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Abstract—The present work focuses on the development of
a tool that automatically generates coverage criteria based
test cases from a C written program. For accomplishing this,
the tool translates the C code into PROMELA and generates
specifications based on the wanted coverage criteria. Once the
model (PROMELA code) and specifications are obtained, it uses
SPIN model checker for executing the verification and generating
counterexamples which can be used as test cases.
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I. INTRODUCTION

Model Checking (MC) is an algorithmic method that takes
as input a model and a specification in the form of temporal
logic formula, and computes whether the model satisfies or
not the given specification. If the model does not satisfies the
specification, it returns a counterexample as an execution trace
going from the initial state of the model, to the state where
the specification is evaluated false.

The counterexample generation feature has been exploited
for more than 20 years, in the search of techniques that allow
to automate the model based tests generation [1]. As a con-
sequence, different approaches have been obtained, differing,
mainly, in the way to obtain the model, how to represent it
and how to select the test cases. In general, the final idea of
all approaches is the same: using counterexamples obtained
by MC as test cases.

The idea of using MC for test cases generation was first
proposed by Callahan et al. [2] in 1996. These authors
described a strategy about the use of MC for analyzing
a program execution traces, dividing them in equivalence
partitions, and using counterexamples for creating new test
cases for equivalence partitions with few traces.

In 1997 Engels et al. [3] presented the idea used as a basis in
most of later approaches, the present work included. It consists
in how to use a formal model describing a system behaviour,
and the negation of formulas describing a test purpose, for
generating counterexamples that can be used as test cases.

In 1999 Gargantini and Heitmeyer [4] introduced the cover-
age criteria based test purposes automatic generation, for SCR
systems (Software Cost Reduction, [5]).

This general idea is used in different later works, differing
mainly in the type of model to use and the coverage criteria
to analyze. Some examples are the works of Heimdahl et al.

[6], focused on transition systems coverage; Hong and Lee [7]
focused on control and data flow based coverage; Gargantini
et al. [8] focused on abstract state machines coverage.

All of this mentioned works, either assumed the existence
and correctness of a model, or they built it from system formal
specifications.

The first tools that focus on the extraction of the model
from the program code, were Modex and Java Path Finder
(JPF), first developed in 1999. They both represent the model
as PROMELA code for later use of MC with SPIN tool. Model
focused on model extraction from C code [9], while JPF did
it from Java code [10].

In 2000 Corbett et al. [11] developed the tool Bandera,
which, like JPF, extracts the formal model from Java code,
representing it not only in PROMELA, but also in other model
checkers languages.

In 2009 Ke Jian, in his masters degree thesis [12], takes the
idea from these mentioned tools, and develops his own tool
for translating from C to PROMELA, adding characteristics to
the C subset that were not supported by previous tools. Some
of these characteristics are work with pointers, functions calls
and one dimension arrays.

The main contribution of the present work is to put together
all these strategies red into the first tool which covers the
complete process, from the translation of the source code into
a model (PROMELA code), to automatic test case generation
according to some coverage criteria. For achieving this, we
translated all the studied temporal logic representations of
coverage criteria into LTL logic, in order to use them in a
single framework.

II. THE PRELIMINARIES

A. Software Testing

Software testing consists on the dynamic verification of a
program behaviour, versus its expected behaviour, with a finite
test cases set, selected from the execution domain [13].

Because the execution domain can be extremely big (usually
infinite), executing all possible cases is not usually a practical
or possible solution. This brings the need of developing criteria
for the selection of finite test sets which cover the maximum
possible cases in regarding what you want to test. In this work
we will explore two criteria groups:



1) Control flow oriented coverage criteria: It covers cases
related with the program control flow. Some of the
criteria it includes are:

• Decision coverage (DC).
• Condition coverage (CC).
• Modified condition/decision coverage (MC/DC).

2) Data flow oriented coverage criteria: It covers the paths
containing definitions and/or uses of program variables.
Some of the criteria it includes are:

• All definitions coverage (All-defs).
• All uses coverage (All-uses).

