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GEOM is a collection of programs for drawing spheres and families of spheres.

One application consists in constructing molecular models, wherein each atom is
represented by a sphere of appropriate size. However, there are other applica-
tions; inasmuch as Puebla lay very near the center of the path of the memorable
eclipse of June, 1991, there was considerable interest in studying the dynamics of
the shadow cast by one spherical object onto another. Beyond individual appli-
cations, computer technology has evolved over the decades in which GEOM has
been in devolopment, with the result that several different graphics strategies can
be compared.

1 Introduction

GEOM is one of a number of programs dating from the Academia de Matemáticas
Aplicadas of the Escuela Superior de F́ısica y Matemáticas of the Instituto Poli-
técnico Nacional in Mexico City. In its original form it was an adaptation of a
program from the Quantum Chemistry Program Exchange whose purpose was to
check the parameters in a molecular orbital program.

Since it was easy to exchange coordinates or merely mistype them, it was a useful
precaution to make a crude drawing of the molecule to avoid gross errors in the
placement of the atoms. From that time, the program has been gradually extended,
using graphical techniques for families of spheres, so that now fairly complicated
molecules can be shown in terms of rather elaborate spheres.
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The same calculation which suppresses the back side of spheres and the portion
of one sphere which lies within the interior of another can be repeated with another
angular orientation to study the shadows cast by an infinitely distant point source
of illumination. As such, it can be used to approximate the shadows cast during
an eclipse, such as the one of local interest which occurred in the summer of 1991.

2 Primitive drawing functions

Drawing functions depend somewhat upon the equipment which will perform the
actual drawing, and may be divided into roughly three categories, according to
whether the primitive display elements are points, lines, or areas.

Pen and ink plotters draw lines; therefore the primitive function moves the pen
from one point to another. Utilizing internal memory and specifying pen up or
down, the data required by individual function calls can be limited to two real (or
integer) coordinates and a boolean variable.

Even so, it is sometimes convenient to call for a long pen stroke, but to actually
draw only a part of it, near the beginning or near the end. Evidently there are slight
differences between physical primitives which are convenient for plotter operation,
and logical primitives, which would be convenient for programming.

Drawing images on oscilloscopes can be done through either points or lines.
Lines were more common in the days of oscilloscopes, but for television monitors
and the associated video controllers, individual points are easier to create. That
means that when lines are drawn, they must be constituted from sequences of
points, or in the case of incremental plotters, sequences of increments. At the same
time, using individual points reduces or eliminates questions of partial visibility.

There was a class of plotter on the market which created images by attracting
ink droplets electrostatically to the paper surface, not unlike the mode of operation
of contemporary laser printers. Although the droplets were strictly points, the
control worked by using them to fill areas, most conveniently small rectangular
patches. To use such a plotter, or such a style of image construction, the drawing
of an area must be taken as the primitive operation.

Conditions have changed once again, to the extent that the PostScript language
emphasizes the use of areas filled with a given color or grey tone.

2.1 Plot primitives

The CalComp plotters which were a standard item of equipment in many computers
of the 1960’s and 1970’s responded to octal commands, whose three bits indicated
a raised or lowered position for the pen, rotation of the drum up or down signifying
increments in the x-axis, and sliding the pen carriage left or right, along the y-axis.

Above and beyond the data stream arriving from the computer, manual controls
turned the instrument on or off, and allowed positioning of the pen. An interlock
interrupted horizontal motion, preventing the pen carriage from being forced into
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the margins, but no mechanical check existed for the presence of paper, or running
off the end of a roll.

Programs supplied with the plotters changed absolute coordinates, taken as
floating point numbers supplied in terms of inches, into a succession of increments
through which stepper motors placed the pen where it was desired. Digital incre-
ments distinguished the CalComp line from plotters which used digital-analogue
converters and servo motors; placement of the pen was more accurate and repro-
ducible, varying somewhat with the quality of electronics employed.

There were essentially four basic programs accompanying the plotter:

- initialize the plotter

position the pen

-- draw axes

- insert letering.

Strictly, the last two could have been created from pen movements alone; the
combination of their utility and complexity meant that they were included amongst
the basic offerings.

2.2 PC/DOS primitives

Early microcomputers included varying degrees of graphics presentation, mostly of
fairly low resolution. Some were programmed to drive CalComp plotters, just as had
been done with earlier minicomputers, such as the pdp-8. With the introduction of
the ibm/pc, a standard for graphics presentation was established which was widely
disseminated, beginning with the cga video board.

At first, one of the interrupts of the intel 8088, interrupt 10, was dedicated
to communication with the video monitor, which was arranged for two modes of
operation, graphics and text. The reason for the latter was a matter of bandwidth;
the use of a character generator driven by ascii characters was much better than
any other system for placing dots in the graphics bitmap. As a consequence, the
rom bios underlying the ms/dos operating system contained a provision for a
mixture of approximately sixteen text and graphics primitives.

Early c compilers offered as close an approximation to these sixteen primitives as
was possible within the syntax of the language. Later on, more elaborate graphic
functions were included within the runtime libraries, corresponding to a certain
perception of users requirements, or simply of their imagined desires.

From the point of view of developing an integrated graphics environment, it
turns out that the first offerings were the best; fortunately they already contained
direct access to individual pixels, which was an adequate foundation upon which
to build a graphics package.

The entire set of functions consisted of

- videobackground - set the color of the frame

videocmode - Set the cursor style
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-- videomode - Choose between text or graphic mode

- videopalette - Include or discard blue in the color image

- videodot - Place a dot of given color at prescribed coordinates

- videoputc - Place a character on the screen

- videochar - similar to videocattr, without color coding

- videocattr - deposit a character with prescribed color and background

- videoscroll - Block movement of text or clearing of the screen

- videocursor - Position the cursor (defining the location of text)

- videopage - Select the text page to be displayed

- videogchar - Report the character at the urrsor location

- videogcmode - Find out the cursor mode

- videogcols - Find out the screen width

- videogcursor - Find out the cursor location

- videogdot - Find out the color of the current pixel

- videogmode - Find out the current mode

- videogpage - Find out the current page

- videogpen - Fetch the light pen parameters

Only the items shown in boldface were ever used to write programs such as
GEOM, and of those, videodot was the essential function for creating computer
graphics. The principal problem in changing over to Objective C lies in substituting
printf, which is not a video function at all, but nevertheless uses one of the bios
interrupts to put text on the screen, irrespective of whether it is in text or graphics
mode. It is this detail especially, which complicates any simple substitution of video
functions when changing from one operating system to another.

The following comprises the header file which has always been incorporated in
turbo c programs to make them compatible with wizard c programs, making
the use of any turbo c functions unnecessary. Such a substitution is feasible
because both c compilers still create code for ms/dos, in which the bios and
screen interrupts are the same.

As for the code, one places the whole interrupt-10 package in its own .obj file.
The file is relatively small, inasmuch as the functions merely transfer arguments
between the stack and the registers of the cpu, conforming to differences between
assembly language and c’s stack protocol.
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/* */

/* VIDEOH.H: Function prototypes */

/* */

/* By : Saturnino Julio De La Trinidad H. */

/* */

/* Departamento de Aplicacion de Microcomputadoras */

/* Instituto de Ciencias de la Universidad Autonoma de Puebla */

/* */

#if __STDC__

#define _Cdecl

#else

#define _Cdecl cdecl

#endif

#if !defined(__WIZARD_DEF_)

#define __WIZARD_DEF_

void far _Cdecl videobackground(int color);

void far _Cdecl videocattr(int page, char byte, char attr, int count);

void far _Cdecl videochar(int page, char byte, int count);

void far _Cdecl videocmode(int startrow, int endrow);

void far _Cdecl videocursor(int page, int row, int column);

void far _Cdecl videodot(int pixelrow, int pixelcolumn, int color);

void far _Cdecl videomode(int mode);

void far _Cdecl videopage(int page);

void far _Cdecl videopalette(int colorset);

void far _Cdecl videoputc(char byte, int color);

void far _Cdecl videoscroll(int ulrow, int ulcol, int lrrow, int lrcol,

int lines, int attr);

int far _Cdecl videogchar(int page);

int far _Cdecl videogcmode(void);

int far _Cdecl videogcols(void);

int far _Cdecl videogcursor(int page);

int far _Cdecl videogdot(int pixelrow, int pixelcolumn);

int far _Cdecl videogmode(void);

int far _Cdecl videogpage(void);

struct pen {

char charrow;

char charcolumn;

unsigned char pixelrow;

unsigned char pixelcolumn;

};

int far _Cdecl videogpen(struct pen *penv);

#endifæ

2.3 Objective C primitives

Outside of the IBM-oriented world, there have been some remarkable advances
in the area og graphical display based on the needs of the publishing industry, in
particular computer assisted typesetting. At the same time, the quality of high
resolution monitors has continued to improve as their price has declined. The
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result has been the development of visual interfaces and programs for managing
them, which can now be used in conjunction with graphics programs.

Unfortunately there does not seem to be a direct correspondence between the
PostScript directives and the c primitives. The difficulty, the same as the discrep-
ancy between wizard c and turbo c, lies in mixing text with graphics. Individu-
ally each has its equivalents; but we still have to learn how to make the c function
printf send printed output directly to a PostScript window.

However, Objective C has such an extensive variety of window manipulation,
which goes far beyond anything which is normally seen in the pc world, that it seems
to be worthwhile to redesign the visual interface for a previously existing program,
and not try for a literal adaptation. Here we present an intermediate, consisting
of PostScript functions which directly replace the c principal video functions. In
some cases, it has been convenient to modify argument types, to avoid repeatedly
changing back and forth between integer and double types.

/* - - - - - - - - - - - V I D E O - - - - - - - - - - - - - - - - - */

void videocursor(p,i,j) int p, i, j; {

PSmoveto(16.0*(float)j,388.0-16.0*(float)i);

}

void videoputc(c,i) char c; int i; {char s[2]; s[0]=c; PSshow(s);}

void videomode(i) int i; {Vmode=i;}

void videopalette(i) int i; {Vpall=i;}

void videoscroll(i,j,k,l,d,c) int i, j, k, l, d, c; {

float ur, uc, lr, lc;

float de, co;

ur=16.0*(float)i;

uc=16.0*(float)j;

lr=16.0*(float)k;

lc=16.0*(float)l;

de=(float)d;

co=(float)c;

PSsetgray(NX_WHITE);

PSrectfill(uc,lr,lc-uc,ur-lr);

}

void videocattr(p,c,n,l) int p, c, n, l; {

char s[2];

s[0]=c;

PSshow(s);

}

void videoclear(){}

void videobackground(int c){}

void videodot(i,j,l) int i, j, l; {

switch (l) {

case 0: if (drawView==2) PSsetrgbcolor(0.7,1.0,0.6); else

PSsetrgbcolor(1.0,1.0,1.0); break;
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case 1: PSsetrgbcolor(0.5,0.0,0.0); break;

case 3: PSsetrgbcolor(0.0,0.5,0.0); break;

case 2: PSsetrgbcolor(0.0,0.0,0.5); break;

default: PSsetrgbcolor(0.1,0.1,0.1); break;}

/* PSsetgray(NX_BLACK); */

/* drawCircle(y,x,1.0); */

switch (drawView) {

case 0: PSrectfill((float)j,(float)i,1.0,1.0); break;

case 1: PSrectfill(2.0*(float)i,398.0-2.0*(float)j,1.25,1.25); break;

case 2: PSrectfill(8.0*(float)j+1.5,60.0-8.0*(float)i,4.75,4.75); break;

case 3: PSrectfill(4.0*(float)j+2.0,48.0-4.0*(float)i,3.0,3.0); break;

case 4: PSrectfill((float)j,199.0-(float)i,1.25,1.25); break;

case 5: if (l==-1) PSmoveto((float)j,198.0-(float)i);

else PSlineto((float)j,198.0-(float)i);

default: break;}

}

void videofdot(x,y,l) double x, y, l; {

PSsetgray(16.0*tanh(l/12.0));

PSrectfill(x,y,4.0,4.0);

}

3 Point and line primitives

/* place a dot within range (-2.0, 2.0) */

/* at coordinate (x,y), color l */

void videoadot(x,y,l) double x, y; int l; {

videodot(199-(int)(42.5*y+100.0),(int)(50.0*x+160.0),l);}

/* place a dot within range (-2.0, 2.0) */

/* at coordinate (x,y), visibility l */

void pltms(x,y,l) double x, y; int l; {int xx, yy;

xx=(int)(50.0*x);

yy=(int)(50.0*y);

if (l) videodot(yy,xx,1);

}

void geoms(x,y,l) double x, y; int l; {

if (l) videodot(199-(int)(42.5*y+100.0),(int)(50.0*x+160.0),l);

}

void geomms(x,y,l,m) double x, y; int l, m; {int xx, yy;

if (!l) return;

xx=(int)(100.0*x+320.0); if (xx<0) xx=0; if (xx>640) xx=640;

yy=199-(int)(42.5*y+100.0); if (yy<0) yy=0; if (yy>200) yy=200;

videodot(yy,xx,m);

}
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/* pltil - interrupted line */

pltil(x1,z1,q1,x2,z2,q2,l) double x1, z1, q1, x2, z2, q2; int l; {

int s1, s2;

double xm, zm;

s1=q1>0.0?l:0;

s2=q2>0.0?l:0;

if (s1!=s2) {

xm=x1-q1*((x2-x1)/(q2-q1));

zm=z1-q1*((z2-z1)/(q2-q1));

pltms(xm,zm,s1);

}

pltms(x2,z2,s2);

}

4 Vector and matrix algebra

Given that GEOM works extensively with coordinates in three dimensional space,
it is convenient to prepare subroutines which can perform operations on three-
dimensional matrices and vectors; this includes the calculation of the distance be-
tween points and relative orientations. In addition, certain specific matrices will be
required, such as those representing rotations which have been specified by their
Euler angles.

