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Abstract

Glider collisions specific to the demonstration that Rule 110 may be universal are described.
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1 Introduction

The recent claim that Rule 110 is Universal depends on an intricate series of glider collisions,
which at first sight is simply bewildering. On examination, it appears that there may be a chain
of reasoning which will lead up to the construction which has ben presented, or possibly even to
alternative constructions.

Structures which are technically gliders of many kinds exist in Rule 110, but those which seem
to offer the most potential and variety are those which are confined to the ether background, of
which around a dozen exist. Due to the cyclic nature of the ether, spatial period 14 and temporal
period 7, there are parity rules for dislocations in the ether; the most useful of these is for simple
binary parity itself. Thus gliders are either even or odd, combinations of gliders add their parities,
and the overall parity must be conserved throughout a collision and ever afterwards.

Collisions between odd gliders either give an even, possibly null, result or produce another pair
of odd gliders. It is not excluded that these are the same gliders, simply having changed places,
giving an instance of solitons. The existence of solitons suggests the transmission of information
from one end of a block of structures to the other so that activities could go on in several places
and be related to one another, rather than having to wait for the intervening space to work itself
out in a more complicated and unpredictable way.

Experimental evolutions and de Bruijn diagrams reveal the existence of gliders and quantify
them according to possible shift periodicities. Further experiments reveal the consequences of glider
collisions, although they become tedious due to the number of gliders that have to be included.
As more and more gliders are involved in simultaneous collisions, the task becomes unmanageable.
For Rule 110 several solitonic combinations have been discovered, involving C, F, and EBar gliders.
Many other combinations wherein A and B gliders are absorbed and later reemitted can be taken
as solitonic. There may be multipliers, which would produce more gliders than the number which
first collided. Pure absorbers would be black holes, pure emitters would be glider guns. So far only
one glider gun is known, creating A’s and B’s in equal quantities.

A recent universality proposal relies extensively on the interactions of static C gliders with
travelling EBar gliders. Actually the most viable candidate for a static glider was one (or more)
of the C gliders, which are already static. Two velocities, to allow overtaking, seems necessary
and zero velocity is not an a priori requirement. Playing EBar’s off against F’s doesn’t seem very
promising, whereas C’s are more appealing. En’s are plausible candidates for the second member
of the pair, but the final proposal calls for EBars.

Beyond creating a data flow from one part of an extended structure to another, there should be
some way to start and stop the flow, which implies a predicate to make the decision. Indeed, one
procedure divides a flow into two parts, from which the predicate deletes one, allowing the survivor
to continue on its way. Thus there are two tasks; erasure and the decision as to when to apply it.
It also turns out that more complicated solitons are required than just those found by examining
binary collisions.

We consider three parts of the possibilities of data movement in turn: erasure of oncoming
elements, the predicate determining whether erasure will take place, and the solitonic requirements
to cross intervening space. Stopping the flow at the other end is also required, but was already
more fully understood.

According to [19], page 1115 (Stephen Wolfram speaking):

“ ... [1991] ... the general outline of what had to be done was fairly clear — but there
was an immense number of details to be handled, and I asked a young assistant of mine



named Matthew Cook to investigate them. His initial results were encouraging, but
after a few months he became increasingly convinced that rule 110 would never in fact
be proved universal. I insisted, however, that he keep on trying, and over the next
several years he developed a systematic computer-aided design system for working with
structures in rule 110. Using this he was then in 1994 successfully able to find the main
elements of the proof. Many details were filled in over the next year, some mistakes
were corrected in 1998, and the specific version in the note below was constructed in
2001. Like most proofs of universality, the final proof he found is conceptually quite
straightforward, but is filled with many excruciatingly elaborate details. And among
these details it is certainly possible that a few errors still remain. But ...”

The eventual solution can be divided into two parts; the first consists in identifying promising
glider collisons, the second in getting them to work together in the semblance of a computation.
The mechanism chosen for the latter is a Cyclic Tag System, similar to the scheme introduced by
Emil Post in the 1920’s, but its details need not concern us.