Even knowing the different coverage criteria, manually
generating all possible cases according to them, could be quite
complicated. Besides, it can introduce the always possible
human error. Then, we need to develop techniques which help
us automate the process.

B. Temporal Logic

Temporal logic is an extension of propositional logic, where
truth values change in terms of time.

There are different classifications of temporal logic accord-
ing to various visions of time. Two of these are Computational
Tree Logic (CTL), and Linear Temporal Logic (LTL) [14].

LTL logic is characterized by being propositional temporal
logic in which time is linear and discrete, and future extends
infinitely or is not bounded. It extends propositional logic by
taking its boolean operators and adding temporal operators.

Basic boolean operators
• Logical AND (∧).
• Logical OR (∨).
• Negation (¬).
• Implication (⇒).
• Double implication (⇔).
Basic temporal operators
• Globally (□): When applied to a formula φ, □φ means

that “φ is always true”.
• Eventually (♢): When applied to a formula φ, ♢φ means

that “eventually a state will be reached, where φ is true”.
• In the next state (⃝): When applied to a formula φ, ⃝φ

means that “in the next state φ is true”.
• Until (U ): It takes two formulas, φ and ψ, as parameters,

so that φUψ means that “φ will be true until a state is
reached where ψ is true”.

C. Model Checking

MC is a formal verification automatic method, used to test
the correctness of system models, both software and hardware.

As figure 1 shows, the algorithm takes as input a system
model M and a property φ and verifies if φ is satisfied or not
by M . In case of being false, it also returns a counterexample.

In LTL, both the system model and the property to verify
can be represented as Büchi automata. This is how it’s done
(internally) by SPIN tool.

For executing the verification, the algorithm needs, in the
worst case, to exhaustively explore all of the model states

Fig. 1: Basic MC diagram

space, which results in the still unresolved MC problem, the
state explosion.

Even if the state explosion problem is still unresolved, some
tools, like SPIN and SMV, have been developed, implementing
optimized techniques to attack it. Examples of these techniques
are: symbolic algorithms, partial order reduction and abstrac-
tion [14].

D. Automatic test case generation via MC

If we have a formal model which describes the behaviour
of the system under test, then the resulting counterexamples
generated traces when applying MC, will match with real
program execution traces. Then, we can interpret these traces
and generate the corresponding test cases.

In order to generate the test cases regarding some coverage
criteria, we need properties that, when verifying them against
the model, it returns the counterexamples we need. This can
be done by generating what we know as test purposes.

A test purpose is a property expressed as temporal logic,
which describes something we want to test from the program.

Fig. 2: If-else sentence example in C

For example, let’s suppose we have the code fragment
shown in figure 2 and we want a test case which makes the
if condition to be true. For this, we create the test purpose:
♢(a > 5), which tells us the condition a > 5 will eventually be
true. Therefore, an execution trace satisfying this property can
be used as a test case where the condition is true. The problem
is MC doesn’t return a counterexample if the condition is true,
but only when it is false. Nevertheless, if instead of using
MC with the previous property, we do it with its negation,
¬♢(a > 5), which tells us is not true that the property
a > 5 will be eventually true, or equivalently, that the property
a > 5 will never be true, then the algorithm will return a
counterexample (in case of the property being false), which
goes from the initial state of the model, to a state where the
a > 5 is true, therefore obtaining the execution trace we first
wanted.

This idea is the base for automatic test case generation
via MC. If we need a test set which satisfies some coverage



criteria, it’s enough with generating test purpose set which
covers all cases for the criteria and doing MC with the negation
of its logic formulas and the model. This way we obtain a
counterexample set which we can later interpret and translated
into the wished test cases set.

E. SPIN

SPIN is a model checker developed by Gerard J. Holz-
mann for the verification of communication protocols, which
awarded him with ACM Software Systems Award in 2001
[15].

In order to execute MC, SPIN takes as input a model written
in PROMELA (a programming language which has a C-like
code). Once obtained the model, verification can be done
through assertions or by expressing the wished property as
LTL formula. If, while doing the state exploration, a state is
found, where the assertions or LTL formula are false, then the
tool returns false, and provides a counterexample containing
an execution trace containing this state.

