Ancestors:
Commentaries on
The Global Dynamics of Cellular Automata
by
Andrew Wuensche and Mike Lesser
(Addison-Wesley, 1992)

Harold V. McIntosh
Departamento de Aplicacion de Microcomputadoras
Instituto de Ciencias, Universidad Autéonoma de Puebla
Apartado Postal 461, (72000) Puebla, Puebla, México.

July 20,1993

Abstract

The collection of commentaries on the book: Andrew Wuensche and Mike Lesser,
The Global Dynamics of Cellular Automata, Addison-Wesley, 1992 (ISBN 0-201-
55740-1) which were posted on CA-MAIL during June and July, 1993, is reproduced
with the correction of misspellings and adaptation to TEX format. Citations to some
of the references mentioned have been included.

1 ancestors (1)

Last fall and this spring various discussions have taken place regarding Andrew Wuensche
(<100020.2727Q@COMPUSERVE . COM>) and Mike Lesser’s new book, “The Global Dynamics
of Cellular Automata.” Not having had a copy of the book to refer to has precluded making
any commentary on its subject matter, but a copy has now arrived in Puebla (Puebla has
a splendid Colonial Cathedral, is near to a World-Famous Pyramid (Cholula), but you
will look in vain to find a University Bookstore).

To begin with, the book is a real work of art, with something like 200 pages of caretully
drawn evolution diagrams, for binary rules with 3 and 5 neighbors. All the symmetry
classes of the former, and mostly the totalistic rules of the latter are shown, for rings of
up to 15 cells. All in all, a tremendous collection of data, a vastly expanded version of
Holly Peck’s Table 13 in Wolfram’s “Theory and Applications of Cellular Automata' .”

IStephen Wolfram, Theory and Applications of Cellular Automata, World Scientific Press, Singapore,
1986



There is no telling how often, or how many people, have thumbed through that appendix,
looking for examples of something or other.

Just as many delicacies serve as appetizers, not constituting the whole meal, this
valuable collection may serve more to whet our interest, while it satisfies our curiously,
than to offer us the Final Word. But then, no one wants to propose that someone publish
a 10,000 page atlas, just to keep our interest going!

One of the first things which come to mind are the theories of random graphs of
Erdés, Bollob4s? and others. Evolution diagrams are trees rooted on cycles, so we know
beforehand that there will be connected components (the different cycles) and no loops
otherwise. We also know that the graphs must have the symmetry of the ring, so that
there will be cyclical and reflective repetition of structures.

Within those constraints, the statistics which can describe the graphs are: average
branching ratio, average length of transients, maximum and minimum values of these two
quantities, and their variances. According to random graph theory, links should distribute
fairly uniformly over the nodes (insofar as constraints allow, and one constraint is
one and only one out-link per node). More than that, the distribution is Poisson-like, so
that the actual number of links is rarely the exact average, but nearby according to the
well-known formula.

As a first reaction, based on my own experience, it might be interesting to comment
on a study of (2,1) Rule 22, which is a sort of one-dimensional version of Life, which we
made several years ago. Somehow, it did not seem that the rings became interesting until
their circumference reached 20; from that point on several alternative structures showed
up having the same period, and structures began to have a greater variety in general.
Indeed, it was at this point, with the help of several incisive observations on the part of
Robert Wainright, that we discovered how de Bruijn diagrams could be used to deduce
the possible periodic configurations of a one-dimensional automaton.

We carried out a complete analysis of cycles up to rings of circumference 34. Two
things happened; first, 2* is 16 billion, and the analysis took months on two or three
microcomputers running in parallel (2MHz 8080’s). So adding another cell would have
taken twice as long still. But vestiges of a second phenomenon began to appear; for
shorter rings, periods in the tens, maybe hundreds showed up. But at n=34, periods
began to run in the thousands and beyond. That could be confirmed, because certain
configurations for Rule 22 are very regular, and could be checked explicitly. In fact, one
suspected that a further great jump might be waiting at N=66, and at related values
thereafter.

Actually, the literature contains some other instances where rather extensive results
are available, namely for rules like the exclusive or’s (which are equivalent to finite fields),
where matrix theory gives pretty complete results.

What this means with respect to the Atlas, is that in spite of the wealth of data which it
contains, it may just be skimming the surface of a large reservoir of interesting automata.
The foregoing comments suggest that it may be fairly adventurous to extrapolate from
small rings; but if one is forewarned, the small rings can still be used to good advantage.

The Atlas contains much more than just the evolutionary diagrams; one of its most
valuable features may be the comparisons which it suggests, and documents to a good
extent, between automata whose rules are similar. One always suspects that similar rules

?Béla Bollobas, Random Graphs, Academic Press, London, 1985



should produce similar automata. Lenore Levine® has described an interesting sequence
of rules, which deviate less and less from Rule 128 - OR, from a topological point of view.
With the programs which accompany the Atlas, such ideas can be tried out, and their
results evaluated.

More commentary will follow.

2 ancestors (2)

Here we continue an analysis of Andrew Wuensche and Mike Lesser’s new book, “The
Global Dynamics of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1).
It is a wonderful compilation of data, and we have already commented on its complete
coverage of evolution diagrams, for (2,1) automata on rings of circumference up to 15, and
of selected (2,2) automata.

The first reaction of a person who intends to compile evolution diagrams might be
to make a systematic list of all the configurations, say of the 2'® configurations on a 15-
member ring; 2'® is only 32K, and is still relatively manageable. An evolution graph can be
created by applying the evolution rule to each configuration, observing the configuration
into which it evolves, and noting the result in an array of links.

Many interesting statistics of the evolution diagram are available as matrix elements,
vector products, or quadratic forms of this matrix. For example. the trace of its powers
can be made to yield the number of loops with the corresponding length. Multiplying by
arow of 1’s gives a vector containing the number of out links for each node. And so on.

Many people won’t even go to that much trouble; if the cycles of the automaton are
all that is wanted, you just follow the evolution until the configuration repeats, and note
where the loop began. By treating the configurations as binary numbers, and abandoning
a search when it is found that the numbers aren’t ordered satisfactorily, search time can
be reduced; likewise there are sometimes advantages to generating the configurations in
Gray Code order.

None of this is what Wuensche and Lesser recommend; rather, they explain a method
for calculating ancestors, rather than descendants. Obviously one is not going to get the
upper branches of an evolution tree by working downward, and it is impractical to compare
each evolution chain with all the others to see if it has the highest nodes. The solution
is to be able to work in both directions: start somewhere, go to the bottom, then work
upward, identifying everything connected to the bottom. For the next tree, don’t look
at anything that belongs to the first one. And, in the bargain, there is no messy matrix
algebra.

Calculating ancestors in a one dimensional automaton is pretty straightforward. Decide
on your configuration, and start somewhere, say at the left end. By the rule table, you
know what neighborhoods are going to give the first cell, so make a list of them. Now look
at the second cell, whatever it is. It has its own ancestral neighborhoods, but they overlap
the neighborhoods of the first cell. Discard the ones which don’t match, and extend your
list. But do it systematically, trying to extend the first neighborhood of the first cell in all
possible ways before turning to its second neighborhood. This is a nice recursive process

3Lenore Levine, Regular Language Invariance under One-Dimensional Cellular Automaton Rules, Com-

plex Systems 6 163-178 (1992).



with a simple search strategy. In fact, it is a game of dominoes, or rather, the analysis of
all possible domino games.

As extensions are made, the lists may proliferate, maintain themselves, or die out.
Eventually the right end is reached; when the configuration lies on a ring, the question is
whether the first cell can still be used. If so, an ancestral configuration has been found.
This, amongst other things, is what we learn how to do in Chapter 3 of “Global Dynamics.”
How many ancestors there are altogether is related to the Z-parameter, in ways that we
propose to examine later on.

This is the place at which it seems that the use of some matrix theory might be
useful. Once again, the de Bruijn diagram is important, and the matrix which describes
its connectivity. Think of a (2,1) automaton, and “halves” of neighborhoods. There are
four, 00, 01, 10, and 11. Let these be nodes in a graph, and let the links assert that the
parts overlap to make a full neighborhood. Then 00 links to 01, and even to 00, but not
to 10 nor 11. In fact, there are always two out links and two in links at each node, and we
might as well label them according to the full neighborhoods. Thus link 010 joins node 01
to node 10 to form the neighborhood 010, which evolves into a 1 according to rule 22.

Make up two matrices, one for neighborhoods which evolve into 0’s, one for neighbor-
hoods which evolve into 1’s. For Rule 22 we get:

00 01 10 11 00 01 10 11

00 1 0 . . 00 0 1 .

for 0: 01 . . 0 1 1. 01 . . 1 0
10 O 1 . . 10 1 0. . .

11 . . 1 1 11 . . 0 0.

The dots in these matrices are always zeroes, indicating halves which won’t join to
make a neighborhood in the first place (dominoes whose spots don’t match). The 0’s and
1’s don’t mean that is the cell you get, but are boolean no’s and yes’s, that you will get a 0
if you are using the 0-matrix, or a 1 if you are using the 1-matrix, when that neighborhood
evolves.

What makes these matrices really useful, is that when they are multiplied, they tell
what kinds of chains can be formed; the rules for multiplying matrices (and the fact that
zeroes and ones are being used) just end up counting the number of paths from the row
node to the column node. And if a product matrix is zero, that tells that there aren’t any
paths at all - no ancestor, a poor little orphan, and presto! the Garden of Eden has a new
resident.

Try multiplying out the matrices for 10101001. Worse yet, look at the 1-matrix for the
Zero-Rule.

More commentary will follow.

3 ancestors (3)

We continue our commentary on Andrew Wuensche and Mike Lesser’s new book, “The
Global Dynamics of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1). In
previous episodes, the role of diagrams in describing the evolution of automata has been
mentioned, especially the evolution diagram, (of which their computer program generates



the nice examples shown in the Atlas), and the de Bruijn diagram, which they do not
mention, but which can be used to calculate ancestors.
For Wolfram’s (2.1) Rule 22, this leads to a pair of 4 x 4 matrices,
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Note that both are partially diagonal, although in different ways. For A this says that
a zero neighborhood is a counterimage of zero, but then if you try to extend it, you can’t
ever have any ones. Of course; ones are expansive for Rule 22. The other component has
maximum eigenvalue 1.459, which is the growth factor for long configurations which vanish
instantly. The configurations which it generates had better not have pairs of zeroes. The
greatest growth factor for any rule is 2.0, the maximum row or column sum for these 4x4
de Bruijn matrices.

The second matrix, B, has a cube root of the unit matrix in its upper left hand corner.
This means that you can never use the neighborhood 111 in a counterimage of pure ones,
and that the fragments 01, 10, and 00 must always run in cyclic order. The eigenvalues
of this corner have absolute value 1, so the number of counterimages of pure 1’s is always
the same, no matter how long or short the ring.

In general, it is arbitrary configurations whose ancestors are sought, not pure strings.
However, we know that there is a norm for matrices, related to the absolute value of their
largest eigenvalue, following which the norm of a product is always less than the product
of the norms (but equal when the factors commute). This means that the state with the
largest fraction of ancestors is always going to get the lion’s share of the ancestors, expo-
nentially following that majority’s share of the configuration. So it is, that configurations
in Rule 22 have few ancestors unless they have lots of zeroes, as we see by turning to page
96 of the Atlas. .

The de Bruijn pair for the famed stochastic Rule 30 is
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Note that Rule 30 is a one-bit mutant of Rule 22, differing only in the behavior of
neighborhood 011, and thus the assignment of the link 01 - 11. However, the Perron
Eigenvalues of both matrices are 1, so that the number of ancestors will be expected to
remain constant for all configuration lengths. Compare the attraction basins on page 144
of the Atlas.

Now we have set the stage for thinking of the possible relation of the Z-parameter
and Langton’s lambda parameter to the matrices derived from the de Bruijn diagram.
Nevertheless we should introduce the characters and outline the plot before proceeding
with the show.

The nodes in the de Bruijn diagram are called “start strings” in section 3.4.1 of the
Atlas, left or right according to the direction of arrows connecting them. In all ancestor
calculations, the possible variety of start strings lends an ambiguity which tends to persist;
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reversible rules are only possible when this ambiguity can be shown to be irrelevant, even
when all the other factors are favorable.

When every row (alternatively, every column) of a de Bruijn diagram contains a single
1, we have one of the “limited preimage rules.” By Gerschgorin’s theorem, the eigenvalues
of such matrices are bounded by 1 (and according to Perron, the maximum eigenvalue
is exactly 1), all of which is in accordance with the experience that counterimages not
proliferate excessively, thereby justifying the adjective chosen in the Atlas.

Note that the eigenvalues represent an asymptotic rate of growth, and that boundary
conditions have to be taken into account. Thus there are Gardens of Eden in the Atlas even
when growth factors are unity. Generally we would expect that if some populations grow,
others languish, to maintain constant the total number of configurations. But in finite
systers, the constraints are more exacting, and can produce an occasional vanishiment
which might not be found in an infinite system.

