
Automatic Generation of Test Cases from
Formal Specifications using Mutation

Testing
Román Jaramillo Cajica

Computer Science
CINVESTAV-Guadalajara

México
rjaramillo@cinvestav.mx

Raúl Ernesto González Torres
Computer Science

CINVESTAV-Guadalajara
México

raul.gonzalez@cinvestav.mx

Pedro Mejı́a Álvarez
Telecommunications

CINVESTAV-Guadalajara
México

pedro.mejia@cinvestav.mx

Abstract—Testing of complex software systems of-
ten needs the execution of thousand of tests cases to
find errors in the code and to ensure high integrity
systems. Hence, it requires the testing tasks to be au-
tomated. Test case execution entails establishing pre-
conditions and input data, observing output results,
and comparing those results with a given oracle. This
work presents two contributions: it uses a Particle
Swarm Optimization (PSO) algorithm as a test case
generator and also uses mutation testing on formal
specifications using SOFL. Using mutation testing on
formal specifications allows to find new test cases that
would kill more mutants, resulting in a test suite
potentially capable of finding more errors. The PSO
algorithm is applied to generate the values of the input
(test case). Software examples are used in this work
to show the high efficiency of our testing framework.

Keywords—Software testing, formal specifications,
mutation testing, particle swarm optimization, test
case generation

I. INTRODUCTION

Software testing is an essential process within
any software development methodology, and if not
automated, it requires a large amount of time and
concentration on the part of the person in charge of
evaluating the behavior of the system. The essence
of software testing is to identify a set of test cases
for the software to be tested. One way to create
this test cases is by using the system specifications.
By formalizing the informal specification using a

formal language, high integrity systems can be
produced in a cost-effective way.

In this work we present the development of a
software tool used for the generation of test sets
from specifications written in the formal language
SOFL. In this tool, extended functional scenarios
are created from SOFL predicate specifications. For
each element of the functional scenarios, the PSO
algorithm is used as a generator of test cases that
satisfy each predicate. From each of the test cases
generated, a list of mutants is created. Finally, each
mutant from the mutant list is used to generate a
test case.

II. BACKGROUND

A. Software testing

Software testing is the branch of software engi-
neering that is responsible of evaluating the quality
of a software in relation to its specifications. In or-
der to do this a test suite has to be generated as well
as a test oracle, which is responsible of determining
whether the system’s behavior is correct or not.

Software testing research aims to automatically
generate test cases and test oracles. There are sev-
eral research about test case generation without test
oracle, other authors focus more on the quality of
the test oracle and the rest of authors work in both
test oracle and test suite generation.978-1-6654-0029-9/21/$31.00 ©2021 IEEE

B. Formal specifications and SOFL

SOFL uses VDM-SL notation to write specifica-
tions. It works with pre and post conditions written
in First Order Logic, and also in a Disjunctive
Normal Form (DNF). Each element of the predicate
in DNF is known as a functional scenario. This
formal method was first introduced by Liu [5] as
a practical way to formalize specifications without
the use of a formal model such as FSM (Finite
State Machine), algebraic specification, etc. Liu
[6] defines SOFL as a semi formal specification
technique.

In general, SOFL specifications used in this
work have the following structure [3]:

process name of the process(input variables:
type of variables)
output variables: type of variables

pre predicate that is the pre condition of the
process.

post predicate in DNF that is the post condition
of the process.

end process.

Formally, the specification of an operation S is
denoted as S(Siv, Sov[Spre, Spost], where Siv is the
set of all input variables along with its correspond-
ing type and whose values are not changed by S.
Sov is the set of all output variables along with its
corresponding type and whose values are generated
by S. The pre condition is denoted as Spre, and the
post condition is defined as:

Spost ≡ (G1 ∧D1)∨ (G2 ∧D2)∨ · · · ∨ (Gn ∧Dn),

where each Gi is called Guard condition, each Di

is called Definition Condition, and a Functional
Scenario is the conjunction:

Spre ∧Gi ∧Di.

The conjunction between a single guard condition
and the pre condition is called Test Condition and
it is the condition used to generate values for input
variables.

C. Mutation testing

Mutation testing (MT) is a popular fault-based
testing technique used in software testing for test
case generation and for assessing the quality of a
given test suite. Mutation testing can be applied
as a white-box testing technique because a code is
needed in order to apply mutations to it. Also a test
suite is required to execute the mutated program.
MT generates a set of new programs (mutants) by
changing some of the program’s syntax (without
a compilation error). Then each of this mutants is
executed with the test suite in order to verify if the
given test suite is powerful enough to discover all
the errors previously added.

