (CR)
\t tab (HT)

\v vertical tab (VT)

\xn hexadecimal number n (at most 3 digits)
\w octal number w (at most 3 digits)
\« character «, when « is none of the above.

5 Case study

Consider adding some operators to CAMEX,[8] an exer-
ciser program for the Automatrix, Inc., CAM-PC cellular
automata board. The program contains provisions to al-
low the user to move data between each of the board’s
bitplanes and a disk file. Instead of setting up a popup
menu that asks what bitplanes are to be saved or loaded
and file names for each bitplane, two operators Ya and
ya are added into CAMEX’s set of REC predicates. Yo
will store the plane indicated by « (0, 1 or 2) in the file
whose name is given by the last quoted string operator
(c.f. str.o above) and ya will load the file given by the
last quoted string into the bitplane specified by « (1, 2
or 4—a caprice of the CAM-PC, not REC).

What has to be done to the program is

e Include in the header file containing the predicate

table the declarations for the functions that execute
operators Y and y:

int ropuy(), roply();

e Change the corresponding lines in the table:

struct fptbl dtbl[] = {

r_noop, FALSE,

"Space - no op ",
r_ctrc, r_ctrx,

"l - Counter !m!, n decimal ",
r_cstrp, r_lstrp,

"\" - String parameter ",
/* entries for # through W */
r_operl, ropuy,

"Y - store plane in disk file ",
/* entries for Z through w */
r_operl, roply,

"y - load bitplane n from disk ",
/* entries for z through ~ */

};

Since the syntax for the new operators is Yo is and
ya, their compilation entry point is listed as r_oper1.

Add the functions that carry out the associated op-
erations:

ropuy() {pltofi(r_pbufp,nibbl(*xr_pc++));}
roply () {fitopl(r_pbufp,nibbl(*r_pc++));}

Function nibbl converts a hexadecimal ASCII digit
to the corresponding integer value; pltofi and
fitopl carry out the actual transfers between disk
file and bitplane. They assume that r_pbufp has
been set up previously by execution of the quoted
string operator; *r_pc++ picks up the character «
seen during compilation and advances the program
counter.

Provide an array for REC programs; add sample pro-
grams to it:

char recrule[NY] [CLEN]= {
/* ... x/
"([store]\"WW1.PAT \"YO\"WW2.PAT"
"ON"YIN"WW4A.PAT \"Y2\" \";;)",
"([load]l \"WW1.PAT \"y1\"WW2.PAT"
" N"y2\"WW4.PAT \"y4\" \";;)",
/* ... %/
};

NY is the number of program strings; CLEN is the
maximum size of each string. Editing, compiling and
executing either of the two REC programs shown re-
places going through the three dialogues that would
be required to set up the file names associated with
the bitplanes. The bracketed comments inside each
sample program remind the user what the program
does, lest the operations associated with Yo and yo
be forgotten or confused.

In the keyboard event loop, provide for ways to
choose a REC program, edit it, and compile and exe-
cute it:

case Kf2 : /x f2 = rec program list */
rij=lim(1,recdem(Kf2) ,NY)-1;
camri(rij);
for (i=0; i<CLEN; i++)
cstrlil=recrule[rij] [i];
break;
case Kf3: /* f3 = edit rec program */
edrec(cstr); txtmode();
break;
case Kf4: /* f4 = execute rec program */
if (rec_c(cstr,rprg,PLEN,dtbl)==1)
rec_x(rprg);
break;

In this code fragment 1im(i, j,k) returns i if j<i, k
if j>k and j otherwise; recdem displays the menu of
built-in REC programs and returns the index of the
selection, camri displays the name of the selected
REC program, edrec allows editing of the program,
and txtmode resets the screen after editing. Kf2,
Kf3 and Kf4 are symbolic constants whose values
are those produced by the PC function keys F2, F3
and F4, respectively; cstr is an array of characters
to hold the program during editing and compiling,
rprg is the program array and PLEN is its size.

If predicates are to be included, one must make sure
their executing functions return integer values appropri-
ate to the corresponding truth values.

6 Experience

CREC has been used to provide programmability to the
menu interfaces of the following programs:

e CAMEX,[8] described in the previous section

e LCAU41,[9] a set of programs for the study of (4,1)
linear cellular automata: their evolution, statistics,
etc.

10

e TWOC,[10] a program to study the trajectories of a
charged particle in the field of two centers with in-
dependent magnetic and electric charges.

Besides the added programmability, the menus now in-
clude sets of sample REC programs that may be executed
as they are, or edited and then executed.

The inclusion in CAMEX of the Y and y operators and the
two sample programs described in the previous section
provided several benefits:

e File names may be changed quickly, including
putting in path names. This can’t be done with
Forth, as included with the CAM-PC board.

A different set of planes may be loaded, or some may
be dropped. Being editable, the sample programs
can be taken just as a suggestion.