Cyclic boundary conditions correspond to the diagonal of the de Bruijn matrices, be-
cause the “start string” is the same as the “stop string.” Individual matrix elements
correspond to choosing one particular start, and one particular stop. For infinite chains
all elements must be cousidered, whereas for configurations which are “quiescent at infin-
ity,” the (q,q) element is the relevant one (q the quiescent state).

It should be explained that the theory here outlined is inherent in the Atlas’ list of
references, particularly in the work of Erica Jen?* there cited, and in articles of Stephen
Wolfram?®, also cited. The principal difference is that Jen’s work is phrased in terms of
recursion relations, not matrix theory (although she exhibits them and describes their
use). Furthermore, the nicest theorems do not seem to result from matrix theory alone.
The advantage of a matrix-oriented point of view is that it leads naturally to eigenvalues
and eigenvectors, or whatever it is that they signify in the particular application. Here, it
is rates of growth in the number of counterimages with respect to the length of the ring
of cells. Eigenvectors are less important (the principal eigenvector can be scaled to get
positive real probabilities), but they would have exact rates of growth.

More commentary will follow.

4 ancestors (4)

Commentary on Andrew Wuensche and Mike Lesser’s new book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. We have
discussed how to form a de Bruijn diagram for a cellular automaton rule, its connectivity
matrix, and how evolution splits the matrix into submatrices, which can be used to count
ancestors. The rows and columns of the de Bruijn matrix are labelled by Wuensche and
Lersser’s “start strings,” but the columns are really “stop strings.”

To fix ideas, consider the two matrices for Wolfram’s (2,1) Rule 252, which is associated
with rules 3, 17, 63, 119, 238, 192, and 236 in the Atlas, on pages 128 and 129.

1E. Jen, Enumeration of Preimages of Cellular Automata, Complex systems 3 421-456 (1989).
5Stephen Wolfram, Computation theory of cellular automata, Communications in Mathematical
Physics 96 15-57 (1984).
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At first sight, the basins for Rules 3 and 252 look completely different, but an exam-
ination of these matrices shows why it is sensible to consider them jointly (actually, to
pair 252 and 192) - their only difference lies in exchanging the A and the B matrices.
Therefore, they will have identical statistics, with 1’s and 0’s exchanged. In other words,
ancestors will proliferate similarly, although their cycles and periods may be different.

The other two operations which the authors consider, reflection and complementation,
also have their repercussions. For example, reflection exchanges the start neighborhoods
01 and 10, while complementation does this, exchanges 00 with 11, and exchanges A with
B. None of these things changes norms or eigenvalues. Persons familiar with matrix theory
will see that the matrices representing these exchanges will commute with the A, B pair,
and that they will constitute a symmetry group. A sort of supersymmetry can be achieved
by making a bigger matrix having A and B as submatrices, but we will not make further
use of the possibility.

There is an extensive theory of positive matrices, just as there is of integer matrices.
Matrices in general can be associated with graphs; their nodes are the indices, which
are linked according to whether the matrix elements are zero or not. This means that
nonzero elements in the product of matrices are associated with chains in the diagram.
The relationship is useful when some properties are more evident in one context than
in the other. For example, the matrix is partially diagonal when the graph consists of
two disjoint parts. Blocks of zeroes correspond to attractors (into which links may enter
but cannot leave) and dispersors (links leave but do not enter). Conversely, statistics
concerning the graph often have nice matrix formulas, and in general properties of graphs
can be worked out in a computer whenever they have a formulation via matrix algebra.

Two important properties of matrices are, on the one hand, their eigenvalues and
eigenvectors, and on the other, their norms. The two are related, but the relationship is
more complicated when the matrices are not symmetric, so that attractors and dispersors
can be present. The norm is not a perfect “absolute value” because the norm of a product
is only less, not necessarily equal, to the product of norms. For purposes of analysis and
calculating limits, the inequality is entirely satisfactory, but it is less favorable when exact
counts are required.

The matrices A and B count the ancestors of a single cell, and catalog them according
to the start and stop strings constituting the neighborhood. It is a fundamental reality
of cellular automata theory that there are always more cells amongst the neighborhoods
than the number of cells being considered; this shows itself when we use a matrix rather
than a scalar to do our counting. If A and B count the ancestors of a single cell, we expect
their products to count the ancestors of a sequence of cells. A matrix is still called for,
because marginal cells always remain, however long the chain.

The de Bruijn matrices for (2,1) automata have both norm 2, and largest eigenvalue 2,
and these quantities are always larger than those of any of the fragments into which the
matrices decompose. The value 2 corresponds to doubling the total number of configura-
tions every time a single cell is added to the automaton.

-



Consider the formulas for counting (within the limits of pure ASCII). If M is the
conmnectivity matrix of a graph, let u be a vector of ones, and i be a unit vector in the '
coordinate. Let ! designate trasnspose. Then i/’ Mj is the ij'"* element, the number of
links from ¢ to j, while i” Mi is the number of loops starting at i. Their sum is the Trace
of M, yielding the number of loops altogether (with a possible multiplicity according to
their length). The product u’ Mu is the number of links altogether, no restriction. q” Mq
is the number of paths beginning and ending with a quiescent state, q.

All three of these formulae can be written as traces, in the form Tr(GM), with a
suitable metric matrix G. To count everything, G=uu’; for periodicboundary conditions,
G=I, the unit matrix, and for configurations quiescent at infinity, G=qq’. Among other
things, this means that the choice of a boundary condition is not very essential to a
calculation. It only enters at the last moment, in the selection of the metric matrix. But
the essential qualities of the matrix, as represented by its eigenvalues and eigenvectors,
expressing such things as rates of growth, are not affected by the boundary condition.

Suppose that we want to count configurations. We must add A and B, which always
results in the de Bruijn matrix D (which has a rather simple characteristic equation -
DFl = Dk, because D¥ = uu”, Duu® = kuuT). So, for cyclic boundary conditions in a
ring of circumference s, Tr(D?®) = 2°, which is so unsurprising that it might be considered
boring. But it is almost the only result that we are going to get free.

Counting is good for getting averages. But suppose we want variances. Then it is
necessary to sum squares. That is where matrix theory is really going to shine. We need
(Tr(GM))?, which turns out to be Tr(GM @ GM), which in turn is Tr((G @ G) (M@ M)).
Extracting the constant factor G @ G, we have to calculate Tr(M @ M). Here @ indicates
a tensor product, which is a way of compounding matrices that will be found in books on
matrix theory®.

A certain amount algebraic manipulation ends us up with a formula for the second
moment when the de Bruijn matrix is split into A and B; namely we need a trace involving
(A® A+ B® B)?®, (rather than (A4 B)?®) in a ring of circumference s. These commentaries
aren’t the place for mathematical derivations, but the details are available in a pair of
preprints’ that anyone can have by sending a mailing address (including zip code, city,
country, etc).

A tensor square has an interpretation as a graph; it is nothing other than the graph of
ordered pairs taken from the graph of the original matrix. (There is also a symmetrized
tensor square, and an unordered-pair graph). This relationship is intimately related to
Niall Graham (niall@nmsu.edu)’s assertion of 21 Jun 93 14:55:27:

>
> A 1-dim CA is reversible iff the pair digraph of its

> associated finite automaton is acyclic.
>

More commentary will follow.

8For example, F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York,
1959.

71) Harold V. McIntosh, Linear Cellular Automata via de Bruijn diagrams (May, 1991), and 2) Harold
V. McIntosh, Reversible Cellular Automata (January, 1991).



5 ancestors (5)

Commentary on Andrew Wuensche and Mike Lesser’s new book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. For the
moment we are laying a groundwork of matrix and graph theory, rather than discussing
the book explicitly; reference to the book will still provide examples for statements which
will be made.

Much of the theory of cellular automata, and especially of one dimensional cellu-
lar automata, can be described with the aid of de Bruijn diagrams and their associated
connectivity matrices. The calculation of ancestors (for a binary automaton) can be ac-
complished by using a pair of these matrices, one for each of the two states into which a
neighborhood can evolve.

To write down a de Bruijn matrix quickly, and to interpret one rapidly, use Wolfram’s
scheme for enumerating automata. Suppose that the rule is

111 110 101 100 011 010 001 000
h q f e d c b a.

The corresponding positions in the connectivity matrix are

where all elements marked by dots are filled with zeroes. The length of the “steps” in the
matrix correspond to the number of states in the automaton, while the number of steps
reflects the size of the neighborhood, as does the number of “flights of stairs;” the two are
always equal.

Large de Bruijn diagrams are hard to draw, having so many nodes and links. The
best visualization we have found is just to draw a circle, divide the circumference into the
requisite number of nodes, and treat them as though they were k-adic numbers modulo the
total number of start strings. All but the simplest are still quite congested. Artistically,
they have a pleasing structure.

From the basic de Bruijn diagram, others may be derived. Oue is the subset diagram,
whose elements are subsets of nodes from the primitive diagram. the concept was intro-
duced in the 1950’s by E. L. Moore, who was interested in experiments which could identify
the state of an automaton, or to place it in an arbitrarily prescribed state. Its relation to
calculating ancestors is a consequence of offering a sure and easy way to ascertain whether
the primitive diagram contains a given path or not.

To create a subset diagram, link two nodes if there is a link from at least one node
in the source (tail) subset to all the nodes in the destination (head) subset. Or in other
words, take a source subset and run through all the nodes to which its members are linked;
that collection is the destination. When there are no such links, the subset is connected
to the empty set. That way a uniform quota of links is guaranteed for each node in the
subset diagram, so that arbitrary paths can always be found; but getting trapped at the
empty set is always a possibility.



With respect to ancestors, not caring about the start string means beginning at the
full set. Any path leading from there to the empty set implies the lack of an ancestor,
and thus a non-empty Garden of Eden. Many conclusions can be drawn, for example, the
shortest ancestorless string, the longest loopless string with ancestors, and so on. And, of
course, if there is no path at all, there is no Garden of Eden.

Since the subset diagram is naturally ordered, not finding a Garden of Eden leads to
some natural questions: what is the largest set that still leads to the null set? what is the
smallest set still reachable from the full set? and so on. G. A. Hedlund® and his followers
have studied these questions in much detail.

Although the subset diagram reveals the existence of ancestors, it is not very helpful
in identifying them, because it is not so easy to backtrack.

For Wolfram’s (2,1) Rule 22, the subset diagram has 16 elements, which we may rank
by size from the full set to the empty set.

Connection matrix:

1)1
1 1 .
o1 1
1 . 1
1. 1
.. 11
2 .
1 . 1
1 . .1 .
. 1. . 1
1 1
11 . .
.1 1
P N
. . . |1
L 2_

Noteworthy details: The 4x4 unit-class submatrix in the lower right hand corner is
almost a de Bruijn diagram, because most of its nodes have continuations with either a 0
or a 1, but the start string 11 leads to both 110 and 111 to form a neighborhood which
evolves to 0, so it links to a two-element subset via 0 and the empty set via 1. That
explains the next-to-last row. This is also the only direct linkage to the empty set in the
matrix.

In fact, the eighth is the smallest power of the matrix with a direct link from the
full set to the empty set, corresponding to the “poison word” 10101001 (and of course,
its reflection, 10010101). This is easier to appreciate by drawing the diagram, without a
computer program which can display the matrix and its powers. For any Rule, by the
16th power, a decision will necessarily have been reached, as to whether the (full, empty)
matrix element is zero or not. (But, the de Bruijn diagram only had 4 nodes)

Primitive diagrams have another kind of derivative, the pair diagram (and more gen-
erally, the n-tuple diagram); both ordered pairs and unordered pairs may be considered.

8G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Mathematical
Systems Theory 3 320-375 (1969).
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Consider ordered pairs; (x,y) is linked to (X,Y) if x is linked to X AND vy is linked to
Y. A pair diagram is a kind of greatest lower bound between its constituents (a greatest
common denominator, if you wish). Unordered pairs might be more convenient if both
members were taken from the same set, such pairs are also subsets.

The most evident application of a pair diagram lies in testing whether or not the same
sequence of nodes can be found in two different places in the primitive diagram, and
therefore is related to establishing uniqueness. If two paths exist, lay them out side by
side, pair their corresponding links, and get the path in the pair diagram. Conversely, any
path in the pair diagram may be decomposed into its constituents.

A more subtle application of the pair matrix lies in calculating variance. If the powers of
the connection matrix of a graph reveal the number of paths of the corresponding length
between nodes, then the powers of the pair matrix reveal the square of this number,
or in other words, the second moment. From there to the variance is an exercise in
elementary statistics. The application to counting ancestors lies in the observation that if
some configurations have more ancestors, then others have fewer, which must result in a
non-zero variance. Still, the connection is not easy to prove.

