Contours for <PLOT>

Harold V. Mclntosh
Departamento de Aplicacién de Microcomputadoras
Instituto de Ciencias, Universidad Auténoma de Puebla
Apartado Postal 461, (72000) Puebla, Puebla, México.

March 18, 1989
revised January 14, 2001

Abstract

Techniques used to plot contours in the package <PLOT> are described.
Aside from its using traditional interpolation formulas, <PLOT> is character-
ized by taking pairs of triangles rather than rectangles for primitive domains,
and for tracing out one entire contour before starting another, to minimize
pen raising and lowering.
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1 Interpolation

Almost all the interpolation formulas used in numerical analysis which depend upon
linear quantities such as the values, derivatives, finite differences, or the like, of data
or functions can be summarized in a simple determinantal formula. For simplicity,
let us consider the representation of a polynomial of second degree as a function of
a single variable. We might write
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By inspection, it can be verified that the equation is that of a second degree
polynomial, and that by well known properties of determinants, the equation is
satisfied for the three pairs of points (21,y1), (22,¥2), and (23,y3).

For a higher degree polynomial it is only necessary to add more rows containing
powers of the variable, and more columns with additional data points. Indeed, the
method applies equally well to a function of several variables; it is only necessary
to have rows for each of the basis monomials and an equal number of columns.

By using Laplace’s expansion for determinants, this equation can be given a
polynomial form with explicit coefficients. However, it is easy to derive a very
compact form of the equation by using a little matrix algebra. Recall that the
determinant of a matrix is zero if and only if there is a nonzero vector whose
product with the matrix vanishes. It is convenient to partition the matrix and the
corresponding vector in the following way:

1 1 1 1 uy 0
ryooxy ¥y | ¥ uz | _ |0
12 192 w32 | 22 ug |~ | 0
yiooy2 Y3 |y v 0

If suitable symbols are introduced for the submatrices, we have

IR

which can be decomposed into two separate equations,

MU+ Xv = 0,
YU+ yv = 0.

If v = 0 then U cannot be zero (we require a nonzero vector overall), and M
would have to be singular, by the first equation. However M is the well known



Vandermonde matrix for a polynomial basis, whose determinant cannot vanish
when its data points are distinct. In the general case M is a generalization of
the Vandermonde matrix, to which a similar conclusion applies. Thus it is safe to
assume that M and v are both invertible.

Therefore we can rearrange the first equation to get

U=-M"Xv (2)
and substitute it into the second to obtain
y=Y"M'X. (3)

The components of the row vector Y7 M ~! depend on products of two factors,
the first of which is the value of the function to be represented. The second is a
geometric factor, which depends only on the location of the data points and not at
all on the value of the function at those points. Combined they present an explicit
formula for the coefficients of the interpolating polynomial. The Vandermonde
matrix has to be evaluated only once for any given set of data points.

2 The Vandermonde matrix

The Vandermonde matrix and its determinant have such a regular structure that
it is worth examining it in further detail. One starting point is the matrix

0 1 0 1 U 1
0 0 1 u = v =\
—c —=b —a v —c—bu—av v

Accordingly the components of the eigenvector satisfy

u = A, (4)
v o= Ju, (5)
—c—bu—av = M. (6)

which means that A is a root of the equation
xA) = XN 4aXl+bA+c=0, (7)

and that the eigenvectors are columns of the Vandermonde matrix formed from
the eigenvalues. In turn it follows that the coefficients in the bottom row of D
are sums of homogeneous products of the eigenvalues, as befits the coefficients of a
polynomial.



The advantage of this discovery is that it is equally easy to deduce the row
eigenvectors of D, which is a painless way to invert the Vandermonde matrix, due
to the biorthogonality of the two sets of eigenvectors..

0 1 0
[uvl] 0 0 1 =[—c u—>b v—a]:)\[u vl]
—c —=b —a

This time the components of the eigenvector satisfy

—c = Mu, (8)
u—b = v, (9)
v—a = A\ (10)

Again the eigenvector components are defined by a recursive process which can
be followed if the constants are understood to be homogeneous product sums of
the eigenvalues. Thus ¢, which is the product of all the eigenvalues, is divided by
one of them (say \;) to obtain u. To obtain v, the product from which \; was
just omitted is subtracted from the sum of all products in which one factor at a
time is omitted, leaving products from which the factor A; can be divided out. The
process continues in similar fashion to produce a vector whose components are the
coefficients of the polynomial

o) = XA
&Gi(A) = TEwE (11)
= &N+ &iad+ & (12)

