next up previous contents
Next: Representation of a sphere Up: Rotation matrices Previous: Euler angles   Contents

Quaternion coordinates

Coordinates can be introduced into four dimensional space accroding to

\begin{eqnarray*}
q_0 & = & \cos \theta \\
q_1 & = & \sin \theta \cos \alpha ...
... \sin \theta \cos \beta \\
q_0 & = & \sin \theta \cos \gamma,
\end{eqnarray*}



as well as the alternative,

\begin{eqnarray*}
q_0 + iq_3 & = & \cos \rho e^{i\phi} \\
q_1 + i q_2 & = & \sin \rho e^{i \psi}.
\end{eqnarray*}



The first corresponds to the axis-angle representation, the second to Euler angles [3].



Pedro Hernandez 2004-05-13