
REC and Convert as aids in teaching Automata Theory∗

Gerardo Cisneros† and Harold V. McIntosh
Departamento de Aplicación de Microcomputadoras,

Instituto de Ciencias, Universidad Autónoma de Puebla,
Apdo. Postal 461, 72000 Puebla, Pue., México.

E-mail: CISNEROS@UNAMVM1, MCINTOSH@UNAMVM1

Abstract

The programming languages REC and Convert, designed
in México two and a half decades ago, have matured in
recent years as symbol manipulation languages imple-
mented on a variety of microcomputers. In this paper
we present an integrated program package for the study
and simulation of several models of automatic computa-
tion: regular expressions, push-down automata, Markov
algorithms, Turing machines, Post production systems
and the LISP programming language. The package was
developed for computers based on the Intel 8086 micro-
processor family running MS-DOS. It includes a screen
editor (written in REC), compilers (written in Convert)
for the various automaton models, and a command inter-
preter (also written in Convert) which allows iteration
of the edit-compile-test cycle for any of the automaton
models. The package may be used in Mathematical Logic
courses or any others where automata theory is studied.

Introduction

Automata theory is a subject whose inclusion is oblig-
atory in any program of studies in computing with any
claim to completeness. Through automata theory one ar-
rives at the concept of an effective computation and at the
limits of the effectively computable. A system allowing
experimentation with examples of the various automata
models that have arisen, affording concrete experience
with their operation, may help strengthen one’s grasp of
the abstract concepts of the theory.

Since automata are mostly symbol-manipulating ma-
chines, automata simulation becomes particularly simple
if languages designed specifically for symbol manipula-

∗The original Spanish version, “REC y Convert en la enseñanza
de la Teoŕıa de Autómatas”, was presented at the Fifth In-
ternational Conference Computers in Institutions of Education
and Research, Universidad Nacional Autónoma de México/Unisys,
México, November 1989, and appeared in the proceedings of the
conference: “Memorias de la Quinta y Sexta Conferencia Interna-
cional Las Computadoras en las Instituciones de Educación y de
Investigación”, 38–40 (1991)

†Member of the Sistema Nacional de Investigadores, México.

tion are used. REC and Convert, a pair of languages de-
signed by McIntosh almost 25 years ago and implemented
in sundry versions (especially REC) by several collabora-
tors [Gu65, Gu66, Se67, McI68, Ci70, Ga71, Va71], have
had a recent resurgence as string manipulation languages
on microcomputers. [McI85, Ci86a, Ci85, McI89].

In this paper we describe a package of “compilers” writ-
ten in Convert for various automata types, controlled
by an interactive command interpreter. The package runs
under REC86, the version of REC for the 8086 (and com-
patible) microprocessors with the MS-DOS operating sys-
tem. In the following sections we describe the command
interpreter, the compiler for parsers of strings generated
by regular expressions, the compiler for push-down au-
tomata simulators, the compiler for Markov algorithms,
the compiler for Post production schemes, the compiler
for Turing machine simulators, the LISP compiler, the
regular equation system solver and the screen editor. Sev-
eral of the programs are based on compilers originally
written in REC under CP/M[McI84].

The command interpreter

The command interpreter, AUTOMATA.CNV, is the central
program in the package. Its main program just saves the
PATH variable from the MS-DOS environment, adding a
directory AUTLIB, creates buffers for saving the current
working file name and directory, and invokes the com-
mand selection subroutine. The command line for execu-
tion of AUTOMATA may have either of the following forms:

REC86 AUTOMATA
REC86 AUTOMATA A ...

where A ... represents the names of one or more files
(which should include extensions). In the first case, the
command selection subroutine displays a list of available
commands; in the second, it invokes the screen editor to
create or edit each of the files listed in turn.

Once the initial command is executed, the command
selection subroutine reads commands from the keyboard,
and interprets them according to the following list:

1

c [file ...] compile one or more files
d [file] display list of existing files
e [file ...] edit one or more files
h [subj] help on given subject
k [file] delete file(s)
l [file ...] list file contents
p [dir] set prefix to use
s show current prefix
t terminate the run
x [file] execute the indicated (REC) file
? display this list

Square brackets indicate that the argument or argu-
ments are optional; the ellipsis indicate more than one
argument may be included.