The inverse of the Vandermonde matrix requires normalized row eigenvectors,
obtainable by dividing the i-th row by &;(\;), which turns out to be x'(}\;). The
polynomials 7;, whose coefficients form the rows of the inverse matrix, are usually
written in factored form and are widely known as Lagrange interpolation polyno-
mials; they are now written as a sum of powers to fit the matrix format. For n 4 1
data points,

A=2)A=A2) - (A= A1)
(Ai = AN = A2) - (N = Any)
= 7Ti,n+1An + Wi,n,An71 + ...+ Tf-l"l. (14)

ﬂi(k)

(13)

For the quotient to make sense, it is understood that the i-th factor is omitted from
both numerator and denominator. The terms 7; ; are directly the elements of the
inverse Vandermonde matrix; for our example

T T2 T3
-1
M = T91 T22 Ta23 (15)

731 T32 733

EPER) _ rota3 1
(z1—23)(2z2—21) (z1—23)(z2—21) (21—23)(22—21)
_ 232 z3+a) ) 1 (16)
- (z1—23)(2z2—21) (z1—23)(z2—21) (21—23)(22—21)
212y z1 2y i 1
L (21 —23)(zg—21) (21—23)(z2—21) (21—23)(22—21)



Of course, inserting these results into y = YT M ! X yields Lagrange’s formula,

y = Zyiﬂ'i(m). (17)

3 Confluence

Suppose that in the first example,

1 1 1 1

X Ty T3 T _
12 29?2 x3? 2P =0, (18)
Y1 Y2 Ys Yy

9 = &1, which could happen if the data points were not distinct. By repeating a
column, the determinant would vanish, invalidating the ensuing derivation when it
came time to divide by the Vandermonde determinant. Foreseeing such a coinci-
dence, the first column could be subtracted from the second without altering the
determinant’s value. Then,

1 0 1 1
x Xy — X x: x
12 é 12 32 2 = 0. (19)

Il 9™ — X1 I3 x
1 Y2 — Y1 Ys Y

Recognizing (y2 — y1)/(z2 — 1) as an approximation to a derivative, the common

factor (xy — 1) could be removed from the second column and discarded, inasmuch

as the vanishing of the surviving determinant will now take place on its own merits.
The result will be

1 0 1 1
x 1 r3 T .
22 22, x32 22 = 0 (20)
yoon' oy Y

Given clusters of data points, it is not hard to see that higher derivatives can
be used to remove the redundancies. At one extreme, all the points coincide so all
the successive derivatives would be used, resulting in a taylor series.

The result would be

1 0 0 1
1 0
a2 332 =0 (21)

0
0 x (22)
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_Z[J()y()y()][f2 —12a(1)J[:1:2J (23)
1
= [yla) ¥(@) y'()]| z—a |, (24)
2(x—a)?

generalizing to the well-known formula

) (g .
yo) =3 Dy (25)

. ?!
1=0

A more moderate arrangment would coalesce the data in distinct pairs to define
polynomials in terms of their values and derivatives at selected points, something
known as Hermite interpolation.

4 Specialized data points

The selection of particular collections of data points leads to specialized forms of
Lagrange’s interpolation formula, many of which are of common enough ocurrence
to deserve special names and treatments.

By choosing z; = —i, the interpolation points become integers, running back-
wards from zero. For N points the master polynomial will be

eV =gz +1) (2 + N-1), (26)

the subscript intended to imply something like a power, but more like factorial, but
with increasing factors. In common with powers, the exponent N tells the number
of terms in the product, and z(®) can be taken as 1. Evidently, these “factorials”
can be rewritten as polynomials,

i=N

M =37 5N, (27)

i=0

Their coefficients are called Stirling numbers of the first kind. The inverse relation,
i=N

2N = ZS;V:U('), (28)
i=0

defines Stirling numbers of the second kind. The two kinds of numbers evidently
satisfy an orthogonality relation, expressing the fact that they are elements of
mutually inverse matrices.

By defining a difference operator for functions:

Af(z) = fx)=flz—-1), (29)



we can observe that

Az x—1)W

—(
1‘—1) ;1:+N—l) (z—1Dz---(z—14+N-1)
)

= z(xz-1

(z4+N-1-1)((z+N-1)—(z—1))
NN ), (30)

which in remarkably similar to the formula for the derivative of powers. Note that
the operator takes backward differences, subtracting the function at a lesser value
of its argument from its present value.