The useful collisions, which are described forthwith in detail, permit erasure, filtratration
through a barrier, and the selection of alternatives; a predicate, if you will.

It might be opportune to explain that the word “universal,” as applied to computation, has
two meanings. The general, expansive, form asserts that “You can compute anything.” As such,
it is a variant of Church’s thesis, that all logical or mathematical reasoning is based on specific
procedures. These are the arithmetical operations, tests for equality, and the use of certain rules
of inference. Whitehead and Russel’s Principia Mathematica goes to some length to establish this
foundation.

The narrower interpretation is embodied in Turing’s construction of a model computer, which
procedes in three stages. The first shows how an extremely simple, but nevertheless definite and
concrete, device can realize the primitive operations, such as balancing parentheses, adding numbers,
copying lists, and so on.

In the second stage, it is shown that there is a description of such a device, using parentheses,
lists, comparisons and such like, given by a set of quintuples. Universality consists in showing that
there is one special device, admitting its own description via a quintuple set, which can mimic the
operation of any other, including itself. It is universal, because it is the only device you will ever
need to preform calculations according to the agreed procedure.

The third stage, of course, is the notorious one; such a device cannot even bebug itself!

A certain balance is involved in all this. To be called “computing” a process must have a certain
complexity - the ability to do arithmetic. But the enterprise has its limitations, so a criterion for
not being universal is certainly not leaving any uncertainty in the results. From there on, the use
of the word universal is purely a philosophical problem.

The “universal constructor” of John von Neumann and the discovery of the Garden of Eden
may illustrate the point. His constructor was implemented via a cellular automaton with certain
rules and was capable of building anything for which it had a blueprint, and (in principle; it was
complicated) had its own blueprint. Yet there were configurations of the automaton which could
not be constructed, because they could only exist at the first step, as initial states.

So bear in mind — universality in the strict sense can sometimes be demonstrated, although
establishing an adequate system of collisions for Rule 110 shows how arduous the process can be.
The possibility for universality in the general sense, that “you can compute anything,” only then
becomes a possibility, ranking as an alternative route to Church’s thesis.

That it is a possibility only establishes a possible degree of complexity; it does not say that the



environment will ever perform a computation, much less some specific one. Such complexity could
well be evident on other grounds.

In any event, we are only going to exhibit a series of interesting glider collisions which will
confirm the existence of a Cyclic Tag System; their possible utility and eventual application is
something else again.

2 Collisions Between A and EBar Gliders

Although collisions with A gliders are not central to the demonstrtation that Rule 110 is universal,
their presence is felt in certain critical places,

The most important is the flow of A tetramers coming in from the West, whose purpose is to
stop the solitonic EBar gliders which have traversed all the C2 groupings in the static part of the
Cyclic Tag System. But the tetramers do allow some spurious EBars to ride off into the sunset as
a sort of counterflow to the tetramers. That the two possibilities exist and that their operations
are so nicely synchronized is both a marvel and a source of instability.

align | monomer dimer trimer triplet tetramer tetrad pentad
hhi | E2 EBar, 2 B, Atet D1 C3 EBar, Atet C2 C1
hi | EBar, A EBar,2 A C3 EBar, 3A C2 C2 C1
mid | EBar, A D2 D1 D1 C2 C2 C1
lo | EBar, A El F, BBar,2 B EBar,3A F, BBar, B C2 C1
llo | EBar, A El F, BBar,2 B EBar,3A F,BBar,2B (2 C1
top | E2 El D1 C3 C2 C2 C1

Table 1: A’s can almost pass EBar’s, except that in the two extreme alignments they turn them into
E2’s and stop. An A tetrad ([four equally spaced A’s] vs. tetramer [block of four A’s]) uniformly
yields C2’s.

Table 1 summarizes some of the An-EBar collisions. Of course, collisions with A gliders can
become quite complicated, given the variability of spacing between them. If they are well enough
separated, the groups collide individually and the result is cummulative. Otherwise different com-
binations are likely to give a variety of results.