Commands e, c and x are the most important; with
these the automata are edited, compiled and executed.
In particular, if a compilation fails, the editor is invoked
and the cursor is positioned near the erroneous character
or construct in the source file; on exit from the editor, the
compilation is retried automatically. This cycle repeats
until compilation produces no more errors or the editor is
given the quit command. The compiler invoked depends
on the file extension of the file to be compiled; AUTOMATA
recognizes the following extensions:

RXP regular expressions
PDA push-down automata
MKV Markov algorithms
PST Post production schemes
TNG Turing machines
LSP LISP programs
RSY regular equation systems.

If no argument is given on any of the e, c or x com-
mands, the explicit name most recently used in an e or
c command is assumed. In case the most recent e or c
command with explicit arguments had more than one, the
working file name will be the last one. This includes those
arguments appearing on the MS-DOS command line used
to have REC execute AUTOMATA, since in this case the main
program simulates execution of an e command.

Command p allows the user to specify a subdirectory
(with or without a disk identifier) to be attached to the
beginning of file names not starting with a backslash (\)
or disk identifier; command s shows the current prefix. If
the current prefix is the null string, the directory current
at the start of execution is used.

Commands k, d and l erase files, display directory con-
tents and list files, respectively; their arguments may
contain the MS-DOS wildcard characters, asterisk (*)
and question mark (?). They are provided for user con-
venience. Command k does not erase indiscriminately,
it asks for confirmation individually for each file whose
name matches the given pattern.

Command h provides help: without an argument, it
displays a list of subjects for which help is available (the

available compilers); with an argument, it displays a short
description of the compiler corresponding to the given
subject. Command ? displays the list of commands rec-
ognized by the interpreter itself.

Finally, the run is terminated by command t.

Blanks and comments in source
files

The compilers executed by AUTOMATA allow inclusion of
blanks, tabs and comments in source files. Comments are
enclosed in square brackets ([]) and may be nested, just
as in REC.

If there are one or more comments enclosed in double
square brackets ([[...]]), the string enclosed by the last
of these (appearing before the first character belonging to
the expression, program or description of the automata
proper) will be included in the generated parser or simu-
lator as a sign-on message to be displayed when its exe-
cution begins. This string should provide the user with a
brief description of the parser or automata and the input
it requires. (RSYCOM, the regular equation system solver,
copies bracket-enclosed comments including the brackets,
since it does not generate a REC program, but a regular
expression which is written on a file with extension .RXP.)

Regular Expressions

Regular expressions were invented by Kleene[Kl56] as a
language with which to describe the strings recognized by
the neural nets of McCulloch and Pitts[McC43]. A series
of fundamental theorems in the theory of finite automata
establishes the equivalence of regular expressions, (deter-
ministic) finite automata and transition systems (nonde-
terministic finite automata)[Ho79].
AUTOMATA executes the RXPCOM compiler to transform a

regular expression contained in a file whose extension is
.RXP into a REC program which accepts strings read from
the keyboard if they belong to the language denoted by
the regular expression or rejects them otherwise.

Regular expressions accepted by this compiler may in-
clude any printing Ascii characters [between the excla-
mation point (!) and the tilde (~)], all of them taken
as alphabet letters except for the following characters,
which have the indicated meaning:

the empty set
$ the null string
() grouping symbols
| alternation operator
* closure operator

Spaces and tabs may be used freely, and bracket-
enclosed comments may appear at the beginning of the

2

file. The first non-blank, non-left-bracket character will
mark the beginning of the regular expression for which
a parser is to be generated; the expression is taken to
include all non-blank characters up to the end of the file.

For example, the following lines

[ZAT3RD.RXP]

[[Binary strings w/3rd-from-last digit = 0]]

(0 | 1)* 0 (0 | 1) (0 | 1)

may be placed in a file ZAT3RD.RXP for which RXPCOM
will generate a file ZAT3RD.REC, which when executed will
read strings and determine whether or not they are binary
numbers whose third-from-last digit is a 0.

Push-down Automata

Push-down automata are the simplest automata able to
recognize languages generated by context-free grammars.
They are machines lying between finite automata and
Turing machines. As opposed to finite automata, a non-
deterministic push-down automaton (PDA) is not in gen-
eral equivalent to a deterministic PDA; the class of lan-
guages accepted by deterministic PDAs is more restricted
than that of languages accepted by non-deterministic
PDAs. The book by Hopcroft and Ullman [Ho79] con-
tains an extensive discussion on automata and languages,
with numerous references to the original papers.