III. SYSTEM MODEL

During this work research, some tools were found, as those
mentioned in section I, that achieve the automatic model
extraction. But none was found, covering the complete process
from model extraction to automatic test case generation. This
work is intended to be the first tool achieving all this process in
an automatic way, also achieving an unification of the studied
strategies. For this, the tool consists of three general steps:

• First step consists on a compiler that takes a C written
program as input and returns a PROMELA model.

• Second step consists on a specification generator which
uses the obtained model from first step and, according
to the wished coverage criteria, generates a specifications
set, expressed as LTL logic formulas.

• Third step consists on a test cases generator which
uses SPIN for implementing MC with the model and
specifications, and generating counterexamples that can
be later interpreted as test cases.

This whole process can be observed in figure 3.
Given that, as we mentioned before, this is

the first tool which unify this whole process, we don’t have a
way of comparing it with any other tool (as there is no other
equal purpose tool) and, therefore, we will only present it as
a novel strategy which could be used as a base for creating
new tools and strategies.

IV. TRANSLATING C INTO PROMELA

For the tool’s first step we need to obtain a model which
describes to the best possible the program code behaviour.
To accomplish this, we developed a compiler that takes a C
written program as input and translates it into a PROMELA
written model.

The compiler was developed by following Ghoulum’s strat-
egy in [16]: you start with a compiler that accepts a small,
trivial set from the source language, and then, incrementally,

you add new features from the language step by step. In a
first step you only return constants, then you add arithmetic
operations and you go on like this, in a way that each step is
small enough to be manageable, and at the end of each step
you obtain a working compiler.

This section gives an overview of the obtained compiler and
the C subset it supports.

A. Supported tokens list

During the lexing step, the compiler must translate the
source code into a tokens list.

Token is the smaller unit of a C program. It corresponds
to each keyword and special character. A final summary of
tokens supported by the tool can be observed in tables IV.1
and IV.2.

In addition, a token can be an identifier (a variable or
function name), or an integer constant.

TABLE IV.1: Supported C special characters

{ } ( )

[ ] , .

; ” + -

* / % ∼

& — = <

> ! : ?

TABLE IV.2: Supported C keywords

int bool void

struct return if

switch case default

for while goto

do break continue

else printf scanf

B. Supported C subset

This work uses Ke Jiang’s thesis [12] as the basis for the
compiler step. In addition to the supported set in Ke Jiang’s
tool, we add support for multidimensional arrays and for C
scanf for data inputs.

In order to support multidimensional arrays, we simulate
an n-dimensional array as a 1-dimensional array. For this, we
have to simulate two things: the capacity and the indexes.

Capacity: The resulting 1-dimensional array must have as
much storage capacity as the n-dimensional array.This can be
achieved by calculating the product of the n capacities in the
n-dimensional array and assigning the result as the capacity
of the 1-dimensional array.

Array indexes: We need a way of assigning each cell of the
n-dimensional array to a unique cell in the1-dimensional array.



Fig. 3: General tool flow

For this, we concatenate each row of the n-dimensional array
in a unique row and calculate the new indexes with equation
(1):

f(n) = In +

n−1∑
i=1

(Ii

n∏
h=i+1

Ch) (1)

where n is the number of dimensions in the original C array,
Ii is the i-th index being accessed, and Ch is the total capacity
of the h-th dimension.

TABLE IV.3: Array translation example

C code PROMELA code

int a[4][7][5]; int a[4*7*5];

a[3][2][4] = 27; a[4 + 3*7*5 + 2*5] = 27;

Table IV.3 shows an example for a 3-dimensional array.
In order to support data input through scanf function, we

simulate data input by taking advantage of PROMELA asyn-
chronous behaviour property for generating random values.
This is achieved with the proctype shown in figure 4.

Fig. 4: Proctype for simulating program input.

V. AUTOMATIC TEST CASES GENERATION

Once obtained a PROMELA representation of the formal
model of the program, we can use SPIN model checker to
verify it with some properties describing a wished behaviour.
This way we can use SPIN response for automatically gener-
ating test cases.