Another useful identity, which is a direct consequence of the definition, is

e WD = 2N (3 4 ), (31)
It is convenient to introduce a second kind of factorial,
ryy=z(z—1)-(z—N+1), (32)

wherein z is decremented rather than incremented in successive factors. Its relation
to the first is

2w = (1) (=2)™, (33)

The Stirling matrix relates the “factorial powers” to normal powers, but a differ-
ent relationship is called for when the interpolation polynomials for a fixed number
of points are referred to normal polynomials. The point is that in this context,
what is required is the inverse of the Vandermonde matrix, whose elements are co-
efficients of the individual Lagrange interpolation polynomials, not the coefficients
of the one single master polynomial. Thus we would need the coefficients of

vi(a) = (=0 (z-1)(x=2) (z—i) (z—n+2)(z—n+1)(z—n)
! (1—0) (i—1) (i —2) (i —1) (t—n+2) i—n+1) (i—n)
AU (= [+ 1)n—g+1) (34)

i) (DG4

5 Three-point two-dimensional approximation

The fundamental hypothesis of the <PLOT> contour programs is that linear in-
terpolation will suffice. Since the monomials 1, z, and y form a basis or first
degree functions of two variables, the Vandermonde matrix for the combination
will have dimension 3. Usually planar data is taken from a square or rectangular
grid; if the corners of the grid squares are used as base points, there will be one
too many. Rather than worry about all the ways that contour lines can cross a
square, <PLOT> divides each square into two triangles, which are then treated
separately. The three vertices of each half square fit nicely into the interpolation
formula. When the approximation of linearity is grossly erroneous, the existence of
a preferred diagonal becomes quite visible in the erratic wanderings of the contour.



For this case the basic equation has the form

1 1 1 1
Ty T2 T3 T | 0
Yoy Ys Y '
Z1 Z9 Z3 z
The Vandermonde matrix is
1 1 1
M = r1 T2 I3
Yr Y2 Y3

The inverse matrix is

T2Y3 — Y23 Y3 — Y2 T3 — T2
-1
M = ‘—/ T3Yr —Yst1 Y1 —Ys T1 — T3 s
T1Y2 — Y122 Y2 — Y1 T2 —T1

with Vandermonde determinant
V =zays + 23y1 + 712 — Y23 — Y371 — Y1 22.

However it is arrived at, the equation can be exhibited in the explicit form

1 1 1 1 1 1 1 1 1 Ty Ty I3
Y1 Y2 Y3 |x+| @1 w2 X3 |y+| w1 2 23 |2+ |y y2 ysz | =0.
zZ1 %2 3 21 22 Z3 Y1 Y2 Y3 Z1 2 Z3

For the purposes of contouring, it is fortunate that the basic equation is an
implicit equation of considerable symmetry. For purposes of interpolation, z can
be expressed as a function of # and y, but it is equally possible to assign z a value
and solve for y as a function of x.

Even so, the equations appear rather formidable. If a specific contour value z,
has been chosen, the term in z can be combined with the constant term obtain an
equation for a line in a plane:

1 1 1 1 1 1 T ) T3
yio Y2 Y3 |+ | T T2 TZ |YH+ (7 Y2 Y3 =0.
Z1 %2 Z3 Z1 %2 Z3 Z1 TR0 k2T 20 <320

For uniformity of appearance, zy could be subtracted from the last rows of the
two left hand determinants. Further consolidation results from selecting a specific
value for one of the remaining variables, say 9. Then the formula for y would be

1 1 1 Ty — g X2 — g I3 — To
Ty —x9g Ty—To T3—To |Y+ (7 Y2 Y3 =0;

21— R0 R2— R0 %3 — %0 21— R0 R2T R0 k3 X0

still, this and similar results follow directly from original determinant.



6 Four-point two-dimensional approximation

Interpolation over triangles to get a linear approximation in two dimensions conflicts
with the rectangular layout over a grid characteristic of most data sets, although
the problem is readily resolved by splitting the rectangles into a pair of triangles.

Another approach to interpolating rectangular data is to use the cartesian prod-
uct of coordinatewise linear interpolation. It has the further advantage that the
corners of the coordinate rectangles can be the four interpolation points which the
method requires.