4.1 Coordinate system

The conventional representation of planar cartesian coordinates has the positive
x-axis running to the left, the positive y-axis upwards.

In three dimensions, if a two dimensional graph were placed on a table in front
of the observer, the positive x-axis would still run leftwards, but the y-axis would
also be horizontal, running away from the observer. In perspective from a normal
seating arrangement, that would still be slightly upwards; the axis would be invisible
if the projection were made along the y-axis with the origin at eye-level.

The positive z-axis would run upwards, supplanting the two-dimensional y-axis.
The difference in viewpoint corresponds to thinking of a two dimensional graph as
being mounted on a wall, whereas the x-y portion of a three dimensional graph lies
horizontally, as if placed on the table.

The choice of perspective or isometric drawings is one of taste. An architect
would probably prefer a perspective view, according to the way an object would
appear to a client. An engineer would probably prefer to measure true distances
from the drawing, leaving matters of appearance to the imagination. GEOM
uses parallel projection, adopting the second alternative; projections are made by
suppressing the y-coordinate.
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4.2 Representation of a sphere family

Spheres are characterized by their centers and radii; namely by four double pa-
rameters. Other information may also be associated with them, for example the
orientation of their poles and Greenwich meridians, whose specification can be ac-
complished by additional parameters. If Euler angles are used, three additional
parameters are required, for a total of seven.

Beyond that, any amount of additional information may be considered, such as
tags, identifying subgroupings to which they belong, associated chemical informa-
tion when they represents atoms within a molecule, and so on. Foreseeing such an
application, let us refer to the whole family as a molecule, individual spheres as
atoms. Subgroupings could be called radicals, if needed.

The basic operations to be performed on a sphere family, other than drawing
its pictorial representation, consist in altering one or more of the parameters. In
particular,

- the individual atoms, complete with orientation, can be placed in the molecule
and if need be, adjusted.

The molecule as a whole can be translated or rotated, without affecting the
orientation of the atoms.

-- the entire molecule can be scaled; to fit it onto a page, or to change the style
of representation — say from van der Waals radii to positions of the nuclei.

- changing the orientation of the atoms without moving their centers. This
could be done to identify individual atoms, for example.

- altering any combination of parameters for an individual atom.

To accomplish these transformations, we define several operations from the
realm of matrix or vector algebra; in particular, we give a certain prominence
to some frequently used combinations of operations.

4.3 Vector Algebra

Few of the operations between vectors and matrices need additional explanation.

4.3.1 cartesian vector from polar coordinates

/* sphrv - radius vector */

/* cartesian vector from polar coordinates */

void sphrv(w,r,th,ph) double *w, r, th, ph; {double s;

s=r*sin(th);

w[0]=s*cos(ph);

w[1]=s*sin(ph);

w[2]=r*cos(th);

}
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4.3.2 (vector z) = (zero vector)

/* sphzv - zero a vector */

void sphzv(z) double *z; {int i; for (i=0; i<6; i++) z[i]=0.0;}

4.3.3 (vector w) = (vector z)

/* sphcv - copy vector */

void sphcv(z,x) double *z, *x; {z[0]=x[0]; z[1]=x[1]; z[2]=x[2];}

4.3.4 (vector v) = (matrix o) * (vector z)

/* sphmv - vector = matrix * vector */

void sphmv(w,o,z) double *w, o[][3], *z; {

double u0, u1, u2;

u0=z[0]; u1=z[1]; u2=z[2];

w[0]=o[0][0]*u0+o[0][1]*u1+o[0][2]*u2;

w[1]=o[1][0]*u0+o[1][1]*u1+o[1][2]*u2;

w[2]=o[2][0]*u0+o[2][1]*u1+o[2][2]*u2;

}

4.3.5 (vector w) = (matrix o)*(vector z)+(vector a)

/* sphap - affine product */

/* w and z may be the same */

/* (vector w)=(matrix o)*(vector z)+(vector a) */

void sphap(w,o,z,a) double w[3], o[][3], z[3], a[3]; {

double u0, u1, u2;

u0=z[0]; u1=z[1]; u2=z[2];

w[0]=o[0][0]*u0+o[0][1]*u1+o[0][2]*u2+a[0];

w[1]=o[1][0]*u0+o[1][1]*u1+o[1][2]*u2+a[1];

w[2]=o[2][0]*u0+o[2][1]*u1+o[2][2]*u2+a[2];

}

4.3.6 (vector z) = (vector x) + (scalar f) * (vector y)

/* sphau - augment one vector by another */

/* vector z = vector x + scalar f * vector y */

void sphau(z,x,f,y) double z[3], x[3], f, y[3]; {

z[0]=x[0]+f*y[0];

z[1]=x[1]+f*y[1];

z[2]=x[2]+f*y[2];

}

4.4 Matrix algebra

There are likewise many completely standard operations on just matrices.
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4.4.1 Zero matrix

/* sphzm - zero matrix */

void sphzm(z) double z[3][3]; {int i, j;

for (i=0; i<3; i++) for (j=0; j<3; j++) z[i][j]=0.0;

}

4.4.2 Unit matrix

/* sphum - unit matrix */

void sphum(z) double z[3][3]; {int i, j;

for (i=0; i<3; i++) for (j=0; j<3; j++) z[i][j]=0.0;

for (i=0; i<3; i++) z[i][i]=1.0;

}

4.4.3 Copy matrix

/* sphcm - copy matrix */

void sphcm(z,x) double z[3][3], x[3][3]; {

int i, j; for (i=0; i<3; i++) for (j=0; j<3; j++) z[i][j]=x[i][j];

}

4.4.4 Multiply matrices

/* sphmm - matrix = matrix * matrix */

void sphmm(z,x,y) double z[3][3], x[3][3], y[3][3]; {

int i, j, k;

double u[3][3], v[3][3];

sphcm(u,x); sphcm(v,y);

for (i=0; i<3; i++) for (j=0; j<3; j++) {

z[i][j]=0.0; for (k=0; k<3; k++) z[i][j]+=u[i][k]*v[k][j];

}

}

4.4.5 Distance between centers

/* sphdj - distance to center j */

void sphdj(d1,d2,w,s,j) double *d1, *d2, *w, s[][7]; int j; {

double xx, yy, zz, rr;

xx=w[0]-s[j][0]; xx*=xx;

yy=w[1]-s[j][1]; yy*=yy;

zz=w[2]-s[j][2]; zz*=zz;

rr=s[j][3]; rr*=rr;

*d1=xx+yy+zz-rr;

*d2=xx+zz-rr;

}
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4.5 Rotation matrices

There are two schemes in general use for specifying a rotation; one is in terms of its
Euler angles, the other uses its axis and angle of rotation. In reality, there exists
a fairly elaborate theory of the three dimensional rotation group, including a third
parameterization in terms of quaternions which unifies the other two rather nicely.

The other way to represent rotations is to specify the angle of rotation and the
axis about which it occurs. In many ways it gives the most direct representation
of a rotation; an additional advantage is that to transform the rotation to a new
coordinate system, it is only necessary to rotate the axis.

The user of GEOM needs to know little of this, other than to relate rotations to
the positioning of the scene that is about to be drawn. For the programmer’s part,
it suffices to look up the matrix elements of the rotation matrix in some reference
work. Nevertheless, without some understanding of the theory, it is difficult to get
all the sign conventions and parameter ranges straight.

4.5.1 Angle and axis

In three dimensions, a rotation is defined by a 3×3 orthogonal matrix with positive
determinant. In general, such matrices have the real eigenvalue 1 together with two
complex conjugate eigenvalues e±iθ, wherein θ is the angle of rotation. In turn, there
is a real eigenvector lying along the axis of rotation and two complex conjugate null
eigenvectors defining the plane of rotation.

However, an orthogonal matrix is also the exponential of a real antisymmetric
matrix, having the same eigenvectors but with eigenvalues 0, iθ, and −iθ. Three
such matrices,

Σx =

[

0 −1 0
1 0 0
0 0 0

]

Σy =

[

0 0 1
0 0 0
−1 0 0

]

Σz =

[

0 0 0
0 1 0
0 0 −1

]

form a basis for all the 3 × 3 antisymetric matrices, and are a convenient basis for
a Lie Algebra as well. It results that the matrix

O = e
θ(αΣx+βΣy+γΣz)

=

[

cos θ + (1 − cos θ)α2 γ sin θ + (1 − cos θ)αβ −β sin θ + (1 − cos θ)αγ
−γ sin θ + (1 − cos θ)βα cos θ + (1 − cos θ)β2

−α sin θ + (1 − cos θ)βγ
−β sin θ + (1 − cos θ)γα −α sin θ + (1 − cos θ)γβ cos θ + (1 − cos θ)γ2

]

rotates vectors through the angle θ about an axis whose direction cosines are
(α, β, γ). This gives the angle-axis parameterization of a rotation.
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Its axis and angle can be recovered by inspection from a rotation matrix. The
direction cosines of the axis are proportional to the coefficients of the three anti-
symmetric matrices Σx, Σy, and Σz, whereas the angle of rotation is related to the
trace via

Tr(eθΣ) = 1 + 2 cos θ.

Figure 1: Objective-C panel from which Euler angles may be defined

/* sphax - generate rotation from axis and angle */

void sphax(o,th,a,b,c) double o[][3], th, a, b, c; {

double ca, cb, cc, ct, tt, st, r, t;

r=sqrt(a*a+b*b+c*c);

t=(th*3.14159)/180.0;

ca=a/r; cb=b/r; cc=c/r;

ct=cos(t); st=sin(t); tt=1.0-ct;

o[0][0]= ct+tt*ca*ca;

o[0][1]= cc*st+tt*ca*cb;

o[0][2]=-cb*st+tt*ca*cc;

o[1][0]=-cc*st+tt*ca*cb;

o[1][1]= ct+tt*cb*cb;

o[1][2]= ca*st+tt*cb*cc;

o[2][0]= cb*st+tt*ca*cb;

o[2][1]=-ca*st+tt*cb*cc;

o[2][2]= ct+tt*cc*cc;

}
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4.5.2 Euler angles

To represent a rotation by Euler angles, first rotate the object about the z-axis,
then about the y-axis, and finally about the new z-azis.

Rotations about coordinate axes, lying wholly within the plane perpendicular
to the axis, have a simple form:

e
ωΣx =

[

cosω − sinω 0
sinω cosω 0

0 0 0

]

e
ωΣy =

[

cosω 0 sinω
0 0 0

− sinω 0 cosω

]

e
ωΣz =

[

0 0 0
0 cosω − sinω
0 sinω cosω

]

To perform the indicated rotations in succession, through angles φ, ρ, and ψ,
respectively, means multiplying the corresponding orthogonal matrices.

e
φΣxe

ρΣxe
ψΣx =

=

[

cosφ − sinφ 0
sinφ cosφ 0

0 0 0

][

cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 0

][

cosψ − sinψ 0
sinψ cosψ 0

0 0 0

]

=

[

cosφ cosψ − sinφ cos ρ sinψ − cosφ− sin φ cos ρ cosψ sinφ sin ρ
sinφ cosψ + cos φ cos ρ sinψ − sinφ sinψ + cos φ cos ρ cosψ − cosφ sin ρ

sin ρ sinψ sin ρ cosψ cos ρ

]

/* spheu - generate rotation from euler angles */

void spheu(o,a) double o[][3], a[3]; {

double e0, e1, e2, c0, c1, c2, s0, s1, s2;

e0=(a[0]*3.14159)/180.0;

e1=(a[1]*3.14159)/180.0;

e2=(a[2]*3.14159)/180.0;

c0=cos(e0);

c1=cos(e1);

c2=cos(e2);

s0=sin(e0);

s1=sin(e1);

s2=sin(e2);

o[0][0]= c0*c2-s0*c1*s2;

o[0][1]=-c0*s2-s0*c1*c2;

o[0][2]= s0*s1;

o[1][0]= s0*c2+c0*c1*s2;

o[1][1]=-s0*s2+c0*c1*c2;

o[1][2]=-c0*s1;

o[2][0]= s1*s2;

o[2][1]= s1*c2;

o[2][2]= c1;

}
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Figure 2: Objective-C panel for defining a rotation via its angle and axis

The formulas for the matrix elements of the Euler angles can be inverted, al-
lowing the angles to be recovered from the matrix. We have:

ρ = arccos O33

ψ = arccos (O31/ sinρ)

φ = arccos (−O23/ sinρ)

wherein the singularity where sin ρ vanishes should be noted. In that case the first
and third rotations occur about the same axis and there is no way to uniquely
apportion the rotation between the two.