Given a file (whose extension is PDA) containing the
description of a push-down automaton, AUTOMATA calls
for the execution of PDACOM, which generates a simulator
for the automaton.

A push-down automaton may be described by a set of
n-tuples, with n odd and greater than or equal to 5. Each
n-tuple is written as

(q,s,S,q1,T1, . . . ,qk,Tk)

where q is a state, s is the null string or a symbol in the
input alphabet, S is a symbol in the stack alphabet, the
qi are states to which transitions are possible on reading s
from the input with S on the top of the stack, and the Ti

are strings (formed by stack alphabet symbols, and possi-
bly null) replacing S if a transition to the corresponding
state qi occurs.

The Ti strings are pushed on the stack from left to
right, so that the rightmost character becomes the stack
top.

State names may be any combination of digits and let-
ters; stack and input symbols are any Ascii characters
between the space (sp) and the tilde (~), except the round
parentheses, the comma, the apostrophe and the double
quote. The q state in the very first tuple is taken as the
start state; the stack symbol S in the same first tuple is
taken to be the initial stack contents.

States whose name starts with an F are deemed to be
final states; if there are none, the automaton is assumed
to accept strings by empty stack. For a given state q
and stack symbol S, the tuple (if any) for which s is the
null string should appear before the tuples in which s is
nonnull.

The following is an acceptable description for a push-
down automaton accepting even-length palindromes in
binary[Ho79].

[MIRROR.PDA]

[[

This automaton accepts even-length

palindromes over the alphabet {0,1}.

]]

(q1,,R,q2,) (q2,,R,q2,)

(q1,0,R,q1,RB) (q1,1,R,q1,RG)

(q1,0,B,q1,BB,q2,) (q1,0,G,q1,GB)

(q1,1,B,q1,BG) (q1,1,G,q1,GG,q2,)

(q2,0,B,q2,) (q2,1,G,q2,)

In accordance with the foregoing description, the start
state is q1, and the initial stack symbol is R. The automa-
ton is nondeterministic, both because there are (q, s, S)
triples for which more than one transition is posible, and
because there are q and S for which there are transitions
from (q, s, S) with null and nonnull s.

The programs generated by PDACOM show at each step
of their execution in a single line the contents of the stack,
the top of the stack, the unread portion of the input
string, and the state of the automaton. The input string
may seem to grow when nondeterministic automata have
to backtrack to consider some alternate transition.

Markov Algorithms

Markov algorithms, originally called by their author “nor-
mal algorithms”, are the result of the attempt by the
Russian mathematician A. A. Markov to make a rigorous
algorithmic process out of the production schemes of E.
L. Post. In a Post system, one is required to exhibit a se-
quence of transformation steps, or to prove that no such
sequence can be found. This is a process which may de-
pend upon a considerable amount of ingenuity, or involve
non-constructive reasoning, which is unsatisfactory from
the algorithmic point of view.

A Markov algorithm consists of a sequence of pairs—
antecedents and consequents—which constitute transfor-
mation rules to be applied to a string. They are to be
tried in the strict priority of the order in which they are
listed, and the current rule is applied if the string under
transformation contains the antecedent as a substring;
that being the case, the substring found (the first instance
in a left to right search) is replaced by the consequent.
Furthermore, each rule is marked according to whether

3

the process is to be terminated fortwith or to be repeated
again from the beginning on the transformed string. If
no rule applies, the process also stops. Thus, a quite def-
inite sequence of events is described, with which to effect
a calculation.

Markov algorithms can be modelled in REC with es-
pecial ease just because they were taken as the model
for REC’s workspace and its associated operators and
predicates[Ci86b].

Markov’s own book[Ma54], which spells out his scheme
in minute detail, is still the best source to consult for a
description of these algorithms. Paralleling the develop-
ment of the theory of Turing machines, Markov’s treat-
ment concludes in the enunciation of a Universal Algo-
rithm.

Translation of a Markov algorithm into a file (with ex-
tension MKV) usable by AUTOMATA is straightforward. The
rules may have either of two forms:

(α:β) if the rule is repetitive,
(α;β) if the rule is terminal.