For Wolfram’s (2,1) Rule 22, the pair diagram has 16 elements, thus a 16x16 connection
matrix,

r1 =« . (= 1 . (. . . . . . .7
* 1. 1 =x
1 "
1 1 % %
* 1 1 % .
A 1
1 = * 1 .
* % 1 1
* 1 1 = .
A 1
1 = = 1 .
* % 1 1
1 = . . ]1 =%
* 1. . = 1
*= 1 . . |x 1
L 1 1. . 1 1]

Stars designate locations where 1’s could appear, but don’t, in Rule 22. Note how the
structure of the tensor product makes the overall matrix look like a de Bruijn diagram, as
well as each submatrix. There are better arrangements of the nodes, and consequently of
the indices; Wuensche and Lesser’s clustering techniques ought to be followed more closely.
That is, the complementary automaton is lurking in this matrix, if one only knows how
to perceive it.

More commentary will follow.
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6 ancestors (6)

Commentary on Andrew Wuensche and Mike Lesser’s new book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. We have
digressed into some issues of matrix theory and graph theory in the expectation that a
better understanding of the foundations of cellular automaton theory will help with under-
standing some of the topics of the book, such as Langton’s parameter, Z, and perturbations

(mutations).

To maintain a connection with the book, consider again the A and B matrices for

Wolframn’s (2,1) Rule 22:

O O o

o = o o

= O C O
= O = O

o= o o
[N el
O O = O

o o O

For a chain of three cells, we have eight products of these three matrices, corresponding
to the ancestors of 000, 001, 010, and so on:

(1000
0111
0011

0112

AAA =

T00117
0001
1000
10000 ]

BAA =

. AAB =

, BAB =

T01007
1000
0000

[1010]

(00007
0010
0100

10000 ]

. ABA =

. BBA =

T01007
0000
0100
[1000]

(01007
1000
0001

10000 ]

, ABB =

. BBB =

0100
0010
0000
0100

1000
0100
0010
0000

From these matrices we draw conclusions about the number of ancestors by looking at
the (0,0) elements (quiescent-at-infinity configurations), traces (periodic configurations)

or summing all the elements in the matrix (unrestricted configurations):

cells

000
001
010
011
100
101
110
111

o c oo oo

sum 2

quiescent

periodic

WO o O o o Ut

co

general

- —_
WL WS

L2
(8]

(= types of ancestors)

Turning to page 96 of the Atlas, we confirm that s=8 (sum of the “periodic” column)
and mp=>5 (largest number in the “periodic” column). The only branching ratios are 3 and
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5 (and of course, 0), confirmed by examining the diagram at level 3. The fact that g=6
(GOE configurations) follows from the fact that six of the matrices have zero diagonal,
and hence trace zero.

None of the matrices is identically zero, so there are no poison words of length 3;
however, the fact that the multiplicities are not uniform goes against the theorem (not yet
discussed) about nonuniform multiplicities implying a Garden of Eden.

These details relate to a tiny fraction of the information contained in the Atlas, but
they should suffice to establish the fact that as long as one is prepared to multiply A and
B matrices, several different types of ancestors can be counted. Also, if one is prepared to
work with symbolic matrices rather than numerical matrices, quite explicit ancestors can
be calculated.

Of course, what is really wanted are general theorems about the matrices, so that all
their products DON’T have to be calculated explicitly.

Considerable space would be consumed by listing all eight tensor squares, but the next
point can probably be made with just one of them: small

1 . ..
1 11
11
11 2 .
1 . . T . . 1 ..
1 1 1 1 1 1 1 1 1
.11 .11 .11
11 2 11 2 11 2
AAA® AAA =
1 . 1
11 1f({. 1 11
1 1. 1
11 2(. 1 1 2
1 1 . .2 .
1 11 1 11 2 2 2
11 .11 2 2
11 2 11 2 2 2 4

Note the following comparisons:

(0,0) element trace overall sum
AAA 1 ) 10
AAA ® AAA 1 25 100.

In each case, the corresponding quantity is squared in the tensor square. Examining
the structure of the matrix, it isn’t hard to see why. However, this should give a graphic
illustration of why the tensor powers participate in the calculation of moments, and how
the tensor square (the connectivity matrix of the pair diagram) will eventually be involved
in calculating the variance. Note that if we want to establish zero variance, it is only
necessary to compare the square of the first moment with the second moment.
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What is needed is (A ® A + B ® B)"; when the power is expanded and all the terms
collected, one finds one term for the square of the number of ancestors of each configuration.
To get the third moment, take (A ® A ® A4+ B ® B ® B)", whereas if there were three
states, there would be a C matrix, with a second moment expressed in terms of (4 © A +
BB+ C®C)", and so on.

Because of the powers, we are interested in the rate of growth of the terms in paren-
theses in the last paragraph, which boils down to finding their largest eigenvalues or more
generally, finding estimates or bounds for them.

More commentary will follow.

7 ancestors (7)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-35740-1) continues. As part
of the general background for the commentary, we still need to describe the uniform
multiplicity theorem.

To summarize what has been discussed so far:

1) There is a diagram, actually at least a century old, which gained much prominence in
shift-register theory, called the de Bruijn diagram, which manages to subsume a great deal
of the theory of linear cellular automata (and is a starting point for higher dimensions).
That is, provided that it is labelled appropriately and interpreted satisfactorily.

This diagram just tells how to connect Wuensche and Lesser’s ’start strings’ together,
and is practically a recipe for playing dominoes, which is another profitable way to interpret
cellular automata  as a tiling problem.

2) For purposes of calculating ancestors, the de Bruijn diagram, or more appropriately,
its connectivity matrix, has to be split into two parts. (For a binary automaton, that is,
which is what is being discussed.) If symbols are put in the right places, and the symbolism
of regular expressions is used, multiplying the matrices yields explicit ancestors. The
practice would be more useful than it is if the complexity of the expressions did not grow
exponentially. But that is the nature of reality, and decimal notation for numbers hides
the fact that the size of products indeed grows exponentially. Moreover, in performing
arithmetic, products and suins are consolidated into single numbers at each stage, whereas
simplifying symbolic expressions as you go along never helps much.

For the purposes of counting, numerical de Bruijn fragments are quite satisfactory, but
the problem remains of working with (noncommutative) matrices rather than numbers,
affording a good chance for using ones numerical knowledge about matrices, and especially
about non-negative matrices.

3) From the de Bruijn diagram, two more diagrams can be constructed, each of which
illuminates the theory in its own way. The first is the subset diagram, which reveals what
kind of paths the underlying diagram contains. It is the same as an exhaustive search,
but it prescribes a systematic way to carry out the search. For automata, there are two
different diagrams, due to the fact that the start strings can be extended either to the left
or to the right. Not all rules of evolution are symmetric by reflection, so the difference is
significant.

Applied to the calculation of ancestors, the subset diagram reveals at a glance whether
there are ancestors or not. Due to working with subsets, rather comprehensive vision is
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required for the glance to work; the graph is rather large even for modest automata. Some
things are fairly easy to read out of the diagram, but others require work; for configurations
which actually have ancestors, it is far easier to multiply the aforementioned matrices than
to decipher the subset path.

4) The pair diagram is much more modest than the full subset diagram; with ordered
pairs its information is much more explicit. Its principal application lies in detecting and
resolving ambiguity. There is a part of the pair diagram in which the two members of
the pair are equal, and of course it reproduces the original diagram. However, whenever
there is a mapping of the automaton to itself, there are pairs of the form (x,f(x)), whose
subset has to show up in the pair diagram. A good example is Wolfram’s (2,1) Rule 90,
which is the same rule when all the cells are complemented. Both the diagonal and the
antidiagonal of the de Bruijn pair diagram match the underlying diagram.

Rule 90 has quite a personality. Amongst other things, the even cells and the odd
cells go their own merry ways, quite independently of one another, except for alternating
generations.

The opposite of ambiguity is uniqueness, for which the pair diagram also serves. Sup-
pose that the pair diagram has no loops except within its diagonal (pairs of the form
(x,x)). Since the complement of the diagonal is finite, any path originating there must
exit in fewer steps than there are pairs in the complement (otherwise it would enter one
of those disallowed loops); the only place to go is onto the diagonal.

Suppose that a path leaves the diagonal. For the same reason as before, it must either
terminate or reenter the diagonal in finitely many steps (again, the size of the complement).
If all access to the diagonal is one-way, and if a finite configuration has an ancestor at all,
it has to be unique except for a certain amount of leader or trailer. Following up these
two quibbles will lead to the type of detailed analysis that we want to dispose of in the
most general way, not arguing case by case.

The connection diagram of the pair matrix is also the second moment matrix for
counting ancestors. It thereby relates statistics of the automaton, specifically variance in
the number of ancestors, to numerical properties of the de Bruijn matrix. Again, general
theorems are desired, rather than case-by-case analyses.

It seems to be hard, nay impossible, to get the desired proofs from within matrix
theory, which is to say, by deducing limits on eigenvalues or norms (which are growth
factors) from the size and arrangement of the matrix elements; this in spite of the fact
that the results seem almost “obvious.”

Rather, the de Bruijn matrices are matrices with positive elements and a norm, which
could be, the sum of their elements. As such they form a ring, and rings have ideals,
namely an algebraic structure. An ideal is simply a subset which persists under addition
and multiplication; there are different kinds of ideals according to the handedness of the
multiplication.

These matrices all have different norms, some are bigger, others are smaller. Counsider
those of minimum norm (which could well be zero). Such matrices are candidates for an
ideal. The same for those of maximum norm (which, if it were infinity, would not be very
helpful).

Suppose w is a word, N(w) the product of de Bruijn fragments counting its ancestors,
that u'N(w)u is an extremal number (for all finite words), and that a is a single cell
which we will add to the chain. N(wa)=N(w)N(a) is the new ancestor matrix. NOW,



average over all the one-cell extensions; we have to divide by 2 (the number of states, 2
for binary automata) to get 1/2(N(w)N(0)+N(w)N(1)). N(0) is the earlier A matrix, N(1)
the B matrix. Taking out a common factor we get 1/2N(w)D, because D is the sum of
the de Bruijn fragments. We need 1/2(u’N(w)Du), but Du=2u!. So we have u’ N(w)u
back, which is still that extremal value. HOW can an AVERAGE be EXTREMAL? Only
if everything being averaged is equal, and we see that the value is the same for all long
chains.

Cleaning up details (the upper bound is actually finite, making it equal to the lower
bound, therefore not zero and equal to the value for even single cells) we finally have
the Uniform Multiplicity Theorem: Unless every configuration has the same number of
ancestors as every other, there must be some configurations without any ancestors at all.

This soup is still not free of flies; how is it possible for there to be unique ancestors,
and hence reversible automata, if all the configurations have to have four ancestors (the
average is 4, so zero-variance means that all are 4) to avoid that one of them has none?

More commentary will follow.

8 ancestors (8)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. Having
described the line of reasoning leading to the Uniform Multiplicity Theorem, we turn to
an analysis of variance, or equivalently, of the second moment of the ancestor distribution.
The reason for the interest lies in the relation between zero variance and zero Garden of
Eden.

Every (2,1) automaton has a pair of 4x4 matrices which can be used to count ancestors
and whose tensor squares count squares of numbers of ancestors; these are the A and B
matrices of previous commentaries. Individual terms in the expansion of (A + B)" yield
the number of ancestors associated with the monomials in the expansion; A4B itself is
the de Bruijn matrix D, whose powers can be calculated explicitly. Each one is double
its predecessor, and in the end there is an AVERAGE of four ancestors per configuration,
whatever its length. How well individual terms of the sum conform to this average is an
object of study.

For the second moment, powers of A @ A+ B ® B are required; this is not the same as
(A+ B) @ (A + B); and therein lies a tale. What we need are eigenvalues, not forgetting
the discrepancy between spectral norm and spectral radius for certain matrices. A widely
used, and one of the best, estimates of the eigenvalues of a matrix is Gerschgorin’s theorem,
which has some alternative forms. One says that the eigenvalue is contained in a disk in
the complex plane whose radius is the sum of the absolute values of the elements of some
row. Not knowing which row leads to superposing the disks for each row and saying that
the eigenvalue is lurking somewhere within. All of them.

Obvious variants use columns instead of rows, others center the disk on the (complex)
diagonal elements, calculating the radius from the remainder of the row. It is also pos-
sible to average the rows, and it is possible to apply statistical concepts to the rows and
eigenvectors themselves. Here it is useful to work with non-negative matrices, because all
the numbers in the matrices can be used directly without absolute values. Furthermore,
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the eigenvector whose eigenvalue dominates the growth rate is non-negative, or can be
normalized to be so.

Elementary statistics teaches that the average is an ideal origin for a set of data,
within which the variance provides an ideal scale. Following this precept, the elements
of a vector might be decomposed into an an average plus a residual. Write the column
sums in a matrix as C; = v + ¢;, the normalized eigenvector as x; + 1/n + u; (for an
nxn matrix), whose Perron eigenvalue (the largest one) is A. Then there is a Statistical
Gershgorin Theorem which asserts

= v 4 nvar(c)var(x) cosd

where 6 is an angle involved in the derivation (correlation between ¢ and x), but whose
cosine is bounded between -1 and 1. For the matrices of our interest, v is 1/n th the sum
of their elements. For A and B, this is 1/4 the number of ancestors, and so a number
ranging between 0 and 2. For 4 ® A, B ® B, and their sum, we have 1/16 the square of
the number of ancestors. For 4 ® A and B ® B, the value ranges between 0 and 4 (the
square of 2), while for A © A+ B @ B it ranges between 2 and 4.