In the simplest combination, several T1’s stick together; these are called polymers, with prefixes
such as monomer, dimer, trimer, ..., designating the number of T1’s.

Nearly as simple are arrangements which separates monomers by single ether tiles; they are
called polyads, following the sequence monad, dyad, ... .

Table 1 contains an additional column labelled “triplet,” which is not a generic term but refers
instead to one specific combination which forms part of the Cyclic Tag System. For this glider, the
spacing between monomers is 2, 5.

On the next three pages, all the six possible collisions at different aspects are shown for the
three most important classes of A-EBar collisions participating in the Cyclic Tag System. Of these,
not all are realized, but it is useful to know what fraction of collisions was useful, and their exact
configuration.
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Figure 1: The six (A trimer, EBar) collisions. Three produce D1’s, one produces a C3, the other

two make leave 2 B’s, a BBar, and an F.
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3 Collisions Between C and EBar Gliders

It is remarkable, the extent to which the Cyclic Tag System depends on nothing more than interac-
tions between C gliders, especially the C2, and EBar gliders. There are solitonic relations between
all the different C’s and both EBar and F gliders. Due to the differing velocities of the EBar and F,
it is hardly surprising that one or the other would prevail; that it was EBar is a definitive disclosure
from the book. Equally interesting is the relegation of C1 and C3 to secondary roles, particularly
through the coupling of a pair of C1’s to a C3.

Before enumerating the C - EBar collisions, it is worth noting that the EBar has a boundary
consisting of six ether tiles running in a northeasterly direction, followed by a two tile jog, after
which the unit cell repeats. Due to the periodicity of the C gliders, there is only one distinct
northeasterly line of approach for the EBar, which is also the direction of approach for B gliders,
likewise for BBar’s, G’s, and even F’s.

Figure 4: Of six alignments between a C glider and an EBar, one is redundant, one impossible,
finally leaving four.

Figure 4 shows a C unit cell (which of the three, C1, C2, C3, doesn’t matter because they differ
along their left margins far from the site of the collision) positioned along the EBar margin. Due
to the jog and resultant overhang, separation by a single ether tile is excluded because the collision
would have already taken place. Separation by six tiles is redundant, because the collision delays,
and corresponds to a displacement of two tiles when it finally occurs.

Not only do we want to examine the collisions between the three C gliders and EBars, there is
a fourth set which is important. Namely, they are the collisions with the C1 pair, which are spaced
so closely that the encounters are not separable into individual collisions taking place one at a time
in sequence.

alignment | Cl1 C1 dyad C2 C3
hi (2) | C1, EBar D1 C2, EBar B tetrad
mid (3) | A, B, Bdyad EBar, A triplet CI1, F C1 dyad
lo (4) | A pentamer  EBar, E trimer B, B dyad B, B triad
llo (5) | C1, EBar EBar, 2 C1 A, BBar, B,Bdyad C1,F

Table 2: Some of the C - EBar collisions are solitonic. Others participate in useful cycles.



3.1 Four collisions between C1 and EBar

Individual C1 collisions do not enter into the Cyclic Tag System, but they are still interesting for
the possibilities they may afford for alternative tag systems, as well as for the reasons they may not
have been favored in the system actually realized.

Given that the C gliders and the EBar all have odd width, any collision must result in an even
overall result. It may consist exclusively of even gliders, such as A’s and B’s, sometimes even G’s,
and those may be produced in any quantity.

When there are odd gliders, they must arise in pairs, and may actually consist of the original pair
after having changed places. Those are the solitonic collisions, giving hope that similar encounters
may be repeated and that one member may end up at the far end of a long chain consisting of
instances of the other member.

It is not excluded that the collision of a single odd pair could produce an odd quadruple, but
neither that nor any otber amplification has been seen in practice.

Figure 5: The four C1-EBar collisions; two are solitonic, none are used in the tag system.