Consider the Vandermonde determinant

1 1 1 1 1
Iy T9 I I9 a
(7 (7 Yo Y2y = 0. (35)
Tiy1  T2y1 T1Y2 T2Y2 TY
211 221 212 222 z
The weight matrix is a Kronecker product

1 1 1 1
M o= | T T (36)
n hn Y2 Y2
L 1Y T291 Tiy2 X2Y2
[ 1 1 1 1
<[4 Al

L T1 T2 Y1 Y2

which therefore has the inverse

_ 1 T2 —1 1 Y2 _1
Mt = — 38
1;2—3;1[—1“1 1 ]®112—111|:_y1 1 (38)
T2Y2 —Y2 22 1
_ 1 —Z1Ys Y2 ;. -1 (39)
(Y2 —y1)(z2 —21) | =201 ry  —1
r1yr —y1 —awr 1

This time the interpolation formula z = Y7M ' X uses the function values at
the corners of the rectangle,

YT = (211, 221, 212, 222)]

as a row of coefficients, with the variables {1, x, y, xy } constituting X. For purposes
of contouring, however, the Vandermonde determinant would have been expanded
differently, making use of a Laplace expansion according to the last column to get

A—Bx+Cy—Dry+ Ez = (40)
and thence A_Bet+ E
— Bz z

= 41

y Dz (41)

The pole in this formula is nice because it is capable of accomodating a saddle
point in the contours, although the formula will still have problems with maxima
and minima.



7 Two dimensional quadratic approximation

Failure of a linear approximation to a surface will occur whenever the triangula-
tion of the coordinate grid is insufficiently fine, which is normally compensated by
reducing the grid size. Near critical points, however, a smaller grid only makes
matters worse. The remedy is to use a quadratic approximation, unless the critical
point is of still higher order. The most general second degree polynomial in two

variables has the form
Ax? 4+ 2Bxy + Cy* 4+ 2Dx + 2Ey + F,

which implies a basis composed of six monomials and therefore a 7 x 7 basic deter-

minant

1 1 1 1 1 1 1
I I I3 T4 Is Tg xr

Y1 Y2 Ys Ya Ys Ys Yy

212 we?  x3?  x4? x5 w2 22 | =0

TiYyr T2Y2 T3Y3s TaYs T3Ys TeYs TY

2 2 2 2 2 2 2
Y1 Y2 Ys Ya Ys Ye Yy

z1 z9 z3 Z4 Z5 Z6 z

It would not seem to be advisable to try to express such large Vandermonde
determinants in symbolic form, so any particular instance should be inverted nu-
merically to obtain the row of coefficients Y7 M ~!. An inhomogeneous second order
polynomial can be written as a quadratic form,

»=UTQU,
where
Ul = [1 = y].
and
F E D
Q=| E C B
D B A

The contour lines for z can be represented by y as a function of z if the terms
in y are gathered together and expressed as a quadratic form. Write the previous

equation in the form
Cy* +2(Bx+ E)y+ (A2 + 2Dz + F — 2) =0,

using the coefficients gotten from inverting the Vandermonde matrix, and solve it

for y using the quadratic formula,

—(Bx+ E)+ /(Bx+ E)? — C(A2? + 2Dz + F — 2)
y= .
c

The other half of the curve could be traced out with the negative square root.

10



Nevertheless there is a better way to procede. Traditionally the cross term is
eliminated by rotating x and y,

z = z'cos #+y'sin B, (42)

y = —x'sin 6+ y cos 0. (43)

Substituting these values into 2Bxy then leaves, after some trigonometric manipu-
lation, a coefficient for z'y’,

(A—C)sin 20 + 2B cos 26,

which will vanish if 8 is chosen to be

2B
20 = tan*l m

The expression becomes
(Acos® 6 —2Bsin #cos 0+ C cos® 6)a’” +2(Dcos 6 — Esin 6)z'+

(Acos® 6 +2Bsin #cos 6+ C cos® Q)y’2 +2(Dsin 0§ + Ecos 6)y' + F.
With further trigonometric manipulation,

. 2B
sin 20 = , (44)
VA2 +4B% + C? — 2AC
cos 260 = ¢4 , (45)
VA2 +4B2 + C?2 - 2AC

from which the half-angle formulas lead to

1— 26
sin 6 = 4/ S m (47)
2
14 cos 26
cos =4/ H%. (48)

The second step is to complete the squares, using the formula

az2+ﬁ$=a($+%)2_(%)2’

to get

Az 4 C'y'2 +F' =0.
Then, we might have

(Zu)'=[¢ n (]

with

ZTQz = A.