Both the antecedent (α) and the consequent (β) may
be strings of zero or more Ascii characters between
the space (sp) and the tilde (~), but not including
round parentheses, colon, semicolon, apostrophe or dou-
ble quotes.

The following example shows the contents of a file de-
scribing a Markov algorithm to sum two binary numbers.
The rules are ordered left to right and top to bottom,
although it is more usual to list them one to a line.

[BSUM.MKV]

[[A Markov algorithm which will sum two

binary numbers presented in the form a+b=;

for example

111110+011=

Each step shows an application of the list

of rules until the final sum is completed

and the auxiliary symbols are gone.]]

(a0:0a) (a1:1a) (b0:0b)

(b1:1b) (0*:1) (1*:*0)

(*:1) (0a:=0) (0b:=1)

(1a:=1) (1b:*=0) (0+:+a)

(1+:+b) (+a:0=+) (+b:1=+)

(+:) (=:)

Each step in the execution of a program produced by
MKVCOM shows the result of the last transformation ap-
plied to the given string. The generated programs pro-
vide the means for interrupting very long or infinite loops,
which are always described in the sign-on message.

Post Productions

Post productions strongly resemble the proofs that have
traditionally characterized high school courses in Eu-
clidean geometry. Some initial premise—an axiom—is
to be transformed by a chain of substitutions into a
conclusion—a theorem. A distinguishing feature of Post’s
rules of transformation is that the text, or phrases to be
manipulated, are not spelled out explicitly. Rather, they
are defined by their context, that is, by the phrases im-
mediately preceding or following them.

Post’s ideas are to be found in a couple of journal
articles[Po43, Po46]. A really excellent presentation of
his work occupies a great part of Minsky’s book[Mi67],
derived from his own lecture notes at MIT.

It is possible to define a system, which does not strictly
follow Post’s original plan, but which is nevertheless algo-
rithmic and which illustrates many of the ideas and cap-
tures much of the spirit behind his formalization of com-
putation. Such a program was a precursor to Convert.
Yet a different approach to a computational scheme led
A. A. Markov to his algorithms.

A set of Post productions is a list of antecedent-
consequent pairs which are placed in a file with extension
PST and whose general form is

(g0v1g1 · · · vngn,h0u1h1 · · ·umhm)

where every vi and uj denote a variable and each gl and
hk denote a constant string. Each variable is denoted by
the symbol <p>, where p is an integer between 0 and 28.

In the antecedent, no variable may appear more than
once and no inner gi may be null; in the consequent
only variables appearing in the antecedent may be used.
The constant strings may contain any Ascii characters
between the space (sp) and the tilde (~), except round
parentheses, angle brackets comma, apostrophe or double
quotes. g0 and gn may be null, as may be any of the hk in
the consequent. Only one attempt is made to bind each
of the variables (using the shortest possible string) and a
rule fails if any of the constant strings in the antecedent
is not found at the appropriate place. If gn is null the
last variable (vn) is bound to the remaining suffix of the
text being transformed; otherwise the text must have gn

as a suffix. Rules are tried in order (Markov-style) and
the process is reapplied to the transformed string; it ter-
minates only when no rule applies or the user interrupts
it by pressing Ctrl-X.

What follows is a set of productions which, like the
example in the previous section, perform the sum of two
binary numbers.

[BINSU.PST]

[Post productions can deal with the digits

to be summed in a single step even though

they are widely separated. In a Markov

algorithm it is necessary to move one of

4

them until it is in contact with the other

before the addition table can be applied.]

[[

A Post Production scheme which will sum two

binary numbers written in the form a+b=;

for example:

111110+011=

]]

(<1>0+<2>0=<3>,<1>+<2>=0<3>)

(<1>0+<2>1=<3>,<1>+<2>=1<3>)

(<1>1+<2>0=<3>,<1>+<2>=1<3>)

(<1>1+<2>1=<3>,<1>+<2>*0<3>)

(<1>0+<2>0*<3>,<1>+<2>=1<3>)

(<1>0+<2>1*<3>,<1>+<2>*0<3>)

(<1>1+<2>0*<3>,<1>+<2>*0<3>)

(<1>1+<2>1*<3>,<1>+<2>*1<3>)

(<1>+<2>=<3>,<1><2><3>)

(+<2>*<3>,0+<2>*<3>)

(<0>+*<3>,<0>+0*<3>)

(+*<3>,1<3>)

During execution, the program shows the string result-
ing from each applied transformation.