/* sphgeu - find the euler angles of a rotation */

void sphgeu(a,o) double *a, *o[3]; {

double e1, s1;

e1=acos(o[2][2];

s1=sin(e1);

if (s1==0.0) {a[0]=acos(o[1][1]; a[1]=a[2]=0.0;}

else {a[2]=acos(o[2][1]/s1); a[1]=e1; a[0]=acos(-o[1][2]/s1;}

}

4.5.3 Quaternion coordinates

Coordinates can be introduced into four dimensional space accroding to

q0 = cos θ
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q1 = sin θ cosα

q0 = sin θ cosβ

q0 = sin θ cos γ,

as well as the alternative,

q0 + iq3 = cos ρeiφ

q1 + iq2 = sin ρeiψ.

The first corresponds to the axis-angle representation, the second to Euler angles
[3].

5 Representation of a sphere

Almost anything that recognizably occupies the surface of a sphere can be used for
its representation. One obvious choice is to draw the traditional grid of latutudes
and longitudes, but another easily programmable choice is to run a spiral from one
pole to the other.

Another, more exotic choice, is to select azimuthal and colatitudinal increments
which complete different multiples of their circuits as the spiral runs its course,
resulting in a sort of spherical Lissajous figure. It will fill the surface of the sphere
with more crosshatching than a simple spiral.

Any number of other schemes can be imagined: choose points either randomly or
with a density influenced by the intensity of a presumed light source and reflective
characteristic of the surface. Draw a fractal curve to fill up the surface. Place
identifying letters (such as chemical symbols) on the surface.

5.1 Spherical grid

The most recognizable presentation of a sphere is to draw its grid of latitudes and
longitudes, which can be as sparse as simply showing the equator and Greenwich
meridian (and antimeridian).

/* geosg - represent a sphere by latitude and longitude */

geosg(r0,r,a0,m,l) double *r0, r, *a0; int m, l; {

int i, j;

double th, ph, dt, dp, y0;

double o[3][3], w[3];

y0=r0[1];

spheu(o,a0);

dt=3.14159/((double)(l+1));

dp=0.0628318;

th=3.14159-dt;

for (i=0; i<l; i++,th-=dt) {

ph=0.0;

sphrv(w,r,th,ph);
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Figure 3: Sphere represented by its latitude-longitude grid

sphap(w,o,w,r0);

pltms(w[0],w[2],0);

for (j=0; j<100; j++) {

ph+=dp;

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],w[1]>=y0);

}}

dt=0.0628318;

dp=3.14159/((double)m);

for (i=0,ph=0.0; i<m; i++,ph+=dp) {

for (j=0,th=0.0; j<100; j++) {

th+=dt;

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],w[1]>=y0);

}}

}

5.2 Spiral running from pole to pole

/* geosp - scale spherical parameters */

void geosp(s,f,n) double s[][7], f; int n; {int i;

for (i=0; i<n; i++) {s[i][0]*=f; s[i][1]*=f; s[i][2]*=f; s[i][3]*=f;}}

Even easier to draw than the traditional grid is a spiral running from pole to
pole. It can be created by one continuous pen movement, but still serves to identify
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the orientation of the sphere by emphasizing the location of the poles. Rotations
about the pole are much harder to discern, as they are in most of the presentations.

/* geosr - scale spherical radii */

geosr(s,f,n) double s[][7], f; int n; {int i;

for (i=0; i<n; i++) s[i][3]*=f;}

Figure 4: Sphere represented by a spiral running from pole to pole

/* geoss - represent a sphere by a spiral running from */

/* pole to pole */

geoss(r0,r,a0) double *r0, r, *a0; {

int i, n;

double g, th, dh, y0, o[3][3], w[3];

y0=r0[1];

n=2048;

g=64.0;

th=0.0;

dh=3.14159/((double)n);

spheu(o,a0);

sphrv(w,r,th,g*th);

sphap(w,o,w,r0);

pltms(w[0],w[2],0);

for (i=0; i<n; i++) {
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th+=dh;

sphrv(w,r,th,g*th);

sphap(w,o,w,r0);

pltms(w[0],w[2],w[1]>=y0?1:0);

}

}

5.3 Spherical Lissajous figure

Figure 5: Sphere represented by a Lissajous figure

A mixture of the idea of a spherical grid, which is two dimensional, and a spiral,
which is one long line, consists in drawing a Lissajou figure over the spherical sur-
face. To create a closed figure, increments in azimuth should be rational multiples
of the increments in longitude, allowing the figure to close when their least common
multiple has been reached.

/* geosl - represent a sphere by a lissajous figure */

/* extending from pole to pole */

void geosl(r0,r,a0,l,m) double *r0, r, *a0; int l, m; {

int i, n;

double d, th, ph, dt, dp, y0, o[3][3], w[3];

y0=r0[1];

n=2048;

th=0.0;

ph=0.0;

d=6.28318/((double)n);

dt=((double)l)*d;

dp=((double)m)*d;
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spheu(o,a0);

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],0);

for (i=0; i<n; i++) {

th+=dt;

ph+=dp;

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],w[1]>=y0);

}

}

5.4 Lettering

A representation which could be of interest for chemsits would be to place some
lettering upon the surface of the sphere — say the name or the symbol of the
chemical element which it is supposed to represent.

5.5 Random points

One especially effective way to represent spheres is to scatter a random selection
of points across the surface. Seen in projection, they will congregate near the rim,
creating a plausible perspective effect. An even better representation is to further
modify the density of points according to the brightness of the sphere as seen under
an assumed light source. In fact, different laws of reflection can be used to give the
sphere a wide variety of textures.

5.6 Fractals

A fractal curve results from defining a rule of substitution, whereunder a single line
segment is replaced by a whole series of segments. Each segment is a scaled version
of the original, altogether they must span the same arc. One famous example is the
result of dividing the segment into thirds, intending to consider the middle segment
as the base of an equilateral triangle, which is replaced by the remaining two edges.

Starting from an equilateral triangle as the basic figure and repeating the re-
placement infinitely often for each new line segment. The limiting figure is called a
snowflake curve; it has infinite length (because every arc is replaced by one 4/3 as
long) while both enclosing a finite area and remaining bounded within the original
circumscribing circle.

Nevertheless the snowflake does not fill up an area, so a more elaborate rule of
substitution would make a better figure to portray a spherical surface.

/* geofr - represent a sphere by a fractal curve */

void geofr(r0,r,a0,l) double *r0, r, *a0; int l; {

int g0, g1, g2, i, j, k, n;

double d, th, ph, y0, o[3][3], w[3], aa;

int a[16]={0,1,0,5,3,4,0,1,1,0,4,3,5,0,1,0};
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Figure 6: The surface of a sphere can be represented by trying to fill it with a
fractal curve. The effect is most successful when the structure of the fractal can be
clearly perceived as varying from the center of the sphere towards the rim, when it
has a clear orientation, and when it fills a substantial part of the surface.

y0=r0[1];

if (l==0) return;

if (l==1) n=16*16*6;

if (l==2) n=16*6*6;

if (l==3) n=6*6*6;

if (l>3) return;

th=1.5707;

ph=0.0;

d=6.28318/((double)n);

spheu(o,a0);

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],0);

for (i=0; i<16; i++) {

g0=a[i];

for (j=0; j<16; j++) {

if (l>1) g1=a[j]; else g1=0;

for (k=0; k<16; k++) {

if (l>2) g2=a[k]; else g2=0;

aa=((double)((g0+g1+g2)%6))*(6.28318/6.0);

ph+=d*cos(aa); th+=0.866*d*sin(aa);

sphrv(w,r,th,ph);

sphap(w,o,w,r0);
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pltms(w[0],w[2],w[1]>=y0);

}

}

}

}

/* geofs - represent a sphere by another fractal curve */

void geofs(r0,r,a0,l) double *r0, r, *a0; int l; {

int g0, g1, g2, i, j, k, n;

double d, th, ph, y0, o[3][3], w[3], aa;

int a[10]={0,5,4,2,0,0,2,4,5,0};

y0=r0[1];

if (l==0) return;

if (l==1) n=10*10*4;

if (l==2) n=10*4*4;

if (l==3) n=4*4*4;

if (l>3) return;

th=1.5707;

ph=0.0;

d=6.28318/(((double)n)*1.732);

spheu(o,a0);

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],0);

for (i=0; i<10; i++) {

g0=a[i];

for (j=0; j<10; j++) {

if (l>1) g1=a[j]; else g1=0;

for (k=0; k<10; k++) {

if (l>2) g2=a[k]; else g2=0;

aa=((double)((2*g0+2*g1+2*g2+l)%12))*(6.28318/12.0);

ph+=d*cos(aa); th+=0.866*d*sin(aa);

sphrv(w,r,th,ph);

sphap(w,o,w,r0);

pltms(w[0],w[2],w[1]>=y0);

}

}

}

}

6 Accounting for the intersection of spheres

The precautions required for drawing multiple spheres, particularly when they in-
tersect or obscure one another, depends somewhat on the technique by which the
surfaces are represented. In the point representation, the only decision necessary
concerns the visibility of the point, but in the line representation, the two endpoints
of the line segment may have different visibilities.

Letting one endpoint determine the visibility of the whole line is only satisfactory
when the line segments are very short; otherwise linear interpolation of the visibility
criterion greatly improves the appearance of the image. The subroutine which
performs this service is pltil.
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Figure 7: Parts of their surfaces lying within the intersection of two spheres should
not be visible.

6.1 Locating the intersection

/* geosi - intersection of two spheres */

geosi(s) double s[][7]; {

int i, j, k, n, m, m0;

double b1, b2, c1, c2, g, th, dh, ri;

double xx, yy, zz, rr;

double w[3], u[3], o[3][3];

n=4096;

n=2048;

g=128.0;

g=64.0;

g=53.0;

dh=3.14159/((double)n);

for (i=0; i<2; i++)

for (j=0; j<2; j++) {

if (i==j) continue;

th=0.0;

ri=s[i][3];

/* twopv(&s[i][0]); */

/* twopv(&s[i][4]); */

spheu(o,&s[i][4]);

/* twopm(o); */

sphrv(w,ri,th,g*th);

sphap(u,o,w,&s[i][0]);

c1=-1.0;

c2=-1.0;

m0=3;
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pltms(u[0],u[2],0);

for (k=0; k<n; k++) {

th+=dh;

sphrv(w,ri,th,g*th);

sphap(w,o,w,&s[i][0]);

xx=w[0]-s[j][0]; xx*=xx;

yy=w[1]-s[j][1]; yy*=yy;

zz=w[2]-s[j][2]; zz*=zz;

rr=s[j][3]; rr*=rr;

b2=xx+zz-rr;

b1=b2+yy;

m=3;

if (s[i][1]<w[1]) m0=4;

else if (b1<0.0) {m=1; m0=1;}

else if (w[1]<=s[j][1]) m0=3;

else if (b2>=0.0) m0=3;

else m=2;

switch (m0) {

case 1: pltil(u[0],u[2],c1,w[0],w[2],b1,i+1); break;

case 2: pltil(u[0],u[2],c2,w[0],w[2],b2,i+1); break;

case 3: pltil(u[0],u[2],1.0,w[0],w[2],1.0,i+1); break;

case 4: pltil(u[0],u[2],-1.0,w[0],w[2],-1.0,i+1); break;

case 5: pltms(w[0],w[2],i+1); break;

default: break;

}

u[0]=w[0]; u[1]=w[1]; u[2]=w[2];

c1=b1;

c2=b2;

m0=m;

} /* end for k */

} /* end for j */

}

6.2 The circle of intersection

Two spheres intersect in a circle (which will be imaginary unless they are close
enough together) which lies in a plane perpendicular to the line joining their centers.
But we need to know the radius of the circle and how far along the line joining the
two centers it lies. These quantities are not difficult to obtain by using a modest
amount of trigonometry, but there is an interesting formulation of the problem via
projective geometry [4, 2] which includes various limiting cases. Among them are
point spheres and spheres of infinite radius, which are planes.

6.2.1 Trigonometric solution

Suppose that circle i has radius ri, that d is the distance between centers, and
that we form a plane section including the two centers and p, one of the points
where the circles intersect. Let the perpendicular from p to the line joining centers
have length c while dividing that line into segments of length a and b. By the
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Pythagorean theorem,

a2 + c2 = r21

b2 + c2 = r2
2
,

whence we conclude

a2 − b2 = r21 − r22 .

At the same time,

a+ b = d.

Manipulating these last two equations gives forms for a+ b and a− b which in turn
yield

a =
r21 − r22 + d2

2d
;

the formula for b results from exchangiong r1 and r2. Interestingly, the spheres
need not even intersect, but then c would be imaginary:

c2 =
2r21d

2 + 2r22d
2 + 2r21r

2
2 − r41 − r42 − d4

4d2
.