Of the correction terms in this formula, n can be large, the variance in column sums can
be modest; and the variance in x is small, the elements themselves never surpassing 1 and
averaging 1/n. The formula itself is not something that anyone would think remarkable,
and one mostly hopes that either the variances are small or that § runs around 90 degrees.
On the other hand, when the correction IS minor, it says that an ’average’ number of
ancestors is the eigenvalue which determines the growth rate.

Suppose that a is the sum of the elements in A, and b is the sum of the elements in B.
We have a+b=8 always. To estimate the eigenvalue of A@ A+ B® B, we would then have
(a® 4+ b%)/16, subject to the same constraint. The value is smallest when a = b, greatest
when a=0 or b=0, symmetric between a and b.

The following table summarizes the results of a survey in which the maximum eigen-
value of each matrix was estimated by comparing the ratio of its third and fourth powers.
The data was classified according to the value of a, with averages and variances for the
estimated eigenvalue calculated individually for each value of a.

ab  number min  max ave g
08 1 4.000 4.000 4.000 4.000
17 8 2938 3.381 3.102 3.125

26 28 2.400 2.800 2.580 2.500
35 56 2132 2.695 2.253 2.125
44 70 2.000 2.480 2.155 2.000

In addition, the value for a=b (44) was split into two groups, according to whether the
eigenvalue was 2 or not.

ab number mean variance

4 (A=2) 30 2.000 0.000
4 (A>2) 40 2.272 0.102
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The number in each of these categories is a binomial coefficient.

Omne may judge how well the estimate of v matches the experimental data. It seems
mostly better than 5%, and often better than 1%.

To turn the second moment into a variance, we need the relationship

o? = ave(z?) — (ave(x))*.
Since the average is 2, and the second moment lies in the range 2-4, the standard deviation
lies in the range 0-sqrt(2), with the assurance that some data are actually as far away from
the mean as the standard deviation. Tchebycheff’s Theorem is also pertinent, that less
than 1/f? of the data lies more than f standard deviations away from the mean.

The members of the group of 30 in the last table are candidates for reversible rules,
and are the only (2,1) Rules for which there is no Garden of Eden. The other 40 Rules in
the 44 class are balanced, in the sense that a=b and 0 has as many ancestral neighborhood
as 1, namely 4 out of 8. That requirement is necessary but not sufficient.

The data which has been tabulated and discussed can also be presented as a histogram,
but the limitations of a typescript prevent showing it on a printed page (although we could
no doubt create an acceptable image if we really tried).

These results have been taken from two preprints which can be had upon request (with
full mailing address), and were obtained by the use of the program LCAU21, for PC’s,
which is also available on request. Using it is non-trivial, however, due to its meagre
documentation, especially in the ancestor option.

More commentary will follow.

9 ancestors (9)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. We have
described a “statistical Gershgorin theorem” which implies a maximum eigenvalue for a
matrix related to an average row (or column) sum with an error term which may or may
not be easy to estimate.

Applied to (2,1) automata, it implies that the A and B matrices which have been
introduced will have an eigenvalue between 1 and 2, namely n/4, where n is the least
amongst number of ancestors of 0 (called a) or of 1 (called b), respectively. The result is
not too surprising, but also refers to the growth in the number of ancestors of a string of
pure 0’s or pure 1’'s. We want the rate of growth of mixtures, without knowing too much
about the mix except maybe its percentage composition.

Eigenvalue 1 means the number of ancestors remains constant as the length of the
configuration grows; eigenvalue 2 means it doubles with each new cell. As we said, no
surprise here,

Turning to the pair matrix A ® A + B ® B, which is also the second moment matrix,
the same reasoning gives us eigenvalues in the range 2 to 4, namely (a? +b?)/16. Whereas
the average (first moment, computed from A+B), just doubles as the number of cells
increments, the second moment AT LEAST doubles (when the ancestors are balanced)
reaching a factor of 4, or quadrupling, in the cases of extreme unbalance in rules 0 or 255.
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In addition, numerical experiments show that (a? + b?)/16 is a good estimate of the
rate of increase; for a given a the rate has an average close to the value in this formula
with a small variance of its own (a variance in the variance, if you wish).

Turning the second moment into variance and thence into standard deviation, there
are still some approximations to be made.

(a2 +02\"
o = ,gz<732 > —4)

the denominator 32 results from having to divide by 2", the number of configurations.
The coefficient g is a correction due to the smaller eigenvalues of A @ A + B @ B, which
interfere with the principal eigenvalue at first. Unless a=4, making us raise 1 to a power,
subtracting 4 makes little difference.

So, except for a factor, o is a number between 1 and 2, raised to the n/2 power (or,
between 1 and 1.41 raised to the nth power).

Is this result credible? Is it useful? Rule 0 in a ten-cell automaton shows 1023 config-
urations with 0 ancestors, 1 with 4096 ancestors. This works out to a standard deviation
of about 128. At the other extreme, Rule 150 has 4 ancestors per configuration, and zero
standard deviation. For Rule 22, we have (1.06)”/2, or about 3% increase for each addi-
tional cell. Six percent interest doubles your money in ten or twelve years, so we expect
the standard deviation to double for each additional 20 to 25 cells in the configuration.
The same would be expected for all the 112 (2,1) rules with unit imbalance, that is, ab=35.

eigenvalue =  distance
ab growth of needed to
o? double o
08 2.0 2
17 1.62 3
26 1.25 6
35 1.06 25
44 1.00 infinite

To make some sense of averages and sigmas, we need to have a feel for what an
extremely skewed frequency distribution we are dealing with. No matter how long the
configuration, the average number of ancestors is still 4; to get such an average, around
half the data must be 4 or under, which means that if Wuensche and Lesser’s basin
diagrams (NAT’s) were for unrestricted configurations (theirs are periodic), somewhere
around half of the nodes would have 4 incoming links or less. Quite a few more would
have slightly more than that.

The standard deviation is supposed to tell how far out from the average the data
ranges, which will be mostly on the high side for ancestor data. To get a feel for typical
values, consider an 8-cell configuration for (2,1) Rule 22 without boundary conditions:
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ancestors frequency

0 2 .

1 57 skl R ok ROk

9 62 sttt ok ot ok ok sk stk ok stk sk ok ok skok o ok ok

3 40 stpRoo R Rk sk Rk R RR KR SRR ROR RO R oK

4 26 stttk s of kst skt sk sk skosk ok ok ok ok

5 29 stk ok ok sk stk R ok sksk sk ok sk ok ok

6 12 stk ok sk oRkoloR ok

7 6 stk ook ok

8 ] kR R R KRRk K ) o
9 1 " (10241sgotMﬂlbyInthpbnng
10 2 koskoskok

11 4 kool ok ok

12 4 stk ok ok ok ok

13 3 ROk R oK

16 4 stttk Rk skoRolok ok

61 1 stokkokolof Ok R ok Ok
1024 256

number by frequency) The average is 4.0, sigma is 5.01; obviously that outlier is exerting
an undue influence, but still 4-5=-1 to 4+5=9 does give a realistic approximation to where
the data is. We are claiming that sigma will grow by about 3% for each new cell as the
configuration is lengthened; at least from some point onward.

In fact, sigma behaves a bit more like 4.0eap(0.067n), (that is, with a multiplier of
1.069, or 7% growth) requiring about 5 iterations to double. So the use of @, b and a* +b?
gives an approximation which is about so good, no more.

At least, there are some fairly general conclusions. One of the most important is that
Langton’s parameter is quite serviceable, although there are several things that could
be called Langton’s parameter, and their intended usage varies. All of them revolve
around the idea of classifying the states by the fraction of neighborhoods which evolve
into them, which is a portent of all kinds of things to come. One of them is the idea that
as evolution progresses, an equilibrium must arise between the distribution of states and
the distribution of ancestral neighborhoods.

Here we have seen that the statistics of ancestors depends on the neighborhood count
by states in two ways. First, the dominant eigenvalue of the de Bruijn fragments is a
direct function of this count - a multiple, in fact. Consequently the rate of growth for
the number of ancestors of a string of like cells depends on the fraction of neighborhoods
leading to that state. The biggest fraction always wins, in accordance with the principle
that “Them as has, gets.” Moreover, mixed strings predominate pretty much according
to their mix of the dominant state.

Such general statements are always subject to refinement and correction, but the overall
principle is pretty well justified.

The second aspect of the statistics of ancestors that has been discussed is their variance,

)

which depends on the sum of squares of percentages - again, on Langton’s parameter.
Variance grows as the length of a string of cells grows, although never as fast as the number
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of configurations, the same which is true for the number of ancestors itself. Longer strings
can have more (and less) ancestors than the average. The average is small, so much less is
hard to come by; neverless the concept is interesting for reversible and “almost reversible”
automata.

In applying this analysis to the Atlas, it should be borne in mind that, as a matter of
statistics, there are only one quarter as many configurations satisfying periodic boundary
conditions as there are without boundary conditions (and in turn one sixteenth as many
which are “quiescent at infinity”). Thus the average number of ancestors for periodic
configurations would be 1, not 4. Also, quantities may fluctuate more drastically for short
configurations as the boundary conditions become more stringent.

In spite of this, growth factors apply equally for all kinds of boundary conditions.
Moreover, once the powers of an irreducible matrix have come into equilibrium, fluctua-
tions in the sizes of the matrix elements will also be immune to the boundary conditions,
and they commence to dominate at the same stage as well.

More commentary will follow.

10 ancestors (10)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. While
referring to this Atlas occasionally, a theory has been elaborated by which the statistical
properties of the ancestor distribution for a one-dimensional cellular automaton may be
deduced. Presentation of the theory having run its course, interpretation and comparison
with the Atlas remains.

The theory which has been presented assigns a prominent role to a quantity which
we have called v, which is the average of either the row sums or the column sums of a
matrix. For the connectivity matrices of de Bruijn matrices, this translates directly into
numbers of ancestors, their squares, and their averages. This is reminiscent of earlier
work of Christopher Langton, who used such averages for classifying automata; strictly
his lambda compared the quiescent state to the rest, but there are only two states for
binary automata. Wuensche and Lesser record lambda for all the automata in the Atlas,
along with Z. a parameter of their own.

What is new in these commentariesis the relationship between variance and the param-
eters, namely the rate of growth in the standard deviation which depends upon (a*+b%)/16,
where a is the number of ancestors of 0, b the number of ancestors of 1, and 16 is the
dimension of the pair connection matrix.

Previously the rate of growth has been tabulated for (2,1) automata; here it is shown
for (2,3/2) automata.



observed  second  observed

ab  number ¥ average moment variance
0-16 1 4.000 4.000 16.00 0.000
1-15 16 3.531 3.515 12.36 0.088
2-14 120 3.125 3.116 9.73 0.132
3-13 560 2,781 2.797 7.84 0.133
4-12 1820 2.500 2.548 6.51 0.120
5-11 4368 2.281 2.361 5.58 0.104
6-10 8008 2.125 2.231 4.98 0.091
7-9 11440 2.031 2.154 4.65 0.091
8- 8 12870 2.000 2.129 4.54 0.093
>2.0 12256 2.000 2.135 4.57 0.091

=2.0 614 2.000 2.000 4.000 0.000

In 1972 Amoroso and Patt® found some non-trivial reversible automata amongst the
614 with zero variance. By non-trivial, one discounts rules which work by shifting, com-
plementing, or copying, which are the only reversible (2,1) Rules.

Another tabulation which we have made concerns (3,1/2) automata; here we have a,
b, and ¢ with lambda determined by (a? 4+ b* + ¢?)/9:

abc  number min max o ave g

009 1 9.000 9.000 0.000 9.000 9.000
018 9 7.047 7.519 0.222 7.204 7.222
027 36 5.747 6.110 0.164 5.949 5.889
036 84 5.000 5.531 0.163 5.107 5.000

045 126 4562 5.266 0.133 4.676 4.556
117 72 5.095 6.002 0.334 5.704 5.667
126 252 4.362 5.283 0.254 4.719 4.556
135 504 3.813 4.615 0.227 4.121 3.889
144 630 3.707 4854 0.213 3.920 3.667
225 756 3.707 4.854 0.242 3.970 3.667
234 1260 3.259  5.000 0.248 3.602 3.222
333 1680 3.000 4.002 0.298 3.430 3.000

>0.0 1260 0.197 3.547 3.000
=0.0 420 0.000 3.000 3.000

In all of these (three) cases which we have presented, some common features can be
observed. Each value of v leads to a rather well defined cluster of growth rates, even
though the value of v itself corresponds to observation better for high values than for low
values; nevertheless the discrepancy is gradual and monotonic.

At one time we thought that there was a gap between zero variance and the next lower
value, but experience with additional (k,r) combinations has reduced our confidence in its

95. Amoroso and Y. N. Patt, decision Procedures for Surjectivity and Injectivity of Parallel Maps for
Tesselation Structures, Journal of Computer and System Sciences 6 448-464 (1972).
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existence; it is most likely an artifact of small sample size (small k, small ). The general
shape of the histogram ought to be roughly Gaussian, because of the binomial coefficients
associated with given values of 7, which itself grows quadratically with a. Actually, because
of a? 4+ b?, the purported gaussian is folded over in the middle, ab giving the same data
as ba.