D. MutPy

MutPy is a tool used to apply mutation testing in
the Python programming language. It takes a code
(”.py” file) and a test suite (also a ”.py” file) and it
mutates the program by applying every appropriate
mutation operation. Then it executes the test suite
in every mutant and if the mutant fail in at least
one test case it is categorized as ”killed”, otherwise
it is categorized as ”survived”. Then every mutant
is shown in a list with its category and a mutation
score is also shown in terminal.

E. Particle Swarm Optimization

The Particle Swarm Optimization algorithm,
more commonly known as the PSO algorithm, was
first introduced by Kennedy [7]. It is an optimiza-
tion iterative algorithm that performs very good at
minimizing and maximizing functions. A function
has to be declared as the one to be minimized
or maximized. In our case, a cost function was
implemented accordingly to the predicate given in
the specification.

The original algorithm works as follows:
In order to minimize the cost function the seventh

step of the algorithm has been modified:
7.If the best fit value is zero then the algorithm

ends. The algorithm also ends if the rounded best
fit value is not zero but the limit of resets has been
reached. If the rounded best fit value is not zero and
still have not reached the limit of iterations then
the loop continues but if the limit of iteration is

Algorithm 1: Particle Swarm Optimization

1. Initialize a population of particles with
random positions and velocities in D
dimensions inside the search space.

2. Loop

3. For each particle find its fit value using
the objective function.

4. If the new fit value is lower than the
particle best fit value, then the new fit
value and the position are saved.

5. Identify the particle with the best fit value
of the population and save its position and
fit value in a variable called G.

6. For each particle update its position and
velocity.

7. If the best fit value is zero then the
algorithm ends. The algorithm also ends if
the best fit value is not zero but the limit
of iterations has been reached. If the best
fit value is not zero and still have not
reached the limit of iterations then the loop
continues.

8. End Loop

reached then the population is reinitialized. If the
rounded best fit value is zero then a search of local
values that minimizes the function is performed, if
the result of the search is negative then the loop
continues, if it succeed then the algorithm ends.

III. RELATED WORK

In this section, we show a few advanced tech-
niques related to our methodology. Our work has
a fault-based approach because it uses mutation
score as metric, for this reason only fault-oriented
test case generation tools that use specifications are
addressed.

Model-checking is a technique for verifying
whether a finite-state model of a system meets
a given specification. Two of the techniques (in
[10] and [11]. for instance) use model-checking
for generating test cases automatically from the
requirements specifications.

Software Cost Reduction (SCR) is a technique
to describe the expected system behavior in a semi-
formal notation. SRE syntax is used to express the
specifications and generate test cases automatically
[12]. Another way to describe the behavior of the
system is by using a formal language, such as SOFL
[14], combined with a genetic algorithm generates
a high mutation scored test suite.

Larsen et. al [13] developed a tool called Ecdar
that performs an unbounded conformance check to
generate test cases automatically.

There is a small amount of related work where
PSO algorithm is used in software testing in differ-
ent ways (in [15] and [2]. for instance). They aim
to achieve some code coverage, but none of them
use formal specifications nor mutation scores.

IV. IMPLEMENTATION

All program specifications were in natural lan-
guage, and had to be translated into SOFL language
manually. SOFL specifications are files in ”.txt”
format. The test generation tool accept each of these
files as input.

The tool creates a list of functional scenarios
from the pre and post condition of the given SOFL
specification. Each functional scenario is analyzed,
if it has ’≥”, ’≤’ or ’6=’ operators then it will
be decomposed into 2 scenarios, for example, ’≥’
operator will be divided into a predicate with ”=”
operator and another predicate with ’>’ operator.
The result of the decomposition is a list of Extended
functional scenarios, called ”EFS”.

A test suite is generated by creating a test case
for each element of EFS. Each test case is generated
using the PSO algorithm, the algorithm use the
information in each functional scenario to generate
values for all input and output variables. Addition-
ally, a mutation operation is applied to each element
of EFS, resulting in a list of functional scenario
mutants. For each member of this new list a test

case is generated (using the PSO algorithm) and
added to the test suite previously generated.

The resulting test suite is a data structure con-
taining every test case that has to be transformed
into a python test file. The tool return a test suite
in python language (”.py” format). The test suite
given by the tool can be used later by MutPy to
assess its quality.

Fig. 1: Tool process.