6.2.2 A projective version

Recalling that the equation of a sphere is

α(x2 + y2 + z2) + βx + γy + δz + ǫ = 0,

regard the coefficients as a vector in a five dimensional space.
Because any non-zero multiple of the equation defines the same sphere, α may

as well be chosen equal to 1 unless it, itself, is zero. Except for this degenerate case,
substituting f = β/α, g = γ/α, and h = δ/α gives a vector

(f, g, h) = −2r,

with r the center of the sphere. Similarly, set k = ǫ/α to get

k = r2 −R2,

when R is the radius of the sphere and r the distance between its center and the
origin.

Defining a metric matrix

M =













. . . . −1/2

. 1 . . .

. . 1 . .

. . . 1 .
−1/2 . . . .













.
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creates an inner product for which, given coefficient vectors xTi = (αi, βi, γi, δi, ǫi),

xT1 Mx2 = β1β2 + γ1γ2 + δ1δ2 −
1

2
(α1ǫ2 + α2ǫ1)

If it were agreed to use normalized vectors xTi = (1, f, g, h, k), we would have
instead,

xT1 Mx2 = f1f2 + g1g2 + h1h2 −
1

2
(k1 + k2)

= rT1 r2 −
1

2
(R2

1 +R2

2 − r21 − r22)

=
1

2
(R2

1 +R2

2 −D2),

The last two lines result from normalizing the vectors; the very last is a consequence
of the cosine law and calling D the distance between centers. According to this,
the norm of a sphere is its radius, no matter where it sits.

Some further trigonometry produces the most interesting version of the formula,

xT
1
Mx2 = R1R2 cos θ

wherein θ is the angle at which the two spheres intersect, taken to be the angle
between their tangent planes at the point of intersection. This is the same as the
angle between the normals to the surface, which are themselves radii.

The remarkable conclusion is that orthogonal circles are those which intersect
orthogonally, just as parallel or antiparallel circles are those which are tangent at
their intersection. Parallel means internally tangent, antiparallel means externally
tangent.

6.3 A general procedure

It is typical of projective geometry that quantities, such as planes, quadrics, or the
like, are defined by the vanishing of some linear relation. Here, one five-dimensional
coefficient vector represents the surface of a sphere, leaving a four-dimensional space
of vectors which could represent points on the sphere. Since at most four of them
are linearly independent, four points suffice to define a sphere.

Two spheres whose coefficients are not multiples of each other, define an inter-
section, which we know to be a circle. Three points must be found, from which to
construct the circle. In generality, the problem is to partition space into two sets
of linearly independent vectors; one of which holds given conditions, the other the
points fulfilling them.

Projective geometry abounds with symbolism which describes the solutions,
mostly in terms of cross products, determinants, cofactors, and similar entities.
Numerically, it is simpler to start with a matrix of linearly independent vectors,
and follow some procedure which will adapt the basis to the conditions at hand,
without using all the vocabulary and symbolism of projective geometry.
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As it happens, finding families of vectors whose inner products are mostly zero
and occasionally not, results by inverting a matrix, which accounts for the presence
of cofactors and their ilk in symbolic analyses. Thus, we need a procedure for
completing and inverting partially defined matrices.

In the present situation, we have two conditions, namely the coefficients of the
two spheres. We require three vectors, each orthogonal to the first two, namely the
coordinates of three points which lie on the surfaces of both spheres; the remainder
of the circle of intersection consists of linear combinations of these first three.

7 Families of spheres

The ideas used in presenting a pair of spheres can be extended to entire families.
In drawing each sphere, it is compared against all the other spheres to determine
whether the view of each surface element has been blocked.

By such a scheme, the amount of comparison increases with the square of the
number of spheres, so that what is acceptable for tens of spheres may not be
acceptable for hundreds of spheres; in that case the introduction of some sort of
ordering and horizons would be appropriate.

The calculation of dipole and quadrupole moments for the sphere family will
assist in positioning and scaling the drawing for a more effective view.

7.1 Drawing the family

/* eomsf - intersection of a family of spheres */

void eomsf(s,n) double s[][7]; int n; {

int i, j, k, m, mi;

double b1, b2, g, th, dh, ri;

double emi, p[3], o[3][3];

g=57.0;

for (i=0; i<n; i++) {

ri=s[i][3];

emi=2000.0*ri;

mi=(int)emi;

dh=3.14159/emi;

th=0.0;

spheu(o,&s[i][4]);

for (k=0; k<mi; k++) {

th+=dh;

sphrv(p,ri,th,g*th);

sphap(p,o,p,&s[i][0]);

if (p[1]>s[i][1]) continue;

m=1;

for (j=0; j<n; j++) {

if (i==j) continue;

sphdj(&b1,&b2,p,s,j);

if (b1<0.0) {m=0; break;}

if (p[1]<=s[j][1]) continue;

if (b2<=0.0) {m=0; break;}

} /* end for j */
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Figure 8: The visibility of surface patches in an entire family of spheres is gotten
by comparing all the pairs.

pltms(p[0],p[2],m);

} /* end for k */

} /* end for i */

}

7.2 Dipole moment

“Dipole moment” is a fancy word, for chemists, to designate a center of mass. The
point is, that the center of mass (giving each sphere unit mass) is a desirable origin
of coordinates, which for artistic reasons might reasonably occupy the center of a
drawing of the spheres. It is hard to imagine that scientific reasons might dictate
another choice, but the possibility always exists.

One point of caution: the artistic dipole moment described here is neither the
center of mass (since individual atomic weights are not taken into account) nor the
electrical dipole moment (since no charges are considered).

/* calculate dipole moment */

void geodm(w,s,n) double w[3], *s[7]; int n; {

double en; int i;

en=(double)n;

w[0]=w[1]=w[2]=0.0;
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for (i=0; i<n; i++) {w[0]+=s[0][i]; w[1]+=s[1][i];w[2]+=s[2][i];}

w[0]/=en; w[1]/=en; w[2]/=en;

}

7.3 Quadrupole moment

Just as the dipole moment yields a reasonable origin of coordinates, the quadrupole
moment establishes a plausible scale of coordinates. This use is based on Tcheby-
chev’s theorem, which states that the fraction of the data lying more than n stan-
dard deviations from the mean is 1/n2. This is an absolute guarantee, not de-
pending on a Gaussian or any other distribution; consequently it tends to be fairly
conservative. In rough terms, less than 11% of the data lies more than 3 standard
deviations away from the average.

The theorem is so easy to prove, that it might as well be done right here. By
definition, the square of the standard deviation is the second moment of the data
with respect to the first momment (suppose it is zero to simplify the calculation):

σ2 =
1

N

N
∑

i=1

x2

i .

Divide the data into two subsets, A for which |xi| ≤ ρσ and B for the remainder:

σ2 =
1

N

∑

A

x2

i +
1

N

∑

B

x2

i .

Create an inequality by discarding data from set A and underestimating each term
in the sum for B:

σ2 ≥
1

N

∑

B

(ρσ)2.

Suppose there were M items in B, the set with the larger data. Then

σ2 ≥
M

N
(ρσ)2,

which readily translates into

Probability(x ≥ ρσ) ≤
1

ρ2
.

Applied to multidimensional data, a similar case could be made for quadratic
forms constructed from the components of the data, but it is preferable to go ahead
and use linear algebra to realize that the eigenvalues of the second moment, or
quadrupole, matrix have a similar significance, providing three separate scales for
three orthogonal directions. An average, provided by the trace of the quadrupole
matrix, is adequate when isotropic coordinates are preferred. The plane of the
largest two eigenvalues would be the most revealing, in the case that the third
eigenvalue were significantly smaller than the other two.
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/* calculate quadrupole moment */

void geoqm(q,s,n) double q[3][3], *s[7]; int n; {

double en; int i, j, k;

en=(double)n;

for (i=0; i<3; i++) for (j=0; j<3; j++) q[i][j]=0.0;

for (k=0; k<n; k++)

for (i=0; i<3; i++) for (j=0; j<3; j++) q[i][j]+=s[k][i]*s[k][j];

for (i=0; i<3; i++) for (j=0; j<3; j++) q[i][j]/=en;

}

Once the quadrupole matrix exists, we require a means of diagonalizing it. Many
diagonalization programs exist, especially for symmetric matrices. For pedagogical
reasons, GEOM uses the Jacobi method [1], which is not necessarily the most
effective procedure for very large matrices. Nevertheless, it is simple and reliable,
so there is no reason not to use it for the matrices which we are likely to encounter.

The Jacobi method consists in using planar rotations to reduce the matrix
element belonging to that plane to zero. However, trying to eliminate all the off-
diagonal elements is like swatting flies. As a new element is eliminated, many of
those previously destroyed partially revive, so they must be confronted over and
over again.

In the history of computing methods, different strategies for deciding the order
in which to attack the off-diagonal elements, as well as the validity of different
approximations to the angle of rotation and the rotation matrices have been studied
in considerable detail; all of this goes far beyond the requirements of GEOM.

Amongst the idiosyncracies of the Jacobi method, other than the fact that it
was far too computation intensive to be practical before the advent of electronic
computers, is its behavior with respect to degeneracies. Two diagonal elements
which are more nearly equal than even the tiniest off-diagonal element connecting
them will provoke a 45o rotation trying to break the degeneracy. This can be an
annoyance in symmetric molecules, where symmetry implies degeneracy and near
symmetry implies near degeneracy.

The formulas required by the Jacobi method can be obtained from 2×2 matrices.
Let us call c and s, respectively, the sine and cosine of an angle of rotation, θ. Then

[

c s

−s c

] [

a b

b d

][

c −s

s c

]

=

[

c2a+ 2scb + s2d sc(d− a) + (c2 − s2)b
sc(d− a) + (c2 − s2)b s2a− 2scb+ c2d

]

Some algebra and use of standard trigonometric identities shows that the con-
dition for vanishing of the new off-diagonal element is

tan 2θ =
2b

a− d
,

which tells us the angle of rotation to use. The trace of the new matrix is the same
as that of the old, as it should be.

However, the trace of the square of the matrix is also preserved, a bit of algebra
that we would like to avoid performing in detail. In the process, the square-sum of

32



the diagonal elements grows, at the expense of the off-diagonal elements. By the
nature of the transformation, the same is true for any larger matrix in which this
2 × 2 submatrix is embedded, providing something of a convergence criterion.

If all the square-sum of a matrix is on the diagonal, it itself is diagonal. So at
any moment we can sweep the largest off-diagonal element onto the diagonal, but
without knowing the exact way the remaining elements will rearrange themselves,
or which of them will be the largest remaining. So there are strategies for selecting
the order in which to crush off-diagonal elements.

/* make a jacobi rotation of the rows of the */

/* matrix z through angle t in plane i, j */

/* two columns will be affected */

void sphjr(z,i,j,th) double z[3][3]; int i, j; double th; {

int k;

double c, s, t;

s=sin(th); c=cos(th);

for (k=0; k<3; k++) {

t=z[k][i];

z[k][i]= c*t+s*z[k][j];

z[k][j]=-s*t+c*z[k][j];

}

}

/* make a jacobi rotation of the columns of the */

/* matrix z through angle t in plane i, j */

/* two rows will be affected */

void sphjc(z,i,j,th) double z[3][3]; int i, j; double th; {

int k;

double c, s, t;

s=sin(th); c=cos(th);

for (k=0; k<3; k++) {

t=z[i][k];

z[i][k]= c*t+s*z[j][k];

z[j][k]=-s*t+c*z[j][k];

}

}

/* diagonalize a symmetric matrix and record its */

/* eigenvectors (using Jacobi’s method). */

/* u[3][3] = matrix of eigenvectors */

/* v[3][3] = matrix being diagonalized */

void sphji(u,v) double u[3][3], v[3][3]; {

int i, j, k, l, ll;

double e, th;

for (i=0; i<3; i++) for (j=0; j<3; j++) u[i][j]=0.0;

for (i=0; i<3; i++) u[i][i]=1.0;

ll=0;

for (k=0, e=1.0; k<10; k++, e/=3.0) {

l=0; do {

for (i=0; i<2; i++) for (j=i+1; j<3; j++) {
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ll++; if (ll>5000) return;

if(v[i][j]>-e&&v[i][j]<e) continue;

th=0.5*atan2(v[i][i]-v[j][j],v[i][j]+v[j][i]);

sphjr(u,i,j,th); sphjr(v,i,j,th); sphjc(v,i,j,th);

l=1;

}} while (l==1);

}

}

8 Quartets of spheres

Projective geometry’s sphere space has five-dimensional homogeneous coordinates
within which linear algebra may be performed, but that is only for convenience in
computation. Since all equations in homogeneous space require the vanishing of
inner products, there is a matrix of coefficients whose determinant must vanish.
Given such a restriction, the coefficient matrix will always have a maximum of four
linearly independent rows or columns; consequently the projective dimension will
be four.

For example, four points identify a unique sphere, just as it requires four spheres
to intersect at a single point. There are many other situations in which four spheres
define a unique environment.