Figure 5 displays the four C1-EBar collisions, Two are solitonic, giving hope that they could
participate in a tag system. The other two produce only even gliders, the A pentamer collision
showing interest because of its interaction with oncoming EBar’s or F’s, principally in stopping
them and converting them into C1’s or C2’s.

In the actual Cyclic Tag System a similar role is played by tetramers gratuitously arriving from
the far west. The tetramers are also more selective, allowing some EBars to pass, while stopping
others.

The remaining collision produces an assortment of A’s and B’s. Although they could have their



uses, dealing with both at the same time complicates the situation.

3.2 Four collisions between C2 and EBar

Although much experimentation centered on the possibility of using the choice between a C1 or a
C2 glider to represent a bit, the way the Cyclic Tag System has been formulated is to use C2 gliders
exclusively, the relative spacing between them playing the role of a bit. Actually, it turns out even
more complicated than that; it is the relative spacing between two pairs of C2’s, the spacing within
pairs being constant.

C2 gliders have both an active and a passive role. The passive form must allow all EBar gliders
free passage as they wend their way west. Since the encounter requires contact between the jog in
the EBar and the T6 of the C2 (with a marginal displacenment of 2), the spacing of the C2’s must
conform to this relationship, and can only vary by including one of more extra EBar unit cells.
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Figure 6: The four C2-EBar collisions. One is solitonic; a defining characteristic of the tag system.
Another makes a C3 pair, eventually playing an important role in filtering EBar streams.

Figure 6 shows the four C2-EBar collisions. Besides the soliton, there is another near-soliton,
in which a C1 is left behind after the encounter rather than a C2. Additionally, the EBar converts
into an F. Had the C1 been more important, this might have been a mechanism for flipping between
the two pairs.

The third collision in the figure is typical of C-E collisions, in which a threefold of B gliders
is released, but with a spacing typical of such encounters. Its effect on additional C’s has been
investigated in detail, but it takes no further part in the present discussion.

The remaining collision, complicated though it is, actually constitutes the mechanism by which
predicates are implemented in the Cyclic Tag System. The BBar5, on striking the next C2, converts

10



into an EBar of a type which is ignored by the western shower, but which gets it out of the way.
The three B’s which are released in accompaniment with the BBar play a transient role in this
transformation, and so disappear from sight.

It is the surviving A which reacts back with some earlier residue and the forerunner of an EBar
packet, in a series of steps, to alternatively generate the D1 - A trimer leapfrog which erases arriving
EBar’s, or sets up a tricky filter which allows a third of them to pass. They can’t be allowed to
pass directly because of the parity rules, but it is acceptable to delete a pair of them while passing
a third.

3.3 Four collisions between C3 and EBar

Secondary roles are assigned to both the C1 and the C3 in the Cyclic Tag System; nevertheless
these roles are important ones. Single C3’s alternate with C1 pairs when the transmission of a
flotilla of EBars is required, albeit with attrition.

Bl

Figure 7: The four C3-EBar collisions. One is solitonoid, and one produces a C1 pair. Unlike the
collision with a single C1, the latter combination is essential for the tag system.

Figure 7 shows the four C3-EBar collisions. Two dissipate into B groupings; one a tetrad, the
other a common artifact in E collisions. There is also a double exchange, flipping EBar for F
alongside flipping C3 for C2. The fourth has a critical place in the Cyclic Tag System, because
it alternates the C1 pair with C3’s to create a semipermeable membrane which lets a third of the
Ebar’s through.

11



3.4 Four collisions between C1-C1 and EBar

An unexpected ingredient in the Cyclic Tag System was the C1-C1 pair, although one of the obvious
extensions of the catalog of collisions which had been prepared was to move on to trinary and other
multiple collisions. In the case of the C1-C1 pair, this should have been all the more urgent because
it was a product of a reaction already in the catalog. The separation was too close to dismiss its
collisions as composites of individual C-collisions.

e e e e e e b e e e e e e e e e

H
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Figure 8: The four C1-C1-EBar collisions.

