next up previous contents
Next: Block Matrices Up: A Variety of String Previous: Tapered string   Contents

Second neighbor influences

Figure: a row of identical masses with identical springs connecting neighbors and another set of springs connecting second neighbors
\begin{figure}\begin{picture}(290,110)(0,0)
\epsffile{unif.eps}\end{picture}\end{figure}

\begin{eqnarray*}
A & = & \frac{k}{m} \left[ \begin{array}{ccccccccc}
\ldots ...
...ots & . & . & . & . & . & . & . & \cdots
\end{array} \right].
\end{eqnarray*}



The component by component equations for the eigenvectors of a pentadiagonal matrix would have the form

\begin{eqnarray*}
a x_{i-2} + b x_{i-1} + c x_i + b x_{i+1} + a x_{i+2} & = & \lambda x_i
\end{eqnarray*}



which would turn into recursion relations by writing

\begin{eqnarray*}
x_{i+2} &=& -\alpha x_{i+1}+(\lambda - \beta) x_i-\alpha x_{i-1}-x_{i-2},
\end{eqnarray*}



and finally an equation with a wave matrix

\begin{eqnarray*}\left[ \begin{array}{c}
x_{i+2} \\ x_{i+1} \\ x_{i} \\ x_{i-1...
...
x_{i+1} \\ x_{i} \\ x_{i-1} \\ x_{i-2}
\end{array} \right].
\end{eqnarray*}



The characteristic equation for the wave matrix reads

\begin{eqnarray*}
\mu^4 + \alpha \mu^3 + (\lambda - \beta) \mu^2 + \alpha \mu + 1 & = & 0
\end{eqnarray*}



which in turn is a quadratic equation for $c = \mu + 1/\mu = 2\cosh(\phi)$.

\begin{eqnarray*}
c^2 + \alpha c + (\lambda - \beta) & = & 0
\end{eqnarray*}





Pedro Hernandez 2004-02-28