Turing Machines

A Turing machine is a fundamental concept in the the-
ory of computation. Although of little practical use, it
forms a model of computation which is so simple and
definite that theorems can be proven about its operation
allowing rigorous conclusions to be drawn about what is
computable and what is not. It is Church’s thesis that
anything which is computable is computable by a Turing
machine; a statement which cannot be proven but which
has never been refuted after very extensive analyses of
what might be meant by computation and ways of per-
forming it. (According to Minsky, the thesis, in terms of
his machine model, is Turing’s; Church was interested in
the general character of an effective computation.)

One of the best references to Turing machines and
their operation is again Minsky’s book[Mi67]; Hopcroft
and Ullman[Ho79] give demonstrations of the equivalence
of several modifications to the basic machines (multiple
tapes, multidimensional tapes, semiinfinite tapes, etc.).
The original article, which is often cited for the defini-
tion of a Turing machine, is [Tu36].

A Turing machine is described by a set of quintuples.
Each quintuple has the following form:

(q,s,s′,q′,d)

indicating that if the machine is in state q and its
read/write head is placed over a square containing sym-

bol s, it is to replace s by s′, make a transition to state
q′ and move the head in the direction indicated by d.

States q and q′ may be denoted with any combina-
tion of digits and letters; as symbols s and s′ any Ascii
character between the space (sp) and the tilde (~) may
be used, except the round parentheses, the comma, the
apostrophe, the double quote and the circumflex accent
(^). The direction d may be a + (to move the read/write
head to the right), a - (to move it to the left), or 0 (to stay
on the same square). The state name H is distinguished
as the Halt state; a machine also halts if it finds itself
with a state-symbol pair (q, s) for which no quintuple is
available.

Having placed a set of quintuples in a file with exten-
sion TNG, the first state of the first quintuple is taken to
be the start state of the machine. At the start of exe-
cution, a circumflex accent in the initial tape indicates
the head is to be positioned at the character following
it; if no accent appears, the head will be assumed to be
positioned on the leftmost character of the given string.
Empty tape squares are assumed to contain blanks (sp).

Once more consider the binary sum example:

[BADD.TNG]

[[

This Turing Machine will sum two binary

numbers. Its initial tape should have the

form =a+b=, with the head positioned at

the right equal sign. For example,

=111110+011^=

]]

(Q0,=, ,dig,-)

(dig,0,=,zle,-) (dig,1,=,ole,-)

(dig,+,+,lef,-) (zle,0,0,zle,-)

(zle,1,1,zle,-) (zle,+,+,zad,-)

(ole,0,0,ole,-) (ole,1,1,ole,-)

(ole,+,+,oad,-) (zad,a,a,zad,-)

(zad,b,b,zad,-) (zad,0,a,rig,+)

(zad,1,b,rig,+) (zad,=,a,new,-)

(oad,a,a,oad,-) (oad,b,b,oad,-)

(oad,0,b,rig,+) (oad,1,a,car,-)

(oad,=,b,new,-) (car,0,1,rig,+)

(car,1,0,car,-) (car,=,1,new,-)

(new, ,=,rig,+) (rig,0,0,rig,+)

(rig,1,1,rig,+) (rig,a,a,rig,+)

(rig,b,b,rig,+) (rig,+,+,rig,+)

(rig,=, ,dig,-) (lef,0,0,lef,-)

(lef,1,1,lef,-) (lef,a,a,lef,-)

(lef,b,b,lef,-) (lef,=, ,fin,+)

(fin,0,0,fin,+) (fin,1,1,fin,+)

(fin,a,0,fin,+) (fin,b,1,fin,+)

(fin,+, ,H,+)

During the simulation of a Turing machine, the gen-
erated program shows the a section of the tape centered

5

at the square under the head (which is distinguished by
separating it from the rest by a blank on either side),
and the state of the finite control to the right of the tape
section.

LISP

LISP is an invention of John McCarthy’s dating from the
late 1950’s at MIT. LISP is based on Alonzo Church’s
lambda-calculus, and is fundamentally recursive in na-
ture. It primarily manipulates text, which leads to the
idea of defining it in its own notation, after the fashion
of a Universal Turing Machine. The resulting Universal
function EVAL gives a self-consistent definition of LISP
within LISP.