On the other hand, full generality would have required studying collisions with all the other
gliders; knowing a specific application, it suffices to study only EBar collisions, as shown in figure 8.

These collisions have to produce odd residues, thus at least one odd glider. The first is somewhat
solitonoid since the EBar passes through leaving the C1’s more separated than they were before.
It is not evident how to go on increasing the separation, leading perhaps to a binary tree. The
second is also solitonoid, passing the EBar and ejecting an A trimer, such as forms part of the
(A-trimer,D1) leapfrog. It is also possible to get a single D1 glider, as the third collision shows.

The fourth collision is the important one, because it exploits the last EBar to close the cycle
which began with the C3, and prepare the way for the next bit or the stop signal in the EBar
stream.

12
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-C1
way, the C3-EBar collision which leaves a C1 pair. It is an essential combination for the Cyclic Tag

Figure 9: One of the C1
System



4 A Starting Point: Erasing Unwanted Gliders

Parity makes it difficult to selectively remove structures because almost all gliders are odd and will
either pass by another odd object in soliton fashion, leave another pair of gliders, or fizzle out in A’s
and B’s. Removing some without a trace while passing others unimpeded is hard or impossible to
arrange; an interesting one has an A trimer colliding with an EBar to produce a D, which collides
with another EBar to restore the original A trimer.

Figure

Figure 11: The three (A trimer, EBar) collision candidates for the leapfrog.

Of the eight (D1, EBar) collisions, two lead to A trimers; both arrive at the same position on
the EBar (Fig. 10). Of six collisions with the A trimer, three result in D1’s (Fig. 11).
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Figure 12 shows one leapfrog erasing three successive EBar’s.
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Figure 12: One of the requirements of a tag system is the ability to erase structures, be they
oncoming EBar packets, or static C groupings. The (A trimer, D) leapfrog will erase all incoming
EBars, so long as they are synchronized with the A-D erasure stream.

Eventually, of course, the leapfrog chain has to be terminated. Since the termination has to

stop the other leapfrog, which is the sieve which allows some EBar’s to pass, it is better to defer
its presentation until the controlling predicate has been analyzed; see Figure 21.
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5 The Computation Cycle Begins with a Predicate

The difference between a computer and a calculator is that the latter follows a determined sequence
of instructions, even if it is the operator who decides the sequence. A computer is capable of taking
decisions, often as not based on the sign of a result, as to which of two alternative courses of action
to follow. Nearly always, one of the alternatives will be to go back and repeat a previous sequence,
a retrograde step in an otherwise forwardleading sequence.

Going back, in a glider based environment such as Rule 110, would imply countermovement
in addition to whatever process was bringing instructions and data together. Skipping backwards
is equivalent to skipping forward if the instruction stream is repeated periodically and unwanted
instructions can be erased, or ignored, or whatever.

That is the reason that discovery of the (A trimer, EBar, D1) leapfrog has such importance for
setting up a computer based on Rule 110. Dilligent search had revealed some simple solitons, built
up out of combinations of C, EBar and F gliders. Using both EBar’s and F’s is unwieldy because
of their differing velocities, whereas the C’s are stable and could reasonably be taken as program
elements.

The other glider could represent data and be passed through the instructions, then stopped at
their far end and turned into a new program element through glider collisions. Several candididates
had been discovered and cataloged. Stoppage implies a flow of gliders from the left which had to
be independent of the data which it had to stop, implying further structure to any prospective
computing environment.

Thus the importance of either selectively eliminating gliders arriving from the right, or the
rightmost static gliders which they were going to meet. That the (A trimer, D1, EBar) combination
was overlooked provides an object lesson in dilligence and careful observation. Consulting the
catalog of collisions [8] the paragraph dedicated to (D, EBar) collisions is empty, due to its falling
at the end of the alphabet and laziness. A more carefully done Atlas [10] contains the collisions,
but by then checking collision sequences wasn’t being followed out to the necessary conclusion.