11



Q@ has not been diagonalized because diagonalization is a transformation of the
type Z71QZ rather than Z7QZ; but the translation which completes the square
is not unitary, as would be necessary for the two transformations to coincide.

The two remaining diagonal elements of A may have the same sign, or opposite
signs, according to whether the critical point is extremal or a saddle point. Ac-
cordingly coefficients of their eigenvectors could be chosen according to one of the
following two forms,

(ZU)Y =[0 cost sint],
(ZU)T= [ 0 cosh ¢t sinh t ],

depending upon whether the eigenvalues agree or disagree in sign. Returning to
the original coordinate system gives contour lines uniformly parameterized by t.

It still remains to ascertain how much of the conic section lies within the simplex
that will be contoured; one way to avoid the problem would be to graph it through
some parameter range, with a visibility function to determine whether the segments
to be graphed lie within the chosen simplex or not.

Another important point concerns the location of the six data points needed for
quadratic interpolation; one way to obtain them is to choose two consecutive squares
from the coordinate grid, and another would be to calculate supplemental points
within the square iteslf. Yet another solution would be to work with a triangular
or hexagonal grid. Such alternatives tend to be incompatible with normal data
acquisition techniques, but might be feasible whenever data could be generated on
demand at specified coordinates.

8 Change of origin, scale

It would appear to be necessary to invert the Vandermonde matrix for each grid
square; however, the use of a uniform grid results in so much symmetry that the
same Vandermonde matrix can be used throughout the grid. The reason can be
seen by returning to the Vandermonde matrix for quadratic interpolation, with a
translated origin:

1 1 1 1
r1+a T2 +a r3+a r+a 0
212+ 20z, +a®  x92 4+ 2axy +a® x4+ 2ax3 +a® 22+ 2ax + d? ’
n Y2 Ys Y

By straightforward determinantal algebra it can be seen that this determinant
is the same as the untranslated determinant, but factoring the determinant is more

informative.
1 0 00 1 1 1 1
V= a 1 0 0 ry T2 X3 X
“la® 2a 1 0 12 x9? x3? 22
0 0 0 1||lw v ys ¥

The determinant on the left, having the value 1, is nonsingular; translation
preserves the validity of the interpolation equation even as it rearranges its coeffi-
cients. Other changes of basis should be handled the same way, by factoring out

12



the responsible matrix. Nor are admissible changes confined solely to the indepen-
dent variables; for example the zero point for the the dependent variable could be
changed. Not often do we find transformations which mix the dependent variable
with the independent variables, although they are just as admissible as any others
within the framework of the theory.

Although it is not performed as frequently, changing scale follows the same
process as translating the origin. We need the matrix

1 1 1 1
ST ST ST3 sx -0
(s21)2 (sw2)? (sws)? (s2)? |~
n Y2 Ys Yy

This time the factorization is much easier.

1 0 0 0 1 1 1 1

V= 0 s 0 0 ry Ty X3
10 0 s2 0 12 x? x3® =z
0 0 0 1 Y1 Yo Y3 Y

As a general proposition the expansion of a polynomial according to a prescribed
basis with determined coefficients can be considered to be the inner product of two
vectors. The row, say, carries the coefficients as coordinates while the column is
outfitted with the members of the basis. Accordingly, whenever a change of basis
is made, such as referring the set of points to a new origin, the inverse matrix of
the change can be applied to the coefficients to get a new expansion formula.

The case of translation, which we are examining, has an inverse matrix of typical
form

2

1 0 0 0
_ —a 1 0 0
Tt o= a? —2a 1 0|’ (50)

—a appearing in place of a because it represents a translation in the opposite
direction.
Starting from Maclaurin’s series

"0y
plz) = Zp .(0)561 (51)

we could get to the Taylor’s series

n

) (g
plz) = Zp ,(

< 2.
1=0

~
—
8
|
Q
~—

(52)

(bearing in mind that here superscript powers signify derivatives, not Newton prod-
ucts) by consulting the pair of transformations

1 1 0 0 0 1

r—a —a 1 0 0 T
(x —a)? - a2 —=2a 1 0 x2 (53)

(z—a)® —a® 3a? —3a 1 z3



pla) 1 a )

p'(a) _ 0 1 2a 3a? ?'(0) 54)
1p"(a) - 0 0 1 3a 1p"(0) (
=p"(a) 00 0 1 =p"(0)

9 Standardized interpolation formulas

The formulas for quadratic interpolation imply a passage from a linear form in
quadratic variables to a quadratic form in linear variables, whose behavior under
a change of basis ought to be analyzed. Although this change of emphasis has its
merit, not all of the symmetry inherent in the determinantal version is immediately
evident in the new form.