A. SOFL specifications

To illustrate the functioning of our tool, we
will use the greatest common divisor (GCD) as an
example. The specification of the GCD function in
natural language describes that for a given pair of
numbers, the function returns its greatest common
divisor.

This informal specification is translated to SOFL
manually by identifying those conditions that de-
scribe each possible function behavior. All possible
behaviors are expressed by predicates in DFN and
each element of the disjunction represent a possible
behavior. As illustrated in Figure 2, each possible
behavior is expressed as a conjunction of predicates
involving input and output variables.

Fig. 2: GCD function SOFL specs.

The post condition of this specification is written
as a predicate in DNF. Every element of the predi-
cate in conjunction with the pre condition represent
a single functional scenario. For example, FS1 is
the first functional scenario of GCD specs:

FS1: x ≥ 0 ∧ y ≥ 0 ∧ x > 0 ∧ y > 0 ∧
x ≥ y ∧ x%r = 0 ∧ y%r = 0 ∧ x%y%r = 0
∧ forall(k, [r + 1, y])((x%k = 0 ∧ y%k = 0 ∧
x%y%k = 0)).

There are two key parts in FS1: test condition
and definition condition. The test condition of a
functional scenario is the conjunction between
its guard condition and the pre condition. The
guard condition is the part of FS1 without the pre
condition that only involves input variables. For
example the guard condition in FS1, called G1 is
the following:

G1: x > 0 ∧ y > 0 ∧ x ≥ y,

and the test condition of FS1, called T1 is the
following:

T1: x ≥ 0 ∧ y ≥ 0 ∧ x > 0 ∧ y > 0 ∧ x ≥ y.

The test condition is used to generate the data
for input variables. The definition condition is
the part of FS1 that involves one or more output

variables, and it is used to generate the expected
output. For example the definition condition of
FS1, called D1 is defined as follows:

D1: ”x%r = 0 ∧ y%r = 0 ∧ x%y%r = 0 ∧
forall(k, [r + 1, y])((x%k = 0 ∧ y%k = 0 ∧
x%y%k = 0))”.

B. Decomposition of functional scenarios

When a functional scenario uses ’≥”, ’≤’ or ’6=’
operators in the guard condition then it is divided
into two scenarios. For example FS1 has in its guard
condition the predicate x ≥ y, which is decomposed
into two functional scenarios with x > y in one and
x = y in the other.

The tool decomposes each functional scenario to
create a list called extended functional scenarios
(EFS). Each element of EFS is used to generate
a test case. The values of the input variables are
assigned using the test condition with the PSO
algorithm and the values for the output variables
are assigned using the definition condition with the
PSO algorithm. The tool return the following test
suite:

Fig. 3: First test suite generated with EFS.

C. The PSO algorithm as a test case generator

The PSO algorithm is used to generate data that
satisfy a given predicate, by minimizing the value
of a cost function. The algorithm is executed in two
parts of the process. It is used first to generate a test
case for each element of EFS, this means that for
every element of EFS the PSO algorith is executed
once. Then it is used to generate a test case for
each predicate mutation, here it is used twice per
each element of the mutated predicates, one using
the test condition and the other using the definition
condition.

D. Mutating a functional scenario

In order to generate a mutant, a mutation opera-
tion must be used. This mutation operation change
the syntax of a predicate (or functional scenario).
The tool uses a mutation operation that changes
the relational operator in a predicate, for example
replacing a ”>” operator for the ”=” operator.

Applying this mutation operation to the guard
condition of a functional scenario generate a new
guard condition. This guard condition is used by
the PSO algorithm to generate data that satisfy it.
Then this new data is used to search for the guard
condition of the functional scenario that is satisfied.
Then, the mutated guard condition is written in
conjunction with the post condition and with the
definition condition of the functional scenario that
was satisfied earlier. This new conjunction is a
functional scenario mutant.

Each functional scenario mutant is used with the
PSO algorithm to add more test cases to the test
suite previously generated with EFS. This test suite
is illustrated in Figure 4.

Fig. 4: Test suite generated with functional scenar-
ios mutants.

E. Python test file

The test suite generated with EFS and the func-
tional scenario mutants is translated into a python
test file. This python test file is used with its
corresponding program (also in python) by MutPy
to assess the quality of the test suite.