Since a Gaussian has a point of inflection at its own standard deviation, we would
expect a noticeable division of v into low values all of whose Rules have a slow growth rate
in their ancestral variance, and those for large growth rates, up in the tail of the Gaussian.
It shouldn’t be hard to figure out this distribution function, but we haven’t done it. What
we do notice, is that the growth factor is pretty much the same for quite a few nearly
balanced Rules, and that they are set off slightly from the exactly balanced Rules.

With respect to interpreting the Atlas, some additional work is called for. The anal-
ysis of variance which we have described ultimately translates into an average number of
ancestors per configuration, and the growth of this average with respect to the length of
the configuration. The Atlas only tabulates the maximum number of counterimages by
basin; but it is the average number which follows more readily from our analysis. The
average can be deduced by examining the images, but getting a good sample is going to
be laborious.

On the other hand, it is instructive to make comparisons of the maximum number of
counterimages, particularly as it depends on the lambda parameter.

More commentary will follow.

11 ancestors (11)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. Some
observations on Langton’s parameter, lambda, are in order.

We have described a "Stastical Gerschgorin Theorem’ (which is more of a formula than
a theorem) which assigns a prominent role to the fraction of neighborhoods begetting
each state in the enumeration of ancestors. These fractions enter into the calculation of
moments with a correction term which experience shows to be small; if not always zero,
its size is predictable and consistent.

If one calls such fractions 'Langton’s parameter,” one has a solid basis for classifying
automata according to such a parameter, whatever it is called. In other contexts, the
fraction plays a role in calculating self-consistent probabilities, although there it yields a
zero-order’th approximation to the fixed point.

As a predictor of automaton behavior, lambda has gained a mixed acceptance; Wuen-
sche and Lesser introduce Z with the claim that it is a more sensitive indicator. The
reason for this, among other things, is the bad company which Rules 18 and 126 are
seen to be keeping in the example which follows. However, in browsing through an Atlas
such as theirs, there is a tendency to see what one expects to see, particularly given the
mass of data and their similarity to one another. So it behooves us to sharpen our tastes
somewhat.

The situation may be likened to that prevailing in Botany before the advent of Carolus
Linnaeus; there were tall trees and bushy trees and trees that kept their leaves through
all seasons and those that shed their bark instead of their leaves, and those that smelled



good and those that raccoons climbed in and others which monkeys preferred, and so on.
Classifying them and every thing else according to the layout of their reproductive organs
seemed rather prosaic, but in the end it brought order to a lot of chaos. And the monkeys
even got to keep their tree (Araucaria araucana).

Calculating the average number of ancestors is like calculating the bushiness of our
tree, in which case calculating their standard deviation amounts to observing whether this
bushiness is strictly observed or whether it can vary considerably. Once again, examining
a specific example may be helpful. Suppose lambda is 25% (lambda ratio = 0.5 in the
Atlas). There are 56 (2,1) Rules with this ratio (including those with lambda = 75%),
which the Atlas assigns to 11 clusters. The growth factors for the quiescent configuration
and for the standard deviation in the number of ancestors are shown in the table below.

cluster  ancestors of growth of

typical dominant standard
Rule no. cell deviation
3 1.618 1.653 A growth  Rule cluster
5 1.615 1.648
6 1.470 1.587 1.1 12 24
9 1.339 1.579 1.2 10
10 1.167 1.581 1.3
12 1.100 1.588 1.4 9
18 1.614 1.634 1.5 6 33
24 1.100 1.588 1.6 351836 126
33 1.466 1.578
36 1.618 1.653
126 1.618 1.653
nominal 1.500 1.582

The histogram on the side gives an idea of how the growth factor of the A matrix,
the column in the table titled ’ancestors ...,” are distributed around their mean of nominal
value of 1.500. The other column has a parallel distribution.

The range 1.1 to 1.6 should be compared with the nominal values of 1.25 for ab=35
Rules and 1.75 for ab=17 Rules; if there is any transgression, it is for the Rules with small
growth rates.

What we have to decide by looking at the Atlas is, whether this is all true, and whether,
by knowing it, there are some features of the basins there displayed which should attract
our attention, maybe even stand out.

(Has anyone noticed that in the Atlas, although the custom is to place the panel
showing evolution from a single cell on the left and that from a random initial configuration
on the right, this has been reversed for Rule 4 on page 887 Such are the delights of trying
to publish an exceedingly detailed book and getting everything right)

Up until now, we have been unwilling to identify “maximal growth rate” with “eigen-
value of A,” because we have not proven rigorously that this is, in fact, the maximal growth
rate. On the other hand, it is evident by inspection that the quiescent configuration will
have the most ancestors, both according to the theory which has been presented in this
series, and the empirical data comprising the Atlas; it only lacks a proof.
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Another source of discrepancy is the fact that we have elaborated a general theory
without boundary condition, whereas the Atlas is concerned exclusively with periodic
configurations. Nevertheless, the nature of the general theory is such that all conclusions
regarding multipliers, such as growth rates, apply equally to every variant of the boundary
conditions which can be obtained by varying the metric matrix. This specifically includes
periodic boundary conditions.

The one restraint which must be observed, is that it takes time for growth factors to
reach the maximum eigenvalue of a matrix, so that conclusions should not be drawn for
periodic configurations of a very short length. What counstitutes 'very short’ varies from
Rule to Rule, but is closely related to the variation in size of the matrix elements within
A, and especially to its pattern of zeroes.

Omne might wonder whether Garden of Eden configurations are included within this
sweeping generalization, and the answer is yes, subject to the same precautions. The
reason is that in a general automaton, poison words, and hence Gardens of Eden, arise
because of incompatibilities - the requisite series of ancestral neighborhoods simply can’t
be found. In addition, likely ancestors may fail to meet boundary conditions.

For small rings, more ancestors will be lost because of boundary conditions. Recall that
for Rule 22, eight is the shortest ring which has a poison word. But as rings grow longer,
it is easier and easier to accommodate boundary conditions - two fragments which won’t
work separately may join together to compensate each other’s deficiencies. Consequently
for long rings, the Garden of Eden may be reduced by 1/4th, but otherwise its growth will
follow that of the general theory.

Returning to “maximal growth rate” and being willing to equate it with the larger of
the dominant eigenvalues of the A, B pair (which implies that the quiescent configuration
(or pair of alternating uniform configurations if none is quiescent, or uniform ancestor of
the quiescent configuration when the dominant eigenvalue does not belong to the latter),
we could compare growth and eigenvalue for the 26 (lambda ratio = 0.5) clusters:

cluster:  ancestors of ratios of
typical dominant largest basins page
Rule no. cell according to Atlas reference
3 1.618 1.618 128
3 1.615 1.644, 1.592, 1.621 90
6 1.470 1.462 130
9 1.339 1.326, 1.300 134
10 1.167 many small basins 161
12 1.100 many small basins 136
18 1.614 1.544, 1.616 92
24 1.100 shifting rule 169
33 1.466 1.469 100
36 1.618 1.617 103
126 1.618 1.622 123

Except for three clusters with many small basins, the agreement is exemplary'°.

10Tt was later concluded that the three basins, with a typical growth rate of 1.100, were also in good
agreement

[N)
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More commentary will follow.

12 ancestors (12)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. The time
has come to investigate Z.

We are basing our commentary on the A and B matrices into which the de Bruijn
connectivity matrix for any binary rule splits. Consider Rule 193, featured in the text on
page 40 of the Atlas; its AB pair is:

o~oo
o= oK
oo HO
oo RO
cc or
cc oo
—c oo
—c oo

For A, the vector of column sums is (1 2 1 1), of row sums it is (1 2 2 0). The column
average is 5/4 = 1.25, the second moment is 7/4 = 1.75, giving a o(c) = 0.433. For
rows the average is also 5/4 = 1.25, with second moment 9/4 = 2.25 and o(r) = 0.81
approximately. Using columns seems preferable.

Earlier we stated a ’Statistical Gershgorin Theorem’ (erroneously writing var for the
greek sigma that was in the original source):

A = q+no(c)o(x)cos(h)

where lambda is an eigenvalue (NOT Langton’s parameter) of a matrix such as A, v is
1/n'h the sum of the elements of the matrix (and IS double Langton’s parameter when
the majority state is quiescent). N is the number of rows in the matrix, here 4, the sigmas
refer respectively to column sums and the eigenvector, and € is the angle between their
vectors of residuals. Interestingly, this angle must be EXACTLY 90 degrees for reversible
automatal'l.

Up until now, we have drawn some conclusions based on using v while discarding the
companion term; but all discrepancies noted are exclusively due to the correction. The
discrepancies seem to follow a regular pattern, small but typically non-zero.

It will be noted that the A and B matrices have three kinds of rows (and columns as
well). They can be zero, unit vectors, or contain a pair of ones. The general format is
forced by the structure of the de Bruiju diagram, being just the nmumber of out links (in
links) per start string (stop string). Given more states than a binary automaton possesses,
there will be more links, and so a greater variety of rows or columns; but the unit vectors
signal situations in which just one single continuation is possible.

The unit vectors are significant, being what the Atlas calls deterministic; the fraction
of them taking both A and B into consideration is Z. One is allowed to choose between
rows or columns, so as to get the larger of the two numbers.

For Rule 193, there are altogether 2 unit rows and 6 unit columns. Therefore Z = 6/8,
or 0.75, whereas the (Langton’s) lambda is 5/8, or 0.625, yielding the lambda ratio 0.75
duly recorded in the Atlas, page 157.

11 Ambiguous case when one of the standard deviations is zero.
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Estimating the largest eigenvalue of A produces 1.324, which can be compared to the
quotient of maximum preimaging for 15 and 14 member rings (p. 157), which is 68/51 =
1.333. Again, the agreement is exemplary.

Comparing fairly modest powers of A reveals the eigenvectors of this eigenvalue; nor-
malized they are: column, (0.246, 0.323, 0.430, 0.000), row, (0.184, 0.323, 0.246, 0.246).

Residuals for the column sum are (-0.25, 0.75, -0.25, -0.25), residuals for the column
eigenvector are (-0.004, 0.073, 0.180, -0.250). The inner product of these two vectors give
directly the correction to v, and is 0.072. Almost exactly what is expected, 1.250 + 0.072
= 1.322, the tiny discrepancy is surely due to the care (or lack thereof) taken in arriving
at these numbers.

The L? norm of zero-average vectors is their standard deviation without averaging,
which accounts for the factor n in the statistical theorem, so we quickly arrive at a value
of cosé of 0.271, or a # of about 74 degrees. We already knew o(c) = 0.433; we readily
calculate o(x) = 0.157, so we have identified all the quantities in the formula.

1.322 = 1.25044%0.433 % 0.157 % 0.271

There is an interesting, although possibly trivial, way to place Z in this formula. Create
the supermatrix from A and B that was once mentioned:

01 00
0 011
110 0
0 0 0 0

] -

=lelall
oo o o -
=0 o O

o O O

It is not such an artificial creation as might be feared: from graph theory it is the
connectivity matrix of the least upper bound (union) of two graphs; one is the de Bruijn
diagram with 0-ancestor links, the other is the de Bruijn diagram with 1-ancestor links.
Nodes in a union are linked when there are links in either one (or both) of its two con-
stituents.

The vector of column sumsis (121110 1 1). The average of column sums is 1,
composed from 0’s, 1’s, and 2’s; every 0 is paired with a 2. Thus the vector of residuals, (0
1000-100) will contain -1’s, 0’s, and 1’s; the sum of their squares will be eight minus
the number of columns which were unit vectors, so the average of the sum is 1-Z. Sigma
squared is the second moment taken with respect to residuals, so o(c) = V1 — Z. When
7=1, as for reversible Rules, the standard deviation is zero; when Z=0, as for the Zero
Rule, the standard deviation is 1.

The supermatrix now encompasses both maximum and minimum rates of growth; being
partially diagonal its eigenvectors are those of its blocks, extended to the other block with
zeroes, and the statistical theorem still applies to all eigenvalues. Because of the increased
dimension, each eigenvector will be the same as before, but its mean will be reduced by
half (to 1/8) because of all the new zeroes, while its second moment s? will be shifted by
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1/64 and scaled by 1/2. Finally, the supermatrix has eight rows and always has eight ones
distributed throughout. So the new formula is

A = 148V1—Zv0.5x%s%2+4.01561cos(87)

where we still have to contend with a new angle #* whose cosine we calculate to be 0.482
(about 61 degrees). The equality is nearly as good,

1.321 = 1.000 + 8.000 % 0.500 % 0.167 % 0.482

Just as the extended eigenvector is gotten by filling with zeroes, the extended vector
of sums is gotten by adjoining 2u-x (making for the average of 1 and variance 1-Z), where
u is a vector of 1’s and x is the vector to be extended. The extended vectors of the Union
Matrix therefore have the same inner product as the original vectors. Nevertheless, the
residual vectors, from which 8% is calculated, are slightly different; anyone who wanted an
explicit relation between 8 and 6* could work out the algebra.