In this one dimensional example, we would write

»=UTQU
with
Ut = [ 1 =z ]
and
C B
o-|w i)
The translation Z,
1 0
7=[ah]

transforms Q into Z7QZ, which is namely

o L R 2

C+2aB+a’?A B+aA
- B+ aA A )

VAROVA

The choice of @ = —B/A removes the off-diagonal elements from Z7QZ, pro-
viding a matricial version of completing the square.

Since the interpolation equations are the same for all grid sites, and since the
scale and origin of the equations can be changed so easily, it is reasonable to tabu-
late the interpolation coefficients for different coordinate grids, particularly for the
commonly used square grid.

e two dimensional linear interpolation

T 1o 0
V= 0 0 1 , M'=]0 1 -1
Y 0 0 1

20,0 0,1 F1,1 &

z=20,0+ (201 — 2,0)%+ (21,1 — 20,1)y

)

14



e two dimensional quadratic interpolation

( 1 1 1 1 1 1 17
0 1 2 0 1 2 x
0o 1 0 1 0 1 y
V= 0 1 4 0 1 4 z2
0 1 0 0 0 2 zy
0 1 0 1 0 1 2
L %00 20,1 202 <10 <1,1 =12 <2 ]
1 -1 0 0 1 O
1 -1 0 0 1 O
. 1 -1 0 01 0
MZ=11 40010
1 -1 0 0 1 O
1 -1 0 0 1 O

o three dimensional linear interpolation

e three dimensional quadratic interpolation

10 Three dimensional linear approximation

The representation of functions of three variables through contours in a space of
three dimensions follows the same lines that have already been discussed, once the
dimension of the pertinent sets of basis monomials has been taken into account.
Thus four monomials, {1,z,y, 2} are required in three dimensions, with the basic
equation taking the form of a 5 x 5 Vandermonde determinant

1 1 1 1

I X9 T3 X4
Yy Y2 Ys Ya
z1 z9 z3 z4
w; Wy W3 Wy W

v or e
Il
o

Not only does every increase in dimension make a symbolic solution of this
equation less tractable, the problems of graphical representation become increas-
ingly more difficult. If we would represent segments of two dimensional contours
by line segments, we should represent segments of three dimensional contours by
fragments of planes, which is a much more complicated process; we would probably
represent such a fragment by a set of lines, such as those forming the border where
it intersects the coordinate grid.

As always, the question of where the data points lie with respect to the coordi-
nate grid arises; not all four points should lie on the same face of a cube, to avoid
linear dependencies in the Vandermonde matrix.

The coordinate cubes have eight vertices, which is double the required number
of points. One solution is to decompose the cube into six tetrahedra just as the
coordinate square was decomposed into two triangles in two dimensions. Even

15



though the work is multiplied by six, the greater part of the classification into
cases according to how the contour surfaces cross the edges and faces of the cube
is eliminated.

Generally the intersection of a plane with a tetrahedron is a triangle, but it has
to be remembered that quadrilateral sections are also possible—for example when
the interecting plane is parallel or nearly parallel to a pair of opposite edges of the
tetrahedron.

Other approaches are possible if it is not required that the contour planes be
represented by lines passing through the grid lines. For example, a circle could be
traced out tangent to the grid lines, so that its counterimage on the contour plane
could be plotted. The result would be a network of tangent ellipses which might
cover the contour surface fairly well.

Determining the parameters of circles and calculating their points—even by
table lookup—would consume additional time; a simpler approach would to be to
trace the counterprojection of the edge-dual network formed from the coordinate
grid. This network would consist of lines joining the midpoints of the edges of the
faces of the coordinate cubes.

Of course this discussion makes no mention at all of visibility. Nothing need
be said if a simple wire frame model is all that is desired. But, if the surface
is assumed to be opaque or semitransparent, it is inevitable that some parts of
it would be obscured by others. Then, further calculations would be required to
decide whether, or how much, of the surface patches would be visible.

11 Three dimensional quadratic approximation

The quadratic approximation in three dimensions involves ten basis monomials,
and thus an 11 X 11 Vandermonde determinant.