Unfortunately, due to its low efficiency of execution
and the predisosition of users for iterative programming,
pure recursion proved to be very cumbersome for LISP.
To meet these objections, the “program feature” was in-
troduced. The development of REC was a direct conse-
quence of the desire to design an aesthetic substitute for
the “program feature”, having evolved from the related
concept of “operator predicates”.

The fundamental reference to LISP is [McC60]; for a
long time the only other reference was the user’s man-
ual, [McC62]. Nowadays, of course, there are quite a few
books on LISP.

An important aspect of LISP 1.5 and its successors as
implemented at MIT and elsewhere was the physical rep-
resentation chosen for lists—a binary tree with pointers
to list elements and eventually constants such as atoms
and numbers. The translation generated by LSPCOM ig-
nores this aspect entirely, so that lists are strings whose
parentheses are balanced anew with each operation that
is carried out. This makes no difference whatsoever in
the linguistic aspects of the program, but of course ren-
ders it entirely impractical for the execution of truly large
programs. To preserve the full aspects of LISP, it would
only be necessary to make a version of the built-in prim-
itive functions which would use binary trees rather than
chains.

The program implemented here is EVAL, not
EVALQUOTE nor APPLY, as defined in [McC62], nor
some other variant on the theme. This means that one
would present, for instance, (cons (quote a) (quote
(1 2 3))) rather than the version cons (a (1 2 3))
that EVALQUOTE would expect, or the additional AL-
IST which APPLY would require.

The version of LISP recognized by AUTOMATA has the
following limitations:

• The file must consist of a set of function definitions,
the last of which must be called *, and which pro-
vides the main entry point.

• User-defined function names may only be single
upper- or lower- case letters.

• Atoms representing variables (to be associated by
lambda) may only be integers between 0 and 28.

The following predicates, functions and forms are recog-
nized:

append and atom bl caar cadr

car cdar cddr cdr cond cons

cr eq if lambda lf list

lp not null or print qu

quote read rp tb

Each function has the form

(n f)

where n is the name (a letter or *), and f is the form
used to compute the function. In the form ((lambda v
f) u), v is the list of variables (zero or more parenthesis-
enclosed, blank-separated integers between 0 and 28), f
is the form defined and u is the list of objects to be asso-
ciated to the variables in list v.

At the start of execution, the generated program
prompts for a string, which the main program will be able
to use only if it has been defined in terms of a lambda
with a single variable (as in the example below).

Consider yet again the symbolic sum of binary num-
bers:

[BINADD.LSP]

[[

Binary sum in LISP: When "lisp>" appears,

type in the first number as a list of ones

and zeros; when "read>" appears, type the

second number in likewise fashion.

]]

[calculate a binary sum -

use reversed digits]

(b (lambda (0 1)

(r (c (r 0 (list)) (r 1 (list)))

(list))))

[reverse a list]

(r (lambda (0 1) (if

(eq 0 (quote ())) 1

(r (cdr 0) (cons (car 0) 1)))))

[sum low order bits, then rest]

(c (lambda (0 1) (cond

((null 0) 1)

((null 1) 0)

((and) (cons (d (car 0) (car 1))

(c (list (e (car 0) (car 1)))

(c (cdr 0) (cdr 1)))

6

))

)))

[sum of two bits]

(d (lambda (0 1) (cond

((eq 0 (quote 0)) 1)

((eq 1 (quote 0)) 0)

((and) (quote 0))

)))

[carry bit]

(e (lambda (0 1) (cond

((eq 0 (quote 0)) (quote 0))

((eq 1 (quote 0)) (quote 0))

((and) (quote 1))

)))

[main program]

(* (lambda (0) (b 0 (read))))

Regular Equations

A deterministic finite automaton may be expressed as a
system of “linear” equations in which each state is repre-
sented by an unknown, the coefficients are the characters
on which transitions occur and “multiplication” and “ad-
dition” are the concatenation and alternation operators
of regular expressions, respectively.