8.1 Four points determine a sphere

To see how this philosophy works, consider four prescribed points (xi, yi, zi), a fifth
arbitrary point (x, y, z) and the set of five equations which assert that these five
points all lie on the surface of a sphere (setting x2 + y2 + z2 = r2):

r21α+ x1β + y1γ + z1δ + ǫ = 0

r2
2
α+ x2β + y2γ + z2δ + ǫ = 0

r23α+ x3β + y3γ + z3δ + ǫ = 0

r2
4
α+ x4β + y4γ + z4δ + ǫ = 0

r2α+ xβ + yγ + zδ + ǫ = 0.

The singularity of the coefficient matrix requires that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r21 x1 y1 z1 1
r2
2

x2 y2 z2 1
r2
3

x3 y3 z3 1
r24 x4 y4 z4 1
r2 x y z 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. = 0

Laplace’s expansion of this determinant according to its last row yields explicit
values for the coefficients (α, β, γ, δ, ǫ). Numerically, relatively arbitrary values can
be placed it the last row, and the whole matrix inverted; we want the last row of
the inverse, which is insensitive to such choices.
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8.2 A sphere orthogonal to four others

Figure 9: Appolonius’ problem of antiquity, to draw a circle tangent to three others
can be generalized to finding a fifth sphere tangent to four others. Another gener-
alization varies the angle of intersection of the spheres; the solution is very clean
when the fifth sphere must be orthogonal.

To find the parameters of a sphere which is mutually orthogonal to each of four
others, it is necessary to solve the four equations
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,

which is a routine job of matrix inversion. Given the solution, the first three
components not only locate the center of the desired sphere, they also determine
its distance from the origin. With this information, the last coefficient yields the
radius of the orthogonal sphere.

The program which calculates the orthogonal sphere can be made slightly more
general, for arbitrary angles of intersection
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void fifth(ss,r,t) double ss[][7], r, t; {

int i, j;

double w[4][4], z[4][4], p[4][4];

double a[4], b[4], ri[4], rr, s;

for (i=0; i<4; i++) {for (j=0; j<3; j++) z[i][j]=ss[i][j]; z[i][3]=-0.5;}

for (i=0; i<4; i++) for (j=0, ri[i]=0; j<3; j++) ri[i]+=z[i][j]*z[i][j];

for (i=0; i<4; i++) a[i]=0.5*(ri[i]-ss[i][3]);

if (t!=0.0) for (i=0; i<4; i++) {

s=(r>0?sqrt(r):sqrt(-r));

a[i]+=s*t*sqrt(ri[i]);

}

geomi4(w,z);

for (i=0; i<4; i++) for (j=0, b[i]=0.0; j<4; j++) b[i]+=w[i][j]*a[j];

rr=b[0]*b[0]+b[1]*b[1]+b[2]*b[2]-b[3];

ss[4][0]=b[0]; ss[4][1]=b[1]; ss[4][2]=b[2]; ss[4][3]=rr;

}

8.3 A sphere tangent to four others

One of the interesting results from the geometry of antiquity is the construction
by Appolonius of Perga of a fourth circle tangent to three arbitrary circles. In
general there are eight solutions to the problem, according to whether the three
tangencies are internal or external. The construction clearly generalizes to spheres
and hyperspheres, leading us to expect sixteen different spheres tangent to each of
four arbitrarily placed spheres.

The system of equations which has to be solved is slightly more complicated
than when finding the orthogonal sphere, because the basic equation is

fif + gig + hih−
1

2
(ki + k) = RiR.

In fact, we could write a similar system of equations,
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Unfortunately R, the radius of the tangent sphere, is dependent upon k, so that this
is not a system of linear equations; this no doubt reflects the fact that for certain
configurations of spheres, not all of the tangencies may be real. Thus another
approach is needed, one of which is to assume a value for R and try to arrive at a
self-consistent value by iteration.

There is no reason that each sphere should not be given its own angle of in-
tersection, or that a common angle different from 0o, 90o or 180o could not to be
chosen.
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Figure 10: Shadows cast by a distant point light source can be obtained by using
a view from a different angle.

9 Casting shadows

The only difference between visibility and illumination, in the scheme of parallel
projection used by GEOM, lies in the direction of view. Therefore maintaining a
double calculation, one for each direction, yields criteria for suppressing (or chang-
ing the color of) the picture elements representing the spherical surface.

/* shadsf - present a family of spheres in color */

/* s[n][7] - family of spheres */

/* u[3][3] - direction of shadow */

/* t[n] - color codes */

void shadsf(s,t,u,n) double s[][7], u[3][3]; int *t, n; {

int i, j, k, m, mi;

double b1, b2, g, th, dh, ri;

double emi, p[3], q[3], a[3], b[3], o[3][3];

g=(double)sspch;

for (i=0; i<n; i++) {

ri=s[i][3];

emi=((double)sslen)*ri;

mi=(int)emi;

dh=3.14159/emi;

37



th=0.0;

spheu(o,&s[i][4]);

for (k=0; k<mi; k++) {

th+=dh;

sphrv(a,ri,th,g*th);

sphmv(p,o,a);

if (p[1]>0.0) continue;

sphmv(q,u,p);

if (q[1]>0.0) continue;

sphvs(p,p,&s[i][0]);

sphmv(b,u,p);

m=1;

for (j=0; j<n; j++) {

if (i==j) continue;

sphdj(&b1,&b2,p,&s[j][0],s[j][3]);

if (b1<0.0) {m=0; break;}

if (p[1]<=s[j][1]) continue;

if (b2<=0.0) {m=0; break;}

sphmv(q,u,&s[j][0]);

sphdj(&b1,&b2,b,q,s[j][3]);

if (b1<0.0) {m=0; break;}

if (b[1]<=q[1]) continue;

if (b2<=0.0) {m=0; break;}

} /* end for j */

// geomms(p[0],p[2],m,t[i]);

pltms(p[0],p[2],m);

} /* end for k */

// if (kbdst()) {kbdin(); break;}

} /* end for i */

}

10 Molecules

Although chemists are accustomed to representing the atoms within molecules by
spheres, it is still a task which can be accomplished in many different ways.

The most rudimentary is the so-called “ball and stick” model, which can even
be realized with gumdrops and toothpicks. All atoms have are taken to have the
same size, but do not fill space. In that sense, they represent the nuclei, separated
at distances taken from crystallographic data, for example.

When electrons are also taken into account, an atom can be assigned a radius
corresponding, say, to where 90% of its electrons are to be found. In this presen-
tation, atoms overlap (bonding can be attributed to electron pairs occupying the
same region). Mechanical models traditionally slice away parts of the sphere at
stereotyped bonding positions, still maintaining some flexibility of interconnection.

Elaborate model kits maintain variants of each kind of atom, to account for
the fact that bond distances and angles are not the same in all molecules, differing
slightly with the environment.

Of course, a graphical presentation can adapt itself to all of these styles of
presentation, according to the degree of refinement which is required at the moment.
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10.1 Benzene ring

Benzene is a planar molecule; six carbon atoms and six hydrogen atoms are arranged
in a ring, with double bonds between the carbon atoms. Bonds, nuclei, and electron
spheres with van der Walls radii can all be shown. Their positions are generated
by subroutines which can generate rings with an arbitrary number of atoms, but
six is the chemically most significant value.

Figure 11: A representation of a benzene molecule using van der Waals radii.

/* molhr - generate a hexagonal ring */

void molhr(s,r,rr,a,b,c) double s[][7], r, rr, a, b, c; {int i; double ph;

for (i=0, ph=0.0; i<6; i++,ph+=(60.0*3.14159)/180.0) {

s[i][0]=r*cos(ph); s[i][1]=0.0; s[i][2]=r*sin(ph);

s[i][3]=rr;

s[i][4]=a; s[i][5]=b; s[i][6]=c;}

}

/* molbe - generate a benzene molecule */

void molbe(s,ac,rc,ah,rh) double s[][7], ac, rc, ah, rh; {

molhr(&s[0][0],rc,ac,30.0,50.0,40.0);

molhr(&s[6][0],rh,ah,-60.0,40.0,30.0);

}
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Figure 12: Another representation of a benzene molecule in which smaller spheres
are used to represent the nuclei and lines representing bonds have been inserted.

10.2 Sulfur ring

Sulfur is capable of forming chain polymers or rings of various lengths. With a
valence of 2, no other kinds of atoms are required, although the chains require
monovalent terminators at each end. In a gaseous state, the molecules can be
quite irregular, but crystallized, tend to be more regular. The rings and chains
are still puckered, and so are neither planar (unlike benzene) nor simple straight
lines. Consequently the subroutines generating such molecules have to take three
dimensional details into account.

/* molsu - generate coordinates of a sulfur ring */

void molsu(s,radsu) double s[][7], radsu; {int i;

for (i=0; i<8; i++) {

molsc(&s[i][0],&s[i][1],&s[i][2],i);

s[i][3]=radsu;

s[i][4]=30.0;

s[i][5]=20.0;

s[i][6]=15.0;

}}

void molsc(x,y,z,p) double *x, *y, *z; int p; {

double d, al, be, t;
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Figure 13: Sulfur readily polymerizes into rings and chains, which are forced into
regular forms in crystals. Nevertheless the rings are puckered, not planar. The ring
shown, of eight atoms, is one of the most stable.

d=2.048;

al=3.1415926/4.0;

be=(107.9*3.1415926)/360.0;

t=sin(be)/cos(al/2.0);

*x=d*sin(be)*cos(p*al)/sin(al);

*y=d*sin(be)*sin(p*al)/sin(al);

*z=(p%2==0?1.0:-1.0)*(d/2.0)*sqrt(1.0-t);

}

10.3 Ferrocene molecule

Ferocene is a member of a class of organometallic compounds, in which heavy
metal atoms, with disposable d-electrons, can interact with aromatic rings having
mobile pi-electrons, to form stable compounds. From a graphical point of view, the
question is one of complexity, given the number of atoms present.

/* molfc - generate a ferrocene molecule */

\index{molfc}

\begin{quote}

{\footnotesize
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Figure 14: The ferrocene molecule.

\begin{verbatim}

void molfc(s,r1,r2,r3) double s[][7], r1, r2, r3; {

molpr(&s[0][0],1.4,r3,1.3,30.0,30.0,30.0);

molpr(&s[5][0],1.0,r2,1.0,30.0,30.0,30.0);

s[10][0]=s[10][1]=s[10][2]=0.0; s[10][3]=r1;

s[10][4]=80.0; s[10][5]=-30.0; s[10][6]=100.0;

molps(&s[11][0],1.0,r2,-1.0,30.0,30.0,30.0);

molps(&s[16][0],1.4,r3,-1.3,30.0,30.0,30.0);

}

/* molpr - generate a pentagonal ring */

void molpr(s,r,rr,h,a,b,c) double s[][7], r, rr, h, a, b, c; {

int i;

double ph;

for (i=0, ph=0.0; i<5; i++,ph+=(72.0*3.14159)/180.0) {

s[i][0]=r*cos(ph); s[i][1]=h; s[i][2]=r*sin(ph);

s[i][3]=rr;

s[i][4]=a; s[i][5]=b; s[i][6]=c;}

}

/* molps - generate a staggered pentagonal ring */

void molps(s,r,rr,h,a,b,c) double s[][7], r, rr, h, a, b, c; {
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int i;

double ph;

for (i=0, ph=(36.0*3.14159)/180.0; i<5; i++,ph+=(72.0*3.14159)/180.0) {

s[i][0]=r*cos(ph); s[i][1]=h; s[i][2]=r*sin(ph);

s[i][3]=rr;

s[i][4]=a; s[i][5]=b; s[i][6]=c;}

}

11 Random spheres

Figure 15: 27 Spheres, all of whose parameters were chosen at random.

Interesting artistic effects can be produced by simply generating a collection
of spheres with random parameters. More subtle variations of the same effect
would arise from varying the probability distributions, or even giving them a spatial
dependence.

/* Generate a random assortment of n atoms */
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void molra(s,n) double s[][7]; int n; {int i;

for (i=0; i<n; i++){

s[i][0]=((double)(rand()%4096))/1024.0-2.0;

s[i][1]=((double)(rand()%4096))/1024.0-2.0;

s[i][2]=((double)(rand()%4096))/1024.0-2.0;

s[i][3]=((double)(rand()%4096))/4096.0+0.1;

s[i][4]=(((double)(rand()%4096))/4096.0)*180.0;

s[i][5]=(((double)(rand()%4096))/4096.0)*180.0;

s[i][6]=(((double)(rand()%4096))/4096.0)*180.0;

}

}

12 Sphere Lattices

Figure 16: A 4x4x4 lattice containing spheres of two sizes. Such lattices arise in
crystallography, the evolution of cellular automata, and in many other places (like
video games).

Just as molecules can be represented by collections of spheres, so also can crystal
lattices. To avoid an endless proliferation of spheres, only a single unit cell would
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probably be drawn, although drawing a 3×3×3 cluster would serve to illustrate the
central environment better. Provided that the whole assemblage did not become
too cluttered, that is.

Another interesting application of a sphere lattice is the representation of a
three-dimensional cellular automaton; either the size or the color (or both) of the
spheres would serve as an indicator of the state of the cell occupied by the sphere.