If it were worth the trouble, ya could become a pred-
icate (returning false for a nonexistent file), allowing
the user to specify alternates to be loaded in order
of priority.

e The programmer can also reuse the new operators in
other REC programs, which are much shorter to write

than new C source.

From LCAU41, the following sample REC program runs
through the built-in set of demonstration rules of (4,1)
automata (4 states, first neighbors), ending when the set
is exhausted or a key is pressed:

(DF (ygNZh: s;);)
where

D selects an internal “demo” category switch (oper-
ators for other categories include T for “totalistic
rules” or I for “invertible rules”),

selects the first rule in a category,

generates a random line to start the automaton
(other operators can generate other lines, such as
a single point in the middle),

graphs a screenful of the automaton’s evolution, dis-
playing the rule on the first row,

moves to the next choice in the current category,

is a predicate that returns true if the current rule is
not the last selection in its category,

is a predicate that clears the screen, restores the
main display and returns false if a key has been
pressed (allowing the user to decide when to inter-
rupt an ongoing cycle), and

s clears the screen and restores the main display (used
in this example for the case in which the iteration
ends by Z becoming false).

As a final example, the following program from TWOC
follows a trajectory with given initial conditions that are
saved in case a reflected plot is desired; displayed tra-
jectory parameters are updated every ten steps, and the
program ends when a key is pressed:

(Amp$s ((110! r p:;) Pa k:;) ;)
In this program,

i initializes a Runge-Kutta run,

evaluates the constants of the motion for the current
position and velocity,

plots the position on the screen (with a green point),
saves the space vector,

110! is a counter predicate,

performs one Runge-Kutta step,
Pa

prints selected data on the screen (o = a causes all
parameters to be displayed), and

k is predicate returning false if a key has been pressed.

TWOC contains many variables and parameters, and pro-
vides several kinds of graphs. Being able to choose which
of them is wanted at a given moment, and in what se-
quence, is the flexibility offered by REC. If the program
prints coordinate values all the time, the display slows
down and the viewer is distracted; if the coordinates are
never displayed, the user does not know what is going on.
Thus, in the example, the counter determines how fre-
quently the coordinates are displayed. Another counter
could be used to decide how long to run a trajectory
before changing the initial conditions. Once programma-
bility has been added to the user interface, the user’s
possibilities become endless.

6.1 Availability

All versions of CREC are available from the author, who
can be reached on BITNET as CISNEROSQUNAMVMI1 or
on the Internet as cisneros@unamvml.dgsca.unam.mx.
The software distribution includes a small sample com-
piler that is essentially a reverse Polish notation calcula-
tor; copies of LCAU41, TWOC and CAMEX are also available.

11

7 Acknowledgments

Suggestions by H. V. Meclntosh were invaluable for
the development of the library described herein and
many of his comments were incorporated into the
revised manuscript. The author was supported in
part by the Consejo Nacional de Ciencia y Tecnologia
(grant #P228CCOX904651) the Secretaria de Educacién
Publica (grant #C90-01-0473) and the Sistema Nacional
de Investigadores.

References
[1] H.V.Mclntosh, “A CONVERT compiler of REC for
the PDP-8,” Acta Mex. Cienc. Tecnol. 2,1 (Jan-Apr
1968), 33—43.

H. V. McIntosh and G. Cisneros, “The programming
languages REC and Convert,” SIGPLAN Notices
25, 7 (July 1990) 81-94.

G. Cisneros, “A FORTRAN coded Regular Expres-
sion Compiler for the IBM 1130 Computing Sys-
tem,” Acta Mex. Cienc. Tecnol. 4, 1 (Ene-Abr), 30—
86 (1970)

R. Carlos Garcia-Jurado M., “Un REC visual para
la PDP-15 en comunicacién con la PDP-10,” B.Sc.
Thesis (Spanish), Instituto Politécnico Nacional,
México (1971)

J. R. Bell, “Threaded code,” Commun. ACM 16,
370-372 (1973)

B. W. Kernighan and D. M. Ritchie, “The C
Programming Language,” 2nd. edition, (Englewood
Cliffs, NJ: Prentice-Hall, 1988), Ch. 7.

B. W. Kernighan and R. Pike, “The UNIX Pro-
gramming Environment,” (Englewood Cliffs, NJ:
Prentice-Hall, 1984), Ch. 8.

H. V. Mclntosh, “The CAM/PC exer-
ciser CAMEX,” Instituto de Ciencias, Universidad
Auténoma de Puebla (1991) [An abridged version
appeared in “CAM News: A newsletter for users of
CAM-PC/CAM-6,” Robert B. Andreen, ed., Mount
Saint Mary College, Newburgh, N.Y., Sept. 1991]

H. V. McIntosh, “LCAU,” Instituto de Ciencias,
Universidad Auténoma de Puebla (1990), cited in
D. Hiebeler, “Appendix I: A brief review of cellular
automata packages,” Physica D 45, 463-476 (1990)

[10] H. V. McIntosh, “TWOC,” Instituto de Ciencias,

Universidad Auténoma de Puebla (1991)