Critics may question the utility of the formulas that have been displayed; it remains to
be seen to what extent the standard deviations and angles are consistent within families
of automata, or whether they can be transferred from one automaton to another.

Nevertheless we have constructed a framework into which Langton’s parameter and Z
both fit, as algebraic quantities relating to the growth factor for maximal counterimaging.

More commentary will follow.

13 ancestors (13)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) continues. At least
two different parameters, lambda and Z. are useful in classifying cellular automata; but
the general philosophy of parameters should be contemplated before deciding to rely on
one or another of them, or on something else.

It is a natural idea to assign a single number to an automaton, or to an automaton rule,
with the expectation that it will distinguish between automata, and perhaps also reveal
some significant information about them. An extremely natural and obvious candidate
is the fraction of transitions (or neighborhoods, if you wish) leading to one of the states,
particularly in a binary automaton.

From the side of probability theory, one expects an automaton to evolve into an equi-
librium in which the fraction of neighborhoods producing the state is the same as the
relative proportion of that state. In its simplest application, this is mean field theory, but
other approaches utilize varying degrees of sophistication for estimating the probabilities,
making for correspondingly better estimates. The fraction of neighborhoods serves as an
excellent starting point for these theories, and is often not too far from the equilibrium
calculated by other theories.

From the side of ancestor theory, we have seen that there are some matrices arising
from graph theory, whose spectral radii and spectral norms, between them, account for the
proliferation of ancestors, which is the converse of the convergence seen during evolution.
We have also seen that the ancestor fraction serves to give a reasonable estimate of the



growth rate, not of ancestors from generation to generation, but of the number of ancestors
for a single generation as a function of the length of a configuration.

Indirectly these estimates affect the characteristics of the evolution for many gener-
ations, which are thereby related to the underlying parameter. Thus a parameter may
serve for more than classification, it may participate in some simple algabraic expression
describing observable data produced by the automaton. When a parameter enjoys a gen-
eral display of success, the public seems to become more demanding in its expectations
for the parameter, requiring either a new and better parameter, or some supplementary
parameters which explain discrepancies in the predictions of the original paramenter.

With respect to the calculation of ancestors, there is a good and solidly based theory
from which to start. The de Bruijn diagram, and such of its subsidiaries as the subset
diagram, pair diagram, union diagram, and so on, allow an exact calculation of ancestors,
and statistics of ancestors, such as their average number, standard deviation, and, through
their moments, their exact frequency distribution. In practice, the matrices are large, the
calculations tedious, and above all, symbolic results are desired which apply to whole
classes of automata, rather than just individual cases.

The procedure would be easier were it not for the discrepancy between spectral norm
and spectral radius, but in general terms, estimating the largest eigenvalue of the larger of
the de Bruijn fragments is sufficient to estimate the largest number of ancestors that any
single configuration can possibly have, which is a quantity of interest that is tabulated in
the Atlas.

The average number of ancestors is always necessarily 4, for (2,1) automata, but the
actual number is influenced, especially for configurations of short length, by boundary
conditions, and by the variance, which can be estimated by the same procedures using
another matrix (the pair matrix). The actual distribution is highly skewed, because half
of the configurations, in some sense, have 4 or less ancestors. This quantity includes zero
ancestors - Garden of Eden configurations - and is just as inevitable as the average of 4.

Not only is the top half of the distribution highly skewed - spread over the range (4,2")
- but it typically contains a few outliers with the bulk of the data closer to the mean; the
standard deviation has to take this into account.

The outliers are generally the ancestors of the quiescent state, if there IS one. Mod-
ifications in this observation have to be made when there are TWO quiescent states, or
none, or the state with the majority of ancestors is not the quiescent state (for non-binary
automata the permutations increase quite rapidly with the number of states).

In previous commentaries, we have shown that both Langton’s lambda and Wuensche
and Lesser’s Z can be incorporated into formulas expressing the rate of growth of “maximal
preimaging” (beware - A is 7 and —em vice versa).

(Langton) A ~v+ no(c)o(x) cos(f)
(W&L) A = 14201 = Z/0.5 % s2 4+ 0.01561 cos(6")

There is nothing especial to reccomeend these formulas except that they are extremely
simple; in the Langton version, the second term is simply ignored. Nevertheless the results
agree to about 10%, while the accurately computed eigenvalues agree quite well with data
taken from the Atlas.



To satisfy curiosity regarding the composition of the discarded term, it is tabulated
below for the ab values 08, 17, 26, and 35, according to Wuensche and Lesser’s clusters,
all of whose members obey the same statistics.

ab rule A = 4 4+ n * o) * o(x) * cos(f) # page
08 0 2000 = 2000 + 4 * 0.000 * 0.000 * 1.000 O 85
17 2 1620 = 1.750 + 4 * 0433 * 0.083 * -0.897 154 126
1 1.839 = 1750 + 4 * 0433 * 0.055 * 0936 21 86
4 1754 = 1.750 + 4 * 0.433 * 0.049 * 0.056 87 88
26 3 1617 = 1500 + 4 * 05 * 0.156 * 0.378 68 128
5 1.615 = 1500 + 4 * 05 * 0084 * 0.686 47 90
6 1470 = 1500 + 4 * 05 * 0165 * -0.092 95 130
9 1338 = 1500 + 4 * 05 * 0178 * -0.456 117 134
10 1.166 = 1.500 + 4 * 05 * 0271 * -0.613 127 161
12 1100 = 1500 + 4 * 05 * 0330 * -0.619 128 136
18 1613 = 1500 + 4 * 05 * 0153 * 0375 68 92
24 1100 = 1.500 + 4 * 05 * 0.204 * -1.000 180 169
33 1465 = 1500 + 4 * 05 * 0.072 * -0.241 103 100
36 1617 = 1500 + 4 * 05 * 0.059 * 1000 0 103
126 1.617 = 1.500 + 4 * 05 * 0.059 * 1.000 0 123
35 193 1324 = 1.250 + 4 * 0433 * 0.138 * 0279 74 157
22 1459 = 1.250 + 4 * 0.433 * 0.163 * 0.744 42 96
37 1380 = 1.250 + 4 * 0433 * 0.086 * 0.845 32 104
50 1.000 = 1250 + 4 * 0.829 * 0.165 * -0.454 117 106
73 1310 = 1.250 + 4 * 0.433 * 0.144 * 0.262 75 112
94 1200 = 1.250 + 4 * 0433 * 0.065 * -0.365 111 118
7 1465 = 1.250 + 4 * 0.433 * 0.169 * 0.738 42 132
13 1.000 = 1.250 + 4 * 0433 * 0433 * -0.333 109 138
26 1.083 = 1.250 + 4 * 0.433 * 0.299 * -0.333 109 140
35 1.000 = 1.250 + 4 * 0.829 * 0.250 * -0.301 108 146
38 1105 = 1.250 + 4 * 0.829 * 0.203 * -0.229 103 148
41 1.083 = 1.250 + 4 * 0.433 * 0.299 * -0.333 109 150
62 1324 = 1.250 + 4 * 0433 * 0.158 * 0.279 74 156
11 1.062 = 1250 + 4 * 0433 * 0333 * -0.228 103 162
14 1.083 = 1250 + 4 * 0433 * 0345 * -0.289 107 164
25 1.083 = 1.250 + 4 * 0.829 * 0.299 * -0.174 100 170
28 1.000 = 1.250 + 4 * 0.433 * 0.259 * -0.555 124 172
19 1618 = 1.250 + 4 * 0.829 * 0.156 * 0.710 45 94
44 29 1.000 = 1.000 + 4 * 0707 * 0.144 * 0.000 90 174
ab 1.617 = 1.250 + 4 * 1.089 * 0.160 * 0.526 58 174
ba 1.618 = 1250 4+ 4 * 0.829 * 0.156 * 0.710 45 174

In earlier commentaries, we have remarked on the excellent agreement between the
eigenvalues and data in the Atlas. Even the three 26 cases which were judged to be
marginal conform quite well to the predictions; we were much too hasty in our earlier
conclusion, due to the large number of small basins and the closeness of the growth factors
to 1.0.
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Nevertheless, the agreement begins to suffer with the 35 and 44 automata, for reasons
which answer an earlier question. 44 is balanced, yet does not always produce zero variance
(a known failing). The answer is that the de Bruijn fragments can be strongly attractive
and dissipative, hence the matrix might have the Jordan form, and the eigenvalue could
differ markedly from the spectral norm.

It will be seen that the products AB and BA behave better than A or B alone, giving
maximal preimaging consistent with the configurations 01010101.... shown in the Atlas,
whilst the chains 0000... and 1111... may have rather few counterimages.

The single 44 example in the table illustrates what has happened. The spectral norm
of the fragments is sqrt(2) = 1.414, but their eigenvalue is 1. While the eigenvalue under-
estimates general growth rates, the spectral norm overestimates them, given that the true
result is /1.617.

More commentary will follow.

14 Reversible Automata

Discussion originating elsewhere concerning the construction of reversible automata and
the existence of Gardens of Eden has pointed up the fact that by not taking up the AB =
44 case in any detail in our recently concluded series of commentaries “ancestors-(n),” we
have missed a good opportunity to discuss the reversibility question. In order to make use
of all the background developed in the earlier series, one could insert the present posting
between ancestors-(13) and ancestors-(14).

The Uniform Multiplicity Theorem assures us that the number of ancestors of all
configurations must be the same if an automaton is to be reversible. This may represent a
surprise for someone who has relied on calculating the subset diagram to find out whether
an automaton has a Garden of Eden, but once the theorem is known, far fewer automata
have to be contemplated. For (2,1) automata, there are 8!/(4! 41) = 70 balanced Rules,
for which AB = 44 in the nomenclature of the ancestor series; this number is much less
than the 256 total, and is still further reduced into 16 of Wuensche and Lesser’s clusters.

The rate of growth of “maximal preimaging” is related to, but not necessarily equal
to, the eigenvalues of the A and B matrices. When A and B are different, one of them
usually dominates, the other can be disregarded, and the largest eigenvalue of the dominant
member is nearly always the number sought. When the number of nonzero elements in
A and B is equal or nearly equal, both are candidates, although one of them may still
dominate. If that happens, there WILL be a Garden of Eden, and the situation is similar
to all the others, even though growth rates will be smaller than otherwise.

The expected eigenvalue, for both A and B, is 1; even when that is true, the eigenvalue
of AB or BA may be greater than 1, so there is still a Garden of Eden, but maximal
preimaging will occur for strings of 010101... rather than for strings of 000000.... or
111111... And even when AB and BA have unit eigenvalue there is still AAB, ABA, ...
and so on. We were unsure that such would happen before completing this analysis, but
examples will be seen in the table which follows.
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maximum eigenvalue of Atlas

rule size A B AB (BA) pair  page comment

23 (2) 1.466 1.466 2.490 98 Garden of Eden
51 (2) 1.000 1.000 2.000 108 identity

54 (4) 1.000 1.321 2.229 110 Garden of Eden
7 (2) 1.000 1.000 2.147 2.490 114 Garden of Eden
90 (2) 1.000 1.000 2.000 117 uniform

105 (2) 1.000 1.000 2.000 120 uniform

27 (8) 1.000 1.000 1.000 2.229 142 severe Jordan
30 (8) 1.000 1.000 2.000 144 uniform

45 (8) 1.000 1.000 2.000 152 uniform

58 (8) 1.000 1.000 1.618 2.265 154 Garden of Eden
15 (4) 1.000 1.000 2.000 166 shift

29 (4) 1.000 1.000 1.618 2,224 174 Garden of Eden
43 (4) 1.000 1.000 ... 2.224 176 cubes nonuniform
46 (4) 1.000 1.000 BAB:2.000 2.510 179 Garden of Eden
57 (4) 1.000 1.000 1.618 2.205 180 Garden of Eden
60  (4) 1.000 1.000 2.000 183 uniform

To interpret these results, the actual de Bruijn fragments - the A and B matrices -
have to be examined. There are 16 row-stochastic pairs among them, and 16 column-
stochastic pairs. That they will have maximum eigenvalue 1 and u as an eigenvector is
a foregone conclusion. At the same time there are 4 doubly stochastic pairs, which are
counted doubly amongst the singly stochastic matrices. Altogether, then, there are 28
stochastic matrices, almost the full complement of 30 variance-zero Rules. The remaining
two come from cluster 51 consisting of Rules 51 (complementation) and 204 (identity).

The great majority of the A and B matrices in this table have eigenvalue 1, but also,
they all show the Jordan form to one degree or another. There are several instances where
the eigenvalue of AB or BA exceeds 1, but a similar number require longer products before
matrices with strict growth factors occur.

We need a definitive assessment of the relationship between spectral radius and spectral
norm. On one hand, we know that the spectral norm is the square root of the spectral
radius of the product of a matrix by its transpose, and that the spectral radius is less than
or equal to the spectral norm. That is because the maximum amplification of any vector
bears that relation to any specific amplification, of which the eigenvalue is one example.
We also know that spectral norms are convenient because there are inequalities governing
sums, scalar factors, and products which can be used in computing rigorous bounds, for
all of which the spectral radius may be inadequate.