For example, if an automaton has three states A, B
and C, such that state A has transitions to state B on
symbol 1, and to state C on symbol 0, the equation for
A will include terms 1B and 0C. The equation for A will
also include constant terms for each transition ending in
a final state (1 if B is final, 0 if C is final, the null string,
denoted by $, if A itself is final). The equation for the
initial state heads the list. For simplicity, the alphabet is
limited to {0, 1}; states are denoted by single upper- or
lowercase letters.

The system is solved by backward substitution, using
Arden’s lemma[Ar60, Ba75]: If α and β are regular ex-
pressions such that the language denoted by α does not
contain the null string, then the solution to

S = αS | β

is S = α∗β.
The solution produced is the regular expression for the

state whose equation appears first in the file (whose ex-
tension must be RSY); if that state is the start state of the
automaton, the resulting regular expression describes the
language accepted by the automaton. This expression is
written in a file with extension RXP, which may in turn
be compiled to generate a parser in REC.

Due to the growth in complexity of the expressions
(which tends to be exponential) as the backward substi-

tution procedes, this solver is practical only for automata
with a few states (up to seven or eight).

The following is an example of the sort of data expected
by AUTOMATA in a RSY file. Each equation must appear
on its own line, with no embedded blanks.

[EJEM.RSY]

[[

Automaton from exercise 2.13(a)

from the book by Hopcroft & Ullman

]]

a=0a|1b|0|$

b=0c|1b

c=0a|1b|0

The editor

The screen aditor, based on services provided by the
BIOS of the IBM PC and compatibles through the int
16 instruction, includes the following commands:

Key Effect
[Ctrl-Q] Quit edit (no changes saved)
[Ctrl-E] End edit (save changes)
[↑] Cursor up
[→] Cursor right
[←] Cursor left
[↓] Cursor down
[Page Up] Advance a page
[Page Down] Back up one page
[Home] To beginning of file
[End] To the end of the file
[F3] To beginning of line
[F4] To end of the line
[Delete] Delete character under cursor
[Backspace] Delete character preceding cursor
[Ctrl-Z] Delete from cursor to end of line
[Ctrl-X] Delete line
[F1] Search for a string
[Alt-F1] Cancel search string
[F2] Search and replace
[Alt-F2] Cancel search-and-replace strings
[Insert] Toggle text addition modes

(insert/overwrite)

Conclusions

The REC programs produced by the compilers in the pack-
age are not meant to be efficient; rather the emphasis is
upon their pedagogical value, in that the different au-
tomaton types are readily programmable and modifiable,
and in the ease and clarity of their presentation of the
working of the corresponding automaton. During the
simulation of a given automaton, it is possible to slow

7

down the speed of the simulation, to examine in detail
its moves, or to speed it up if one wants to skip quickly
over a sequence of steps.

The use of Convert, with its paradigmatic style based
on transformation rules, allowed writing the compilers in
a relatively short time; several subroutines were reused
across the set of compilers. The virtual machine afforded
by REC, with its stack, workspace and table of variables,
simplified the task of translating the different automaton
types.

The screen editor, although adequate for the package’s
purposes, could be extended; for example, commands to
copy and move blocks of text or to move the cursor by
words or paragraphs might be added.

The programs fit in a single 5.25” DSDD floppy disk,
including the REC compiler, the source programs in Con-
vert, the Convert compiler itself, at least one sample
source file for each of the compilers, and the TEX source
for this paper.

References

[Ar60] D. N. Arden, “Delayed logic and finite state ma-
chines,” Theory of Computing Machine Design,
pp. 1–35, Univ. of Michigan Press, Ann Arbor,
Mich. (1960)

[Ba75] R. C. Backhouse and B. A. Carré, “Regular Al-
gebra Applied to Path-finding Problems,” Jour-
nal of the Institute for Mathematics and its Ap-
plications 15, 161–186 (1975)

[Ci70] G. Cisneros, “A FORTRAN coded Regular Ex-
pression Compiler for the IBM 1130 Computing
System,” Acta Mex. Cienc. Tecnol. 4, 1 (Ene-
Abr), 30–86 (1970)

[Ci85] G. Cisneros y H. V. McIntosh, “Introducción al
lenguaje de programación Convert,” Acta Mex.
Cienc. Tecnol. 3, 9 (Ene-Mar), 65–74 (1985).
English translation published as “Introduction
to the programming language Convert”, SIG-
PLAN Notices 21, 4 (Apr), 48–57 (1986)

[Ci86a] G. Cisneros and H. V. McIntosh, REC and Con-
vert compilers for MS-DOS, PC/Blue library,
Vols. 211 and 212, New York Amateur Com-
puter Club (1986); also available as #MS29
from Micro Cornucopia.