/* Fill a three dimensional lattice randomly */

/* p is probaility in mils */

/* n is lattice width (not number of points) */

void molla(s,p,n) double s[][7]; int p, n; {

int i, j, k, ii;

double dx;

dx=3.0/((double)(n-1));

for (i=0; i<n; i++) for (j=0; j<n; j++) for (k=0; k<n; k++) {

ii=i+n*(j+n*k);

s[ii][0]=-1.5+((double)i)*dx;

s[ii][1]=-1.5+((double)j)*dx;

s[ii][2]=-1.5+((double)k)*dx;

s[ii][3]=(rand()%1024)<p?0.4*dx:0.166;

s[ii][4]=(((double)(rand()%4096))/4096.0)*180.0;

s[ii][5]=(((double)(rand()%4096))/4096.0)*180.0;

s[ii][6]=(((double)(rand()%4096))/4096.0)*180.0;

}

}

13 Main menu in Turbo C

Unless one wants to use the windowing facilities of a language like turbo c, the
interaction of the program with the user consists mostly of placing informative
messages and data at various places on the screen, and in reading the keyboard.

To a certain extent mouse movements can be incorporated along with keystrokes,
especially to enhance the use of arrows to move the cursor. As extensions of the
alphabet, both the function keys and the editing keys can be placed in the menu,
all with the intention of confining commands to single letter sequences.

So far, GEOM has not made as extensive use of these opportunities as some
other programs have done.

main() {

char k;

int i, j;

videomode(COLGRAF);

videoclear();

videopalette(REDYEGR);

videocursor(0,2,0);

k=’ ’;

di=9; dj=1; /* demonstration menu (dj=1 or DCOLS) */
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pi=6; pj=7; /* parameter menu */

si=0; sj=1; /* screen format menu */

dmii=10; /* active demonstration */

bg=17;

smen[0]=0; slim[0]=3; /* x-y, y-z, or x-r main graph */

smen[1]=0; slim[1]=2; /* parabolic/cartesian coordinates */

r0[0]=r0[1]=r0[2]=0.0;

a0[0]=a0[1]=a0[2]=45.0;

b0[0]=b0[1]=b0[2]=30.0;

pitc=86.0;

leng=2500.0;

videobackground(bg);

radhy=0.50; radca=0.75; radsu=1.00; radfe=1.45;

tu[0]=3; for (i=1; i<5; i++) tu[i]=1; tu[5]=2;

for (i=0; i<6; i++) abe[i]=1; for (i=6; i<12; i++) abe[i]=2;

for (i=0; i<5; i++) afc[i]=2; for (i=5; i<10; i++) afc[i]=1; afc[10]=3;

for (i=11; i<16; i++) afc[i]=1; for (i=16; i<21; i++) afc[i]=2;

geoat(s,-0.8, 0.0, 0.3, 1.6, 30.0, 40.0, 59.0, 0);

geoat(s, 0.6, 0.2,-0.2, 1.0,-30.0,-95.0,-22.0, 1);

geoat(t,-0.8, 0.0, 0.3, 1.6, 30.0, 40.0, 59.0, 0);

geoat(t, 0.6,-0.8,-0.2, 0.7,-30.0,-95.0,-22.0, 1);

geoat(t, 0.9, 0.5, 0.0, 1.6, 40.0,-75.0,-62.0, 0);

geoat(u, 0.0, 1.8, 0.0, 1.25, -45.0, 45.0, 45.0, 0);

geoat(u, 1.7, 0.0, 1.4, 0.47, 30.0, 50.0, 40.0, 1);

geoat(u, 0.8, 0.0, 0.9, 0.47, 30.0, 50.0,-40.0, 2);

geoat(u,-0.3, 0.0,-0.2, 0.47, 30.0, 50.0, 40.0, 3);

geoat(u,-0.9, 0.0,-1.1, 0.47, 30.0, 50.0, 40.0, 4);

geoat(u,-1.3, 0.2, 0.8, 0.36, 30.0, 50.0, 40.0, 5);

molbe(be,radca,1.2*radca,radhy,1.8*radca);

molsu(su,radsu); geosp(su,0.67,8);

molfc(fc,radfe,radca,radhy);

for (i=0; i<12; i++) for (j=0; j<12; j++) bbe[i][j]=0;

for (i=0; i<6; i++) bbe[i][(i+1)%6]=1;

for (i=0; i<6; i++) bbe[i][i+6]=1;

while (1!=0) {

videocursor(0,0,0); printf(" -GEOM-");

tidat();

di=dmii-1;

pi=pj-1;

spheu(uu,b0);

videocursor(0,2,0); printf("? %1c",k);

while (!kbdst()) videocursor(0,2,0);

k=kbdin();
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if (k==’q’) {videomode(T80X25); return;};

videocursor(0,2,0); printf(" %1c ",k);

switch (k) {

/* demonstration menu with typical parameters and initial conditions */

case ’\273’: case ’#’: /* F1 key */

dmii=dmenu();

videomode(COLGRAF);

videopalette(REDYEGR);

break;

/* parameter and initial condition menu activated for +,- */

case ’\274’: case ’$’: /* F2 key */

pj=pmenu();

videomode(COLGRAF);

videopalette(REDYEGR);

break;

/* */

case ’\275’: case ’%’: /* F3 key */

sj=smenu();

videomode(COLGRAF);

videopalette(REDYEGR); /* white/cyan/magenta */

break;

case ’\322’: /* INSERT key */

geopi(dmii);

break;

case ’\323’: /* DELETE key */

geopi(0);

break;

case ’\307’: /* PAR UP key */

pj--;

if (pj==0) pj=PROWS;

geoqi(pj);

break;

case ’\317’: /* PAR DOWN key */

if (pj>=PROWS) pj=0;

pj++;

geoqi(pj);

break;

case ’\311’: /* PAGE UP key */

dmii--;

if (dmii==0) dmii=DROWS;

geopi(dmii);

break;

case ’\321’: /* PAGE DOWN key */

if (dmii==DROWS) dmii=0;
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dmii++;

geopi(dmii);

break;

case ’a’: /* show skeleton */

geoni(dmii);

break;

case ’b’: /* draw bonds */

geobo(dmii);

break;

case ’c’:

eomsf(t,3);

geosp(t,0.5,3);

eomsf(t,3);

geosr(t,2.0,3);

break;

case ’d’:

/* eomsf(be,12); */

break;

/* echo character from keyboard */

case ’e’:

videocursor(0,0,35);

printf("%1o",kbdin());

break;

/* intersecting spheres */

case ’f’:

geosi(s);

break;

case ’g’: /* draw molecule */

geodi(dmii);

break;

case ’h’:

geosg(r0,1.5,a0,14,8);

break;

case ’i’:

geosl(r0,1.25,a0,14,17);

break;

case ’j’: geori(45.0,1.0,1.0,1.0,dmii); break;

case ’k’: geori(60.0,1.0,1.0,1.0,dmii); break;

case ’l’: geori(90.0,0.2,0.5,1.0,dmii); break;

case ’m’: geori(90.0,1.0,0.3,0.2,dmii); break;
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case ’n’: geori(90.0,0.4,1.0,0.2,dmii); break;

/* read center of sphere */

case ’o’:

twopc(’o’);

scanf("%F %F %F",&r0[0],&r0[1],&r0[2]);

break;

/* read parameters */

case ’p’:

geoqi(pj);

/* scanf("%F %F %F %F",&g1,&g2,&z1,&z2); */

break;

/* read euler angles a0 */

case ’u’:

twopc(’u’);

scanf("%F %F %F",&a0[0],&a0[1],&a0[2]);

break;

/* read euler angles b0 */

case ’v’:

twopc(’v’);

scanf("%F %F %F",&b0[0],&b0[1],&b0[2]);

break;

/* set up background */

case ’w’: videobackground(bg); break;

/* clear the screen */

case ’z’:

twopc(’z’);

videomode(COLGRAF);

videoclear();

videopalette(REDYEGR);

videobackground(bg);

videocursor(0,2,0);

break;

/* increase parameter */

case ’+’:

switch (pj) {

case 1: bg++; if (bg==32) bg=0; break;

case 2: pitc*=1.125; break;

case 3: leng*=1.414; break;

case 4: radhy*=1.414; molfc(fc,radfe,radca,radhy); break;

case 5: radca*=1.414; molfc(fc,radfe,radca,radhy); break;

case 6: radsu*=1.250; molsu(su,radsu); geosp(su,0.67,8); break;

case 7: radfe*=1.250; molfc(fc,radfe,radca,radhy); break;
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default: break;

}

geoqi(pj);

break;

/* decrease parameter */

case ’-’:

switch (pj) {

case 1: if (bg==0) bg=32; bg--; break;

case 2: pitc*=1.125; break;

case 3: leng/=1.414; break;

case 4: radhy/=1.414; molfc(fc,radfe,radca,radhy); break;

case 5: radca/=1.414; molfc(fc,radfe,radca,radhy); break;

case 6: radsu/=1.250; molsu(su,radsu); geosp(su,0.67,8); break;

case 7: radfe/=1.250; molfc(fc,radfe,radca,radhy); break;

default: break;

}

geoqi(pj);

break;

/* go to next parameter with down arrow */

case ’\320’:

twocur(pj); printf("=");

if (pi==PROWS-1) pi=0; else pi++;

pj=pi+1;

break;

/* go to previous parameter with up arrow */

case ’\310’:

twocur(pj); printf("=");

if (pi==0) pi=PROWS-1; else pi--;

pj=pi+1;

break;

/* ? --- menu listing */

case ’?’:

twopc(’?’);

videomode(COLGRAF);

videopalette(REDYEGR);

videocursor(0,9,0);

printf(" F1 - demonstrations\n");

printf(" F2 - parameters\n");

printf(" ins - show demo\n");

printf(" del - clear demo\n");

printf(" pg up,dn change demo\n");

printf(" q - quit\n");

printf(" z - clear screen\n");

printf(" ? - show menu\n");

break;

default: break;

} /* end switch */
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} /* end while */

} /* end main */

14 Main menu in Objective C

With access to a greatly more detailled screen and a well developed collection of
windowing programs, Objective C tempts the programmer to build up much more
elaborate displays, which, except for entering numbers or strings of text, can be
manipulated almost exclusively by mouse movements.

The following interface has two different parts. One is a simple replacement for
the ms/dos menu; the other elaborates several of the options into full displays with
their own windows.

14.1 Simple replacement of Turbo C GEOM

/* - - - - - - - - - - - - - G E O M - - - - - - - - - - - - - - - - - */

- readEulerAngles:sender

{

a0[0]=180.0*[[euRot cellAt:0:0] doubleValue];

a0[1]=180.0*[[euRot cellAt:1:0] doubleValue];

a0[2]=180.0*[[euRot cellAt:2:0] doubleValue];

return self;

}

- readAngleAxis:(double *)a:(double *)aa

{

a[0]=[[cosRot cellAt:0:0] doubleValue];

a[1]=[[cosRot cellAt:1:0] doubleValue];

a[2]=[[cosRot cellAt:2:0] doubleValue];

*aa=[angRot doubleValue];

if (a[0]==0.0&&a[1]==0.0&a[2]==0.0) a[0]=a[1]=a[2]=0.886;

return self;

}

- readParameters:sender

{int i, j; double o[3][3], a[3];

if (strcmp([[sender selectedCell] title],"sphere 1")==0) i=0;

if (strcmp([[sender selectedCell] title],"sphere 2")==0) i=1;

if (strcmp([[sender selectedCell] title],"sphere 3")==0) i=2;

for (j=0; j<3; j++) [[rightCenter cellAt:j:0] setDoubleValue:u[i][j]];

[rightRadius setDoubleValue:u[i][3]];

for (j=0; j<3; j++) [[rightEuler cellAt:j:0] setDoubleValue:u[i][j+4]];

spheu(o,&u[i][4]);

sphdc(a,o);

[[rightAngles cellAt:0:0] setDoubleValue:a[0]];

[[rightAngles cellAt:1:0] setDoubleValue:a[1]];

[[rightAngles cellAt:2:0] setDoubleValue:a[2]];

[[rightAngles cellAt:3:0] setDoubleValue:sphar(o)];

return self;
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Figure 17: Objective C master panel designed as a simple replacement for the
MS-DOS interface. Of course, the resemblance is only approximate.
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}

- rotateMolecule:sender

{

m0[0]=[[cosRot cellAt:0:0] doubleValue];

m0[1]=[[cosRot cellAt:1:0] doubleValue];

m0[2]=[[cosRot cellAt:2:0] doubleValue];

m0[3]=360.0*[angRot doubleValue];

if (m0[0]==0.0&&m0[1]==0.0&m0[2]==0.0) m0[0]=m0[1]=m0[2]=0.886;

sphax(mrot,m0[3],m0[0],m0[1],m0[2]);

return self;