1 1 1 1 1 1 1 1 1 1 1
LA T2 T3 Tyq Ts5 Le 7 g T9 T10 x
Y1 Y2 Y3 Ya Ys Yo yr Ys Yo Yio Y
Z1 zZ2 z3 L2 Z5 Z6 7 Z8 Z9 Z10 z
1’12 .1'22 I32 1'42 1'52 1'62 .Z'72 .1'82 1'92 I102 1'2
T1Y1 T2Y2 T3Ys TaYa TsYs TeYs TrYr TsYs ToyYo Tioyo Ty | =0.
T1z1 T222 T323 T4z4 IT5Z5 TR T7R7T  Tgeg  T9gZg T10R10 ITZ
y12 y22 y32 y42 y52 y62 y72 y82 y92 y102 y2
Yiz1 Y222 Y3Z3  YaZa YsZs  YeZe Yrir  YsZy8  Y9Z9  Yi0Z10 Y2
212 222 232 2’42 252 2’62 2’72 2’82 2’92 2102 2’2
wh Wo ws Wy Ws Weg wr wsg Wy W10 w

The quadratic form @ now requires a 4 x 4 matrix

J I H &
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If it is given the same treatment as the matrix for two dimensional quadratic
approximations, we can make one of its eigenvalues vanish, leaving three others to
contend with. There will be many more sign combinations to contend with, but in
principle a choice such as

(ZU)T= [ 0 ot cost sint ]

will result in a spiral running over the surface of whatever sphere or hyperboloid
corresponds to the diagonal form of the matrix, and thus a means of visualizing the
contour surface.

Since the coordinate cubes have only eight vertices, two additional data points
have to be found to make up the required ten data points. The most symmet-
ric points in the coordinate grid would be a pair of opposite points lying on the
extension of one of the body diagonals of the cube.

12 Fitting by least squares

As is often the case, a contour plot may not be judged so much for its accuracy
as for its neatness. For example, critical points could be expected to be relatively
rare and so it might be thought that the crudeness of the linear approximation in
the vicinity of a critical point would go unnoticed. However, exactly the opposite
is true, to the extent that contour maps are often prepared for the sole purpose of
locating the critical points, leaving the remainder of the diagram as the part likely
to be ignored.

It is also true that a least squares fitting of a linear or quadratic approxima-
tion obtained by combining the data points of several simplices may sometimes be
preferred to the more detailed representation derived from the individual simplices.
It is then necessary to construct the normal equations from the data, and invert
their coefficient matrix, to obtain the parameters to represent the contour, with
the added complication of having to join the contours smoothly as they pass from
one region to another. Moreover, the coefficient matrix would actually have to
be inverted for each region, which can be avoided when interpolating through the
individual simplices.

13 The sequence of triangles

Once suitable interpolation formulas have been deduced to obtain the contour lines
in <PLOT>, attention must be given to some practical aspects of the contouring
programs. When the contour maps were prepared with pen plotters, the overrid-
ing consideration was the extremely long time needed to raise and lower the pen,
relative to the time required for horizontal or vertical movements. Thus it was
advantageous to trace out an entire contour line, until it either closed on itself or
reached the boundary of the contoured region. Electrostatic plotters or displays
on video monitors do not impose such a penalty, so that all the contours desired
for a given triangle can be computed and displayed before moving on to the next
triangle.
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Since the completion of one contour before commencing another could lead
the pen through triangles that would eventually be scanned as possible starting
points, a bitmap was constructed in which a flag indicates whether a triangle has
previously been traversed or not. The same information prevents retracing a closed
contour once the pen has returned to its starting point. Much space can be saved by
programming the bitmap in assembly language, but confining <PLOT> exclusively
to a high level language such as Fortran or “C” encourages wasting an entire word
of computer memory per bit.

The use of simplices instead of the coordinate grid leads to several special cases
for the interpolation formulas. By permuting the vertices of the simplices, a single
subroutine for the interpolation suffices. Passage from one the vertices of one
simplex to the next can be accomplished by reflection in the face of the simplex,
once again leading to a uniform formula for the process. It is unfortunate that
space cannot be filled by any kind of uniform simplices.

14 Checklist
e this is now a third draft
e program 2D quadratic interpolation
e program 3D linear interpolation
e program 3D linear interpolation extension
e program 3D quadratic interpolation
e program least square fitting

e think about embedding contour lines on hidden surface drawings
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