Given that we want the whole process to be completely
automatic, then we need a way of automatically generating
the properties to check. This is done by taking into account

the wished coverage criteria, and generating a set of properties
in order to cover this criteria the maximum possible.

For a better understanding, we will show this whole process
through one studied example: the triangle problem. The code
used for this problem can be found in [17]. One fragment of
the translated PROMELA code, obtained in the first step, is
shown in figure 5.

A. Control flow Oriented Coverage Criteria
Control flow oriented coverage criteria covers cases related

with program control flow. They are mainly based in truth
values of program decisions and its conditions. So, we need
to add atomic variables for each condition, so we can use them
for creating the logic properties.

Let’s look, for example, at the code fragment shown in
figure 5. Here, we have an if statement (a decision), with three
conditions. So, we need to create the three atomic variables
(c1, c2, and c3) shown on the top of the figure. In addition
we create the final atomic variable for representing when
the execution reach the end of the program. Now, we can
create LTL logic formulas in order to cover each of the wished
coverage criterias for this group.

Condition coverage: For each decision D and each condi-
tion C of D, the test suite must include a test case where C
is evaluated true and a test case where it’s evaluated false.

We need to create two LTL formulas for each condition,
one for its true value, and one for its false value. Let’s take,
for example, condition c1 from figure 5 example. If we want
a test case where it’s evaluated true, we can use the following
LTL formula:

□¬(c1 ∧ ♢final)

This reads the program is never going to reach a state
where c1 is true and eventually the program reach its end. So,
when executing MC with the model and this property, SPIN
will return a counterexample where the condition is true, and
eventually the program reach its end, therefore providing a
counterexample for the true value of c1, which can be later
use as a test case.

The same procedure can be used for its false value. In this
case we need a formula which reads the condition is never
going to be false. This can be achieved with the following
LTL formula:

□¬(¬c1 ∧ ♢final)



Fig. 5: PROMELA if example with multiple conditions

This way we obtained the two test cases we needed for
achieving CC respect to condition c1. Now we only need to
follow the same procedure for the rest of the conditions in
order to obtain a complete coverage of this criteria.

One example of SPIN response for the property
□¬(¬c1 ∧ ♢final) is shown in figure 6.

Fig. 6: Fragment of SPIN response for figure 5 example and
□¬(¬c1 ∧ ♢final) property

Once we execute the same procedure for the rest of the
conditions, and eliminate the test cases redundancy, we obtain
the 6 test cases shown in Table V.1.

Decision coverage: For each decision D, the test suite must
include a test case where D is evaluated true and a test case
where D is evaluated false.

In this case, we need two LTL formulas for each decision,
one for its true value, and one for its false value. This can
be achieved by following the same procedure we did for CC,
but this time with the whole decision. So, for the previous

Case a b c

1 10 10 10

2 10 9 1

3 9 10 1

4 9 1 10

5 10 9 10

6 10 10 9

TABLE V.1: Test cases for CC criteria in the triangle problem

example, we can use the following LTL formula for its true
value:

□¬((c1 ∧ c2 ∧ c3) ∧ ♢final)

and for its false value:

□¬(¬(c1 ∧ c2 ∧ c3) ∧ ♢final)

Once we execute the same procedure for the rest of the
decisions, and eliminate the test cases redundancy, we obtain
the 3 test cases shown in Table V.2.

Case a b c

1 10 10 10

2 10 9 1

3 10 9 8

TABLE V.2: Test cases for DC criteria in the triangle problem

Modified condition/decision coverage: For each decision
D and each condition C of D, the test suit must contain two
test cases where C independently affects the value of D. This
requires two test cases where we only change the value of C
while keeping the value of the remaining conditions, and the
resulting value of D is affected.

In order to achieve it, we modify the PROMELA model
following the strategy proposed in [18], where a reset button
is added to the model. The idea is to first get to the wanted
decision, obtain its outcome, and then reset the program
propagating the conditions and decision values, so we can
get to the decision again but this time one of the conditions
has a different truth value and the outcome of the decision
is different. This way, instead of obtaining two different test
cases for each condition, we obtain only one test case which
can be later split into the two wished test cases.