[Ci86b] G. Cisneros y H. V. McIntosh, “Notas sobre los
lenguajes REC y Convert”, Departamento de
Aplicación de Microcomputadoras, Instituto de
Ciencias, UAP, Puebla, México (1986)

[Ga71] R. Carlos Garćıa Jurado M., “Un REC visual
para la PDP-15 en comunicación con la PDP-
10,” B.Sc. Thesis, ESFM, Instituto Politécnico
Nacional, México (1971)

[Gu65] A. Guzmán Arenas, “CONVERT,” B.S.E.E.
Thesis, ESIME, Instituto Politécnico Nacional,
México (1965)

[Gu66] A. Guzmán and H. V. McIntosh, “CONVERT,”
Commun. ACM 9, 8 (Aug), 604–615 (1966)

[Ho79] J. E. Hopcroft and J. D. Ullman, “Introduction
to Automata Theory, Languages, and Com-
putation,” Addison-Wesley, Reading, Mass.
(1979)

[Kl56] S. C. Kleene, “Representation of events in
nerve nets and finite automata,” Automata
Studies (Annals of Mathematics Studies, No.
34), Princeton University Press, Princeton, N.J.
(1956)

[Ma54] A. A. Markov, “Theory of Algorithms,” Works
of the Mathematical Institute “V. A. Steklov”,
Vol. 42, Academy of Sciences of the U.S.S.R.,
Moscow (1954) [English translation: The Israel
Program for Scientific Translations; U.S. Na-
tional Technical Information Service document
No. TT60-51085]

[McC60] J. McCarthy, “Recursive functions of sym-
bolic expressions and their computation by ma-
chine,” Commun. ACM 3, 4 (Apr), 184–195
(1960)

[McC62] J. McCarthy, P. W. Abrahams, D. J. Edwards,
T. P. Hart, and M. I. Levin, “LISP 1.5 Program-
mer’s Manual,” The MIT Press, Cambridge,
Mass. (1962)

[McC43] W. S. McCulloch and W. Pitts, “A logical calcu-
lus of the ideas immanent in nervous activity,”
Bull. Math. Biophysics 5, 115–133 (1943)

[McI68] H. V. McIntosh, “A CONVERT compiler of
REC for the PDP-8,” Acta Mex. Cienc. Tec-
nol. 2, 1 (Ene-Abr), 33–43 (1968)

[McI84] H. V. McIntosh, “REC applications includ-
ing CNVRT compiler,” SIG/M library, Vol.
166, Amateur Computer Group of New Jersey
(1984)

[McI85] H. V. McIntosh and G. Cisneros, “REC and
Convert compilers for CP/M,” SIG/M library,
Vols. 213, 214 and 215, Amateur Computer
Group of New Jersey (1985)

8

[McI89] H. V. McIntosh and G. Cisneros, “The pro-
gramming languages REC and Convert,” SIG-
PLAN Notices 25, 7 (July), 81–94 (1990)

[Mi67] M. Minsky, “Computation: Finite and Infinite
Machines,” Prentice-Hall, Englewood Cliffs,
N.J. (1967)

[Po43] E. L. Post, “Formal reductions of the gen-
eral combinatorial decision problem,” Amer. J.
Math. 65, 197–268 (1943)

[Po46] E. L. Post, “A variant of a recursively unsolv-
able problem,” Bull. Amer. Math. Soc. 52, 264–
268 (1946)

[Se67] Raymundo Segovia Navarro, “CONVERT en
el diseño de procesadores,” B.S.E.E. Thesis,
ESIME, Instituto Politécnico Nacional, México
(1967)

[Tu36] A. M. Turing, “On computable numbers, with
an application to the Entscheidungsproblem,”
Proc. London Math. Soc. (Ser. 2) 42, 230–265
(1936)

[Va71] José Luis Varas Araujo, “Compilador REC
en lenguaje COMPASS para la computadora
CDC-6400,” B.Sc. Thesis, ESFM, Instituto Po-
litécnico Nacional, México (1971)

9