}

- setParameters:sender

{int i, j; double o[3][3], a[3];

if (strcmp([sphereMenu title],"sphere 1")==0) i=0;

if (strcmp([sphereMenu title],"sphere 2")==0) i=1;

if (strcmp([sphereMenu title],"sphere 3")==0) i=2;

for (j=0; j<3; j++) u[i][j]=[[rightCenter cellAt:j:0] doubleValue];

u[i][3]=[rightRadius doubleValue];

for (j=0; j<3; j++) u[i][j+4]=[[rightEuler cellAt:j:0] doubleValue];

spheu(o,&u[i][4]);

sphdc(a,o);

[[rightAngles cellAt:0:0] setDoubleValue:a[0]];

[[rightAngles cellAt:1:0] setDoubleValue:a[1]];

[[rightAngles cellAt:2:0] setDoubleValue:a[2]];

[[rightAngles cellAt:3:0] setDoubleValue:sphar(o)];

return self;

}

- setLighting:sender

{

double a[3], aa;

[self readAngleAxis:a:&aa];

sphax(uu,aa,a[0],a[1],a[2]);

[[leftAngles cellAt:0:0] setDoubleValue:a[0]];

[[leftAngles cellAt:1:0] setDoubleValue:a[1]];

[[leftAngles cellAt:2:0] setDoubleValue:a[2]];

[[leftAngles cellAt:3:0] setDoubleValue:sphar(uu)];

return self;

}

- setRotation:sender

{

switch ([sender selectedRow]) {

case 0: [angRot setDoubleValue:90.0/360.0];

[[cosRot cellAt:0:0] setDoubleValue:0.0];

[[cosRot cellAt:1:0] setDoubleValue:1.0];

[[cosRot cellAt:2:0] setDoubleValue:0.0];

break;

case 1: [angRot setDoubleValue:90.0/360.0];

[[cosRot cellAt:0:0] setDoubleValue:0.0];

[[cosRot cellAt:1:0] setDoubleValue:0.0];

[[cosRot cellAt:2:0] setDoubleValue:1.0];

break;
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case 2: [angRot setDoubleValue:90.0/360.0];

[[cosRot cellAt:0:0] setDoubleValue:1.0];

[[cosRot cellAt:1:0] setDoubleValue:0.0];

[[cosRot cellAt:2:0] setDoubleValue:0.0];

break;

case 3: [angRot setDoubleValue:60.0/360.0];

[[cosRot cellAt:0:0] setDoubleValue:0.3];

[[cosRot cellAt:1:0] setDoubleValue:0.3];

[[cosRot cellAt:2:0] setDoubleValue:0.3];

break;

default:break;}

return self;

}

- showSphere:sender

{

drawView=0;

drawSphere=YES;

[self display];

drawSphere=NO;

needsClearing = YES;

return self;

}

- showAxSphere:sender

{

drawView=5;

drawAxSphere=YES;

[self display];

drawAxSphere=NO;

needsClearing = YES;

return self;

}

- showEuSphere:sender

{

drawView=5;

drawEuSphere=YES;

[self display];

drawEuSphere=NO;

needsClearing = YES;

return self;

}

- showShadows:sender

{

drawView=0;

drawShadows=YES;

[self display];

drawShadows=NO;

needsClearing = YES;

return self;

}

- prepSpiral:sender

{
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pushMe=spImButton;

[spImButton setTitle:"SPIRAL"];

if ([orientButton state]) [euPanel orderFront:self];

[gridPanel performClose:self];

[liPanel performClose:self];

[spPanel performClose:self];

if ([paramButton state]) [spPanel orderFront:self];

return self;

}

- prepGrid:sender

{

pushMe=spImButton;

[spImButton setTitle:"GRID"];

if ([orientButton state]) [euPanel orderFront:self];

[gridPanel performClose:self];

[liPanel performClose:self];

[spPanel performClose:self];

if ([paramButton state]) [gridPanel orderFront:self];

return self;

}

- prepLissa:sender

{

pushMe=spImButton;

[spImButton setTitle:"LISSAJOUS"];

if ([orientButton state]) [euPanel orderFront:self];

[gridPanel performClose:self];

[liPanel performClose:self];

[spPanel performClose:self];

if ([paramButton state]) [liPanel orderFront:self];

return self;

}

- showUnisphere:sender

{

drawUnisphere=YES;

[self display];

drawUnisphere=NO;

needsClearing = YES;

return self;

}

- showDisphere:sender

{

int i;

double o[3][3], a[3], aa;

if (strcmp([[rotateDimer selectedCell] title],"forward")==0) {

[self readAngleAxis:a:&aa];

sphax(o,aa,a[0],a[1],a[2]);

for (i=0; i<3; i++) a[i]=[[leftCenter cellAt:i:0] doubleValue];

sphmv(a,o,a);

for (i=0; i<3; i++) [[leftCenter cellAt:i:0] setDoubleValue:a[i]];

for (i=0; i<3; i++) a[i]=[[rightCenter cellAt:i:0] doubleValue];
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sphmv(a,o,a);

for (i=0; i<3; i++) [[rightCenter cellAt:i:0] setDoubleValue:a[i]];

}

if (strcmp([[rotateDimer selectedCell] title],"backward")==0) {

[self readAngleAxis:a:&aa];

sphax(o,-aa,a[0],a[1],a[2]);

for (i=0; i<3; i++) a[i]=[[leftCenter cellAt:i:0] doubleValue];

sphmv(a,o,a);

for (i=0; i<3; i++) [[leftCenter cellAt:i:0] setDoubleValue:a[i]];

for (i=0; i<3; i++) a[i]=[[rightCenter cellAt:i:0] doubleValue];

sphmv(a,o,a);

for (i=0; i<3; i++) [[rightCenter cellAt:i:0] setDoubleValue:a[i]];

}

drawDisphere=YES;

[self display];

drawDisphere=NO;

needsClearing = YES;

return self;

}

- printSphere:sender

{

drawView=0;

drawSphere=YES;

[self printPSCode:self];

drawSphere=NO;

needsClearing = YES;

return self;

}

- printUnisphere:sender

{

drawUnisphere=YES;

[self printPSCode:self];

drawUnisphere=NO;

needsClearing = YES;

return self;

}

- printSpIm:sender

{

sslen=[[spiralData cellAt:1:0] intValue];

sspch=[[spiralData cellAt:0:0] intValue];

drawUnisphere=YES;

[self printPSCode:self];

drawUnisphere=NO;

needsClearing = YES;

return self;

}

- printDisphere:sender

{
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drawDisphere=YES;

[self printPSCode:self];

drawDisphere=NO;

needsClearing = YES;

return self;

}

- rotateDimerB:sender

{

[dimerButton setTitle:"Backward"];

return self;

}

- rotateDimerF:sender

{

[dimerButton setTitle:"Forward"];

return self;

}

- rotateDimerN:sender

{

[dimerButton setTitle:"Dimer"];

return self;

}

- pushIt:sender

{

[pushMe performClick:self];

return self;

}

14.2 Single sphere demonstration

The availability of a larger surface in general, and of higher resolution in particular,
allows a user to study the details of sphere drawing in much greater detail in
the NeXT environment. Consequently, customized windows have been created to
elaborate the fairly general menu contained in the turbo c programs.

Topics which can be emphasized are, the variation of the sphere parameters such
as center, radius and orientation of the surface, as well as such aspects of visual
appearance as the choice of representation of the surface, the use of point or line
elements, the superposition of an axis, and so on.

if (drawUnisphere) {

[self readEulerAngles:self];

spheu(mrot,a0);

sphdc(a,mrot);

[[angleParameters cellAt:0:0] setDoubleValue:a[0]];

[[angleParameters cellAt:1:0] setDoubleValue:a[1]];

[[angleParameters cellAt:2:0] setDoubleValue:a[2]];

[[angleParameters cellAt:3:0] setDoubleValue:sphar(mrot)];

spRadius=[radiusSlider doubleValue];
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Figure 18: Objective C Panel in which the nuances of drawing one single sphere
can be studied in greater detail.
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if (strcmp([[primiMenu selectedCell] title],"points")==0) drawView=0;

if (strcmp([[primiMenu selectedCell] title],"lines")==0) drawView=5;

if (strcmp([[traceMenu selectedCell] title],"spiral")==0) {

sslen=[[spiralData cellAt:1:0] intValue];

sspch=[[spiralData cellAt:0:0] intValue];

geomss(r0,spRadius,a0,sspch,sslen);

}

if (strcmp([[traceMenu selectedCell] title],"grid")==0) {

nlat=[[gridData cellAt:0:0] intValue];

nlong=[[gridData cellAt:1:0] intValue];

geosg(r0,spRadius,a0,nlong,nlat);

}

if (strcmp([[traceMenu selectedCell] title],"Lissajous")==0) {

sllen=[[spiralData cellAt:2:0] intValue];

nlat=[[gridData cellAt:0:0] intValue];

nlong=[[gridData cellAt:1:0] intValue];

geosl(r0,spRadius,a0,nlong,nlat);

}

if (strcmp([[traceMenu selectedCell] title],"fractal")==0) {

frdepth=[[frData selectedCell] title][0]-’0’;

geofs(r0,spRadius,a0,frdepth);

}

if ([rimButton state]) {PSmoveto(0.0,0.0);

PSarc(0.0,0.0,50.0*spRadius,0.0,360.0);}

if (drawView==5) PSstroke();

}

14.3 Double sphere demonstration

Just as the presentation of a single sphere can be examined in minute detail, so also
can the details of sphere intersction and occultation be examined up close. It is
particularly convenient to vary the relative positions and radii of the two spheres;
for example, to see the differences between clean intersections and near tangencies.

if (drawDisphere) {

drawView=5;

s[0][0]=[[leftCenter cellAt:0:0] doubleValue];

s[0][1]=[[leftCenter cellAt:1:0] doubleValue];

s[0][2]=[[leftCenter cellAt:2:0] doubleValue];

s[0][3]=[leftRadius doubleValue];

s[0][4]=[[leftEuler cellAt:0:0] doubleValue];

s[0][5]=[[leftEuler cellAt:1:0] doubleValue];

s[0][6]=[[leftEuler cellAt:2:0] doubleValue];

spheu(o,&s[0][4]);

sphdc(a,o);

[[leftAngles cellAt:0:0] setDoubleValue:a[0]];

[[leftAngles cellAt:1:0] setDoubleValue:a[1]];

[[leftAngles cellAt:2:0] setDoubleValue:a[2]];

[[leftAngles cellAt:3:0] setDoubleValue:sphar(o)];

s[1][0]=[[rightCenter cellAt:0:0] doubleValue];

s[1][1]=[[rightCenter cellAt:1:0] doubleValue];

s[1][2]=[[rightCenter cellAt:2:0] doubleValue];

s[1][3]=[rightRadius doubleValue];

s[1][4]=[[rightEuler cellAt:0:0] doubleValue];
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Figure 19: Objective C Panel, in which the the difficulties of drawing two spheres,
which can occult or intersect one another is shown.
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s[1][5]=[[rightEuler cellAt:1:0] doubleValue];

s[1][6]=[[rightEuler cellAt:2:0] doubleValue];

spheu(o,&s[1][4]);

sphdc(a,o);

[[rightAngles cellAt:0:0] setDoubleValue:a[0]];

[[rightAngles cellAt:1:0] setDoubleValue:a[1]];

[[rightAngles cellAt:2:0] setDoubleValue:a[2]];

[[rightAngles cellAt:3:0] setDoubleValue:sphar(o)];

geosi(s);

if (drawView==5) PSstroke();

}

14.4 Quartet demonstration

Spheres are amongst the most symmetrical of objects, so it is not surprising that
projective geometry reserves an especially elegant place for them. There is a metric
matrix for their coefficients wherein the norm of a sphere is its radius, and the
angle between two sphere-vectors turns out to be the angle at which the spheres
intersect.

This brings up the three dimensional version of the ancient construction of
the circle tangent to any three others. Sometimes the circle is imaginary, but in
generality there are eight solutions, depending upon whether any given tangency is
internal or external.

Apparently there are sixteen combinations possible for four spheres, but the
construction can be generalized still further, wherein the angle with which each
sphere intersects the fifth sphere can specified independently of the others. In
particular, a real orthogonal fifth sphere can always be found, with the help of a
simple matrix inversion.

14.5 Shadow demonstration

The sun is neither a point source of light nor infinitely distant; nevertheless GEOM
can be used to illustrate all the elements of an eclipse with the exception of the
distinction between the umbra and the penumbra.

Besides the kind of detail observable for single and multiple spheres, the direc-
tion from which the illumination arrives can be varied and the trace of the shadows
on each sphere can followed.

15 geom.h

The header file for the part of GEOM written in ordinary c gives the prototypes
for all the functions involved.