Viewing the drawings in [19] revealed one solution to the problem, from which a consultation
of the table of (C, E) collisions (as in Table 2) singles out C2 gliders as the stationary elements.
Fortunately, EBar’s turn into C2’s under many A collisions (see Table 1) which could inhabit the
western badlands - the remote left environment.

But now, given that only one kind of glider could be static, and one other kind mobile, the
predicate necessary to switch the flow of computation cannot reside in the selection of glider. The
spacing between C2’s must conform to the phase of the EBar gliders with which they will interact,
but variation in terms of the EBar unit cell is still available. So, the spacing between gliders is the
next detail that ought to be examined.

The combination finally used by the Cyclic Tag System is intricate indeed, drawing in some
ancillary E gliders to absorb stray sparks or provide some of their own. Some nine stages are
involved, shown in greater detail on the following pages, beginning with a map of the first few.

16
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Figure 14: The leapfrog gets started in three stages



PR

Hi; ”7::”’ i i I __E; ”:f SRSt &2 H i
s BT o

Loy bl e
S

i e i
! L] UL Z:E:H
11 [ T imn
NN NN L] 1 T NN
I H IENEE SEEEEEE
H> 1] [ L
T T N H i H

A

LT

%. e i GRS e SRR SRR SRR SR

EE Nl

Figure 15: Second of three stages to read a static element, using the third and fourth C2, reading
from right to left. A single A glider is emitted now; where, exactly, depends on how far the EBar
goes to meet the third C2. Also created is a BBar, stopped by the fourth C2, becoming an EBar.
The third and fourth C2’s have a fixed separation of 19 ether tiles, alterable in multiples of three.
Internally, three A’s eventually annihilate three B’s.
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They vary because the

right) predicate results.

(

thus at different sites along the EBar.

?
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Figure 16: Third stage: Black (left) and white

second stage A glider arrives at different times



Figure 17: At the fourth stage, two more oncoming EBar’s are met by either the A triplet or a
(3, leaving respectively an A trimer or a D1 as befits parity conservation. But the story is not yet
finished, because these results have to be checked against the oncoming EBar stream. So another
pair will be needed, to invert the roles of trimer and D1, and to create the data structure which
will allow some of the EBar’s to pass.
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Figure 18: Once the predicate has been activated, a fifth stage of preparation remains. The black
predicate must prepare a sieve, whilst the white predicate is ready for action and can begin erasing
EBars. Nevertheless, their actions must be synchronized with each other and the oncoming glider
packet. Its leading edge, shown in fainter colors, must just barely contact the source of the three
A’s to produce a C3 rather than the triplet shown. But it is not part of the primer; moreover it is
worth noting that similar contact is requred between following packets.
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6 EBar Packets

Discovering the white, or erasure, leapfrog would have been a matter of more careful attention to
detail in analyzing a mass of glider collision data. The black, or transmission, leapfrog is much
more subtle, but not necessarily that much more remote. Although C3’s do not figure in the (A
trimer, D1, EBar) interaction, they aree one of the primitive gliders, and so their collisions would
have been included in any comprehensive list of binary glider collisions.

0dd pairs either produce odd pairs, or dissipate. The products of dissipation being even, only
A, B, or G combinations are possible; when collimated they may be useful, otherwise they become
single gliders to return to their place amongst binary single glider collisions. Similarly, the separation
of the members of an odd pair requires that they be used immediately in a multiple collision, or
can be safely relagated to the domain of single collisions.

Noteworthy collimated combinations are the C1 dyad and the C1-C2 pair left over when E3’s
collide with EBar’s. Someone apparently noticed that the combination could be useful; indeed the
C1 dyad is essential to the Cyclic Tag System under discussion.

On the other hand, it was an obvious task to study collisions with C phalanxes, and only their
overwhelming number impeded a really serious analysis. Many such combinations have proven
useful in creating large T’s through glider collision.