Nevertheless, there exists a representation of matrices in terms of their eigenvectors,
which is Sylverster’s formula. In the most general case, there are idempotents Gi con-
structed from eigenvectors, and ladder operators Ni, constructed form principal vectors,
such that for a matrix A with eigenvalues A;, and any function (representable by a power
series) f,

FA) = D (FODGi+ FOONi+ f/ ()N + ...
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The number of derivatives required is no larger than the dimension of the matrix; for
estimating ancestors, the function f would be a large power. That leads to domination
of the sum by the largest eigenvalue, but it will not eliminate the contributions of the
derivatives, which may be of comparable magnitude to the leading term. If the largest
eigenvalue is less than 1, we may correctly assume that the assemblage will tend to zero,
but the fact of the matter is that for the ancestor application, the eigenvalue is 1 or larger,
with especial interest in the case where it is exactly 1.

To see how this works, consider the following matrix and its powers:

11 Lon) [ 0], 02
0110 1|7 o 1|™" 0 0|

The situation is completely typical of matrices in the Jordan form, and can be observed
at work in the A matrix for Rule 27 in the table above, as well as in the A matrix of Rule
46.

As for the de Bruijn diagram the matrix example represents, there are two nodes, with
self-loops. In addition, one of the nodes feeds into the other. The eigenvector selects
the first node, which always renews itself. Any attempt to involve the second node will
overload the first, which would then have to feed the second without any compensating
counterflow.

From the point of view of matrix theory then, to get uniform counterimages and there-
fore satisfy a necessary condition for a reversible rule, we have to look for matrices with
eigenvalue 1, yet beware that they also manifest Jordan form. We also know that it is
sufficient to look for them amongst rules where a = b, that is, where the Rule itself has
balanced counterimages.

From the point of view of graph theory, it is possible to say a little more. Given that
the elements of the connectivity matrix count paths, and we want to avoid that the number
of non-zero elements in powers of the connectivity matrix increase, it is necessary to avoid
branching paths. More precisely, paths which branch can never return to the node at
which they branched in more than one way. In short, there cannot be two intersecting
loops, otherwise long paths could proliferate by mixing them.

However, if there is not at least one loop, long paths would be impossible, and the
power would reduce to zero. The criterion is then, that there must be loops, but that if
there are more than one, they cannot be linked. For instance, the A and B matrices of Rule
23 have 1-cycles as nodes in 3-cycles. Rules 46 and 58 have A matrices with 1-cycles which
are linked in 2 steps into the other 1-cycle. All of these rules disqualify for reversibility.

Among those which do qualify, there is Rule 30: the A matrix has 2 1-cycles; the B
matrix has a 3-cycle. For Rule 45, A has a single 1-cycle; B has a 1-cycle and a 2-cycle.
The reason that these Rules are not reversible is seen in the pair matrix: the number of
counterimages is uniform, but they can be completely different.

The additional requirement is that the entire discrepancy in multiple counterimages
occur “at infinity” which is to say, in a limited part of the outer boundaries of the string.
This requires that there be one single image of the de Bruijn diagram - the diagonal - in
the pair diagram. For the Rules mentioned, there are viable loops outside the diagonal.

To confirm that the criterion is a good one, the reversible Amoroso-Patt (2,3/2) Rules
may be examined: one of them is 0000 1111 0100 1011; its A and B de Bruijn fragments
have a single 1-cycle.
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Another exampleis Kari’s (3,1/2) rule 001 110 222, for which the A, B, and C fragments
each have a single 1-cycle.

Sadly, this charming graphical procedure is not overly amenable to being automated.
That is, the computational way to find out where the loops are is to raise the connectivity
matrix to powers and examine the traces. But once one is dealing with matrices in a
computer, there are more direct and effective ways to utilize them.

For example, testing the pair matrix for an eigenvalue of 2 needs evaluation of the
determinant of a readily constructed matrix, and gives the answer straightaway - variance
zero means uniform multiplicity. (Constructed from all the fragments of the de Bruijn
matrix, the pair matrix is less likely to have Jordan form, which should not be completely
forgotten about)

In any event, although the (2,1) Rules do not include any “non-trivial” reversible rules,
they contain a wide enough assortment that illustrations can be found for all the precepts
of reversible automata theory; even the “trivial” cases are well worth examining thoroughly
enough to understand them.

There are still other approaches to reversibility. Many persons have been attracted by
the fact that the de Bruijn fragments form a hypercomplex number system; for some rules
the fragments resemble Dirac Matrices or other interesting algebraic entities. There may
or may not be interesting algebraic structures yet to be found.

15 Corrections to Z

For the sake of continuity, this posting should be inserted in the series “Ancestors” after
“Reversible Automata,” yet preceding “Ancestors (14).” As such it relates to both re-
versible evolution rules and the parameter Z (introduced by Andrew Wuensche and Mike
lesser in their “Atlas”), in the sense that there are cellular automaton rules between which
restrictive relationships exist.

Actually there are many different kinds of relationships, some of them of more interest
for one application than for another. For example, given a state set of composite order,
it could be a cartesian product, supporting two different automata acting independently.
Thus, the 4%4 (4.1) automata include among their number (2%)? automata whose rule of
evolution is F((a,b), (¢,d), (e, ) = (f1(a,c,€), f2(b,d, f)). What an insignificant fraction!
But if they scatter well through rule space, they could be used as starting approximations
to more interesting mutants.

Cartesian products combine different rules within the same neighborhood, but other
relationships apply the same rule to different neighborhoods. An important example
is composition, which defines the evolution of an automaton for multiple generations:
consider f(a,b,c) = p(p(a,b),p(b,c)) via which the single generation (k,1/2) automaton
becomes a (k,1) automaton spanning two generations. Slightly more variety is possible if
two different rules alternate between generations. This is the mechanism by which either
the identity or the complement, which are rules for (2,0) automata, promote themselves
into rules 204 and 51 amongst (2,1) automata; they are just as reversible in either context.

Another relationship is the one in which the rule of evolution ignores some of the cells
in the neighborhood. Allowing such a possibility is not only “mathematically correct”
(that is, general); it permits the assumption that neighborhoods are solid blocks (one
consecutive interval, in one dimension). In turn, the concept of an “edge sensitive” rule
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allows distinguishing those automata whose active area does not extend out to the full
limits of the neighborhood.

The appendices to Wolfram’s “Theory and Applications of Cellular Automata” take
note of both possibilities; they are implicit in Erica Jen’s Table 8 (she does not identify
the factors as (2,1/2) automata).

Basing a theory of ancestors or of reversible rules on de Bruijn fragments supposes
an awareness of their response to edge sensitivity or composition. Rule 51, whose impact
on 7 is described on page 41 of the Atlas, actually illustrates both concepts. First, edge
sensitivity: its A and B matrices are

whose structure is slightly curious. Note that neither is stochastic, and tht the rule would
be assigned Z = 0 as a first approximation. If we now define

e T R S B i R A
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then

In other words 4 and B are each tensor products of matrices, each of which has trian-
gular form with eigenvalues 0 and 1. The tensor products will have product eigenvalues,
which will also be 0 or 1. In fact, (e, f, g, h) is part of a hypercomplex system with this
fragment in its multiplication table:

| e f g h
ele e
f1f £ . .
g|. . g h
h|. . g h

Dots indicate products (some are zero, some are new matrices) which will not occur
in multiplying 4 and B. Although A and B do not commute, uniform multiplicity can
be expected for any product of A’s and B’s because all the products will have a similar
structure.

In fact, e and f can be recognized as a de Bruijn pair for the (2,1/2) rule f(z,y) = ¥,
while g and h are a de Bruijn pair for the rule f(z,y) = Z.

Although this example follows some rather clever algebra, it is really quite exceptional.
The reduction of A and B to tensor products was only possible because the natural neigh-
borhood of Rule 51 - a single cell - is detached from BOTH edges of the three-cell neigh-
borhood in which it is immersed. However, that is the combination described in the Atlas,
and it also provides a good example of a more systematic alternative.
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Note that in both the A and B matrices, the bottom halves repeat the top halves as a
consequence of the insensitivity of the rule to the left cell of the neighborhood. Insensitivity
to the right cell is slightly more subtle, making the even columns repeat their matching
odd columns, also visible in both A and B. Compare these remarks with the description
of left and right templates in the Atlas, page 40 and thereafter.

With respect to the redundancy arising from ignoring the left cell, the bottom halves
of A and B could be discarded without information loss. The rectangular matrices that
result could be adjusted for the loss of the left cell as an index by discarding the dots, and
sliding the rest of the row over to fill the hole, producing the e and f matrices, but this
rearrangement gets them independently of any Kronecker product.

This sleight of hand is quite legitimate if we recall the indexing scheme for a de Bruijn
matrix. If the start strings drop down from two cells to one, so should the stop strings.
If we discard the first bit of the stop string, we should pick up the only part of the row
containing information, which is the part whose initial bit matches the row number.

Since e and f exhibit similar structure to what we have described, but for columns
rather than rows, the process can be carried a step further, to account for Rule 51’s
insensitivity to the right margin as well as the left. We end up with a=0 and b=1. When
b=1, 0 maps into 1, and so we confirm that Rule 51 is complementation of the central cell.

If we write the transformation from A to e, B to f, in the form

—
—

o

)
O = O =
— o Rk O
O = =
= = O

11
that is, AX = Xe (and also BX = Xf) (X is the rectangular matrix in the above
equation), we have a formal process, which maps de Bruijn matrices of one order into those
of the next lesser order. A mapping arranged in this form may seem rather mysterious,
but it is standard fare in the theory of graphs. Using the formal process provides the
best justification for the maneuvers described; it can also be seen underlying procedures
described in the Atlas.

So at least we have a formal procedure to deflate edge-insensitive rules, which may be
continued until the rule is responsive to both margins. There are also “middle insensitive”
rules, such as Rule 90 (page 117), which evolves via the exclusive or of the two frontier
cells, and only those two. Then there are the shift rules, clustered with Rule 240 (page
167), which need the nl1 template. Although a shift rule can be deflated, that goes against
the convention of centering the image cell with respect to its neighborhood.

But there is no problem in following the spirit of correcting Z, when such a need
arises from the rule having smaller than the nominal size of neighborhood. What would
correcting Z do to a classification scheme based on eigenvalues of A7 If v were a row
eigenvector of A and X its eigenvalue, then vA = Av. But then (vA)X = v(AX) = v(Xe),
while (Av)X = A(vX). Hence (vX)e = A(vX), meaning that unless vX = 0, A and e have
the same eigenvalues.

However, their multiplicity can (and unless X is square and nonsingular, must) differ.
For the Perron eigenvalue, it is less likely that v X = 0. Also, one can work back from e to
A employing column eigenvectors within similar reasoning, to see what might have been
lost.
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Unless the largest eigenvalue were lost, there would be no penalty for deflating a
neighborhood.

16 Ancestors (14)

Commentary related to Andrew Wuensche and Mike Lesser’s book, “The Global Dynamics
of Cellular Automata.” Addison-Wesley, 1992 (ISBN 0-201-55740-1) concludes. Having
made an extensive analysis of the role the average number of ancestors (Langton’s param-
eter lambda) plays in classifying and describing cellular automata, some attention needs
to be given to Z, a new parameter which the authors have introduced.

We have based our own analysis on a theory of graphs, specifically, the de Bruijn
diagram of the automaton, from which ancestors and their properties can be readily cal-
culated. Langton’s lambda, which is v in the formula below, plays a prominent role in this
analysis because it represents, within about ten percent, the quantities needed to derive
the statistics of the automaton. First, the rate of growth, with length, of the number of
ancestors of that string of cells having the greatest number of ancestors. Second, the rate
of growth, with length, of the standard deviation in the number of ancestors of whatsoever
string of cells.

From then on, the higher moments are simple polynomials with respect to the same
parameter; to the extent that it is feasible to turn moments into frequencies, they provide
the data which is required. Implicit in this point of view is the assumption that the
eigenvalues of selected graphs are the real parameters which ought to be used, but that
there are certain advantages to using an easily calculated approximation to them, especially
if the same approximation is relevant to all the graphs.

It would seem that the concept of Z arose in the attempt to refine lambda, given
that a ten percent approximation is not always sufficient, and that there were observable
differences in the behavior of automata having the same value of lambda. Z itself is subject
to refinement, as is explained with some care on pages 40, following, in the Atlas. In the
formula below, only the first approximation to Z is used. As the layout of the Atlas
demonstrates, Z does in fact refine the classification of the automata depicted.

The formulae in question define the eigenvalue of the larger de Bruijn fragment (which
is our parameter of preference) in terms of the other two:

(Langton) A ~v+ no(c)o(x) cos(f)
(W&L) A = 14201 = Z/0.5 % s2 4+ 0.01561 cos(6")

The Langton version simply takes the fraction of ancestors and discards the correction;
the nature of the correction for many rule clusters was tabulated in the previous commen-
tary. The W&L version could be tabulated similarly, but suffice it to say that the new
quantity 0 (always less than 90 degrees because 1 is always an underestimate) ranges over
the whole quadrant.