/* GEOM.H */

/* Harold V. McIntosh, 14 December 1972 */

/* 10 November 1990 - "C" version */

/* 12 April 1992 - protototypes for Objective C */
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Figure 20: Objective C Panel in which theorems in projective geometry can be
studied, especially the analog of Appolonius’ classical treatment of finding a circle
tangent to three others.
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Figure 21: Objective C Panel in which the casting of shadows can be studied in
greater detail.
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void eomsf(double s[][7], int n);

void geoat(double s[][7], double x, double y, double z, double r,

double a, double b, double c, int n);

void geoav(double s[][7], double x, double y, double z, double r, int n);

void geobo(int i);

void geobf(double s[][7], int b[12][12], int n);

void geodax(double s[][7], double o[3][3], int n);

void geodi(int n);

void geodm(double *w, double *s[7], int n);

void geofr(double *r0, double r, double *a0, int l);

void geofs(double *r0, double r, double *a0, int l);

void geoii();

void geoil(double *p1, double q1, double *p2, double q2);

void geommain();

void geomms(double x, double y, int l, int m);

void geoms(double x, double y, int l);

void geomsf(double s[][7], int *t, int n);

void geoni(int n);

void geopi(int n);

void geoqi(int n);

void geoqm(double q[][3], double s[][7], int n);

void geori(int n);

void georf(double s[][7], double o[][3], int n);

void geosg(double *r0, double r, double *a0, int m, int l);

void geosi(double s[][7]);

void geosl(double *r0, double r, double *a0, int l, int m);

void geosr(double s[][7], double f, int n);

void geoss(double *r0, double r, double *a0);

void geosp(double s[][7], double f, int n);

void geomsg(double *r0, double r, double *a0, int m, int l, int la, int lo);

void geomsl(double *r0, double r, double *a0, int l, int m, int le);

void geomss(double *r0, double r, double *a0, int p, int l);

void molbe(double s[][7], double ac, double rc, double ah, double rh);

void molfc(double s[][7], double r1, double r2, double r3);

void molhr(double s[][7], double r, double rr, double a, double b, double c);

void molla(double s[][7], int p, int n);

void molpr(double s[][7], double r, double rr, double h,

double a, double b, double c);

void molps(double s[][7], double r, double rr, double h,

double a, double b, double c);

void molra(double s[][7], int n);

void molsc(double *x, double *y, double *z, int p);

void molsu(double s[][7], double radsu);

void pltfms(double x, double y, int l);

void pltil(double x1, double z1, double q1,double x2, double z2,

double q2, int l);

void pltms(double x, double y, int l);

void shadsf(double s[][7], int *t, double u[3][3], int n);

void sphau(double *z, double *x, double f, double *y);

void sphap(double w[3], double o[][3], double z[3], double a[3]);

double sphar(double o[3][3]);

void sphax(double o[][3], double th, double a, double b, double c);

void sphcl(double z[][3], double e);

void sphcv(double *z, double *x);

void sphdc(double *a, double o[3][3]);
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void sphdj(double *d1, double *d2, double *w, double s[][7], int j);

void spheu(double o[][3], double a[3]);

void sphgeu(double *a, double o[][3]);

void sphjc(double z[3][3], int i, int j, double th);

void sphji(double u[3][3], double v[3][3]);

void sphjr(double z[3][3], int i, int j, double th);

void sphmm(double z[3][3], double x[3][3], double y[3][3]);

void sphmv(double *w, double o[][3], double *z);

void sphrv(double *w, double r, double th, double ph);

void sphum(double z[3][3]);

void sphvc(double *a, double x, double y, double z);

void sphvs(double *z, double *x, double *y);

void sphzm(double z[3][3]);

void sphzv(double *z);

void twopc(int k);

void twopm(double (*z)[3]);

void twopv(double *z);

void videodot(int x, int y, int l);

void videoadot(double x, double y, int l);

void videofdot(double x, double y, int l);

/* end geom.h */

16 GeomView.h

The header file for the part of GEOM written in Objective C is essentially copied
from the NeXT demonstration application PlotView, and is used mostly by the
Interface Builder. It contains a list of objects as id’s, plus prototypes for all the
methods involved. The PlotView class was renamed GeomView, and still retains
all those methods to read the mouse cursor, draw the screen, and so on.

/*

* GeomView.h -- Interface file for the GeomView class

*

* You may freely copy, distribute, and reuse the code in this example.

* NeXT disclaims any warranty of any kind, expressed or implied, as to its

* fitness for any particular use.

*

*/

#import <appkit/View.h>

#import <appkit/NXCType.h>

// #import <IBViewCache.m>

@interface GeomView:View

{

id euRot;

id cosRot;

id angRot;

id axisButton;

id demoMenu;

id dimerButton;

id frData;
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id frPanel;

id goButton;

id gridData;

id gridMenu;

id gridPanel;

id leftAngles;

id leftCenter;

id leftEuler;

id leftRadius;

id orientButton;

id paramButton;

id primiMenu;

id quadDiagon;

id quadEigenv;

id quadMatrix;

id quadPanel;

id radiusSlider;

id rightAngles;

id rightCenter;

id rightEuler;

id rightRadius;

id rimButton;

id rotateDimer;

id showAtoms;

id showAxes;

id showBonds;

id showNuclei;

id sphereMenu;

id spiralData;

id spImButton;

id traceMenu;

id angleParameters;

id spPanel;

id liPanel;

id lissaData;

id laloData;

id euPanel;

id pushMe;

id delegate;

id points;

id crossCursor;

id readOut;

float radius;

BOOL needsClearing;

}

- dismissPanels:sender;

- dLize:header;

- prepSpiral:sender;

- prepGrid:sender;

- prepLissa:sender;

- printSphere:sender;

- printUnisphere:sender;

- printDisphere:sender;

- printSpIm:sender;
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- pushIt:sender;

- qMom:sender;

- readAngleAxis:(double *)a:(double *)aa;

- readEulerAngles:sender;

- readParameters:sender;

- rotateDimerB:sender;

- rotateDimerF:sender;

- rotateDimerN:sender;

- rotateMolecule:sender;

- setLighting:sender;

- setParameters:sender;

- setRotation:sender;

- showSphere:sender;

- showShadows:sender;

- showDisphere:sender;

- showAxSphere:sender;

- showEuSphere:sender;

- showUnisphere:sender;

- initFrame:(const NXRect *)frameRect;

- setDelegate:anObject;

- drawSelf:(const NXRect *)rects :(int)rectCount;

- sizeTo:(NXCoord)width :(NXCoord)height;

- clear:sender;

- Geom:sender;

- mouseDown:(NXEvent *)theEvent;

- registerPoint:(NXPoint *)aPoint;

- setRadius:(float)aFloat;

- (float)radius;

- read:(NXTypedStream *)stream;

- write:(NXTypedStream *)stream;

- awake;

- (const char *)inspectorName;

@end

@interface Object(PlotViewDelegate)

- PlotView:sender providePoints:(NXStream **)stream;

- PlotView:sender pointDidChange:(NXPoint *)aPoint;

@end

17 Programs for matrix inversion

The fact that c requires relatively fixed dimensions for arrays when working with
multiple indices leads to developing special matrix routines for each dimension.
GEOM needs different dimensions for different applications — three dimensions
for routine vector analysis in space, but four and five dimensions for the projective
geometry of spheres. The following collection inverts 4 × 4 matrices.

The method employed is Gaussian elimination with pivoting on the largest ele-
ments.

/* - - - - - - - - - M A T R I X I N V E R S E - - - - - - - - */

/* the subroutines required to invert a matrix of fixed dimension */
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/* geomi4 - 4x4 matrix inverse */

void geomi4(z,u) double z[4][4], u[4][4]; {

int i, j, n, ii[4], geoge4();

double f, w[4][4];

n=4;

geocm4(w,u);

geoum4(z);

for (i=0; i<n; i++) {

ii[i]=geoge4(w,i);

geoxr4(w,i,ii[i]);

for (j=0; j<n; j++) {

if (i==j) continue;

f=-w[i][j]/w[i][i];

geoac4(w,j,j,f,i);

geoac4(z,j,j,f,i);

}

}

for (i=0; i<n; i++) geosm4(z,1.0/w[i][i],i);

for (i=0; i<n; i++) {j=n-i-1; geoxc4(z,j,ii[j]);}

}

/* geoge4 - greatest element in the nth column of 4x4 matrix */

int geoge4(p,n) double p[4][4]; int n; {double g, h; int i, m;

m=n;

g=p[n][n];

g=(g<0.0?-g:g);

for (i=n; i<4; i++) {

h=p[i][n];

h=(h<0.0?-h:h);

if (h<g) continue;

g=h; m=i;

}

return m;

}

/* geocm4 - copy 4x4 matrix */

void geocm4(z,x) double z[4][4], x[4][4]; {int i, j;

for (i=0; i<4; i++) for (j=0; j<4; j++) z[i][j]=x[i][j];}

/* geoum4 - 4x4 unit matrix */

void geoum4(z) double z[4][4]; {int i, j;

for (i=0; i<4; i++) {

for (j=0; j<4; j++) z[i][j]=0.0;

z[i][i]=1.0;

}

}

/* geoxc4 - exchange ith and jth columns of a 4x4 matrix */

void geoxc4(z,i,j) double z[4][4]; int i, j; {int k; double t;

if (i==j) return;
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for (k=0; k<4; k++) {t=z[k][i]; z[k][i]=z[k][j]; z[k][j]=t;}

}

/* geoxr4 - exchange ith and jth rows of a 4x4 matrix */

void geoxr4(z,i,j) double z[4][4]; int i, j; {int k; double t;

if (i==j) return;

for (k=0; k<4; k++) {t=z[i][k]; z[i][k]=z[j][k]; z[j][k]=t;}

}

/* geoxtc4 - extract nth column from 4x4 matrix */

void geoxtc4(p,z,n) double p[4], z[4][4]; int n; {int i;

for (i=0; i<4; i++) p[i]=z[i][n];}

/* geoac4 - augment column of a 4x4 matrix */

void geoac4(z,i,j,f,k) double z[4][4], f; int i, j, k; {int l;

for (l=0; l<4; l++) z[l][i]=z[l][j]+f*z[l][k];}

/* geosm4 - multiply ith column of 4x4 matrix by a factor */

void geosm4(z,f,i) double z[4][4], f; int i; {int j;

for (j=0; j<4; j++) z[j][i]*=f;}

/* geoome4 - "one minus epsilon" for iterative */

/* refinement of 4x4 inverse */

void geoome4(z,x) double z[4][4], x[4][4]; {int i, j;

for (i=0; i<4; i++)

for (j=0; j<4; j++)

if (i==j) z[i][j]=2.0-x[i][j]; else z[i][j]=-x[i][j];

}

/* geomp4 - product of two 4x4 matrices */

void geomp4(z,x,y) double z[4][4], x[4][4], y[4][4]; {

int i, j, k;

double u[4][4], v[4][4];

geocm4(u,x);

geocm4(v,y);

for (i=0; i<4; i++) for (j=0; j<4; j++) {

z[i][j]=0.0;

for (k=0; k<4; k++) z[i][j]+=u[i][k]*v[k][j];

}

}

18 Future developments

Programs are never finished, a measure of their success is the demand for improve-
ments. Several possibilities are evident.
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18.1 Program structure; manual presentation

Naturally the technical details of many of the subroutines could be improved. So
could the presentations included in this user’s manual. In any event, experience
shows that programs grow, amongst other ways, by a process which includes prolif-
erating minor variants of some theme untill their number has become unwieldy. At
that time common features of their structure will be sought out, the new structure
defined and assigned parameters. The original collection will then be consolidated,
only to begin the process anew. GEOM has, and will continue to, follow such a
course.

18.2 Generating compounds from their names

From the viewpoint of chemists, GEOM still lacks the facilities present in the
original Quantum Chemistry Program Exchange version, for generating all the
atomic coordinates from the specification of bond distances, angles, and torsional
parameters. Indeed, thought has always been given to creating the molecule from
its chemical name, using a pattern recognition program, given that there are naming
conventions from which the necessary information can be extracted.

18.3 Chemical data

As presented, GEOM is still very much a beginner’s tool, especially with its empha-
sis on the details of sphere construction and the effect of varying various numerical
parameters and programming techniques. For the working chemist, good use could
be made of the incorporation of a vast store of chemical information, such as typical
radii, angles, and so forth. But even at the elementary level, the variety of ways in
which a sphere can be represented has hardly begun to be explored.

18.4 Stereopairs; front and side views

Stereopairs and other techniques are useful for visualizing three dimensional objects
more comprehensively, as are animated presentations. Experience shows that the
combination of a front view with a side view, both taken as parallel projections, is as
effective as any when it comes to actually working with three dimensional objects.
Display of such a pair of views has a high priority in the further elaboration of
GEOM. Of course, the other presentations have artistic merit and contribute in
their own way to visualizing objects, so their further development must also be
considered.

18.5 Three-dimensional cutting and pasting

GEOM does not allow any user interaction with the objects displayed, even though
extensive manipulation of their parameters is allowed. To construct a molecule from
atoms located by cursor, to isolate radicals and drag them to new positions, or to
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“cut and paste” are all operations consistent with contemprorary two dimensional
images; consideration should be given to extending them to three dimensions.

18.6 Projective geometry

Not to forget astronomers and eclipse watchers, the sun is hardly a point source
and perspective is vital. But to orient GEOM towards projective geometry is an
entirely different story, requiring a completely different program collection; similar
as the outward appearance between the two might be. One day this project may
be undertaken; it already has a basis in programs PHOC and SHOC.
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