The LTL formula for the previous example, with respect to
c1 is:

□¬(d ∧⃝(reset ∧ ♢(¬d ∧ ¬inv c1 ∧ inv c2 ∧ inv c3)))

where d = c1 ∧ c2 ∧ c3 and inv ci = true if the outcome
of the condition ci remains invariable.

Once we execute the same procedure for the rest of the deci-
sions and conditions, and eliminate the test cases redundancy,
we obtain the 6 test cases shown in Table V.3.



Case a b c

1 10 10 10

2 10 9 1

3 9 10 1

4 9 1 10

5 10 10 9

6 10 9 9

TABLE V.3: Test cases for MCDC criteria in the triangle
problem

B. Data Flow Oriented Coverage Criteria

Data flow oriented coverage criteria covers the paths con-
taining definitions and/or uses of program variables.

In order to understand this criteria we need to first introduce
some basic concepts:

• Definition node: Node or sentence containing a definition
of a variable (a value is assigned to it). With respect to a
variable x and a node v we will use dvx for saying there
is a definition of x in node v.

• Use node: Node or sentence where a variable is used.
With respect to a variable x and a node v we will use uvx
for saying there is a use of x in node v.

• Definition-use path: Path that goes from a definition
node to a use node with respect to same variable.

• Definition-clear path: It’s a definition-use path which
does not contain any definition node other than the initial
one.

For this group of criteria we will take the idea proposed
in [19], by adding labels to the states (sentences in the
PROMELA code, for our case), representing if there is a
definition or use of a variable. This can be observed in figure
5, respect to variable a with the labels d a v21 (there is a
definition of a in sentence 21) and u a 29 (there is a use of
a in sentence 29).

Now, we need a way of defining a definition-clear path as an
LTL formula, so we can later use it for defining the formulas
for this criteria group. For this, we took the CTL logic formula
proposed in [19] and created the equivalent LTL formula:

dcp(dvx, u
v′

x ) = ♢(dvx ∧⃝(¬def(x) U (uv
′

x ∧ ♢final))) (2)

This reads, there is a definition-clear path respect to x,
between nodes v and v′ if eventually the execution reaches
the definition of x in node v and in the next state there is no
definitions of x until the program reaches the use of x in node
v′ and eventually reaches the execution’s end.

All-defs criteria: For each definition node respect to a
variable x, the test suite must contain a test case with a
definition clear path to at least one use of x.

For this criteria we need a test suit which contains all
definition nodes and for each definition node, at least one

definition-clear path. This can be achieved with the set of LTL
formulas:

{
∨

uv′
x ∈USES(x) dcp(d

v
x, u

v′

x )|dvx ∈ def(x)}

All-uses criteria: For every definition node dvx and every
use node uv

′

x , the test suite must contain at least definition-
clear path from v to v′ respect to x.

This time we need a test case containing a definition-clear
path, for each dcp(dvx, u

v′

x ). This can be achieved with the set
of LTL formulas:

{
∨
dcp(dvx, u

v′

x )|dvx ∈ def(x), uv
′

x ∈ USES(x)}

For this example, with only one test case we can cover
both of the criteria. The test case obtained by SPIN response
is shown in Table V.4.

Case a b c

1 10 10 10

TABLE V.4: Test case for all-defs and all-uses criteria in the
triangle problem.

VI. CONCLUSIONS

The whole process described in the previous sections was
successfully completely automatized with the developed tool.

Our tool takes as input a C written program and first
translates it into a PROMELA written model. Then, following
the procedures described in section V, two versions of this
first PROMELA model are created, one for the control flow
coverage criteria group, and one for data flow coverage criteria
group. In the next step, the tool automatically creates the
needed LTL logic formulas sets for each of the analyzed
coverage criteria and provides them one by one as input to
SPIN, along with the corresponding PROMELA model. In the
last step, each of the responses obtained from SPIN are stored
in separated text files, so they can be later used as test cases
for the original C program.

For future work we will consider adding support for more
C characteristics in order to accept a wider set of programs.
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