In contrast the W&L version (which is our own invention; the Atlas does not mention
such a thing) takes 1 as the basic growth factor, and augments it according to Z and
a multiplier which would have to be calculated in each instance. Unfortunately it does
not seem to be possible to give a single, constant, empirical estimate for the factor, and
proceed from there. Let us emphasize that W&L themselves never ever intimated that
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such a thing should be expected; we are only describing our own attempts to relate their
theory to ours.

If we agree that the growth rates mentioned, however it is that they are estimated or
calculated, are the underlying parameters, we can conclude our commentary with some
further general observations.

Although the following phenomenon can occur at any level, it is most noticeable for
balanced or nearly balanced rules. In previous commentary, the AB = 44 Rule 29 had
A and B matrices with maximum eigenvalue 1, yet this Rule is not one of zero variance.
The explanation is implicit in the spectral norm of these matrices, the square root of the
largest eigenvalue of their product by their transpose. The spectral norm refers to the
largest growth factor for any multiplier of this matrix (which need not be a composite of
A and B products); it turns out that both AB and BA have larger maximal eigenvalues
than either A and B (although their norms cannot be larger than the product of norms of
their factors).

The consequence, which is readily apparent from consulting the Atlas, is that neither
strings of 1’s nor strings of 0’s have ancestors which increase in number as the length of
the strings increase. However, AB generates strings in which 01 alternate, and these are
observed to be strings with maximal preimaging. Can it happen that A, B, AB, and BA
have maximal eigenvalue 1, and yet ABB (for example) has a larger eigenvalue? We are
not prepared to say.

An earlier commentary contained a histogram for ancestor multiplicity in (2,1) Rule 22
strings of length 8. Examination of page 96 of the Atlas allows us to try out the histogram,
although the detail for length 13 is easier to read than the drawings for length 8. There
is indeed a variety of in-degrees, although we would not be willing to say that the sample
is large enough to draw any conclusions.

It is an interesting question as to whether we have any right to apply the conclusions
taken from the de Bruiju diagram for a single generation of evolution to the higher levels of
the trees shown in the Atlas. Ancestors of ancestors should be no more free of correlations
than descendants of descendants, and probably a great deal harder to detect if correlation
is to be discovered in the branches of counterimage trees.

We could either construct multiple-generation de Bruijn diagrams, or simply assume
that the correlation is not all that important, which is often a fair assumption.

A respectable portion of the Atlas is devoted to totalistic (2,2) Rules. We do not have
much to say about this except to note that experience indicates that totalistic Rules are
very atypical; for example, they appear to harbor an undue percentage of Class IV Rules.
Nevertheless, the general precepts of graph theory which we have outlined apply to all
automata Rules, and it is only the extremely large numbers of automata in categories
beyond (2,1) that precludes working them all out, or including them in an Atlas such as
this one.

The last few pages of the Atlas contain what may be one of its most interesting offerings,
the visualization of the effect of mutations on basins of attraction.

This is also an area which is amenable to treatment by graph theory, and especially ma-
trix theory. Unfortunately, the perturbation theory which serves so elegantly in quantum
mechanics, depends very strongly on working with hermitian (or symmetric) matrices,
whereas the matrices of graph theory are anything but symmetric (digraph theory, for
the purists). There are still general theorems, such as those asserting that any increase
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or decrease in one single matrix element is immediately reflected by the corresponding
modification of the maximum eigenvalue.

Since the connectivity of the de Bruijn fragment has an important bearing on all
subsequent analysis, it follows that those mutations which alter connectivity will have a
more drastic effect than those which merely change the number of existing connections. By
the same token it is much easier to either calculate or just estimate the effect of mutations
which preserve the overall connectivity.

In concluding, perhaps a comment ought to be made which is not scientific, but rather
has to do with prevailing attitudes towards programs and computing. The Atlas contains
a program suitable for IBM PC’s and clones, by which the results contained in the Atlas
may be reproduced and extended. This is indeed a valuable feature of the Atlas, and allows
its owner to investigate many more combinations than ever could have been included on
a reasonable amount of paper.

The Authors and/or their Publisher assert a copyright over this program disk, just as
they do for the book itself. This is normal practice, and we do not know of anyone who
would raise an objection, either to the disk, and especially to the book, being copyrighted.

If we understand what we have read correctly, an additional copyright is asserted over
any results obtained through the use of the programs which accompany the Atlas. This
is not a concept which has gained general acceptance; it is somewhat like claiming that
you have copyrighted the cake after having sold the recipe book. Or more accurately, that
such protection extends from the cake mixer to the batter to the cake.

Computer language compilers have been sold with the claim that the copyright inherent
in the compiler program also extends to any code compiled through the use of the program.
This is somewhat different from compilers which insert run-time code from a copyright
subroutine library. In both cases, many users have preferred to use a product which lacks
such encumbrances, rather than endure, or risk enduring, unpleasant complications.

It would be a standard element of courtesy to acknowledge the use of any program, such
as the one the authors have prepared, in work of one’s own; but if this restriction has been
understood correctly, a person such as myself would simply write their own program, and
be done with it. (We won’t talk about the pretensions involved in patenting a program,
as that claim has not been made).

We sincerely hope that the phrase “... and any images implicit in the software, ...” on
page 61 does not carry the dire implications alluded to above.

Otherwise, in conclusion, we would like to say that we have greatly enjoyed perusing
the Atlas, and that we heartily recommend it to anyone who wants to have most of the
reasonable information about (2,1) and totalistic (2,2) automata readily at hand, where
it can be enjoyed in an especially pleasant visual form.

The commentary is now finished.

17 Mutations

For the sake of continuity, this posting ought to be considered as an afterthought to the
series “Ancestors,” to be placed after “Ancestors (14).” We really intend the commentary
on Wuensche and Lesser’s “Atlas” to be finished; but there have been some final obser-
vations which depend too much on the background already established to be considered

separate submissions.
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In the process of correcting 7, it is convenient to deflate edge-insensitive neighborhoods.
Deflation does not change the lambda ratio, nor the Perron eigenvalues of the de Bruijn
diagrams, but it IS essential for getting a probability-based value of Z. In the opposite
direction, inflation produces larger neighborhoods, which may be filled by carrying evo-
lution through multiple generations, or which can be used for a finer degree of mutation
than that of which the original neighborhood is capable.

Inflation and deflation are special cases of mappings between graphs, special meaning
that the mappings are supposed to conserve the linkages and non-linkages within the
graph. In turn, inflation and deflation are special cases of a mapping known as duality.
At first sight, duality consists of exchanging nodes and links; the nodes of the dual are the
links of the original. Dual nodes are joined when the links from the original diagram join
consecutively, which is whenever they share a common node.

Duality can be expressed by matrices: invent two new matrices, which will probably
be rectangular, and are related to one another by diagonal reflection. For the first matrix,
the rows are indexed by nodes, the columns by links. For the second matrix, the reverse is
true, rows being indexed by links, and columns by nodes. The elements are zeroes or ones,
according to the Boolean predicates tail(node,link) and head(link,node) which express the
relation of the node of its argument to the (directed) link which is the other argument.

The rules of matrix multiplication make sense of a sum of the form

linked(nodel,node2) = Z tail(nodel, link) x head(link, node2),

links

as well as a sum of the form

joined(link1,link2) = Z head(link1, node) x tail(node, link2).

nodes

Supposing that a link has exactly one head and one tail, there is just one node for
which tail(node,link) is true, so TAIL must be column-stochastic (with just one non-zero
element per column); we could call it C for short. Likewise HEAD is row-stochastic
because head(link,node) allows just one non-zero element per column; call the matrix R.
Therefore the connectivity matrix M for any graph can always be factored by stochastic
matrices into the form M=CR (or TAILXxHEAD).

By definition, the DUAL of M is the graph whose connectivity matrix is RC. Reading
this as HEAD X TAIL, the second equation, above, justifies the use of the name. More-
over, the tautology RCR=RCR, written with parentheses R(CR) = (RC)R, shows the
relationship of duality to inflation and deflation, because it shows that the dual can be
mapped to the original. Hardly surprising; we associate links with their endpoints. Writing
CRC=CRC is also possible.

There could be a second dual R'C’, wherein RC' = C'R’, and so on through an infinite
tower. That a matrix is equal to its second dual is not necessarily a theorem, as it is
in linear algebra; it’s another kind of dual. However, all the de Bruijn diagrams for a
given state set counstitute exactly such a tower, graded according to the length of the
neighborhood.

What is more interesting is whether or not a graph can be a dual, which means giving
it the reverse factorization. The conditions are essentially those under which deflation is
possible. Of course, a complete de Bruijn diagram can always be deflated; the question

40



is whether the fragments also meet the condition, which has something to do with rows
(or columns) being either identical or orthogonal. Details may be found in an article by
Hemminger and Beinecke!2.

One of the applications of inflation is to assure the existence of a new graph, in which
all the paths of a certain length taken from an original graph are single links in the new
graph. The way to get one is recursively, which is where the dual enters in. To see this,
begin with the de Bruijn matrix for (2,1) automata,

The product CR is the de Bruijn matrix for (2,3/2) automata:

RC =

wherein the neighborhoods are of length 4, which are two-step paths of neighborhoods of

length 3.

In working with duality it is convenient to note that the product of two C-matrices
(column stochastic) is a C-Matrix, that the product of two R-matrices is always an R-
matrix, and that the factorization M=CR is always possible. Fragments can be included
in a computation, if an epsilon is included amongst the matrix elements, which can take

12Robert L. Hemminger and Lowell W. Beinecke, “Line graphs and line digraphs”, appearing in Selected
Topics wn Graph Theory edited by Lowell W. Beinecke and Robin J. Wilson, published by Academic Press
in 1978.



values 0 or 1. Epsilon must always appear in at least one factor, but if desired it can
always be placed in the factor on one side exclusively.

Consider the a matrix like M3, whose elements count the number of paths of length 3.
We have

M? CRCRCR
CC'R'C'R'R

= CC'C"R'R'R.

In other words, it is always possible to factorize a product as a single CR combination
by invoking a high enough dual. Moreover, we could write

1\13 — (C(Cd)(CVHRH) (R/R)

with any epsilons in the middlemost term, thereby relating three-step paths directly to the
second dual. This circumstance justifies the assertion that there is always a big enough de
Bruijn diagram to inflate a given neighborhood by any desired amount, and that it then
includes the paths of matching length.

In the Atlas, inflation is used to obtain finer detail when constructing mutants. Thus,
a (2,1) rule is promoted to a (2,2) rule by means of the definition

F(a,b,c,d,e) = f(b,c,d).

It could equally well have been promoted to a (2,3/2) rule, a (2,3) rule, or any other; the
advantage of skipping (2,3/2) is inflating symmetrically (besides the still finer gradation).
As a variant on the theme, had the authors also considered the extension

F(a,b,c.d,e) = f(f(a,b,c), f(b,c,d), f(d,e, f)),

they could have compared the behavior of second generation ancestors with that of first
generation ancestors.

There are two motives for describing duals; one is to show explicitly how the gener-
ation of mutants as described in the Atlas fits the matrix and graph theory approach to
automata; in particular, the way that Perron eigenvalues are conserved. They are just as
much governing parameters as any other which have been introduced, and we have already
explored their relation to parameters such as lambda and Z at considerable length. The
second motive is to evaluate the direction that hypercomplex algebra might take if the de
Bruijn fragments are to be regarded in those terms. Mainly we see that there is already
considerable structure present, just from graph theory alone.

The Atlas tends to confirm what has always been suspected — small changes in the
rule of an automaton result in small changes in the evolution itself. It isn’t all that easy
to quantify such a statement, but the exceptions and anomalies which have been observed
along with the regularities might be explained through reference to the diagrams, wherein
the opening or closing of loops is a significant event.

There is a whole lore of bounds on the Perron eigenvalue, and also of its separation
from the next largest eigenvalue, which has an effect on the rate of convergence of powers
of the matrix to equilibrium. By and large, the results are probably not stringent enough
to allow predictions about the basins of attraction to be made in the detail shown in the
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Atlas. However, it might be interesting to do a Monte Carlo simulation of the basins on
the basis of the data which we actually do have.

There is an entirely different approach which we have not mentioned at all; the algebra
of regular expressions. For example, one might characterize the reversible rules as those
for which the regular expression belonging to the A and B fragments must be a sum of
starred expressions, none of which contains a sum within a star. That is a concise way of
saying that the loops cannot be counected to one another, necessary but not sufficient for
reversibility.

In any event, the series really is concluded. A report summarizing the whole com-
mentary is now available on request, as are the two preprints on which it is based. With
the help of TeX, many misspellings have been corrected, footnote references added, and
formulas beautified. A supplement contains a variety of the smaller de Bruijn diagrams,
pair diagrams, and subset diagrams; they may be copied and used as suggested in the
commentary.