V. RESULTS

The tool described in our work was proved us-
ing 5 examples implemented in Python language.
Three examples are used by Jorgensen [8] (triangle,
commission, and next date) and two are used by
Liu [9] (mod and gcd). Table I presents the com-
parison between two test suites for each example:
T1 and T2. T1 is the test suite generated by our

tool and T2 is created by generating a test case
for each functional scenario in the original formal
specification. Both test suites were generated using
the PSO algorithm as a test case generator. Table I
shows the number of test cases of both test suites,
denoted as |T1| and |T2| respectively. The mutation
scores achieved by each test suite were calculated
using MutPy, and they are denoted as MS(T1) and
MS(T2) respectively. It can be seen that T2 achieve
an average mutation score of 0.96, while T1 achieve
an average mutation score of 1.

Name MS(T1) |T1| MS(T2) |T2|
Next Date 1 61 0.95 13

Mod 1 6 1 3
Triangle 1 59 0.93 8

GCD 1 9 1 4
Com 1 11 0.93 3

Table I: Mutation score results in examples.

VI. CONCLUSION AND FUTURE WORK

Our work shows the effectiveness of the PSO
algorithm as a test case generator, as it is the
first time using the PSO algorithm with a formal
language for testing purposes. The algorithm was
capable of finding a test case for any functional
scenario. Our tool is capable not only to generate a
test suite automatically but generate it in a formal
and effective fashion from SOFL specifications.
The test suite can be enhanced by adding test
cases generated from functional scenario mutants,
generating a test suite that achieves a mutation score
of 1, as shown in our results.

A comparison between our tool and other tools is
considered for future work, as well as an enhance-
ment of the tool.

REFERENCES

[1] M. W. W. Matt Staats and M. P. Heimdahl. 2011. “Better
testing through oracle selection,” in ICSE ’11.

[2] Rashmi Rekha Sahoo, Mitrabinda Ray. 2020. ”PSO based
test case generation for critical path using improved com-
bined fitness function,” Journal of King Saud University -
Computer and Information Sciences.

[3] S. Liu and S. Nakajima. 2010. “A decompositional ap-
proach to automatic test case generation based on formal
specifications,” Fourth IEEE International Conference on
Secure Software Integration and Reliability Improvemet.

[4] A. P. Mathur. 2013. ”Foundations of software testing,”
Pearson.

[5] Shaoying Liu and Yong Sun. 1995. ”Structured
methodology+object-oriented methodology+formal
methods: methodology of SOFL,” proceedings of First
IEEE International Conference on Engineering of Complex
Computer Systems. pp. 137-144.

[6] Cencen Li, Mo Li, Shaoying Liu, Shin Nakajima. 2012.
”Structured Object-Oriented Formal Language,” Lecture
Notes in Computer Science 7787.

[7] J. Kennedy and R. Eberhart. 1995. ”Particle swarm opti-
mization,” Proceedings of ICNN’95 - International Confer-
ence on Neural Networks, pp. 1942-1948 vol.4.

[8] Paul C. Jorgensen. 2013. ”Software Testing: a Craftman’s
approach,” CRC Press, fourth edition.

[9] R. Wang, Y. Sato and S. Liu. 2019. ”Specification-based
Test Case Generation with Genetic Algorithm,” IEEE
Congress on Evolutionary Computation (CEC), pp. 1382-
1389.

[10] Aichernig B.K., Lorber F., Ničković D.. 2013. ”Time for
Mutants — Model-Based Mutation Testing with Timed
Automata,” In: Veanes M., Viganò L. (eds) Tests and
Proofs. Lecture Notes in Computer Science, vol. 7942.
Springer, Berlin, Heidelberg.

[11] Fraser, Gordon and Wotawa, Franz. 2006. ”Using Model-
Checkers for Mutation-Based Test-Case Generation, Cover-
age Analysis and Specification Analysis,” 16. 10.1109/IC-
SEA.2006.75.

[12] Gustavo Carvalho, Diogo Falcão, Flávia Barros, Augusto
Sampaio, Alexandre Mota, Leonardo Motta, Mark Black-
burn. 2014. ”NAT2TESTSCR: Test case generation from
natural language requirements based on SCR specifica-
tions,” Vol. 95, pp. 275-297, ISSN 0167-6423,

[13] Larsen, K., Lorber, F., Nielsen, B., and Nyman, U. 2017.
”Mutation-Based Test-Case Generation with Ecdar,” IEEE
International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp 319-328.

[14] Wang, Rong, Yuji Sato, and Shaoying Liu. 2021. ”Mutated
Specification-Based Test Data Generation with a Genetic
Algorithm,” Mathematics 9, no. 4: 331.

[15] Nayak, N., and Mohapatra, D. P.. 2010. ”Automatic Test
Data Generation for Data Flow Testing Using Particle
Swarm Optimization,” Contemporary Computing, 1–12.