Whatever the story of its eventual discovery, the (C1 dyad, C3) leapfrog interacts with EBar’s
arriving from the right, although only one in three succeeds in passing through. Fortunate, indeed,
that the same spacing holds in erasure mode! And that the attrition can be compensated by
inserting more gliders into the stream.

One esoteric detail has to be respected. Although there can be an infinite cycle of C1 dyad - C3
alternations, it must begin and end precisely where the EBar contact is not separable. The height
of the C3 column can be varied, as can the height of the C1 dyad column, with an adjustment in
EBar spacing, so those are separable.

Otherwise EBar packets of arbitrary length can be accomodated. However, since the value of
the predicate governing their forwarding cannot be known in advance if computation is to take
place, programming must take into account that it is all transmission, or all erasure.

Figure 19, on the next page, shows one cycle, albeit not the phase used in the Cyclic Tag System,
of the (C3, C1 dyad) cycle.

The final EBar sextet will release one finalt A triplet to interact with the shim separating
packets, as shown in Figure 21
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Figure 19: The sieve through which oncoming EBars pass is another leapfrog constructed from
C3’s and C1 doublets; it consumes two Ebars for every third one passed, starting its cycle on a C3
progenitor about a third of the way up from the bottom of the diagram. The separation of the
rightmost EBar’s is fixed, but the leading EBar can delay by offsetting in the A direction.
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Figure 20: One EBar in three gets by.
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7 Shimming Succeeding EBar Packs

Since we wouldn’t want to erase everything, the leapfrog has to be halted. That is done by inserting
a shim between one series of EBar sextets and the next, consisting of an E5 and an E2 running
alongside of each other. Actually the shim is thicker, but these two gliders convert into the EBar
and an E1 which lead the pack initiating a new predicate cycle.

Figure 21: The leapfrog can be stopped by an (E5, E2) pair, which becomes an (EBar, E1) pair.
But the same configuration must also stop the C3-C1 pair sequence which filters EBars, as shown
in the left drawing. There it is triggered by one particular A triplet, rather than an A trimer.
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8 The Western Badlands

After working out possible data and program representations, there remains the job of verifying
that transmission across a program is feasible, and that the information which has been sent can
be stopped. With transmission and the decision to use C2 and EBar gliders, there is only one
possibility, consisting in the solitonic relation between the two. For convenience it is repeated in
the right drawing of Figure 22, where it is seen that the spacing between EBars and C2’s must lead
to an encounter at Bresenham index 3.

Additional increments of integral EBar lengths are possible. Having a unique arrangement is
fortunate, because all C2’s are displaced equally by the passage of solitons, leaving their relative
spacings intact. The only problems arise in guaranteeing that they are eventually stopped at the
correct places.

Figure 22: EBar interactions for which there are no alternative forms.

Interpreting the predicate creates spurious EBar gliders, leaving the two possibilities of ignoring
them or destroying them. The latter is problematic; parity implies leaving residues. For A tetramers
the fortunate alternatives exist, of letting EBars pass which arrive with Bresenham index 1, or of
stopping those with indices 2, 3, or 6. Passage is shown in the left drawing of Figure 22.

Deciding which combinations are to be used is part of designing the Cyclic Tag System, and
are not further discussed here. Just as accomodating the EBar packets arriving from the far right
so that they can either be erased or transmitted (albeit with filtering) requires a synchronizing
independent of the inner structure of the packets, so the stopping choices at the left require an
invariance. The collision at Bresenham indes 2 is especially prompt.
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Figure 23: Three alternatives by which an A tetramer can stop an EBar and convert it into a C2.

Beyond checking the synchronization of the activities at the left and far right of the Cyclic Tag
System, the verification that it is actually a computer is important. Presumably this verification
exists in the literature, and in any event could be carried out symbolically without any drawings of
the evolution of Rule 110.

Once that was done, it would still be entertaining to watch some simple calculations, such as
the operation of a binary counter, or even of simple monary arithmetic with addition, subtraction,
multiplication and division.
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